[go: up one dir, main page]

JP5160277B2 - Tractor - Google Patents

Tractor Download PDF

Info

Publication number
JP5160277B2
JP5160277B2 JP2008078244A JP2008078244A JP5160277B2 JP 5160277 B2 JP5160277 B2 JP 5160277B2 JP 2008078244 A JP2008078244 A JP 2008078244A JP 2008078244 A JP2008078244 A JP 2008078244A JP 5160277 B2 JP5160277 B2 JP 5160277B2
Authority
JP
Japan
Prior art keywords
transmission
speed
hydraulic clutch
hydraulic
main transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008078244A
Other languages
Japanese (ja)
Other versions
JP2009228875A (en
Inventor
博行 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Agricultural Machinery Co Ltd
Original Assignee
Mitsubishi Agricultural Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Agricultural Machinery Co Ltd filed Critical Mitsubishi Agricultural Machinery Co Ltd
Priority to JP2008078244A priority Critical patent/JP5160277B2/en
Publication of JP2009228875A publication Critical patent/JP2009228875A/en
Application granted granted Critical
Publication of JP5160277B2 publication Critical patent/JP5160277B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

本発明は、油圧クラッチを用いて構成される主変速装置と副変速装置とを直列に結合して多段の走行変速を行うトラクタに関する。   The present invention relates to a tractor that performs a multi-stage traveling shift by connecting a main transmission and a sub-transmission that are configured using a hydraulic clutch in series.

油圧クラッチを用いて構成される主変速装置と副変速装置とを直列に結合して多段の走行変速を行うトラクタが知られている。例えば、特許文献1に示されるトラクタは、3つの油圧クラッチで3段の変速を行う主変速装置(第一主変速機構)と、2つの油圧クラッチで2段の変速を行う副変速装置(第二主変速装置)とを備え、これらの油圧クラッチをそれぞれ電磁比例弁の昇圧制御にもとづいて作動制御することにより、6段の走行変速が可能となっている。また、特許文献2に示されるトラクタは、4つの油圧クラッチで4段の変速を行う主変速装置と、2つの油圧クラッチで2段の変速を行う副変速装置とを備え、主変速装置を構成する4つの油圧クラッチをそれぞれ電磁方向切換弁の切換え制御にもとづいて作動制御すると共に、副変速装置を構成する2つの油圧クラッチをそれぞれ電磁比例弁の昇圧制御にもとづいて作動制御することにより、8段の走行変速が可能となっている。
特開2000−205391号公報 特開2000−62500号公報
2. Description of the Related Art A tractor that performs a multi-stage traveling shift by connecting a main transmission and a sub-transmission that are configured using a hydraulic clutch in series is known. For example, the tractor shown in Patent Document 1 is a main transmission (first main transmission mechanism) that performs three-speed shifts with three hydraulic clutches, and a sub-transmission (first transmission) that performs two-speed shifts with two hydraulic clutches. A two-speed transmission), and these hydraulic clutches are operated and controlled based on the pressure increase control of the electromagnetic proportional valves, respectively, so that a six-stage traveling shift is possible. In addition, the tractor disclosed in Patent Document 2 includes a main transmission that performs four shifts with four hydraulic clutches, and a sub-transmission that performs two shifts with two hydraulic clutches, and constitutes a main transmission. The four hydraulic clutches to be operated are controlled based on the switching control of the electromagnetic direction switching valve, and the two hydraulic clutches constituting the auxiliary transmission are controlled to operate based on the boost control of the electromagnetic proportional valve. It is possible to change the gear speed.
JP 2000-205391 A JP 2000-62500 A

電磁比例弁の昇圧制御にもとづく油圧クラッチの作動制御によれば、変速ショックの少ない円滑な走行変速が可能となるが、特許文献1のように、主変速装置及び副変速装置の各油圧クラッチをすべて電磁比例弁で制御するものでは、電磁比例弁の必要個数が多くなり、高価な走行変速装置となってしまうという問題がある。一方、特許文献1に示されるものでは、副変速装置の各油圧クラッチを電磁比例弁で制御するものの、主変速装置の各油圧クラッチは電磁方向切換え弁で制御するので、安価な走行変速装置とすることが可能であるが、電磁比例弁の昇圧制御にもとづいて円滑な走行変速を行うには、変速の度に副変速装置の油圧クラッチを断続しなければならないため、副変速装置に設けられる油圧クラッチの耐久性を向上させる必要があり、また、主変速装置と副変速装置の同時変速によって変速時間が長くなったり、両変速装置の変速タイミングよって変速ショックが生じる可能性があった。   According to the hydraulic clutch operation control based on the pressure increase control of the electromagnetic proportional valve, a smooth running shift with less shift shock is possible. However, as in Patent Document 1, the hydraulic clutches of the main transmission and the sub-transmission are used. If all are controlled by an electromagnetic proportional valve, there is a problem that the required number of electromagnetic proportional valves increases, resulting in an expensive travel transmission. On the other hand, in the one disclosed in Patent Document 1, although each hydraulic clutch of the sub-transmission is controlled by an electromagnetic proportional valve, each hydraulic clutch of the main transmission is controlled by an electromagnetic direction switching valve. However, in order to perform a smooth travel shift based on the pressure increase control of the electromagnetic proportional valve, the hydraulic clutch of the sub-transmission device must be engaged / disengaged at every shift, and thus provided in the sub-transmission device. It is necessary to improve the durability of the hydraulic clutch, and there is a possibility that the shift time becomes longer due to the simultaneous shift of the main transmission and the auxiliary transmission, or that a shift shock occurs due to the shift timing of both transmissions.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、油圧クラッチを用いて構成される主変速装置と副変速装置とを直列に結合して多段の走行変速を行うトラクタであって、前記主変速装置を構成する複数の油圧クラッチは、それぞれ電磁比例弁の昇圧制御にもとづいて択一的な作動制御が行われ、副変速装置を構成する油圧クラッチは、電磁方向切換弁の切換え制御にもとづいて作動制御が行われるものであり、前記副変速装置の切換えを必要とする走行変速にあっては、主変速装置の油圧クラッチを切ってから、副変速装置に係る電磁方向切換弁を切換えて副変速装置の油圧クラッチを入りとし、しかる後、主変速装置に係る電磁比例弁の昇圧制御に基づいて主変速装置の油圧クラッチを入りとし、副変速装置の切換えを必要としない走行変速にあっては、副変速装置に係る電磁方向切換弁を入り状態にしたまま主変速装置に係る電磁比例制御弁の昇圧制御が行われることを特徴とするトラクタである。このようにすると、主変速装置及び副変速装置の各油圧クラッチをすべて電磁比例弁で制御するものに比べ、走行変速装置を安価に構成することができる。また、変速の度に副変速装置の油圧クラッチを断続する必要がないので、副変速装置に設けられる油圧クラッチの耐久性を向上させるためのコストアップが回避されると共に、副変速装置の切換えを必要とする走行変速においても、電磁比例弁の昇圧制御にもとづいて円滑な走行変速を行うことができる。
請求項2の発明は、前記主変速装置は、副変速装置の伝動上手側に結合されていることを特徴とする請求項1記載のトラクタである。このようにすると、主変速装置を伝動上手側に配置し、その油圧クラッチを昇圧制御するので、油圧クラッチの負荷を軽減し、円滑な走行変速を行うことができる。
SUMMARY OF THE INVENTION The present invention has been created in view of the above-described circumstances in order to solve these problems. The invention of claim 1 is directed to a main transmission and a sub-transmission that are configured using a hydraulic clutch. And a plurality of hydraulic clutches constituting the main transmission are each subjected to alternative operation control based on boost control of an electromagnetic proportional valve. , hydraulic clutch comprising the secondary transmission is a shall be carried out operation control based on the switching control of the directional control valve, wherein in the traveling shift that requires switching of the auxiliary transmission device, the main transmission After switching off the hydraulic clutch of the device, the electromagnetic direction switching valve related to the sub-transmission is switched to turn on the hydraulic clutch of the sub-transmission, and then the main shift based on the boost control of the electromagnetic proportional valve related to the main transmission Dress In the case of a traveling speed change that does not require switching of the auxiliary transmission, the boost control of the electromagnetic proportional control valve related to the main transmission is kept while the electromagnetic direction switching valve related to the auxiliary transmission is turned on. Is a tractor characterized in that In this case, the travel transmission can be configured at a lower cost than that in which all the hydraulic clutches of the main transmission and the sub-transmission are controlled by electromagnetic proportional valves. Further, since each time the shift is not necessary to interrupt the hydraulic clutch of the auxiliary transmission device, the cost for improving the durability of the hydraulic clutch provided in the auxiliary transmission is avoided, the switching of the auxiliary transmission device Even in the required travel shift, a smooth travel shift can be performed based on the pressure increase control of the electromagnetic proportional valve.
A second aspect of the present invention, the main transmission is a tractor of claim 1 Symbol mounting, characterized in that it is coupled to the transmission upstream side of the auxiliary transmission device. In this way, the main transmission is arranged on the transmission upper side and the hydraulic clutch is pressure-controlled, so the load on the hydraulic clutch can be reduced and a smooth travel shift can be performed.

次に、本発明の実施形態について、図面に基づいて説明する。図1において、Tは農用のトラクタであって、該トラクタTには、トランスミッションケース1が搭載されている。図2に示すように、トランスミッションケース1は、主クラッチ機構2を介してエンジンEの動力を入力すると共に、入力した動力を走行動力伝動経路3とPTO動力伝動経路4とに分岐させる。走行動力伝動経路3には、走行動力を多段に変速するために、複数の変速装置が設けられている。走行動力伝動経路3に設けられる変速装置には、摩擦多板式の油圧クラッチを用いて構成され、変速操作に際して伝動上手側の主クラッチ機構2を切る必要がない油圧クラッチ式変速装置と、常時噛合式の歯車変速装置を用いて構成され、変速操作に際して主クラッチ機構2を切る必要がある噛み合い式変速装置とが含まれており、油圧クラッチ式変速装置と噛み合い式変速装置の組み合せにより走行動力の多段変速を行うようになっている。   Next, embodiments of the present invention will be described with reference to the drawings. In FIG. 1, T is an agricultural tractor, and a transmission case 1 is mounted on the tractor T. As shown in FIG. 2, the transmission case 1 inputs the power of the engine E via the main clutch mechanism 2 and branches the input power into the travel power transmission path 3 and the PTO power transmission path 4. The travel power transmission path 3 is provided with a plurality of transmissions for shifting the travel power in multiple stages. The transmission provided in the travel power transmission path 3 is configured using a frictional multi-plate hydraulic clutch, and is always meshed with a hydraulic clutch transmission that does not require the main clutch mechanism 2 on the transmission upper side to be cut off during a shift operation. And a mesh type transmission that requires the main clutch mechanism 2 to be disengaged during a shift operation. The combination of the hydraulic clutch type transmission and the mesh type transmission allows the driving power to be reduced. Multi-speed shifting is performed.

具体的に説明すると、走行動力伝動経路3には、摩擦多板式の油圧クラッチC1〜C4を用いて構成され、4段の変速を行う主変速装置5と、摩擦多板式の油圧クラッチCF、CRを用いて構成され、走行動力の正逆転変速を行う前後進変速装置6と、常時噛合式の歯車変速装置を用いて構成され、3段の変速を行う高中低変速装置7と、摩擦多板式の油圧クラッチCL、CHを用いて構成され、高低2段の変速を行う副変速装置8とが設けられており、通常の作業においては、図3に示すように、主変速装置5と副変速装置8による変速の組み合せによって8段の走行変速が可能になると共に、前後進変速装置6による前後進切換えが可能となっている。尚、本実施形態では、さらに、高中低変速装置7の変速を組み合せることにより、24段の走行変速が可能であるが、高中低変速装置7は、本発明の要部ではないので、詳細な説明は省略する。   More specifically, the travel power transmission path 3 is configured by using friction multi-plate hydraulic clutches C1 to C4, and the main transmission 5 that performs four-speed shifting, and the friction multi-plate hydraulic clutch CF, CR. , A forward / reverse transmission 6 that performs forward / reverse shift of the driving power, a high / medium / low transmission 7 that performs a three-stage shift, and a friction multi-plate type. And a sub-transmission device 8 that performs a two-step shift in high and low levels. In normal operation, as shown in FIG. 3, the main transmission 5 and the sub-transmission are provided. A combination of shifts by the device 8 enables eight-stage travel shifts and forward / reverse switching by the forward / reverse transmission 6. In the present embodiment, a 24-speed traveling shift is possible by further combining the shifts of the high, medium, and low transmission 7, but the high, medium, and low transmission 7 is not the main part of the present invention. The detailed explanation is omitted.

主変速装置5、高中低変速装置7及び副変速装置8で変速された走行動力は、前車軸及び後車軸に伝動される。前車軸への動力伝動経路には、前車軸に伝達する動力を高低に変速又は切断する倍速伝動装置9が設けられており、該倍速伝動装置9による動力の変速又は切断によって、旋回時における前輪倍速駆動や4駆、2駆の切換えが行われるようになっている。そして、倍速伝動装置9は、摩擦多板式の油圧クラッチを用いて構成されることにより、円滑な変速や切断が可能となっている。   The traveling power changed by the main transmission 5, the high / medium / low transmission 7 and the auxiliary transmission 8 is transmitted to the front axle and the rear axle. The power transmission path to the front axle is provided with a double speed transmission device 9 that shifts or cuts the power transmitted to the front axle at a high or low level. Switching between double speed drive, 4WD and 2WD is performed. The double speed transmission device 9 is configured using a frictional multi-plate hydraulic clutch, thereby enabling smooth shifting and disconnection.

PTO動力伝動経路4には、摩擦多板式の油圧クラッチを用いて構成されるPTOクラッチ10と、常時噛合式の歯車変速装置を用いて構成されるPTO変速装置11とが設けられており、走行状態に影響されない独立したPTO動力伝動系、すなわち、インディペンデントPTO仕様のPTO動力伝動経路4を構成している。   The PTO power transmission path 4 is provided with a PTO clutch 10 configured using a frictional multi-plate hydraulic clutch and a PTO transmission 11 configured using a constantly meshing gear transmission. An independent PTO power transmission system that is not influenced by the state, that is, a PTO power transmission path 4 of an independent PTO specification is configured.

本実施形態のトラクタTには、図4に示すような油圧回路が構成されている。この油圧回路は、2つの油圧ポンプP1、P2を備え、一方の油圧ポンプP1から供給される油圧で、倍速伝動装置9、リフトシリンダ12及びリフトロッドシリンダ13を動作させ、他方の油圧ポンプP2から供給される油圧で、ステアリングユニット14、主変速装置5、前後進変速装置6、副変速装置8、PTOクラッチ10及び自動ブレーキ旋回装置15を動作させるように構成されている。   The tractor T of this embodiment is configured with a hydraulic circuit as shown in FIG. This hydraulic circuit includes two hydraulic pumps P1 and P2, operates the double speed transmission device 9, the lift cylinder 12 and the lift rod cylinder 13 with the hydraulic pressure supplied from one hydraulic pump P1, and from the other hydraulic pump P2. The steering unit 14, the main transmission 5, the forward / reverse transmission 6, the auxiliary transmission 8, the PTO clutch 10, and the automatic brake turning device 15 are configured to operate with the supplied hydraulic pressure.

少なくとも、主変速装置5及び副変速装置8の油圧クラッチC1〜C4、CL、CHは、電磁弁の制御にもとづいて作動される。電磁比例弁の昇圧制御にもとづく油圧クラッチの作動制御によれば、変速ショックの少ない円滑な走行変速が可能となるが、主変速装置5及び副変速装置8の各油圧クラッチC1〜C4、CL、CHをすべて電磁比例弁で制御するものでは、電磁比例弁の必要個数が多くなり、高価な走行変速装置となってしまうという問題がある。また、副変速装置8の各油圧クラッチCL、CHを電磁比例弁で制御し、主変速装置5の各油圧クラッチC1〜C4を電磁方向切換え弁で制御するようにした場合、安価な走行変速装置とすることが可能であるが、電磁比例弁の昇圧制御にもとづいて円滑な走行変速を行うには、変速の度に副変速装置8の油圧クラッチCL、CHを断続しなければならないため、副変速装置8に設けられる油圧クラッチCL、CHの耐久性を向上させなければならない。   At least the hydraulic clutches C1 to C4, CL, and CH of the main transmission 5 and the auxiliary transmission 8 are operated based on the control of the electromagnetic valve. According to the hydraulic clutch operation control based on the pressure increase control of the electromagnetic proportional valve, a smooth traveling shift with less shift shock is possible. However, the hydraulic clutches C1 to C4, CL, If all the CHs are controlled by an electromagnetic proportional valve, there is a problem that the required number of electromagnetic proportional valves increases, resulting in an expensive traveling transmission. Further, when the hydraulic clutches CL and CH of the auxiliary transmission 8 are controlled by electromagnetic proportional valves and the hydraulic clutches C1 to C4 of the main transmission 5 are controlled by electromagnetic switching valves, an inexpensive travel transmission is provided. However, in order to perform a smooth running shift based on the pressure increase control of the electromagnetic proportional valve, the hydraulic clutches CL and CH of the subtransmission device 8 must be engaged / disengaged at every shift. The durability of the hydraulic clutches CL and CH provided in the transmission 8 must be improved.

そこで、本実施形態のトラクタTでは、図4に示すように、主変速装置5の各油圧クラッチC1〜C4を、それぞれ電磁比例弁16a〜16dの昇圧制御にもとづいて択一的に作動制御し、副変速装置8の各油圧クラッチCL、CHを、電磁方向切換弁17の切換え制御にもとづいて作動制御する。このようにすると、主変速装置5及び副変速装置8の各油圧クラッチC1〜C4、CL、CHをすべて電磁比例弁で制御するものに比べ、走行変速装置を安価に構成することができる。また、変速の度に副変速装置8の油圧クラッチCL、CHを断続する必要がないので、副変速装置8に設けられる油圧クラッチCL、CHの耐久性を向上させるためのコストアップが回避される。   Therefore, in the tractor T of the present embodiment, as shown in FIG. 4, the hydraulic clutches C1 to C4 of the main transmission 5 are selectively controlled based on the boost control of the electromagnetic proportional valves 16a to 16d, respectively. The hydraulic clutches CL and CH of the auxiliary transmission 8 are controlled based on switching control of the electromagnetic direction switching valve 17. In this way, the traveling transmission can be configured at a lower cost than that in which the hydraulic clutches C1 to C4, CL, and CH of the main transmission 5 and the auxiliary transmission 8 are all controlled by the electromagnetic proportional valves. Further, since it is not necessary to connect and disconnect the hydraulic clutches CL and CH of the auxiliary transmission 8 at every shift, an increase in cost for improving the durability of the hydraulic clutches CL and CH provided in the auxiliary transmission 8 is avoided. .

また、副変速装置8の切換えを必要とする走行変速(4速→5速、5速→4速)にあっては、副変速装置8に係る電磁方向切換弁17の切換え制御後に、主変速装置5に係る電磁比例弁16a〜16dの昇圧制御が行われることが好ましい。例えば、図5に示すように、4速から5速へ変速する場合は、主変速装置5の4速用油圧クラッチC4を切ってから、副変速装置8の低速用油圧クラッチCLを切ると共に、高速用油圧クラッチCHを入りとし、その後に電磁比例弁16aの昇圧制御にもとづいて主変速装置5の1速用油圧クラッチC1を入りとする。このようにすると、副変速装置8の切換えを必要とする走行変速においても、電磁比例弁16a〜16dの昇圧制御にもとづいて円滑な走行変速を行うことができる。しかも、本実施形態では、主変速装置5を副変速装置8の伝動上手側に配置し、その油圧クラッチC1〜C4を昇圧制御するので、油圧クラッチC1〜C4の負荷を軽減し、円滑な走行変速を行うことができる。尚、本実施形態では、電磁比例弁16a〜16dの緩やかな昇圧制御に先立ち、瞬間的に急激な圧力上昇状態を現出させるが、これは、油圧クラッチC1〜C4をクラッチミート位置まで迅速に移動させるための処理であり、単純な昇圧制御による油圧クラッチC1〜C4の動作遅れを防止するためのものである。   Further, in a traveling shift (4th speed → 5th speed, 5th speed → 4th speed) that requires switching of the subtransmission 8, the main shift is performed after switching control of the electromagnetic direction switching valve 17 related to the subtransmission 8. It is preferable that boost control of the electromagnetic proportional valves 16a to 16d according to the device 5 is performed. For example, as shown in FIG. 5, when shifting from the 4th speed to the 5th speed, the 4th speed hydraulic clutch C4 of the main transmission 5 is disconnected and then the low speed hydraulic clutch CL of the auxiliary transmission 8 is disconnected, The high speed hydraulic clutch CH is turned on, and then the first speed hydraulic clutch C1 of the main transmission 5 is turned on based on the boost control of the electromagnetic proportional valve 16a. In this way, even in a traveling shift that requires switching of the auxiliary transmission 8, a smooth traveling shift can be performed based on the pressure increase control of the electromagnetic proportional valves 16a to 16d. Moreover, in the present embodiment, the main transmission 5 is arranged on the upper transmission side of the sub-transmission 8, and the hydraulic clutches C1 to C4 are boosted, so that the load on the hydraulic clutches C1 to C4 is reduced and smooth running is achieved. Shifting can be performed. In this embodiment, an abrupt pressure increase state is instantly displayed prior to the gradual pressure increase control of the electromagnetic proportional valves 16a to 16d. This is because the hydraulic clutches C1 to C4 are quickly moved to the clutch meet position. This is a process for moving, and is intended to prevent a delay in the operation of the hydraulic clutches C1 to C4 due to simple boost control.

また、本実施形態のトラクタTでは、主変速装置5及び副変速装置8の各油圧クラッチC1〜C4、CL、CHを、それぞれ電磁弁(電磁比例弁16a〜16d又は電磁方向切換え弁17)で制御するものの、前後進変速装置6を構成する油圧クラッチCF、CRは、手動方向切換弁18の作動に応じて前後進変速装置6の変速状態を切換えるように構成されている。例えば、図6〜図8に示すように、ステアリングハンドル19の近傍に設けられる前後進変速レバー20にワイヤ21を介して手動方向切換弁18を連繋し、該手動方向切換弁18の切換え作動に応じて前後進変速装置6の各油圧クラッチCF、CRを入り切りさせる。このようにすると、電気的なトラブルが発生しても、少なくとも、手動方向切換弁18の操作にもとづいて前後進変速装置6は切換えることができるので、走行不能状態に陥る可能性を低減することができる。   Further, in the tractor T of the present embodiment, the hydraulic clutches C1 to C4, CL, and CH of the main transmission device 5 and the auxiliary transmission device 8 are respectively electromagnetic valves (electromagnetic proportional valves 16a to 16d or electromagnetic direction switching valve 17). Although controlled, the hydraulic clutches CF and CR constituting the forward / reverse transmission 6 are configured to switch the shift state of the forward / reverse transmission 6 according to the operation of the manual direction switching valve 18. For example, as shown in FIGS. 6 to 8, a manual direction switching valve 18 is linked to a forward / reverse speed change lever 20 provided in the vicinity of the steering handle 19 via a wire 21 so that the manual direction switching valve 18 is switched. Accordingly, the hydraulic clutches CF and CR of the forward / reverse transmission 6 are turned on and off. In this way, even if an electrical trouble occurs, the forward / reverse transmission 6 can be switched based on at least the operation of the manual direction switching valve 18, so that the possibility of falling into an inoperable state is reduced. Can do.

また、主変速装置5を構成する複数の油圧クラッチC1〜C4は、前述したように、それぞれ電磁比例弁16a〜16dの昇圧制御にもとづいて択一的に作動制御され、前後進変速装置6の変速状態が切換えられた際には、前後進変速装置6の油圧クラッチCF、CRが接続された後に、電磁比例弁16a〜16dの昇圧制御にもとづいて主変速装置5の油圧クラッチC1〜C4を接続して機体の発進が行われることが好ましい。例えば、図9に示すように、前後進変速装置6を構成する油圧クラッチCF、CRの切りに応じて、主変速装置5の油圧クラッチC1〜C4を切りにすると共に、前後進変速装置6の油圧クラッチCF、CRが入りとなった後、電磁比例弁16a〜16dの昇圧制御にもとづいて主変速装置5の油圧クラッチC1〜C4を入りにする。このようにすると、主変速装置5の油圧クラッチC1〜C4を昇圧制御するための電磁比例弁16a〜16dを利用し、前後進切換え後の機体発進をスムーズに行うことができる。   Further, as described above, the plurality of hydraulic clutches C1 to C4 constituting the main transmission 5 are selectively controlled based on the boost control of the electromagnetic proportional valves 16a to 16d, respectively. When the shift state is switched, after the hydraulic clutches CF and CR of the forward / reverse transmission 6 are connected, the hydraulic clutches C1 to C4 of the main transmission 5 are controlled based on the boost control of the electromagnetic proportional valves 16a to 16d. It is preferable to start the aircraft by connecting. For example, as shown in FIG. 9, the hydraulic clutches C1 to C4 of the main transmission 5 are disconnected according to the disconnection of the hydraulic clutches CF and CR constituting the forward / reverse transmission 6 and After the hydraulic clutches CF and CR are engaged, the hydraulic clutches C1 to C4 of the main transmission 5 are engaged based on the boost control of the electromagnetic proportional valves 16a to 16d. In this way, it is possible to smoothly start the vehicle after the forward / reverse switching, using the electromagnetic proportional valves 16a to 16d for boosting the hydraulic clutches C1 to C4 of the main transmission 5.

次に、電磁比例弁16a〜16d及び電磁方向切換え弁17の具体的な制御例について、図10を参照して説明する。この図に示すように、トラクタTには、マイコンなどを用いて構成される制御装置22が設けられている。制御装置22の入力側には、走行変速段を1段ずつアップさせるシフトアップスイッチ23と、走行変速段を1段ずつダウンさせるシフトダウンスイッチ24と、エンジンの回転を検出するエンジン回転センサ25と、車軸の回転を検出する車軸回転センサ26と、油圧回路の油温を検出する油温センサ27と、前後進変速レバー20の操作位置を検出する前後進センサ28と、主クラッチ機構2の入り切りを検出する主クラッチセンサ29とが接続される一方、制御装置22の出力側には、前述した電磁比例弁16a〜16d及び電磁方向切換え弁17が接続されている。つまり、制御装置22は、上記のスイッチ23、24やセンサ25〜29からの入力信号にもとづいて、電磁比例弁16a〜16d及び電磁方向切換え弁17を制御するように構成されており、以下、シフトアップスイッチ23及びシフトダウンスイッチ24の操作に応じた電磁比例弁16a〜16d及び電磁方向切換え弁17の制御手順と、前後進変速レバー20の操作に応じた電磁比例弁16a〜16dの制御について説明する。   Next, a specific control example of the electromagnetic proportional valves 16a to 16d and the electromagnetic direction switching valve 17 will be described with reference to FIG. As shown in this figure, the tractor T is provided with a control device 22 configured using a microcomputer or the like. On the input side of the control device 22, a shift-up switch 23 that increases the traveling gear stage by one step, a shift-down switch 24 that decreases the traveling gear step by one step, and an engine rotation sensor 25 that detects engine rotation, Axle rotation sensor 26 that detects the rotation of the axle, an oil temperature sensor 27 that detects the oil temperature of the hydraulic circuit, a forward / reverse sensor 28 that detects the operating position of the forward / reverse shift lever 20, and whether the main clutch mechanism 2 is turned on or off. Is connected to the main clutch sensor 29, and the electromagnetic proportional valves 16 a to 16 d and the electromagnetic direction switching valve 17 are connected to the output side of the control device 22. That is, the control device 22 is configured to control the electromagnetic proportional valves 16a to 16d and the electromagnetic direction switching valve 17 based on the input signals from the switches 23 and 24 and the sensors 25 to 29. Control procedure of the electromagnetic proportional valves 16a to 16d and the electromagnetic direction switching valve 17 according to the operation of the shift up switch 23 and the shift down switch 24, and control of the electromagnetic proportional valves 16a to 16d according to the operation of the forward / reverse shift lever 20 explain.

1速の状態では、主変速装置5の1速用油圧クラッチC1と、副変速装置8の低速用油圧クラッチCLが入りとなっている。シフトアップスイッチ23の操作に応じて1速から2速へ変速する場合は、副変速装置8の低速用油圧クラッチCLを入りとしたまま、主変速装置5の1速用油圧クラッチC1を切り、電磁比例弁16bの昇圧制御にもとづいて2速用油圧クラッチC2を入りとする。   In the first speed state, the first-speed hydraulic clutch C1 of the main transmission 5 and the low-speed hydraulic clutch CL of the auxiliary transmission 8 are engaged. When shifting from the first speed to the second speed in accordance with the operation of the upshift switch 23, the first speed hydraulic clutch C1 of the main transmission 5 is disengaged while the low speed hydraulic clutch CL of the auxiliary transmission 8 is kept engaged. The second-speed hydraulic clutch C2 is engaged based on the boost control of the electromagnetic proportional valve 16b.

また、シフトアップスイッチ23の操作に応じて2速から3速へ変速する場合は、副変速装置8の低速用油圧クラッチCLを入りとしたまま、主変速装置5の2速用油圧クラッチC2を切り、電磁比例弁16cの昇圧制御にもとづいて3速用油圧クラッチC3を入りとする。   Further, when shifting from the second speed to the third speed in accordance with the operation of the upshift switch 23, the second speed hydraulic clutch C2 of the main transmission 5 is kept engaged with the low speed hydraulic clutch CL of the auxiliary transmission 8 kept engaged. The third-speed hydraulic clutch C3 is engaged based on the boost control of the electromagnetic proportional valve 16c.

また、シフトアップスイッチ23の操作に応じて3速から4速へ変速する場合は、副変速装置8の低速用油圧クラッチCLを入りとしたまま、主変速装置5の3速用油圧クラッチC3を切り、電磁比例弁16dの昇圧制御にもとづいて4速用油圧クラッチC4を入りとする。   When shifting from the 3rd speed to the 4th speed in response to the operation of the upshift switch 23, the 3rd speed hydraulic clutch C3 of the main transmission 5 is kept engaged with the low speed hydraulic clutch CL of the auxiliary transmission 8 kept engaged. The 4th-speed hydraulic clutch C4 is engaged based on the boost control of the electromagnetic proportional valve 16d.

また、シフトアップスイッチ23の操作に応じて4速から5速へ変速する場合は、主変速装置5の4速用油圧クラッチC4を切ってから、電磁方向切換弁17の切換え制御にもとづいて、副変速装置8の低速用油圧クラッチCLを切ると共に、高速用油圧クラッチCHを入りとし、その後に、電磁比例弁16aの昇圧制御にもとづいて主変速装置5の1速用油圧クラッチC1を入りとする。   Further, when shifting from the 4th speed to the 5th speed in accordance with the operation of the upshift switch 23, after the 4th speed hydraulic clutch C4 of the main transmission 5 is disconnected, the switching control of the electromagnetic direction switching valve 17 is performed. The low-speed hydraulic clutch CL of the auxiliary transmission 8 is disconnected and the high-speed hydraulic clutch CH is engaged, and then the first-speed hydraulic clutch C1 of the main transmission 5 is engaged based on the boost control of the electromagnetic proportional valve 16a. To do.

また、シフトアップスイッチ23の操作に応じて5速から6速へ変速する場合は、副変速装置8の高速用油圧クラッチCHを入りとしたまま、主変速装置5の1速用油圧クラッチC1を切り、電磁比例弁16bの昇圧制御にもとづいて2速用油圧クラッチC2を入りとする。   Further, when shifting from the fifth speed to the sixth speed in accordance with the operation of the upshift switch 23, the first speed hydraulic clutch C1 of the main transmission 5 is kept engaged with the high speed hydraulic clutch CH of the auxiliary transmission 8 kept engaged. The second-speed hydraulic clutch C2 is engaged based on the boost control of the electromagnetic proportional valve 16b.

また、シフトアップスイッチ23の操作に応じて6速から7速へ変速する場合は、副変速装置8の高速用油圧クラッチCHを入りとしたまま、主変速装置5の2速用油圧クラッチC2を切り、電磁比例弁16cの昇圧制御にもとづいて3速用油圧クラッチC3を入りとする。   When shifting from the sixth speed to the seventh speed in accordance with the operation of the upshift switch 23, the second speed hydraulic clutch C2 of the main transmission 5 is kept engaged with the high speed hydraulic clutch CH of the subtransmission 8 kept engaged. The third-speed hydraulic clutch C3 is engaged based on the boost control of the electromagnetic proportional valve 16c.

また、シフトアップスイッチ23の操作に応じて7速から8速へ変速する場合は、副変速装置8の高速用油圧クラッチCHを入りとしたまま、主変速装置5の3速用油圧クラッチC3を切り、電磁比例弁16dの昇圧制御にもとづいて4速用油圧クラッチC4を入りとする。   Further, when shifting from the seventh speed to the eighth speed in accordance with the operation of the upshift switch 23, the third speed hydraulic clutch C3 of the main transmission 5 is kept engaged with the high speed hydraulic clutch CH of the subtransmission 8 kept engaged. The 4th-speed hydraulic clutch C4 is engaged based on the boost control of the electromagnetic proportional valve 16d.

逆に、シフトダウンスイッチ24の操作に応じて8速から7速へ変速する場合は、副変速装置8の高速用油圧クラッチCHを入りとしたまま、主変速装置5の4速用油圧クラッチC4を切り、電磁比例弁16cの昇圧制御にもとづいて3速用油圧クラッチC3を入りとする。   Conversely, when shifting from the 8th speed to the 7th speed according to the operation of the shift down switch 24, the 4th speed hydraulic clutch C4 of the main transmission 5 is kept with the high speed hydraulic clutch CH of the auxiliary transmission 8 kept engaged. And the third-speed hydraulic clutch C3 is engaged based on the pressure increase control of the electromagnetic proportional valve 16c.

また、シフトダウンスイッチ24の操作に応じて7速から6速へ変速する場合は、副変速装置8の高速用油圧クラッチCHを入りとしたまま、主変速装置5の3速用油圧クラッチC3を切り、電磁比例弁16bの昇圧制御にもとづいて2速用油圧クラッチC2を入りとする。   When shifting from the 7th speed to the 6th speed in accordance with the operation of the downshift switch 24, the 3rd speed hydraulic clutch C3 of the main transmission 5 is kept engaged with the high speed hydraulic clutch CH of the auxiliary transmission 8 kept engaged. The second-speed hydraulic clutch C2 is engaged based on the boost control of the electromagnetic proportional valve 16b.

また、シフトダウンスイッチ24の操作に応じて6速から5速へ変速する場合は、副変速装置8の高速用油圧クラッチCHを入りとしたまま、主変速装置5の2速用油圧クラッチC2を切り、電磁比例弁16aの昇圧制御にもとづいて1速用油圧クラッチC1を入りとする。   When shifting from the sixth speed to the fifth speed in accordance with the operation of the downshift switch 24, the second speed hydraulic clutch C2 of the main transmission 5 is turned on while the high speed hydraulic clutch CH of the subtransmission 8 is kept engaged. The first-speed hydraulic clutch C1 is engaged based on the boost control of the electromagnetic proportional valve 16a.

また、シフトダウンスイッチ24の操作に応じて5速から4速へ変速する場合は、主変速装置5の1速用油圧クラッチC1を切ってから、電磁方向切換弁17の切換制御にもとづいて副変速装置8の高速用油圧クラッチCHを切ると共に、低速用油圧クラッチCLを入りとし、その後に、電磁比例弁16dの昇圧制御にもとづいて主変速装置5の4速用油圧クラッチC4を入りとする。   When shifting from the fifth speed to the fourth speed in accordance with the operation of the shift down switch 24, the first speed hydraulic clutch C1 of the main transmission 5 is disengaged, and then the auxiliary direction control valve 17 is controlled based on the switching control. The high speed hydraulic clutch CH of the transmission 8 is disengaged, the low speed hydraulic clutch CL is engaged, and then the 4 speed hydraulic clutch C4 of the main transmission 5 is engaged based on the pressure increase control of the electromagnetic proportional valve 16d. .

また、シフトダウンスイッチ24の操作に応じて4速から3速へ変速する場合は、副変速装置8の低速用油圧クラッチCLを入りとしたまま、主変速装置5の4速用油圧クラッチC4を切り、電磁比例弁16cの昇圧制御にもとづいて3速用油圧クラッチC3を入りとする。   When shifting from the 4th speed to the 3rd speed in accordance with the operation of the downshift switch 24, the 4th speed hydraulic clutch C4 of the main transmission 5 is kept engaged with the low speed hydraulic clutch CL of the auxiliary transmission 8 kept engaged. The third-speed hydraulic clutch C3 is engaged based on the boost control of the electromagnetic proportional valve 16c.

また、シフトダウンスイッチ24の操作に応じて3速から2速へ変速する場合は、副変速装置8の低速用油圧クラッチCLを入りとしたまま、主変速装置5の3速用油圧クラッチC3を切り、電磁比例弁16bの昇圧制御にもとづいて2速用油圧クラッチC2を入りとする。   When shifting from the 3rd speed to the 2nd speed according to the operation of the downshift switch 24, the 3rd speed hydraulic clutch C3 of the main transmission 5 is kept engaged with the low speed hydraulic clutch CL of the auxiliary transmission 8 being kept engaged. The second-speed hydraulic clutch C2 is engaged based on the boost control of the electromagnetic proportional valve 16b.

また、シフトダウンスイッチ24の操作に応じて2速から1速へ変速する場合は、副変速装置8の低速用油圧クラッチCLを入りとしたまま、主変速装置5の2速用油圧クラッチC2を切り、電磁比例弁16aの昇圧制御にもとづいて1速用油圧クラッチC1を入りとする。   When shifting from the second speed to the first speed in accordance with the operation of the downshift switch 24, the second speed hydraulic clutch C2 of the main transmission 5 is kept engaged with the low speed hydraulic clutch CL of the auxiliary transmission 8 kept engaged. The first-speed hydraulic clutch C1 is engaged based on the boost control of the electromagnetic proportional valve 16a.

また、前後進変速レバー20が操作された場合は、前後進変速装置6を構成する油圧クラッチCF、CRの切りに応じて、主変速装置5の油圧クラッチC1〜C4を切りにすると共に、前後進変速装置6の油圧クラッチCF、CRが入りとなった後、電磁比例弁16a〜16dの昇圧制御にもとづいて主変速装置5の油圧クラッチC1〜C4を入りにする。   Further, when the forward / reverse transmission lever 20 is operated, the hydraulic clutches C1 to C4 of the main transmission 5 are disconnected according to the disconnection of the hydraulic clutches CF and CR constituting the forward / reverse transmission 6 and After the hydraulic clutches CF and CR of the advance transmission 6 are engaged, the hydraulic clutches C1 to C4 of the main transmission 5 are engaged based on the boost control of the electromagnetic proportional valves 16a to 16d.

叙述の如く構成された本実施形態によれば、油圧クラッチC1〜C4、CL、CHを用いて構成される主変速装置5と副変速装置8とを直列に結合して多段の走行変速を行うトラクタTであって、主変速装置5を構成する複数の油圧クラッチC1〜C4は、それぞれ電磁比例弁16a〜16dの昇圧制御にもとづいて択一的な作動制御が行われ、副変速装置8を構成する油圧クラッチCL、CHは、電磁方向切換弁17の切換え制御にもとづいて作動制御が行われるので、主変速装置5及び副変速装置8の各油圧クラッチC1〜C4、CL、CHをすべて電磁比例弁で制御するものに比べ、走行変速装置を安価に構成することができる。また、変速の度に副変速装置8の油圧クラッチCL、CHを断続する必要がないので、副変速装置8に設けられる油圧クラッチCL、CHの耐久性を向上させるためのコストアップが回避される。   According to the present embodiment configured as described, the main transmission device 5 and the sub-transmission device 8 that are configured by using the hydraulic clutches C1 to C4, CL, and CH are connected in series to perform a multi-stage traveling shift. The plurality of hydraulic clutches C1 to C4 that are the tractor T and constitute the main transmission 5 are subjected to alternative operation control based on the boost control of the electromagnetic proportional valves 16a to 16d, respectively. Since the hydraulic clutches CL and CH constituting the operation are controlled based on the switching control of the electromagnetic direction switching valve 17, all the hydraulic clutches C1 to C4, CL and CH of the main transmission device 5 and the auxiliary transmission device 8 are all electromagnetic. Compared with the one controlled by the proportional valve, the traveling transmission can be configured at a low cost. Further, since it is not necessary to connect and disconnect the hydraulic clutches CL and CH of the auxiliary transmission 8 at every shift, an increase in cost for improving the durability of the hydraulic clutches CL and CH provided in the auxiliary transmission 8 is avoided. .

また、副変速装置8の切換えを必要とする走行変速にあっては、副変速装置8に係る電磁方向切換弁17の切換え制御後に、主変速装置5に係る電磁比例弁16a〜16dの昇圧制御が行われるので、副変速装置8の切換えを必要とする走行変速においても、電磁比例弁16a〜16dの昇圧制御にもとづいて円滑な走行変速を行うことができる。主変速装置5を副変速装置8の伝動上手側に配置し、その油圧クラッチC1〜C4を昇圧制御するので、油圧クラッチC1〜C4の負荷を軽減し、円滑な走行変速を行うことができる。   Further, in a travel shift that requires switching of the auxiliary transmission 8, the boost control of the electromagnetic proportional valves 16 a to 16 d related to the main transmission 5 is performed after the switching control of the electromagnetic direction switching valve 17 related to the auxiliary transmission 8. Therefore, even in a travel shift that requires switching of the auxiliary transmission 8, a smooth travel shift can be performed based on the pressure increase control of the electromagnetic proportional valves 16a to 16d. Since the main transmission 5 is arranged on the transmission upper side of the sub-transmission 8 and the hydraulic clutches C1 to C4 are boosted, the load on the hydraulic clutches C1 to C4 can be reduced and a smooth running shift can be performed.

トラクタの斜視図である。It is a perspective view of a tractor. トランスミッションケースの全体断面図である。It is a whole sectional view of a transmission case. 走行変速パターンの説明図である。It is explanatory drawing of a travel shift pattern. トラクタの油圧構成を示す油圧回路図である。It is a hydraulic circuit diagram which shows the hydraulic structure of a tractor. 4速から5速へ変速する際の油圧クラッチ圧を示すタイミングチャートである。It is a timing chart which shows the hydraulic clutch pressure at the time of shifting from 4th speed to 5th speed. 操作部の平面図である。It is a top view of an operation part. 前後進変速操作系を示す側面図である。FIG. 6 is a side view showing a forward / reverse speed change operation system. 前後進変速操作系を示す正面図である。FIG. 6 is a front view showing a forward / reverse speed change operation system. 前進1速から後進1速へ変速する際の油圧クラッチ圧を示すタイミングチャートである。It is a timing chart which shows the hydraulic clutch pressure at the time of shifting from forward 1st speed to reverse 1st speed. 制御装置の入出力を示すブロック図である。It is a block diagram which shows the input / output of a control apparatus.

符号の説明Explanation of symbols

1 トランスミッションケース
5 主変速装置
6 前後進変速装置
8 副変速装置
16a〜16d 電磁比例弁
17 電磁方向切換弁
18 手動方向切換弁
20 前後進変速レバー
22 制御装置
C1〜C4 主変速用油圧クラッチ
CF、CR 前後進変速用油圧クラッチ
CL、CH 副変速用油圧クラッチ
T トラクタ
DESCRIPTION OF SYMBOLS 1 Transmission case 5 Main transmission 6 Forward / reverse transmission 8 Subtransmission 16a-16d Electromagnetic proportional valve 17 Electromagnetic direction switching valve 18 Manual direction switching valve 20 Forward / reverse transmission lever 22 Controllers C1-C4 Main transmission hydraulic clutch CF, CR Hydraulic clutch for forward / reverse shifting CL, CH Hydraulic clutch for auxiliary shifting T Tractor

Claims (2)

油圧クラッチを用いて構成される主変速装置と副変速装置とを直列に結合して多段の走行変速を行うトラクタであって、
前記主変速装置を構成する複数の油圧クラッチは、それぞれ電磁比例弁の昇圧制御にもとづいて択一的な作動制御が行われ、
副変速装置を構成する油圧クラッチは、電磁方向切換弁の切換え制御にもとづいて作動制御が行われるものであり、
前記副変速装置の切換えを必要とする走行変速にあっては、主変速装置の油圧クラッチを切ってから、副変速装置に係る電磁方向切換弁を切換えて副変速装置の油圧クラッチを入りとし、しかる後、主変速装置に係る電磁比例弁の昇圧制御に基づいて主変速装置の油圧クラッチを入りとし、
副変速装置の切換えを必要としない走行変速にあっては、副変速装置に係る電磁方向切換弁を入り状態にしたまま主変速装置に係る電磁比例制御弁の昇圧制御が行われる
ことを特徴とするトラクタ。
A tractor that performs a multi-stage traveling shift by connecting a main transmission and a sub-transmission configured in series using a hydraulic clutch in series,
The plurality of hydraulic clutches constituting the main transmission are each subjected to alternative operation control based on boost control of an electromagnetic proportional valve,
Hydraulic clutch comprising the secondary transmission is a shall be carried out operation control based on the switching control of the directional control valve,
In the traveling shift that requires switching of the auxiliary transmission, after disconnecting the hydraulic clutch of the main transmission, the electromagnetic direction switching valve related to the auxiliary transmission is switched to turn on the hydraulic clutch of the auxiliary transmission, After that, based on the boost control of the electromagnetic proportional valve related to the main transmission, the hydraulic clutch of the main transmission is turned on,
In traveling shifts that do not require switching of the auxiliary transmission, the boost control of the electromagnetic proportional control valve related to the main transmission is performed while the electromagnetic direction switching valve related to the auxiliary transmission is in the on state. A tractor characterized by that.
前記主変速装置は、副変速装置の伝動上手側に結合されていることを特徴とする請求項1記載のトラクタ。 Said main transmission device according to claim 1 Symbol placement tractor, characterized in that it is coupled to the transmission upstream side of the auxiliary transmission device.
JP2008078244A 2008-03-25 2008-03-25 Tractor Expired - Fee Related JP5160277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008078244A JP5160277B2 (en) 2008-03-25 2008-03-25 Tractor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008078244A JP5160277B2 (en) 2008-03-25 2008-03-25 Tractor

Publications (2)

Publication Number Publication Date
JP2009228875A JP2009228875A (en) 2009-10-08
JP5160277B2 true JP5160277B2 (en) 2013-03-13

Family

ID=41244499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008078244A Expired - Fee Related JP5160277B2 (en) 2008-03-25 2008-03-25 Tractor

Country Status (1)

Country Link
JP (1) JP5160277B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2816480B2 (en) * 1989-08-01 1998-10-27 三菱農機株式会社 Power shift transmission in tractor
JPH05312249A (en) * 1992-05-08 1993-11-22 Komatsu Ltd Method for controlling transmission
JPH11311267A (en) * 1998-04-24 1999-11-09 Kanzaki Kokyukoki Mfg Co Ltd Traveling drive transmission control method
JP4084482B2 (en) * 1998-12-10 2008-04-30 ヤンマー株式会社 Tractor transmission
JP3618242B2 (en) * 1999-02-24 2005-02-09 株式会社クボタ Shifting operation structure of work vehicle
JP2007315472A (en) * 2006-05-25 2007-12-06 Iseki & Co Ltd Traveling device for tractor

Also Published As

Publication number Publication date
JP2009228875A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
EP1750040B1 (en) Shift control device and method for automated manual transmission
JP5485370B2 (en) Control device for automatic transmission
JP2013543091A (en) Power shiftable transmission
WO2000029765A1 (en) Method of controlling hydraulic pressure in speed change mechanism having hydraulic clutch
JP5191343B2 (en) Travel transmission for work vehicle
JP4333687B2 (en) Agricultural tractor shift control device
JP5016532B2 (en) Tractor
JP2008302800A (en) Drive unit for vehicle
JP5160277B2 (en) Tractor
JP5063431B2 (en) Tractor
JP5063553B2 (en) Travel transmission for work vehicle
JP4833037B2 (en) Tractor
JP2001173771A (en) Hydraulic clutch control device for full power shift transmission
JP4458059B2 (en) Agricultural tractor shift control device
JP5851775B2 (en) Travel transmission for work vehicle
JP5528854B2 (en) Control device for automatic transmission
JP3155447B2 (en) Work vehicle traveling transmission
JP4744944B2 (en) Hydraulic transmission mechanism for traveling vehicles
JP5078833B2 (en) Travel transmission for work vehicle
JP4894169B2 (en) Shift control device for work vehicle
CN109563924B (en) Shift control device for automatic transmission
KR100580473B1 (en) Double clutch transmission
JP2010095035A (en) Running transmission device of working vehicle
JP2008303971A (en) Driving device for vehicle
JP2003139237A (en) Preselection type multi-stage transmission and its control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R151 Written notification of patent or utility model registration

Ref document number: 5160277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees