[go: up one dir, main page]

JP5151468B2 - High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same - Google Patents

High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same Download PDF

Info

Publication number
JP5151468B2
JP5151468B2 JP2007334785A JP2007334785A JP5151468B2 JP 5151468 B2 JP5151468 B2 JP 5151468B2 JP 2007334785 A JP2007334785 A JP 2007334785A JP 2007334785 A JP2007334785 A JP 2007334785A JP 5151468 B2 JP5151468 B2 JP 5151468B2
Authority
JP
Japan
Prior art keywords
steel sheet
ferrite
cold
rolled steel
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007334785A
Other languages
Japanese (ja)
Other versions
JP2008190032A (en
Inventor
登志男 小川
直紀 丸山
夏子 杉浦
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007334785A priority Critical patent/JP5151468B2/en
Publication of JP2008190032A publication Critical patent/JP2008190032A/en
Application granted granted Critical
Publication of JP5151468B2 publication Critical patent/JP5151468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、自動車用鋼板等の用途に好適な、強度―延性バランス、伸びフランジ性といった加工性に優れ、且つ耐衝突特性にも優れる高強度冷延鋼板及びその製造方法に関するものである。   The present invention relates to a high-strength cold-rolled steel sheet suitable for applications such as automotive steel sheets and the like and excellent in workability such as strength-ductility balance and stretch flangeability, and excellent in impact resistance, and a method for producing the same.

炭酸ガスの排出量を抑制するため、自動車の燃費の向上を目的とする自動車車体の軽量化が進められている。そのため、自動車の部材には、板厚の低減が可能な高強度鋼板の適用が増えつつある。また、搭乗者の安全性確保のためにも、高強度鋼板が自動車車体に多く使用されるようになってきている。   In order to reduce the amount of carbon dioxide emission, the weight reduction of automobile bodies aimed at improving the fuel efficiency of automobiles is being promoted. Therefore, the application of high-strength steel sheets capable of reducing the plate thickness is increasing for automobile members. Further, in order to ensure the safety of passengers, high-strength steel plates are increasingly used in automobile bodies.

一方、高強度鋼板を自動車車体に適用するためには優れた加工性も要求される。このような強度と加工性を両立させた鋼材として、フェライトとマルテンサイトを主体とする硬質第2相からなる複合組織を有する二相組織鋼(Dual Phase鋼、以下、DP鋼)が知られている。   On the other hand, in order to apply a high-strength steel sheet to an automobile body, excellent workability is also required. As a steel material having both such strength and workability, a dual-phase steel (Dual Phase steel, hereinafter referred to as DP steel) having a composite structure composed of a hard second phase mainly composed of ferrite and martensite is known. Yes.

しかし、従来のDP鋼は、汎用鋼に比べて強度と延性とのバランス(以下、強度−延性バランスともいう。)に優れてはいるものの、引張強度と全伸びの積の値(以下、TS×Elという。)を18000(MPa・%)以上とすることは困難であった。更には、従来のDP鋼は、軟質相のフェライトと硬質相のマルテンサイトとの境界部に、各相の硬度差に起因したミクロボイドが発生し易いため局部伸びが低く、伸びフランジ性が劣る上、降伏強度が低いため耐衝突特性に劣るという問題があった。   However, although conventional DP steel is superior in balance between strength and ductility (hereinafter also referred to as strength-ductility balance) compared to general-purpose steel, it is the product of tensile strength and total elongation (hereinafter TS). It was difficult to make x El) 18000 (MPa ·%) or more. Furthermore, conventional DP steel has low local elongation and poor stretch flangeability because microvoids are easily generated at the boundary between the soft phase ferrite and the hard phase martensite due to the hardness difference of each phase. There is a problem that the impact strength is inferior because the yield strength is low.

このような問題に対して、焼鈍後、再結晶フェライトの粒径を微細化することによって、強度−延性バランスと伸びフランジ性を両立させた鋼板が提案されている(例えば、特許文献1〜4)。   In order to solve such a problem, steel sheets that have both strength-ductility balance and stretch flangeability have been proposed by refining the grain size of recrystallized ferrite after annealing (for example, Patent Documents 1 to 4). ).

しかし、特許文献1には、硬質第2相を均一に微細分散させることにより、局部延性が向上すると記載されてはいるものの、実施例には、局部延性等の伸びフランジ性の材料特性に関する知見は示されていない。   However, although Patent Document 1 describes that the local ductility is improved by finely dispersing the hard second phase uniformly, in the examples, the knowledge about the material properties of stretch flangeability such as local ductility is described. Is not shown.

また、特許文献2及び3において提案されている冷延鋼板は、再結晶フェライトの結晶粒を極めて微細にするものであり、冷間圧延後の再結晶焼鈍の温度範囲が非常に狭く、鋼板の温度制御が極めて困難である。   Further, the cold-rolled steel sheets proposed in Patent Documents 2 and 3 make the crystal grains of recrystallized ferrite very fine, the temperature range of recrystallization annealing after cold rolling is very narrow, Temperature control is extremely difficult.

更に、特許文献4において提案されている冷延鋼板は、熱延後のコイルを冷却水に浸漬するか、コイルを巻き戻しながら、冷却水のスプレー又は送風によって強制冷却するものであり、生産性が損なわれる。   Furthermore, the cold-rolled steel sheet proposed in Patent Document 4 is forcibly cooled by spraying or blowing air of cooling water while immersing the coil after hot rolling in the cooling water or rewinding the coil. Is damaged.

また、特許文献5には、未再結晶フェライトと硬質第2相からなる高強度の冷延鋼板が提案されており、強度が高く降伏比も高いものの、伸びが低いため、成形性が不十分であった。   Patent Document 5 proposes a high-strength cold-rolled steel sheet composed of non-recrystallized ferrite and a hard second phase. Although the strength is high and the yield ratio is high, the elongation is low and the formability is insufficient. Met.

また、本発明者らの一部は、特許文献6において、組織強化のために固溶強化、析出強化に加えて、未再結晶フェライトを併用した高強度鋼板を提案しているが、これは、未再結晶フェライトを積極的に活用するものではない。更に、本発明者らは、特許文献7〜9において、未再結晶フェライトを含むフェライト相と硬質第2相からなる鋼板及びその製造方法を提案しているが、これらは析出強化の利用によって降伏強度の向上を図ったものではない。   In addition, some of the present inventors have proposed a high-strength steel sheet in combination with non-recrystallized ferrite in addition to solid solution strengthening and precipitation strengthening in order to strengthen the structure in Patent Document 6, It does not actively utilize unrecrystallized ferrite. Furthermore, in the patent documents 7 to 9, the present inventors have proposed a steel plate composed of a ferrite phase containing non-recrystallized ferrite and a hard second phase, and a method for producing the same. It is not intended to improve strength.

一方、鋼板のヤング率は剛性と相関があり、ヤング率を高めて剛性を確保し、更に、マルテンサイト、ベイナイト等の硬質第2相を利用して、高強度化を図った鋼板が提案されている(例えば、特許文献10、11)。しかし、特許文献10及び11には、局部延性に関する知見は示されていない。   On the other hand, the Young's modulus of the steel sheet has a correlation with the rigidity, and the Young's modulus is increased to secure the rigidity, and further, a steel sheet that has been strengthened by utilizing a hard second phase such as martensite and bainite has been proposed. (For example, Patent Documents 10 and 11). However, Patent Documents 10 and 11 do not show any knowledge about local ductility.

特開2002−235145号公報JP 2002-235145 A 特開2003−247043号公報Japanese Patent Laid-Open No. 2003-27043 特開2004−250774号公報JP 2004-250774 A 特開2005−179732号公報JP 2005-179732 A 特開昭53−5018号公報Japanese Patent Laid-Open No. 53-5018 特開2006−283156号公報JP 2006-283156 A 特願2006−262873号Japanese Patent Application No. 2006-262873 特願2006−264253号Japanese Patent Application No. 2006-264253 特願2006−268647号Japanese Patent Application No. 2006-268647 特開2005−314792号公報JP 2005-314792 A 特開2005−314793号公報JP 2005-314793 A

本発明の課題は、強度−延性バランスや伸びフランジ性といった加工性に加え、耐衝突特性にも優れ、更に好ましくは剛性にも優れた高強度冷延鋼板を、安定的に、生産性を損なうことなく提供することである。   The object of the present invention is to stably deteriorate the productivity of a high-strength cold-rolled steel sheet that has excellent impact resistance properties, more preferably high rigidity, in addition to workability such as strength-ductility balance and stretch flangeability. To provide without.

本発明は、再結晶フェライトよりも硬質であり、硬質第2相より軟質である未再結晶フェライトと、Nb、Tiの微細な炭化物を積極的に活用し、耐衝突特性と局部延性とを共に向上させた高強度鋼板であり、Nb、Tiを積極的に添加すると再結晶温度からAc1変態温度までの温度差が小さくなるため、再結晶温度の近傍、即ち、Ac1変態温度より100℃低い温度からAc1変態温度までの昇温速度を適正な範囲とすることが、未再結晶フェライトを適切に残留させるために重要であるという知見に基づいてなされたものである。本発明は、更に好ましくは、熱間圧延工程にて発達した集合組織を有する熱延鋼板に、60%超の冷間圧延を施し、{112}<110>方位を発達させてヤング率をも向上させた高強度鋼板である。本発明の要旨は以下の通りである。 The present invention actively utilizes non-recrystallized ferrite, which is harder than recrystallized ferrite and softer than the hard second phase, and fine carbides of Nb and Ti, and has both collision resistance and local ductility. An improved high-strength steel sheet. When Nb and Ti are positively added, the temperature difference from the recrystallization temperature to the Ac 1 transformation temperature is reduced, so that the temperature is close to the recrystallization temperature, that is, 100 ° C. from the Ac 1 transformation temperature. This is based on the knowledge that it is important to appropriately set the rate of temperature increase from a low temperature to the Ac 1 transformation temperature in order to appropriately retain unrecrystallized ferrite. More preferably, in the present invention, the hot rolled steel sheet having a texture developed in the hot rolling process is subjected to cold rolling exceeding 60%, and the {112} <110> orientation is developed to have a Young's modulus. It is an improved high strength steel plate. The gist of the present invention is as follows.

(1)質量%で、C:0.05〜0.25%、Si:0.01〜1.50%、Mn:0.50〜3.50%、P:0.150%以下、S:0.0150%以下、Al:0.200%以下、N:0.0100%以下を含有し、更に、Nb:0.005〜0.100%、Ti:0.005〜0.100%の一方又は双方を合計で0.130%未満含有し、残部が鉄及び不可避的不純物からなり、Ac1[℃]が700℃以上であり、金属組織がフェライトと硬質第2相からなり、前記フェライトが再結晶フェライト、変態フェライトの一方又は双方と未再結晶フェライトからなり、前記未再結晶フェライトの面積率が10〜70%であり、前記再結晶フェライト、前記変態フェライトの一方又は双方の面積率が10〜70%であり、前記硬質第2相の面積率が1〜30%であることを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。 (1) By mass%, C: 0.05 to 0.25%, Si: 0.01 to 1.50%, Mn: 0.50 to 3.50%, P: 0.150% or less, S: 0.0150% or less, Al: 0.200% or less, N: 0.0100% or less, Nb: 0.005 to 0.100%, Ti: 0.005 to 0.100% Alternatively, both are contained in a total of less than 0.130%, the balance is made of iron and inevitable impurities, Ac 1 [° C.] is 700 ° C. or more, the metal structure is made of ferrite and a hard second phase, It consists of non-recrystallized ferrite and one or both of recrystallized ferrite and transformed ferrite, the area ratio of the non-recrystallized ferrite is 10 to 70%, and the area ratio of one or both of the recrystallized ferrite and transformed ferrite is 10 to 70%, the hard second Wherein the area ratio of 1 to 30% local ductility, high-strength cold-rolled steel sheet excellent in workability and anti-collision properties.

(2)さらに、質量%で、Mo:0.1〜1.5%、B:0.0005〜0.0100%、Cr:0.10〜1.50%、Ni:0.10〜1.50%のうち、1種又は2種以上を含有することを特徴とする上記(1)に記載の、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。 (2) Further, in terms of mass%, Mo: 0.1 to 1.5%, B: 0.0005 to 0.0100%, Cr: 0.10 to 1.50%, Ni: 0.10 to 1. The high-strength cold-rolled steel sheet having excellent local ductility, workability, and impact resistance as described in (1) above, comprising 50% or more of one or more.

(3)板厚1/2層における{112}<110>方位の極密度が6以上であることを特徴とする上記(1)又は(2)の何れか1項に記載の、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。 (3) The local ductility according to any one of (1) and (2) above, wherein the pole density in the {112} <110> orientation in the 1/2 layer thickness is 6 or more , A high-strength cold-rolled steel sheet with excellent workability and impact resistance.

(4)上記(1)〜(3)の何れか1項に記載の冷延鋼板の表面に溶融Znめっきを設けたことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。
(5)上記(1)〜(3)の何れか1項に記載の冷延鋼板の表面に合金化溶融Znめっきを設けたことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。
(4) A high excellent in local ductility, workability and impact resistance, characterized in that hot-dip Zn plating is provided on the surface of the cold-rolled steel sheet according to any one of (1) to (3) above. Strength cold-rolled steel sheet.
(5) Excellent in local ductility, workability and impact resistance characteristics, characterized by providing alloyed hot-dip Zn plating on the surface of the cold rolled steel sheet according to any one of (1) to (3) above High strength cold rolled steel sheet.

(6)上記(1)又は(2)の何れか1項に記載の化学成分を有する鋼片を熱間圧延し、酸洗後、冷間圧延を施した後、鋼板を、(Ac1[℃]−100℃)からAc1[℃]までの昇温速度を0.1〜20℃/sとしてAc1[℃]〜{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}の温度範囲内に昇温し、前記鋼板の温度が該温度範囲内である滞留時間を10〜200sとして焼鈍することを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。
ここで、Ac1[℃]及びAc3[℃]は質量%で表されるC、Mn、Siの含有量(%C)、(%Mn)、(%Si)によって下記(式1)及び(式2)式から求めたAc1変態温度及びAc3変態温度である。
Ac1=761.3+212(%C)−45.8(%Mn)+16.7(%Si)
・・・(式1)
Ac3=915−325.9(%C)−35.9(%Mn)+31.4(%Si)
・・・(式2)
(6) A steel slab having the chemical component according to any one of (1) or (2) above is hot-rolled, pickled and then cold-rolled, and then the steel sheet is (Ac 1 [ [C]]-100 ° C.) to Ac 1 [° C.] at a rate of 0.1-20 ° C./s, Ac 1 [° C.]-{Ac 1 [° C.] + 2/3 × (Ac 3 [° C.] − the temperature was raised to Ac 1 [℃]) within a temperature range of}, characterized in that the temperature of the steel sheet to annealing the residence time is within the temperature range as 10~200S, local ductility, workability and crashworthiness A method for producing high-strength cold-rolled steel sheets with excellent characteristics.
Here, Ac 1 [° C.] and Ac 3 [° C.] are expressed by mass% of C, Mn, and Si (% C), (% Mn), and (% Si) according to the following (formula 1) and These are the Ac 1 transformation temperature and Ac 3 transformation temperature determined from the formula (2).
Ac 1 = 761.3 + 212 (% C) -45.8 (% Mn) +16.7 (% Si)
... (Formula 1)
Ac 3 = 915-325.9 (% C) -35.9 (% Mn) +31.4 (% Si)
... (Formula 2)

(7)上記(1)又は(2)の何れか1項に記載の化学成分を有する鋼片を、仕上圧延温度をAr3変態温度以上とし、950℃から仕上圧延温度までの範囲内における圧下率の合計を30%以上として熱間圧延を行い、酸洗後、60%超の圧下率で冷間圧延を施し、鋼板を焼鈍することを特徴とする上記(6)に記載の、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。 (7) A steel slab having the chemical component according to any one of (1) or (2) above, wherein the finish rolling temperature is not less than the Ar 3 transformation temperature, and the reduction is performed in a range from 950 ° C. to the finish rolling temperature. The total ductility is 30% or more, hot rolling is performed, and after pickling, the steel sheet is annealed by cold rolling at a reduction rate of more than 60% , and the local ductility according to (6) above A method for producing a high-strength cold-rolled steel sheet having excellent workability and impact resistance.

(8)上記(6)又は(7)の何れか1項に記載の焼鈍後、350〜500℃まで冷却し、次いで溶融Znめっきを施すことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。
(9)上記(8)記載の溶融Znめっきを施した後に450〜600℃の温度範囲で10s以上の熱処理を行うことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。
(8) After the annealing described in any one of (6) and (7) above, cooling to 350 to 500 ° C. and then applying hot-dip Zn plating , local ductility, workability and collision resistance A method for producing high-strength cold-rolled steel sheets with excellent characteristics.
(9) High strength excellent in local ductility, workability and impact resistance , characterized by performing heat treatment for 10 seconds or more in a temperature range of 450 to 600 ° C. after performing hot-dip Zn plating as described in (8) above A method for producing a cold-rolled steel sheet.

(10)上記(6)〜(9)の何れか1項に記載の方法により製造した冷延鋼板に0.1〜5.0%のスキンパス圧延を施すことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。 (10) The local ductility and processing , characterized by subjecting the cold-rolled steel sheet produced by the method according to any one of (6) to (9) above to 0.1 to 5.0% skin pass rolling. For producing a high-strength cold-rolled steel sheet excellent in heat resistance and impact resistance.

本発明により、加工性及び耐衝突特性、更に好ましくは剛性に優れた高強度冷延鋼板の提供が可能になり、特に、生産性を損なわずに安定的に製造できる未再結晶フェライトを積極的に活用した、強度―延性バランス、伸びフランジ性、耐衝突特性に優れ、更に剛性にも優れた高強度冷延鋼板の提供が可能になり、産業上の貢献が極めて顕著である。   According to the present invention, it becomes possible to provide a high-strength cold-rolled steel sheet having excellent workability and impact resistance, and more preferably excellent rigidity. In particular, non-recrystallized ferrite that can be stably manufactured without impairing productivity is positively provided. It is possible to provide a high-strength cold-rolled steel sheet that has excellent strength-ductility balance, stretch flangeability, impact resistance, and rigidity, and that contributes significantly to the industry.

従来、冷延鋼板の金属組織のフェライトの一部を未再結晶フェライトとして残留させるという発想は皆無であった。これは、再結晶が不完全であると冷延鋼板の材質が不均一になると考えられていたためである。   Conventionally, there has been no idea that a part of the ferrite of the metal structure of the cold-rolled steel sheet remains as non-recrystallized ferrite. This is because the material of the cold-rolled steel sheet is considered to be non-uniform when recrystallization is incomplete.

したがって、従来の未再結晶フェライトと硬質第2相からなる冷延鋼板は、焼鈍の加熱時に再結晶したフェライト(再結晶フェライトという。)及び焼鈍後の冷却時にオーステナイトから変態したフェライト(変態フェライトという。)と、未再結晶フェライトとが混在したものではなく、フェライトは均質な未再結晶フェライトのみであると考えられる。   Therefore, the conventional cold-rolled steel sheet composed of unrecrystallized ferrite and a hard second phase is composed of ferrite recrystallized during annealing (called recrystallized ferrite) and ferrite transformed from austenite during cooling after annealing (called transformed ferrite). )) And non-recrystallized ferrite are not mixed, and the ferrite is considered to be only homogeneous non-recrystallized ferrite.

また、焼鈍の昇温速度を速くし、鋼板の結晶粒径を微細化する製造方法が提案されているが、これらは、α+γ二相域での保持によって未再結晶フェライトを完全にオーステナイトに変態させるものであったと考えられる。即ち、この従来技術は、焼鈍により未再結晶フェライトを完全にオーステナイトに変態させた後、冷却時にオーステナイトから再変態したフェライトと硬質第2相からなるDP鋼を、未再結晶フェライトを残留させることなく得るものであると推定される。   In addition, manufacturing methods have been proposed in which the temperature rise rate of annealing is increased and the crystal grain size of the steel sheet is made finer. However, these methods completely transform unrecrystallized ferrite into austenite by holding in the α + γ two-phase region. It is thought that it was what made it. That is, in this prior art, after non-recrystallized ferrite is completely transformed to austenite by annealing, DP steel composed of ferrite re-transformed from austenite and a hard second phase during cooling remains unrecrystallized ferrite. It is estimated that it can be obtained without.

しかし、焼鈍後の冷却時にオーステナイトをフェライトに変態させると、オーステナイトはフェライトとセメンタイトに分解する。そのため、ベイナイト、マルテンサイト、残留オーステナイトからなる硬質第2相とセメンタイトを含むフェライトからなるDP鋼となる。そのため、焼鈍時の昇温速度を速くして得られた従来のDP鋼は、局部延性の低下がセメンタイトによって更に助長されていたと考えられる。   However, when austenite is transformed into ferrite during cooling after annealing, austenite decomposes into ferrite and cementite. Therefore, a DP steel made of ferrite containing hard second phase made of bainite, martensite and retained austenite and cementite is obtained. Therefore, in the conventional DP steel obtained by increasing the heating rate during annealing, it is considered that the decrease in local ductility was further promoted by cementite.

一方、模式的に図1に示した本発明のように、未再結晶フェライトを積極的に残留させると、軟質のフェライト、即ち、再結晶フェライト及び変態フェライトと硬質第2相の間に、中間の強度を有する未再結晶フェライトを存在させることができる。この、軟質のフェライトと硬質第2相との中間の強度を有する未再結晶フェライトの存在によって、フェライトと硬質第2相の界面への歪みの集中が緩和される。   On the other hand, when unrecrystallized ferrite is actively left as in the present invention schematically shown in FIG. 1, a soft ferrite, that is, between recrystallized ferrite and transformed ferrite and the hard second phase, Unrecrystallized ferrite having the following strength can be present. The presence of non-recrystallized ferrite having intermediate strength between the soft ferrite and the hard second phase alleviates the concentration of strain at the interface between the ferrite and the hard second phase.

したがって、未再結晶フェライトを積極的に活用する本発明の冷延鋼板は、軟質のフェライトと硬質第2相との界面に生じるボイドの発生が抑制される。更に、未再結晶フェライトを積極的に残留させ、変態フェライトの生成を抑制すると、ボイドの起点となるセメンタイトの生成も抑制される。そのため、局部延性が顕著に向上し、伸びフランジ成形性が改善され、厳しいバーリング加工が可能になる。   Therefore, in the cold-rolled steel sheet of the present invention in which non-recrystallized ferrite is actively used, generation of voids generated at the interface between the soft ferrite and the hard second phase is suppressed. Furthermore, when non-recrystallized ferrite is actively left to suppress the formation of transformation ferrite, the generation of cementite that is the starting point of voids is also suppressed. Therefore, local ductility is remarkably improved, stretch flange formability is improved, and severe burring is possible.

未再結晶フェライトは、冷間圧延によって圧延方向に延伸されたフェライトの結晶粒が再結晶せず、粒内の転位が回復したものである。そのため、図2に模式的に示したように、未再結晶フェライトの粒内には転位の回復によって形成されたサブグレインを有することが多い。また、未再結晶フェライトの粒内では、冷間圧延による塑性変形のため結晶方位が連続的に変化している。一方、再結晶フェライト及び変態フェライトは、再結晶又は変態によって、粒内の結晶方位はほぼ均一となり、隣接する結晶粒同士の結晶方位は大きく異なっている。   Non-recrystallized ferrite is one in which the crystal grains of ferrite stretched in the rolling direction by cold rolling are not recrystallized, and dislocations in the grains are recovered. Therefore, as schematically shown in FIG. 2, the grains of unrecrystallized ferrite often have subgrains formed by dislocation recovery. Further, in the grains of non-recrystallized ferrite, the crystal orientation continuously changes due to plastic deformation by cold rolling. On the other hand, in the recrystallized ferrite and the transformed ferrite, the crystal orientation in the grains becomes almost uniform by recrystallization or transformation, and the crystal orientations of adjacent crystal grains are greatly different.

本発明では、未再結晶フェライトに加えて、Nb、Tiの添加による析出強化を活用し、降伏強度を上昇させ、耐衝突特性の向上を図った。しかし、再結晶を抑制する元素でもあるNb、Tiの添加により、未再結晶フェライトの過剰な残留が問題になった。これを防止するための最適な製造条件を検討し、加工性を劣化させない範囲でAc1変態温度が高くなるように成分調整を行い、焼鈍工程において再結晶温度からAc1変態温度までの昇温速度を若干遅くすることが重要であることを見出した。 In the present invention, precipitation strengthening by adding Nb and Ti in addition to non-recrystallized ferrite is utilized to increase yield strength and improve impact resistance. However, excessive addition of non-recrystallized ferrite has become a problem due to the addition of Nb and Ti, which are elements that suppress recrystallization. In order to prevent this, the optimum manufacturing conditions are studied, the components are adjusted so that the Ac 1 transformation temperature is increased within the range that does not deteriorate the workability, and the temperature rise from the recrystallization temperature to the Ac 1 transformation temperature in the annealing process. We found it important to slow down slightly.

更に、本発明者らは、未再結晶フェライトが、冷間圧延によって形成された冷延集合組織をそのまま有していることに注目した。即ち、鋼成分、熱間圧延及び冷間圧延の最適化によって、ヤング率を高める加工集合組織を発達させ、焼鈍による再結晶を抑制することにより、高ヤング率を有する冷延鋼板を得ることができると考え、検討を行った。その結果、本発明者らは、ヤング率を高めた冷延鋼板を得るには、鋼の成分組成ではNb、Tiの何れか一方又は双方の含有量が、熱間圧延については、仕上温度であるAr3変態温度の近傍の温度範囲における圧下率が、更に、冷間圧延率は60%超とすることが、それぞれ、重要であることを見出した。なお、Ar3変態温度は、冷却時、フェライト変態が開始する温度であり、単に、Ar3[℃]ともいう。 Furthermore, the present inventors have noted that non-recrystallized ferrite has a cold-rolled texture formed by cold rolling as it is. That is, by optimizing the steel components, hot rolling and cold rolling, a cold-rolled steel sheet having a high Young's modulus can be obtained by developing a working texture that increases the Young's modulus and suppressing recrystallization due to annealing. We thought that we could do it and examined it. As a result, in order to obtain a cold-rolled steel sheet having an increased Young's modulus, the present inventors have a content of either one or both of Nb and Ti in the steel component composition, and for hot rolling, at the finishing temperature. It has been found that it is important that the rolling reduction in the temperature range in the vicinity of a certain Ar 3 transformation temperature and that the cold rolling reduction be more than 60%. The Ar 3 transformation temperature is a temperature at which ferrite transformation starts at the time of cooling, and is also simply referred to as Ar 3 [° C.].

また、未再結晶フェライトを適切に残留させるには、フェライトとオーステナイトが共存する領域であるα+γ二相域、即ち、Ac1変態温度以上に加熱した際の、オーステナイトへの変態の進行を抑制することも重要である。したがって、鋼板の温度がAc1変態温度以上である滞留時間及び焼鈍の最高到達温度を最適化することが重要であることも、同時に見出した。 Further, in order to appropriately leave unrecrystallized ferrite, the α + γ two-phase region where the ferrite and austenite coexist, that is, the progress of transformation to austenite when heated to the Ac 1 transformation temperature or higher. It is also important to suppress. Therefore, it was simultaneously found that it is important to optimize the residence time in which the temperature of the steel sheet is equal to or higher than the Ac 1 transformation temperature and the highest temperature reached for annealing.

焼鈍における(Ac1[℃]−100℃)からAc1[℃]までの昇温速度は0.1〜20℃/sとする。昇温速度を20℃/s以下とする温度の下限を(Ac1[℃]−100℃)以上としたのは、本発明のDP鋼の再結晶温度の下限が、(Ac1[℃]−100℃)以上になるためである。なお、本発明の鋼の再結晶温度は、Ti、Nbの一方又は双方の含有によって上昇しているものの、Ac1変態点以上になることはない。また、昇温速度を20℃/s以下とする温度の上限をAc1[℃]としたのは、Ac1[℃]以上の温度ではα−γ変態を生じて、再結晶がほぼ停止するためである。 The heating rate from (Ac 1 [° C.] − 100 ° C.) to Ac 1 [° C.] in annealing is 0.1 to 20 ° C./s. The lower limit of the temperature at which the rate of temperature increase is 20 ° C./s or less is set to (Ac 1 [° C.] − 100 ° C.) or more. The lower limit of the recrystallization temperature of the DP steel of the present invention is (Ac 1 [° C.]). This is because it becomes −100 ° C. or higher. In addition, although the recrystallization temperature of the steel of the present invention is increased by the inclusion of one or both of Ti and Nb, it does not exceed the Ac 1 transformation point. Further, the upper limit of the temperature of the heating rate and 20 ° C. / s or less was Ac 1 [° C.] is the Ac 1 [° C.] or higher temperatures occurs the alpha-gamma transformation, recrystallization is substantially stopped Because.

一方、昇温速度が20℃/s超の場合、再結晶の進行が著しく抑制されるため、未再結晶フェライトの面積率が著しく増加することで、延性の劣化を招いてしまう。更に、Nb、Tiの含有量が多い鋼は再結晶温度が高くなるため、再結晶が進行し難い。このような再結晶温度とAc1変態温度との差が小さい鋼を製造する場合、未再結晶フェライトを確保するためには、昇温速度を10℃/s以下とすることが好ましい。 On the other hand, when the rate of temperature rise exceeds 20 ° C./s, the progress of recrystallization is remarkably suppressed. Therefore, the area ratio of non-recrystallized ferrite is remarkably increased, resulting in deterioration of ductility. Furthermore, since recrystallization temperature becomes high in steel with a high content of Nb and Ti, recrystallization hardly proceeds. When producing a steel having a small difference between the recrystallization temperature and the Ac 1 transformation temperature, it is preferable to set the rate of temperature rise to 10 ° C./s or less in order to secure unrecrystallized ferrite.

また、昇温速度は、0.1℃/sよりも遅いと、再結晶が促進して未再結晶フェライトを確保することができないので、下限を0.1℃/s以上とする。また、連続焼鈍の場合、昇温速度を遅くするには、通板速度を遅くする必要があるため、生産性の観点から、昇温速度を1℃/s以上とすることが好ましい。   On the other hand, if the rate of temperature rise is slower than 0.1 ° C./s, recrystallization promotes and unrecrystallized ferrite cannot be secured, so the lower limit is made 0.1 ° C./s or more. Further, in the case of continuous annealing, it is necessary to slow the sheet feeding speed in order to slow the temperature rising rate. Therefore, from the viewpoint of productivity, the temperature rising rate is preferably 1 ° C./s or more.

更に、焼鈍における最高到達温度の下限はAc1[℃]以上とし、上限は、{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}とする。最高到達温度がAc1未満の場合、フェライトからオーステナイトに変態しないため、硬質第2相の量が不十分であり、強度−延性バランスを損なう。一方、最高到達温度が{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}超になると、オーステナイト変態が進行しすぎるため、未再結晶フェライトの確保が困難になる。 Further, the lower limit of the maximum temperature achieved in annealing is set to Ac 1 [° C.] or more, and the upper limit is set to {Ac 1 [° C.] + 2/3 × (Ac 3 [° C.] − Ac 1 [° C.])}. When the maximum temperature reached is less than Ac 1 , the ferrite does not transform to austenite, so the amount of the hard second phase is insufficient, and the strength-ductility balance is impaired. On the other hand, when the maximum temperature reaches {Ac 1 [° C.] + 2/3 × (Ac 3 [° C.] − Ac 1 [° C.])}, the austenite transformation proceeds too much, so it is difficult to secure unrecrystallized ferrite. become.

また、鋼板の温度がAc1[℃]以上である温度範囲での滞留時間は10〜200sとする。これは、以下の理由による。即ち、鋼板の温度がAc1[℃]以上になる時間が10s未満であると、α−γ変態が十分に進行しないため、硬質第2相を確保できず、強度−延性バランスを損なう。一方、Ac1[℃]以上での滞留時間が200sを超えると、オーステナイト変態が進行しすぎるため、未再結晶フェライトの確保が困難になる。 Also, the residence time in the temperature range the temperature of the steel sheet is Ac 1 [° C.] or higher and 10~200S. This is due to the following reason. That is, if the time for the temperature of the steel sheet to be Ac 1 [° C.] or more is less than 10 s, the α-γ transformation does not proceed sufficiently, so that the hard second phase cannot be secured and the strength-ductility balance is impaired. On the other hand, if the residence time at Ac 1 [° C.] or more exceeds 200 s, the austenite transformation proceeds too much, so that it is difficult to secure unrecrystallized ferrite.

なお、Ac1[℃]及びAc3[℃]は、それぞれAc1変態点及びAc3変態点であり、質量%で表されるC、Mn、Siの含有量である(%C)、(%Mn)、(%Si)により、下記(式1)及び(式2)から求めた温度である。
Ac1=761.3+212(%C)−45.8(%Mn)+16.7(%Si)
・・・(式1)
Ac3=915−325.9(%C)−35.9(%Mn)+31.4(%Si)
・・・(式2)
Ac 1 [° C.] and Ac 3 [° C.] are the Ac 1 transformation point and Ac 3 transformation point, respectively, and are the contents of C, Mn, and Si expressed in mass% (% C), ( % Mn) and (% Si) are temperatures obtained from the following (formula 1) and (formula 2).
Ac 1 = 761.3 + 212 (% C) -45.8 (% Mn) +16.7 (% Si)
... (Formula 1)
Ac 3 = 915-325.9 (% C) -35.9 (% Mn) +31.4 (% Si)
... (Formula 2)

次に、本発明における鋼成分の限定理由について説明する。   Next, the reasons for limiting the steel components in the present invention will be described.

Cは、硬質第2相の生成を促進し、強度の増加に寄与する元素であり、狙いとする強度レベルに応じて適量を添加する。C量は、0.05%未満であると、高強度を得るのが困難となるため、下限を0.05%とする。一方、C量が0.25%を超えると、成形性や溶接性の劣化を招くため、0.25%を上限とする。   C is an element that promotes the formation of the hard second phase and contributes to an increase in strength, and an appropriate amount is added according to the target strength level. If the amount of C is less than 0.05%, it is difficult to obtain high strength, so the lower limit is made 0.05%. On the other hand, if the amount of C exceeds 0.25%, deterioration of formability and weldability is caused, so 0.25% is made the upper limit.

Siは脱酸元素であり、0.01%未満とするには製造コストが高くなるため、下限を0.01%とする。また、Siは、固溶体強化元素として強度を増加させる働きがある上、硬質第2相を得るためにも有効である。しかし、Si量が1.50%を超えると、溶接性が劣化すると共に、不めっき性を誘発し得るため、上限を1.50%とする。   Si is a deoxidizing element, and if it is less than 0.01%, the manufacturing cost increases, so the lower limit is made 0.01%. In addition, Si serves to increase the strength as a solid solution strengthening element and is also effective for obtaining a hard second phase. However, if the Si content exceeds 1.50%, weldability deteriorates and non-plating properties can be induced, so the upper limit is made 1.50%.

Mnは固溶強化に寄与する元素として強度を増加させる働きがある上、硬質第2相を得るためにも有効であり、狙いとする強度レベルに応じて適量を添加する。Mn量は、0.5%未満であると、高強度を得るのが困難となるため、下限を0.50%とする。一方、Mn量が3.50%を超えると、成形性や溶接性の劣化を招くため、3.50%を上限とする。   Mn has an effect of increasing strength as an element contributing to solid solution strengthening, and is also effective for obtaining a hard second phase, and an appropriate amount is added according to a target strength level. If the Mn content is less than 0.5%, it is difficult to obtain high strength, so the lower limit is made 0.50%. On the other hand, if the amount of Mn exceeds 3.50%, the formability and weldability are deteriorated, so 3.50% is made the upper limit.

Pは不純物であり、粒界に偏析するため、鋼板の靭性の低下や溶接性の劣化を招く。更に、溶融Znめっき時に合金化反応が極めて遅くなり、生産性が低下する。これらの観点から、P量の上限を0.150%とする。下限は特に限定しないが、Pは安価に強度を高める元素であるため、P量を0.005%以上とすることが好ましい。   P is an impurity and segregates at the grain boundary, which causes a reduction in toughness and weldability of the steel sheet. Furthermore, the alloying reaction is extremely slow during hot-dip Zn plating, and productivity is reduced. From these viewpoints, the upper limit of the P content is 0.150%. The lower limit is not particularly limited, but P is an element that enhances the strength at a low cost, so the P content is preferably 0.005% or more.

Sは不純物であり、その含有量が0.0150%を超えると、熱間割れを誘発したり、加工性を劣化させるので、上限を0.0150%とする。   S is an impurity, and if its content exceeds 0.0150%, hot cracking is induced or workability is deteriorated, so the upper limit is made 0.0150%.

Alは脱酸剤であり、下限は規定しないが、変態点を著しく高める元素であるため、上限を0.200%とする。   Al is a deoxidizer and does not define a lower limit, but is an element that remarkably increases the transformation point, so the upper limit is made 0.200%.

Nは不純物であり、N量が0.0100%を超えると、靭性や延性の劣化、鋼片の割れの発生が顕著になる。なお、Nは、硬質第2相を得るためには有効であるため、上限を0.0100%として積極的に添加しても良い。   N is an impurity, and when the amount of N exceeds 0.0100%, the deterioration of toughness and ductility and the occurrence of cracks in the steel slab become remarkable. Note that N is effective for obtaining the hard second phase, and therefore may be positively added with an upper limit of 0.0100%.

Nb、Tiは本発明において最も重要な元素であり、一方又は双方を添加する。Nb、Tiを添加することでNbCやTiCといった微細な炭化物が析出し、降伏強度を上昇させる効果がある。更には、微細な析出物により、冷間圧延後の焼鈍工程において、加工フェライトの再結晶が抑制され、未再結晶フェライトの残留を促進させることができる。このような効果を得るためには、Nb及びTiの一方又は双方を、それぞれの下限を0.005%以上として添加することが好ましい。一方、Nb及びTiの一方又は双方は、含有量が0.100%を超えると、再結晶が著しく抑制される上、延性が低下することがあるため、それぞれの上限を0.100%以下とすることが好ましい。Nb及びTiの一方又は双方の合計の含有量が0.130%以上になると、再結晶が著しく抑制される上、延性が低下することがあるため、上限を0.130%未満とすることが好ましい。   Nb and Ti are the most important elements in the present invention, and one or both of them are added. By adding Nb and Ti, fine carbides such as NbC and TiC are precipitated, and the yield strength is increased. Further, the fine precipitates can suppress recrystallization of the processed ferrite in the annealing process after cold rolling, and can promote the residual of non-recrystallized ferrite. In order to obtain such an effect, it is preferable to add one or both of Nb and Ti at a lower limit of 0.005% or more. On the other hand, one or both of Nb and Ti, when the content exceeds 0.100%, recrystallization is remarkably suppressed, and ductility may be lowered. Therefore, the upper limit of each is 0.100% or less. It is preferable to do. When the total content of one or both of Nb and Ti is 0.130% or more, recrystallization is remarkably suppressed and ductility may be lowered. Therefore, the upper limit may be made less than 0.130%. preferable.

更に、Mo、B、Cr、Niの1種又は2種以上を含有させても良い。   Furthermore, you may contain 1 type, or 2 or more types of Mo, B, Cr, Ni.

Mo、B、Cr及びNiは、いずれも焼入れ性を高める元素であり、必要に応じて1種又は2種以上を添加しても良い。強度向上の効果を得るためには、それぞれ、Mo:0.1%以上、B:0.0005%以上、Cr:0.10%以上、Ni:0.10%以上を下限として添加することが好ましい。一方、過剰な添加は合金コストの増加を招くため、それぞれの上限を、Mo:1.5%以下、B:0.0100%以下、Cr:1.50%以下、Ni:1.50%以下とすることが好ましい。   Mo, B, Cr, and Ni are all elements that enhance hardenability, and one or more of them may be added as necessary. In order to obtain the effect of improving the strength, each of Mo: 0.1% or more, B: 0.0005% or more, Cr: 0.10% or more, Ni: 0.10% or more may be added as lower limits. preferable. On the other hand, excessive addition leads to an increase in alloy costs, so the upper limit of each is Mo: 1.5% or less, B: 0.0100% or less, Cr: 1.50% or less, Ni: 1.50% or less It is preferable that

なお、Ac1が700℃未満になると、Nb、Tiの添加によって再結晶温度がAc1よりも高温になり再結晶の進行が著しく抑制される。これにより、未再結晶フェライトの面積率が過剰になり、延性が低下する。そのため、本発明においてはAc1が700℃以上であることが必要である。 Incidentally, when the Ac 1 is less than 700 ° C., Nb, the recrystallization temperature progression becomes recrystallization high temperatures is significantly suppressed than Ac 1 by the addition of Ti. Thereby, the area ratio of non-recrystallized ferrite becomes excessive, and ductility is lowered. Therefore, it is necessary that Ac 1 is 700 ° C. or higher in the present invention.

本発明によって得られる鋼板のミクロ組織は、フェライトと硬質第2相からなり、フェライトは、未再結晶フェライト、再結晶フェライト及び変態フェライトの総称である。なお、光学顕微鏡による組織観察では、再結晶フェライトと変態フェライトとの差異は明確ではなく、両者を区別することは困難である。   The microstructure of the steel sheet obtained by the present invention is composed of ferrite and a hard second phase, and ferrite is a general term for non-recrystallized ferrite, recrystallized ferrite and transformed ferrite. In addition, in the structure observation with an optical microscope, the difference between recrystallized ferrite and transformed ferrite is not clear, and it is difficult to distinguish them.

硬質第2相は、マルテンサイト、ベイナイト及びパーライトからなり、3%未満の残留オーステナイトを含むことがある。硬質第2相は、高強度化に寄与する一方で、過剰に存在すると著しく延性が低下するため、下限を1%、上限を30%とする。   The hard second phase consists of martensite, bainite and pearlite and may contain less than 3% retained austenite. While the hard second phase contributes to high strength, if it is present in excess, the ductility is remarkably lowered, so the lower limit is 1% and the upper limit is 30%.

ミクロ組織は、圧延方向に平行な板厚断面を観察面として試料を採取し、観察面を研磨、ナイタールエッチ、必要に応じてレペラーエッチし、光学顕微鏡で観察すれば良い。光学顕微鏡によって得られたミクロ組織写真を画像解析することによって、パーライト、ベイナイト又はマルテンサイトの内のいずれか1種又は2種以上の面積率の合計量を、フェライト以外の相の面積率として求めることができる。残留オーステナイトは、光学顕微鏡ではマルテンサイトとの区別が困難であるが、X線回折法によって体積率の測定を行うことができる。なお、ミクロ組織から求めた面積率は、体積率と同じである。   The microstructure may be obtained by taking a sample with the cross section of the plate thickness parallel to the rolling direction as the observation surface, polishing the observation surface, performing nital etching, and if necessary, repeller etching, and observing with an optical microscope. By analyzing the microstructure image obtained by the optical microscope, the total amount of one or more of pearlite, bainite and martensite is obtained as the area ratio of the phase other than ferrite. be able to. Although it is difficult to distinguish residual austenite from martensite with an optical microscope, the volume ratio can be measured by an X-ray diffraction method. Note that the area ratio obtained from the microstructure is the same as the volume ratio.

再結晶フェライトと変態フェライトの一方又は双方の面積率は、10〜70%とする。これは、再結晶フェライトと変態フェライトの一方又は双方の面積率が、10%未満では延性が低下し、70%を超えると強度が低下するためである。   The area ratio of one or both of the recrystallized ferrite and the transformed ferrite is 10 to 70%. This is because the ductility decreases when the area ratio of one or both of the recrystallized ferrite and the transformed ferrite is less than 10%, and the strength decreases when the area ratio exceeds 70%.

未再結晶フェライトは硬質相であるため高強度化に寄与することから、その効果を得るためには10%以上の未再結晶フェライトを含んでいる必要がある。一方、未再結晶フェライトの面積率が70%を超えると、著しく延性が低下するため、上限を70%とする。また、未再結晶フェライトは、冷間圧延後の集合組織が維持されるため、{112}<110>方位を有している未再結晶フェライトの面積率を増加は、ヤング率の向上に有効である。   Since non-recrystallized ferrite is a hard phase and contributes to high strength, it is necessary to contain 10% or more of non-recrystallized ferrite in order to obtain the effect. On the other hand, if the area ratio of non-recrystallized ferrite exceeds 70%, the ductility is remarkably lowered, so the upper limit is made 70%. In addition, since the non-recrystallized ferrite maintains the texture after cold rolling, increasing the area ratio of the non-recrystallized ferrite having {112} <110> orientation is effective in improving the Young's modulus. It is.

未再結晶フェライトとそれ以外のフェライト、即ち再結晶フェライト及び変態フェライトとは、電子後方散乱解析像(Electron back scattering pattern、EBSPという。)の結晶方位測定データをKernel Average Misorientation法(KAM法)で解析することにより判別することができる。   Non-recrystallized ferrite and other ferrites, that is, recrystallized ferrite and transformed ferrite, are crystal orientation measurement data (Electron Back Scattering Pattern, EBSP) measured by the Kernel Average Misoration method (KAM method). It can be determined by analysis.

未再結晶フェライトの粒内には、転位は回復しているものの、冷延時の塑性変形により生じた結晶方位の連続的な変化が存在する。一方、未再結晶フェライトを除くフェライト粒内の結晶方位変化は極めて小さくなる。これは、再結晶及び変態により、隣接する結晶粒の結晶方位は大きく異なるものの、1つの結晶粒内では結晶方位が変化していないためである。KAM法では、隣接したピクセル(測定点)との結晶方位差を定量的に示すことができるので、本発明では隣接測定点との平均結晶方位差が1°以内且つ、平均結晶方位差が2°以上あるピクセル間を粒界と定義した時に、結晶粒径が3μm以上である粒を未再結晶フェライト以外のフェライト、即ち再結晶フェライト及び変態フェライトと定義する。   In the grains of unrecrystallized ferrite, although dislocations are recovered, there is a continuous change in crystal orientation caused by plastic deformation during cold rolling. On the other hand, the crystal orientation change in the ferrite grains excluding non-recrystallized ferrite becomes extremely small. This is because the crystal orientation does not change in one crystal grain, although the crystal orientation of adjacent crystal grains varies greatly due to recrystallization and transformation. In the KAM method, the crystal orientation difference between adjacent pixels (measurement points) can be quantitatively shown. Therefore, in the present invention, the average crystal orientation difference between adjacent measurement points is within 1 ° and the average crystal orientation difference is 2 When a pixel boundary is defined as a grain boundary, a grain having a crystal grain size of 3 μm or more is defined as ferrite other than unrecrystallized ferrite, that is, recrystallized ferrite and transformed ferrite.

EBSP測定は、焼鈍後の試料の平均結晶粒径の10分の1の測定間隔で、任意の板断面の板厚方向の1/4厚の位置で100×100μmの範囲において行えば良い。このEBSP測定の結果、得られた測定点はピクセルとして出力される。EBSPの結晶方位測定に供する試料は、機械研磨等によって鋼板を所定の板厚まで減厚し、次いで電解研磨等によって歪みを除去すると同時に、板厚1/4面が測定面となるように作製する。   The EBSP measurement may be performed in a range of 100 × 100 μm at a 1/4 thickness position in the plate thickness direction of any plate cross section at a measurement interval of 1/10 of the average crystal grain size of the sample after annealing. As a result of the EBSP measurement, the measurement points obtained are output as pixels. Samples to be used for EBSP crystal orientation measurement are prepared so that the steel plate is reduced to a predetermined thickness by mechanical polishing, etc., and then the strain is removed by electrolytic polishing, etc., and at the same time, the 1/4 thickness is the measurement surface. To do.

未再結晶フェライトを含むフェライトの総面積率は、硬質第2相の面積率の残部であるから、EBSPの結晶方位測定に使用した試料をナイタールエッチし、該測定を行った視野の光学顕微鏡写真を同一の倍率で撮影し、得られた組織写真を画像解析して求めれば良い。更に、この組織写真とEBSPの結晶方位測定の結果を対比させることによって、未再結晶フェライト及び未再結晶フェライト以外のフェライト、即ち、再結晶フェライトと変態フェライトの面積率の合計を求めることもできる。   Since the total area ratio of ferrite including non-recrystallized ferrite is the remainder of the area ratio of the hard second phase, the sample used for measuring the crystal orientation of EBSP was nital etched, and the optical microscope of the field of view where the measurement was performed The photograph may be taken at the same magnification, and the obtained tissue photograph may be obtained by image analysis. Furthermore, by comparing the result of the crystal orientation measurement of this structural photograph and EBSP, the total area ratio of non-recrystallized ferrite and ferrite other than non-recrystallized ferrite, that is, recrystallized ferrite and transformed ferrite can be obtained. .

本発明鋼の板厚1/2層における{112}<110>方位が発達することによって、ヤング率が向上する。したがって、板厚1/2層における{112}<110>の極密度は6以上であることが好ましい。この{112}<110>の極密度の増加とともにヤング率が上昇するため、好ましくは8以上、更に好ましくは10以上とする。   The Young's modulus is improved by the development of the {112} <110> orientation in the ½ layer thickness of the steel of the present invention. Therefore, it is preferable that the pole density of {112} <110> in the ½ layer thickness is 6 or more. Since the Young's modulus increases with an increase in the pole density of {112} <110>, it is preferably 8 or more, more preferably 10 or more.

なお、極密度とは、X線ランダム強度比と同義であり、特定の方位への集積を持たない標準試料のX線強度を基準とする供試材のX線強度の比である。極密度は、標準試料と供試材のX線強度を、同じ条件でX線回折法により測定し、得られた供試材のX線強度を標準試料のX線強度で除した数値として求められる。また、X線回折法の代わりに、EBSP法やECP(Electron Channeling Pattern)法により統計的に十分な数の測定を行っても良い。   The pole density is synonymous with the X-ray random intensity ratio, and is the ratio of the X-ray intensity of the test material based on the X-ray intensity of a standard sample that does not accumulate in a specific orientation. The extreme density is obtained by measuring the X-ray intensity of the standard sample and the test material by the X-ray diffraction method under the same conditions and dividing the X-ray intensity of the obtained test material by the X-ray intensity of the standard sample. It is done. Further, instead of the X-ray diffraction method, a statistically sufficient number of measurements may be performed by an EBSP method or an ECP (Electron Channeling Pattern) method.

{112}<110>方位の極密度は、X線回折によって測定される{110}、{100}、{211}、{310}極点図のうち、複数の極点図を用いて級数展開法で計算した3次元集合組織(ODF)から求めれば良い。即ち、{112}<110>方位の極密度は、ODFのφ2=45°断面における(112)[1−10]のX線ランダム強度比で代表させる。   The pole density in the {112} <110> orientation is determined by the series expansion method using a plurality of pole figures among the {110}, {100}, {211}, {310} pole figures measured by X-ray diffraction. What is necessary is just to obtain | require from the calculated three-dimensional texture (ODF). That is, the pole density in the {112} <110> orientation is represented by the X-ray random intensity ratio of (112) [1-10] in the φ2 = 45 ° section of the ODF.

X線回折に供する試料は、板厚1/2面が測定面となるように、機械研磨などによって鋼板を所定の板厚まで減厚し、次いで化学研磨や電解研磨などによって歪みを除去して作製する。測定上不都合が生ずる場合、例えば、鋼板の板厚中心層に偏析帯や欠陥などが存在する際には、板厚の3/8〜5/8の範囲で適当な面が測定面となるように試料を調整すれば良い。   Samples to be subjected to X-ray diffraction are thinned to a predetermined plate thickness by mechanical polishing or the like so that the half-thickness surface becomes the measurement surface, and then strain is removed by chemical polishing or electrolytic polishing. Make it. When measurement inconvenience occurs, for example, when a segregation zone or a defect exists in the center thickness layer of the steel plate, an appropriate surface becomes the measurement surface in the range of 3/8 to 5/8 of the plate thickness. It is sufficient to adjust the sample.

ここで、{hkl}<uvw>とは、上述の方法で採取したX線用試料の板面の法線方向が{hkl}に平行で、圧延方向が<uvw>と平行であることを示している。なお結晶の方位は通常、板面に垂直な方位を[hkl]又は{hkl}、圧延方向に平行な方位を(uvw)又は<uvw>で表示する。{hkl}、<uvw>は等価な面の総称であり、[hkl]、(uvw)は個々の結晶面を指す。即ち、本発明においては体心立方構造を対象としているため、例えば(111)、(−111)、(1−11)、(11−1)、(−1−11)、(−11−1)、(1−1−1)、(−1−1−1)面は等価であり区別がつかない。このような場合、これらの方位を総称して{111}と称する。ODF表示では他の対称性の低い結晶構造の方位表示にも用いられるため、個々の方位を[hkl](uvw)で表示するのが一般的であるが、本発明においては[hkl](uvw)と{hkl}<uvw>は同義である。   Here, {hkl} <uvw> indicates that the normal direction of the plate surface of the X-ray sample collected by the above method is parallel to {hkl} and the rolling direction is parallel to <uvw>. ing. The crystal orientation is usually indicated by [hkl] or {hkl}, which is perpendicular to the plate surface, and (uvw) or <uvw>, which is parallel to the rolling direction. {Hkl} and <uvw> are generic terms for equivalent planes, and [hkl] and (uvw) indicate individual crystal planes. That is, since the present invention is intended for the body-centered cubic structure, for example, (111), (-111), (1-11), (11-1), (-1-11), (-11-1) ), (1-1-1), and (-1-1-1) planes are equivalent and indistinguishable. In such a case, these orientations are collectively referred to as {111}. Since the ODF display is also used to display the orientation of other crystal structures with low symmetry, the individual orientation is generally displayed as [hkl] (uvw). In the present invention, however, [hkl] (uvw) ) And {hkl} <uvw> are synonymous.

次に、製造方法及びその好ましい条件について述べる。   Next, a manufacturing method and its preferable conditions will be described.

熱間圧延に供する鋼片は常法で製造すれば良く、鋼を溶製し、鋳造すれば良い。生産性の観点からは、連続鋳造が好ましく、薄スラブキャスター等で製造しても良い。また、鋳造後直ちに熱間圧延を行う連続鋳造―直接圧延のようなプロセスでも良い。熱間圧延は常法で行えば良く、圧延温度、圧下率、冷却速度、巻取温度等の条件は特に規定しない。熱間圧延後、鋼板を冷間圧延、焼鈍し、冷延鋼板とする。   The steel piece to be subjected to hot rolling may be manufactured by a conventional method, and the steel may be melted and cast. From the viewpoint of productivity, continuous casting is preferable, and it may be manufactured with a thin slab caster or the like. Further, a process such as continuous casting-direct rolling in which hot rolling is performed immediately after casting may be used. Hot rolling may be performed by a conventional method, and conditions such as rolling temperature, rolling reduction, cooling rate, and winding temperature are not particularly specified. After hot rolling, the steel sheet is cold-rolled and annealed to obtain a cold-rolled steel sheet.

ただし、本発明において、加工性、耐衝突特性に加えて、ヤング率をも向上させて剛性を高めるためには、熱間圧延工程の、仕上圧延の温度と950℃から仕上圧延温度までの範囲内における圧下率の合計が重要になる。仕上圧延の温度をAr3変態点未満とした場合、α+γ二相域で圧延されるため、冷間圧延時にヤング率の向上に好ましくない集合組織が発達し、ヤング率が低下することがある。 However, in the present invention, in order to improve the Young's modulus and increase the rigidity in addition to workability and impact resistance, the temperature of the finish rolling and the range from 950 ° C. to the finish rolling temperature in the hot rolling process. The total rolling reduction is important. When the temperature of the finish rolling is less than the Ar 3 transformation point, rolling is performed in the α + γ two-phase region, so that a texture unfavorable for improving the Young's modulus during cold rolling may develop and the Young's modulus may decrease.

また、950℃から仕上圧延温度までの範囲内における圧下率の合計は、ヤング率の向上に有効な{112}<110>方位が発達した冷延鋼板を得るために、増加させることが好ましい。これは、Ar3変態温度〜950℃という、オーステナイト相が安定で、かつ、低い温度範囲で圧延すると、導入された歪みによる再結晶が生じ難く、熱延集合組織が発達するためである。このような熱延集合組織を発達させると、その後の冷間圧延によって結晶回転が生じ、{112}<110>方位が発達する。更に、冷延板の焼鈍の際に再結晶を抑制すると、高ヤング率の冷延鋼板を得ることができる。 Further, the total rolling reduction within the range from 950 ° C. to the finish rolling temperature is preferably increased in order to obtain a cold-rolled steel sheet having developed {112} <110> orientation effective for improvement of Young's modulus. This is because when the austenite phase of Ar 3 transformation temperature to 950 ° C. is stable and rolled in a low temperature range, recrystallization due to the introduced strain hardly occurs and a hot rolled texture develops. When such a hot-rolled texture is developed, crystal rotation occurs by subsequent cold rolling, and the {112} <110> orientation develops. Furthermore, if recrystallization is suppressed during the annealing of the cold-rolled sheet, a cold-rolled steel sheet having a high Young's modulus can be obtained.

ヤング率向上の効果を得るためには、950℃から仕上圧延温度までの範囲内における圧下率の合計を30%以上とすることが好ましい。これにより、冷間圧延時に、{112}<110>方位が十分に発達する。なお、950℃から仕上圧延温度までの範囲内における合計の圧下率は、950℃での板厚と、仕上圧延後の板厚の差を、950℃での板厚で除した値を百分率で表したものである。   In order to obtain the effect of improving the Young's modulus, the total rolling reduction within the range from 950 ° C. to the finish rolling temperature is preferably 30% or more. Thereby, the {112} <110> orientation develops sufficiently during cold rolling. The total rolling reduction within the range from 950 ° C. to the finish rolling temperature is a percentage obtained by dividing the difference between the plate thickness at 950 ° C. and the plate thickness after finish rolling by the plate thickness at 950 ° C. It is a representation.

Ar3[℃]は、質量%で表したC、Si、P、Al、Mn、Mo、Cu、Cr、Niの含有量、それぞれ(%C)、(%Si)、(%P)、(%Al)、(%Mn)、(%Mo)、(%Cu)、(%Cr)、(%Ni)を用いて、以下の式により計算すれば良い。また、選択的に添加される元素、Mo、Cu、Cr、Niは、含有量が不純物程度である場合は、0として計算すれば良い。
Ar3[℃]=901−325(%C)+33(%Si)+287(%P)+40(%Al)−92{(%Mn)+(%Mo)+(%Cu)}−46{(%Cr)+(%Ni)} ・・・ (式3)
Ar 3 [° C.] is the content of C, Si, P, Al, Mn, Mo, Cu, Cr, and Ni, expressed in mass%, respectively (% C), (% Si), (% P), ( What is necessary is just to calculate by the following formula | equation using (% Al), (% Mn), (% Mo), (% Cu), (% Cr), (% Ni). In addition, the selectively added elements Mo, Cu, Cr, and Ni may be calculated as 0 when the content is about an impurity.
Ar 3 [° C.] = 901-325 (% C) +33 (% Si) +287 (% P) +40 (% Al) −92 {(% Mn) + (% Mo) + (% Cu)} − 46 {( % Cr) + (% Ni)} (Formula 3)

加工性、耐衝突特性に優れた本発明の鋼板を製造する際には、冷間圧延の圧下率は特に規定しないが、10%未満の冷間圧延率では、板厚制御が難しく形状不良の原因となるため、その下限を10%以上とすることが好ましい。一方、冷間圧延率が90%超になると、圧延ロールへの負荷が大きくなる上、再結晶が促進されて未再結晶フェライトを確保するために、焼鈍の昇温速度を大きくすることが必要になる。そのため、冷間圧延の圧下率の上限は、90%以下とすることが好ましい。   When producing the steel sheet of the present invention having excellent workability and impact resistance, the rolling reduction ratio of cold rolling is not particularly specified. However, at a cold rolling ratio of less than 10%, it is difficult to control the sheet thickness and the shape is poor. For this reason, the lower limit is preferably 10% or more. On the other hand, if the cold rolling rate exceeds 90%, the load on the rolling roll increases, and it is necessary to increase the heating rate of annealing in order to promote recrystallization and secure unrecrystallized ferrite. become. Therefore, the upper limit of the cold rolling reduction is preferably 90% or less.

ただし、本発明において、加工性、耐衝突特性に加えて、ヤング率をも向上させて剛性を高めるためには、60%超の圧下率で冷間圧延を行うことが好ましい。これは、60%超の高い圧下率で冷間圧延を行うことにより、ヤング率の向上に有効な{112}<110>方位を発達させることができるためである。   However, in the present invention, in order to improve Young's modulus and increase rigidity in addition to workability and impact resistance, it is preferable to perform cold rolling at a rolling reduction of more than 60%. This is because the {112} <110> orientation effective for improving the Young's modulus can be developed by performing cold rolling at a high rolling reduction exceeding 60%.

本発明において、冷間圧延後の焼鈍は極めて重要であり、上述の条件で行うことが必要である。焼鈍は、昇温速度、加熱時間を制御するため、連続焼鈍設備によって行うことが好ましい。また、昇温速度を速くするために、高周波加熱装置、通電加熱装置を併用しても良い。焼鈍において、Ac1以上での滞留時間は、鋼板の温度がAc1以上である時間の合計であり、加熱炉の設定温度と炉の長さ、通板速度によって制御することができる。 In the present invention, annealing after cold rolling is extremely important, and it is necessary to carry out under the above-mentioned conditions. Annealing is preferably performed by continuous annealing equipment in order to control the rate of temperature rise and the heating time. Further, in order to increase the rate of temperature rise, a high-frequency heating device or an electric heating device may be used in combination. In annealing, the residence time in the Ac 1 or more, the sum of the time the temperature of the steel sheet is Ac 1 or more, the length of the set temperature and the furnace of the heating furnace can be controlled by the sheet passing speed.

また、焼鈍後の冷却速度は特に規定しないが、冷却速度が1℃/s未満の場合、十分に硬質第2相が得られなくなることがある。この観点から、冷却速度の下限は1℃/sとすることが好ましい。一方、冷却速度を250℃/s超とするには、特殊な設備の導入などが必要になるため、250℃/sを冷却速度の上限とすることが好ましい。焼鈍後の冷却速度は、水等、冷媒の吹付け、送風、ミスト等による強制冷却により、適宜制御すれば良い。   Further, the cooling rate after annealing is not particularly specified, but if the cooling rate is less than 1 ° C./s, a sufficiently hard second phase may not be obtained. From this viewpoint, the lower limit of the cooling rate is preferably 1 ° C./s. On the other hand, in order to make the cooling rate over 250 ° C./s, it is necessary to introduce special equipment and the like, so it is preferable to set the upper limit of the cooling rate to 250 ° C./s. The cooling rate after annealing may be appropriately controlled by forced cooling with water or the like, blowing of refrigerant, blowing air, mist, or the like.

焼鈍後、必要に応じて、過時効処理、溶融Znめっき又は合金化溶融Znめっきを施しても良い。Znめっきの組成は特に限定するものではなく、Znの他、Fe、Al、Mn、Cr、Mg、Pb、Sn、Ni等を必要に応じて添加しても構わない。なお、めっきは、焼鈍と別工程で行っても良いが、生産性の観点から、焼鈍とめっきを連続して行う、連続焼鈍−溶融Znめっきラインによって行うことが好ましい。この場合も、未再結晶フェライトを確保するためには、焼鈍を上記の条件で行うことが必要である。   After annealing, an overaging treatment, hot dip Zn plating, or alloyed hot dip Zn plating may be applied as necessary. The composition of the Zn plating is not particularly limited, and in addition to Zn, Fe, Al, Mn, Cr, Mg, Pb, Sn, Ni, or the like may be added as necessary. The plating may be performed in a separate process from the annealing, but from the viewpoint of productivity, it is preferable that the plating is performed by a continuous annealing-hot Zn plating line in which annealing and plating are continuously performed. Also in this case, in order to ensure non-recrystallized ferrite, it is necessary to perform annealing under the above conditions.

合金化処理を行う場合は、450〜600℃の温度範囲で行うことが好ましい。これは、450℃未満では合金化が十分に進行せず、また、600℃超では過度に合金化が進行し、めっき層が脆化して、プレス等の加工によってめっきが剥離する等の問題を誘発することがあるためである。合金化処理の時間は、10s未満では合金化が十分に進行しないことがあるため、10s以上とすることが好ましい。また、合金化処理の時間の上限は特に規定しないが、生産効率の観点から100s以内とすることが好ましい。   When performing an alloying process, it is preferable to carry out in the temperature range of 450-600 degreeC. This is because the alloying does not proceed sufficiently below 450 ° C, and the alloying proceeds excessively above 600 ° C, the plating layer becomes brittle, and the plating peels off by processing such as pressing. This is because it may trigger. When the alloying treatment time is less than 10 s, alloying may not proceed sufficiently. Further, the upper limit of the alloying time is not particularly defined, but is preferably within 100 s from the viewpoint of production efficiency.

また、生産性の観点から、連続焼鈍−溶融Znめっきラインに合金化処理炉を連続して設け、焼鈍、めっき及び合金化処理を連続して行うことが好ましい。   Further, from the viewpoint of productivity, it is preferable to continuously provide an alloying treatment furnace in the continuous annealing-hot Zn plating line and to perform annealing, plating, and alloying treatment continuously.

表1に示す組成を有する鋼を溶製し、鋳造して得られた鋼片を、1250℃で再加熱した後、常法に従って熱間圧延を行った。この時、仕上げ温度は900℃、巻取温度は600℃とした。その後、60%の圧下率で冷間圧延を施した後、表2に示す条件で焼鈍を行った。また、表1には、Ac1[℃]とAc3[℃]の計算値も示した。なお、表1の[−]は、成分を意図的に添加していないことを意味する。Nb+Tiは、NbとTiの合計量であり、[−]を0として計算した。表2の昇温速度は、(Ac1[℃]−100℃)からAc1[℃]までの温度の上昇に要した時間によって計算した。 Steel pieces obtained by melting and casting steel having the composition shown in Table 1 were reheated at 1250 ° C. and then hot-rolled according to a conventional method. At this time, the finishing temperature was 900 ° C., and the winding temperature was 600 ° C. Then, after performing cold rolling at a reduction rate of 60%, annealing was performed under the conditions shown in Table 2. Table 1 also shows the calculated values of Ac 1 [° C.] and Ac 3 [° C.]. In addition, [-] in Table 1 means that no component is intentionally added. Nb + Ti is the total amount of Nb and Ti, and [−] was calculated as 0. The heating rate in Table 2 was calculated according to the time required for the temperature increase from (Ac 1 [° C.]-100 ° C.) to Ac 1 [° C.].

表2に示す冷延鋼板のうち、製造No.3及び6については、焼鈍工程後、Znめっき浴に浸漬後、製造No.6については更に500℃で20s間の合金化処理を施した。更に、表2に示す冷延鋼板のうち、製造No.9については、均熱温度から300℃まで上述の通り50℃/sの冷却速度で冷却し、300℃で400s保持する過時効処理を行った後、10℃/sで室温まで冷却した。   Among the cold-rolled steel sheets shown in Table 2, production No. About 3 and 6, after an annealing process, after being immersed in Zn plating bath, manufacture No.3. 6 was further alloyed at 500 ° C. for 20 s. Furthermore, among the cold-rolled steel sheets shown in Table 2, the production No. As for No. 9, it was cooled from the soaking temperature to 300 ° C. at the cooling rate of 50 ° C./s as described above, and after performing an overaging treatment at 400 ° C. for 400 s, it was cooled to room temperature at 10 ° C./s.

製造後の冷延鋼板から、幅方向(TD方向という。)を長手方向としてJIS Z 2201の5号引張試験片を採取し、JIS Z 2241に準拠してTD方向の引張特性を評価した。t−El[%]は破断伸びであり、L−El[%]は局部伸びであり、破断伸びから最大力時伸び、即ち、一様伸びを減じた値である。   From the cold-rolled steel sheet after production, a No. 5 tensile test piece of JIS Z 2201 was taken with the width direction (referred to as the TD direction) as the longitudinal direction, and the tensile characteristics in the TD direction were evaluated according to JIS Z 2241. t-El [%] is the elongation at break, and L-El [%] is the local elongation, which is a value obtained by subtracting the elongation at break from the elongation at maximum force, that is, the uniform elongation.

鋼板の板厚断面のミクロ組織観察は、圧延方向を観察面として試料を採取し、エッチングをレペラー法として、光学顕微鏡で行った。硬質第2相の面積率は、光学顕微鏡による組織写真を画像解析し、フェライト以外の相の合計として求めた。また、未再結晶フェライトの面積率及び残部、即ち、未再結晶フェライトを除くフェライトの面積率は、EBSPの結晶方位測定及びその測定結果と光学顕微鏡組織写真を照合し、画像解析によって求めた。   Microstructure observation of the plate thickness section of the steel sheet was performed with an optical microscope using a sample taken with the rolling direction as the observation surface and etching as a repeller method. The area ratio of the hard second phase was obtained as a total of phases other than ferrite by image analysis of a structure photograph taken with an optical microscope. Further, the area ratio and the balance of the non-recrystallized ferrite, that is, the area ratio of the ferrite excluding the non-recrystallized ferrite were obtained by image analysis by collating the crystal orientation measurement of EBSP and the measurement result with the optical micrograph.

結果を表3に示す。なお、本発明において、延性の指標である引張強度TS[MPa]と全伸びt−EL[%]の積、伸びフランジ性の指標である引張強度TS[MPa]と局部伸びL−El[%]の積、耐衝突特性の指標である引張強度TS[MPa]に対する降伏強度YS[MPa]の割合、即ちTS×t−El[MPa・%]、TS×L−El[MPa・%]及びYP/TS×100[%]がそれぞれ18000[MPa・%]、7000[MPa・%]及び80[%]以上であるものを良好と評価した。   The results are shown in Table 3. In the present invention, the product of tensile strength TS [MPa] which is an index of ductility and total elongation t-EL [%], tensile strength TS [MPa] which is an index of stretch flangeability and local elongation L-El [%] ], The ratio of the yield strength YS [MPa] to the tensile strength TS [MPa], which is an index of impact resistance characteristics, that is, TS × t-El [MPa ·%], TS × L-El [MPa ·%] and Those having YP / TS × 100 [%] of 18000 [MPa ·%], 7000 [MPa ·%] and 80 [%] or more were evaluated as good.

その結果は表3に示す通り、本発明の化学成分を有する鋼を適正な条件で熱延及び冷延し、更に、適切な条件で焼鈍することにより、更に、過時効処理、Znめっき、合金化処理を施しても強度―延性バランス、伸びフランジ性及び耐衝突特性に優れた高強度冷延鋼板を得ることが可能である。   As shown in Table 3, the steel having the chemical composition of the present invention is hot-rolled and cold-rolled under appropriate conditions, and further annealed under appropriate conditions. It is possible to obtain a high-strength cold-rolled steel sheet that is excellent in strength-ductility balance, stretch flangeability, and impact resistance properties even when subjected to a heat treatment.

一方、鋼No.JはC量が少ないため、鋼No.KはMnが少ないため、強度が低下し、TS×t−El[MPa・%]も低下している。また、鋼No.LはAc1変態温度が低いため、鋼No.MはNb及びTi含有量が多いため、再結晶がほとんど進行せず、未再結晶フェライトが過剰に残留している。そのため、全伸び及び局部伸びが共に低下し、TS×t−El[MPa・%]及びTS×L−El[MPa・%]も低下している。鋼No.Nは、Nb及びTi含有量が少ないため、降伏強度が低下する上、再結晶が進行して未再結晶フェライトが少なくなり、局部伸びが低下し、YR[%]及びTS×L−El[MPa・%]も低下している。 On the other hand, Steel No. Since J has a small amount of C, steel no. Since K has a small amount of Mn, the strength is lowered, and TS × t-El [MPa ·%] is also lowered. Steel No. L has a low Ac 1 transformation temperature. Since M has a high Nb and Ti content, recrystallization hardly progresses, and unrecrystallized ferrite remains excessively. Therefore, both total elongation and local elongation are reduced, and TS × t-El [MPa ·%] and TS × L-El [MPa ·%] are also reduced. Steel No. N has a low content of Nb and Ti, so that the yield strength is reduced, and recrystallization proceeds to reduce unrecrystallized ferrite, resulting in a decrease in local elongation, YR [%] and TS × L-El [ [MPa ·%] is also decreased.

また、製造No.2は、(Ac1[℃]−100℃)からAc1[℃]までの昇温速度が速く、未再結晶フェライトが過剰に残留し、強度が低く、全伸び及び局部伸びが共に低下し、TS×t−El[MPa・%]及びTS×L−El[MPa・%]も低下している。 In addition, production No. In No. 2, the rate of temperature increase from (Ac 1 [° C.]-100 ° C.) to Ac 1 [° C.] is fast, excessive unrecrystallized ferrite remains, the strength is low, and the total elongation and local elongation both decrease. TS × t-El [MPa ·%] and TS × L-El [MPa ·%] are also decreased.

製造No.5は、焼鈍の最高到達温度が高いため、製造No.8は、Ac1[℃]以上での滞留時間が長いため、未再結晶フェライトが少なく、硬質第2相が増加して、高強度ではあるものの、全伸び及び局部伸びが低下し、TS×t−El[MPa・%]及びTS×L−El[MPa・%]も低下している。 Production No. No. 5 has a high maximum temperature for annealing, so No. 8 has a long residence time at Ac 1 [° C.] or higher, so that there is little unrecrystallized ferrite, the hard second phase is increased, and the strength is high, but the total elongation and local elongation are reduced, and TS × t-El [MPa ·%] and TS × L-El [MPa ·%] are also decreased.

製造No.11は、焼鈍の最高到達温度が低く、硬質第2相が得られなかったため、強度が低く、TS×t−El[MPa・%]及びTS×L−El[MPa・%]も低下している。   Production No. No. 11 has a low maximum ultimate temperature of annealing and a hard second phase was not obtained, so the strength is low, and TS × t-El [MPa ·%] and TS × L-El [MPa ·%] are also reduced. Yes.

Figure 0005151468
Figure 0005151468

Figure 0005151468
Figure 0005151468

Figure 0005151468
Figure 0005151468

表4に示す組成を有する鋼を真空溶解炉にて溶製し、表5に示す条件で熱間圧延し、600℃で巻き取り酸洗した後、表5に示す条件で冷間圧延及び焼鈍を行った。なお、Ac1[℃]から500℃又は過時効処理温度までの平均冷却速度はいずれも50℃/sとした。ここで、表4の[−]は、成分を意図的に添加していないことを意味する。また、表4には、Ac1[℃]とAc3[℃]の計算値も示した。 Steel having the composition shown in Table 4 was melted in a vacuum melting furnace, hot-rolled under the conditions shown in Table 5, wound up and pickled at 600 ° C., and then cold-rolled and annealed under the conditions shown in Table 5. Went. The average cooling rate from Ac 1 [° C.] to 500 ° C. or the overaging temperature was 50 ° C./s. Here, [-] in Table 4 means that no component is intentionally added. Table 4 also shows the calculated values of Ac 1 [° C.] and Ac 3 [° C.].

表5において、熱延工程の圧下率は、950℃以下、仕上圧延までの合計の圧下率であり、950℃での板厚と、仕上圧延後の板厚から求めた。また、FT[℃]は熱間圧延の仕上温度である。表5の昇温速度は、(Ac1[℃]−100℃)からAc1[℃]までの温度の上昇に要した時間によって計算した。表5の滞留時間は、焼鈍時に、Ac1[℃]以上の温度域に加熱された時間である。 In Table 5, the rolling reduction in the hot rolling step is 950 ° C. or less and the total rolling reduction until finish rolling, and was determined from the plate thickness at 950 ° C. and the plate thickness after finish rolling. Further, FT [° C.] is a hot rolling finishing temperature. The heating rate in Table 5 was calculated according to the time required for the temperature increase from (Ac 1 [° C.]-100 ° C.) to Ac 1 [° C.]. The residence time in Table 5 is the time during which annealing was performed in a temperature range of Ac 1 [° C.] or higher.

表5に示す冷延鋼板のうち、製造No.19及び23については、焼鈍工程後、Znめっき浴に浸漬後、製造No.23については更に500℃で20s間の合金化処理を施した。更に、表5に示す冷延鋼板のうち、製造No.29については、均熱温度から300℃まで上述の通り50℃/sの冷却速度で冷却し、300℃で400s保持する過時効処理を行った後、10℃/sで室温まで冷却した。   Among the cold-rolled steel sheets shown in Table 5, the production No. About No. 19 and 23, after an annealing process, after being immersed in Zn plating bath, manufacture No. For No. 23, alloying treatment was further performed at 500 ° C. for 20 s. Furthermore, among the cold-rolled steel sheets shown in Table 5, the production No. As for No. 29, it was cooled from a soaking temperature to 300 ° C. at a cooling rate of 50 ° C./s as described above, and after performing an overaging treatment for 400 s at 300 ° C., it was cooled to room temperature at 10 ° C./s.

製造後の冷延鋼板のTD方向の引張特性を、実施例1と同様にして評価した。また、鋼板の板厚断面のミクロ組織観察及びEBSPの結晶方位測定も、実施例1と同様にして行い、硬質第2相の面積率、未再結晶フェライトの面積率、及び未再結晶フェライトを除くフェライトの面積率を求めた。1/2板厚部における{112}<110>方位の極密度は、X線回折法によって測定した。X線回折の試料は、板厚1/2面が測定面となるようにして、機械研磨及び電解研磨よって作製した。   The tensile properties in the TD direction of the cold-rolled steel sheet after production were evaluated in the same manner as in Example 1. Further, the microstructure observation of the plate thickness cross section of the steel plate and the crystal orientation measurement of EBSP were performed in the same manner as in Example 1, and the area ratio of the hard second phase, the area ratio of the non-recrystallized ferrite, and the non-recrystallized ferrite were measured. The area ratio of the excluded ferrite was determined. The pole density in the {112} <110> orientation in the 1/2 plate thickness part was measured by the X-ray diffraction method. A sample for X-ray diffraction was prepared by mechanical polishing and electrolytic polishing so that the half-thick surface was the measurement surface.

ヤング率はJIS Z 2280に記載の横共振法を常温で行って測定した。即ち、試料を固定せずに振動を加え、発振機の振動数を徐々に変化させて一次共振振動数を測定して下式よりヤング率を算出した。
E=0.946×(l/h)3×m/w×f2
ここで、E:動的ヤング率[N/m2]、l:試験片の長さ[m]、h:試験片の厚さ[m]、m:試験片の質量[kg]、w:試験片の幅[m]、f:横共振法の一次共振振動数[s-1]である。
The Young's modulus was measured by performing the transverse resonance method described in JIS Z 2280 at room temperature. That is, the Young's modulus was calculated from the following equation by applying vibration without fixing the sample, measuring the primary resonance frequency by gradually changing the frequency of the oscillator.
E = 0.946 × (l / h) 3 × m / w × f 2
Here, E: dynamic Young's modulus [N / m 2 ], l: length of the test piece [m], h: thickness of the test piece [m], m: mass of the test piece [kg], w: Width of test piece [m], f: primary resonance frequency [s −1 ] of lateral resonance method.

結果を表6に示す。なお、実施例1と同様、TS×t−El[MPa・%]、TS×L−El[MPa・%]及びYP/TS×100[%]がそれぞれ18000[MPa・%]、7000[MPa・%]及び80[%]以上であるものを良好と評価した。また、剛性の指標であるヤング率E[GPa]は、240[GPa]以上であるものを良好と評価した。   The results are shown in Table 6. As in Example 1, TS × t-El [MPa ·%], TS × L-El [MPa ·%], and YP / TS × 100 [%] are 18000 [MPa ·%] and 7000 [MPa, respectively. -%] And 80 [%] or more were evaluated as good. Further, the Young's modulus E [GPa], which is an index of rigidity, was evaluated as good when the modulus was 240 [GPa] or more.

表6に示したように、本発明の化学成分を有する鋼を適正な焼鈍することにより、過時効処理、Znめっき、合金化処理を施しても加工性及び耐衝突特性に優れた高強度冷延鋼板を得ることが可能である。更に、本発明の化学成分を有する鋼を適正な条件で熱延及び冷延し、更に、適切な条件で焼鈍することにより、加工性及び耐衝突特性に加えて、剛性にも優れた高強度冷延鋼板を得ることが可能である。なお、製造No.22は、熱延工程における圧下率が低いため、製造No.25は、仕上温度が高いため、製造No.28は冷間圧延率が低いため、十分に集合組織が発達せず、E[GPa]が低下した例である。   As shown in Table 6, by appropriately annealing the steel having the chemical composition of the present invention, it is a high-strength cold steel that has excellent workability and impact resistance characteristics even if it is over-aged, Zn plated, or alloyed. It is possible to obtain a rolled steel sheet. Furthermore, the steel having the chemical composition of the present invention is hot-rolled and cold-rolled under appropriate conditions, and further annealed under appropriate conditions, so that it has high strength with excellent rigidity in addition to workability and impact resistance. It is possible to obtain a cold-rolled steel sheet. Production No. No. 22 has a low rolling reduction in the hot rolling process, so No. 25 has a high finishing temperature, so No. 28 is an example in which the E [GPa] is lowered because the texture is not sufficiently developed because the cold rolling rate is low.

一方、鋼No.AJはC量が少ないため、鋼No.AKはMnが少ないため、強度が低下し、TS×t−El[MPa・%]も低下している。また、鋼No.ALはAc1変態温度が低いため、鋼No.AMはNb及びTi含有量が多いため、再結晶がほとんど進行せず、未再結晶フェライトが過剰に残留している。そのため、全伸び及び局部伸びが共に低下し、TS×t−El[MPa・%]及びTS×L−El[MPa・%]も低下している。鋼No.ANは、Nb及びTi含有量が少ないため、降伏強度が低下する上、再結晶が進行して未再結晶フェライトが少なくなり、局部伸びが低下し、YR[%]及びTS×L−El[MPa・%]も低下している。 On the other hand, Steel No. Since AJ has a small amount of C, steel no. Since AK has less Mn, the strength is reduced and TS × t-El [MPa ·%] is also reduced. Steel No. AL has a low Ac 1 transformation temperature. Since AM has a high Nb and Ti content, recrystallization hardly proceeds and unrecrystallized ferrite remains excessively. Therefore, both total elongation and local elongation are reduced, and TS × t-El [MPa ·%] and TS × L-El [MPa ·%] are also reduced. Steel No. AN has a low Nb and Ti content, and therefore yield strength is reduced, recrystallization proceeds and unrecrystallized ferrite is reduced, local elongation is reduced, and YR [%] and TS × L-El [ [MPa ·%] is also decreased.

また、製造No.31は、焼鈍工程における昇温速度が速く、未再結晶フェライトが過剰に残留した例であり、強度が低く、全伸び及び局部伸びが共に低下し、TS×t−El[MPa・%]及びTS×L−El[MPa・%]も低下している。製造No.34は、焼鈍の最高到達温度が高いため、未再結晶フェライトが少なく、硬質第2相が増加して、高強度ではあるものの、全伸び及び局部伸びが低下し、TS×t−El[MPa・%]及びTS×L−El[MPa・%]も低下している。製造No.38は、焼鈍の最高到達温度での保持時間が短く、十分な硬質第2相が得られなかったため、強度が低く、TS×t−El[MPa・%]及びTS×L−El[MPa・%]も低下している。   In addition, production No. No. 31 is an example in which the rate of temperature increase in the annealing process is high and the unrecrystallized ferrite remains excessively, the strength is low, both the total elongation and the local elongation decrease, and TS × t-El [MPa ·%] and TS × L-El [MPa ·%] is also decreased. Production No. No. 34 has a high maximum temperature for annealing, so that there is little unrecrystallized ferrite, the hard second phase is increased, and although it is high strength, the total elongation and local elongation are reduced, and TS × t-El [MPa %] And TS × L-El [MPa ·%] are also decreased. Production No. No. 38 has a short holding time at the highest temperature of annealing, and a sufficient hard second phase was not obtained. Therefore, the strength is low, and TS × t-El [MPa ·%] and TS × L-El [MPa · %] Is also decreasing.

Figure 0005151468
Figure 0005151468

Figure 0005151468
Figure 0005151468

Figure 0005151468
Figure 0005151468

本発明の鋼の金属組織の模式図である。It is a schematic diagram of the metal structure of the steel of this invention. 本発明の未再結晶フェライトの模式図である。It is a schematic diagram of the non-recrystallized ferrite of the present invention.

符号の説明Explanation of symbols

1 未再結晶フェライト
2 硬質第2相
3 再結晶フェライト又は変態フェライト
4 サブグレイン
1 Unrecrystallized ferrite 2 Hard second phase 3 Recrystallized ferrite or transformation ferrite 4 Subgrain

Claims (10)

質量%で、
C :0.05〜0.25%、
Si:0.01〜1.50%、
Mn:0.50〜3.50%、
P :0.150%以下、
S :0.0150%以下、
Al:0.200%以下、
N :0.0100%以下
を含有し、更に、
Nb:0.005〜0.100%、
Ti:0.005〜0.100%
の一方又は双方を合計で0.130%未満含有し、残部が鉄及び不可避的不純物からなり、Ac1[℃]が700℃以上であり、金属組織がフェライトと硬質第2相からなり、前記フェライトが再結晶フェライト、変態フェライトの一方又は双方と未再結晶フェライトからなり、前記未再結晶フェライトの面積率が10〜70%であり、前記再結晶フェライト、前記変態フェライトの一方又は双方の面積率が10〜70%であり、前記硬質第2相の面積率が1〜30%であることを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。
ここで、Ac1[℃]は質量%で表されるC、Mn、Siの含有量(%C)、(%Mn)、(%Si)によって下記(式1)式から求めたAc1変態温度である。
Ac1=761.3+212(%C)−45.8(%Mn)+16.7(%Si)
・・・(式1)
% By mass
C: 0.05 to 0.25%,
Si: 0.01 to 1.50%,
Mn: 0.50 to 3.50%
P: 0.150% or less,
S: 0.0150% or less,
Al: 0.200% or less,
N: 0.0100% or less, and
Nb: 0.005 to 0.100%,
Ti: 0.005 to 0.100%
One or both of the above is contained in a total of less than 0.130%, the balance is made of iron and inevitable impurities, Ac 1 [° C.] is 700 ° C. or higher, and the metal structure is made of ferrite and a hard second phase, The ferrite is composed of one or both of recrystallized ferrite and transformed ferrite and non-recrystallized ferrite, the area ratio of the non-recrystallized ferrite is 10 to 70%, and the area of one or both of the recrystallized ferrite and transformed ferrite A high-strength cold-rolled steel sheet excellent in local ductility, workability, and impact resistance, wherein the rate is 10 to 70% and the area ratio of the hard second phase is 1 to 30%.
Here, Ac 1 [° C.] is the Ac 1 transformation obtained from the following formula (Formula 1) by the contents (% C), (% Mn), and (% Si) of C, Mn, and Si expressed in mass%. Temperature.
Ac 1 = 761.3 + 212 (% C) -45.8 (% Mn) +16.7 (% Si)
... (Formula 1)
さらに、質量%で、
Mo:0.1〜1.5%、
B :0.0005〜0.0100%、
Cr:0.10〜1.50%、
Ni:0.10〜1.50%
のうち、1種又は2種以上を含有することを特徴とする請求項1に記載の、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。
Furthermore, in mass%,
Mo: 0.1 to 1.5%,
B: 0.0005 to 0.0100%,
Cr: 0.10 to 1.50%,
Ni: 0.10 to 1.50%
Among them, the high strength cold-rolled steel sheet having excellent local ductility, workability, and impact resistance characteristics according to claim 1, comprising one or more of them.
板厚1/2層における{112}<110>方位の極密度が6以上であることを特徴とする請求項1又は2の何れか1項に記載の、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。 3. The local ductility, workability, and impact resistance characteristics according to claim 1, wherein the pole density in the {112} <110> orientation in the ½ layer thickness is 6 or more. High strength cold-rolled steel sheet with excellent resistance. 請求項1〜3の何れか1項に記載の冷延鋼板の表面に溶融Znめっきを設けたことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。 A high-strength cold-rolled steel sheet excellent in local ductility, workability and impact resistance characteristics, characterized in that hot-dip Zn plating is provided on the surface of the cold-rolled steel sheet according to any one of claims 1 to 3. 請求項1〜3の何れか1項に記載の冷延鋼板の表面に合金化溶融Znめっきを設けたことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板。 A high-strength cold-rolled steel sheet excellent in local ductility, workability, and impact resistance characteristics, characterized in that alloyed hot-dip Zn plating is provided on the surface of the cold-rolled steel sheet according to any one of claims 1 to 3. . 請求項1又は2の何れか1項に記載の化学成分を有する鋼片を熱間圧延し、酸洗後、冷間圧延を施した後、鋼板を、(Ac1[℃]−100℃)からAc1[℃]までの昇温速度を0.1〜20℃/sとしてAc1[℃]〜{Ac1[℃]+2/3×(Ac3[℃]−Ac1[℃])}の温度範囲内に昇温し、前記鋼板の温度が該温度範囲内である滞留時間を10〜200sとして焼鈍することを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。
ここで、Ac1[℃]及びAc3[℃]は質量%で表されるC、Mn、Siの含有量(%C)、(%Mn)、(%Si)によって下記(式1)及び(式2)式から求めたAc1変態温度及びAc3変態温度である。
Ac1=761.3+212(%C)−45.8(%Mn)+16.7(%Si)
・・・(式1)
Ac3=915−325.9(%C)−35.9(%Mn)+31.4(%Si)
・・・(式2)
A steel slab having the chemical composition according to claim 1 or 2 is hot-rolled, pickled, and cold-rolled, and then the steel plate is (Ac 1 [° C] -100 ° C). Ac 1 [℃] ~ a heating rate of up to Ac 1 [° C.] as 0.1 to 20 ° C. / s from {Ac 1 [℃] + 2 /3 × (Ac 3 [℃] -Ac 1 [℃]) }, The steel sheet is annealed with a residence time within the temperature range of 10 to 200 s, and is excellent in local ductility, workability and impact resistance. A method for producing a cold-rolled steel sheet.
Here, Ac 1 [° C.] and Ac 3 [° C.] are expressed by mass% of C, Mn, and Si (% C), (% Mn), and (% Si) according to the following (formula 1) and These are the Ac 1 transformation temperature and Ac 3 transformation temperature determined from the formula (2).
Ac 1 = 761.3 + 212 (% C) -45.8 (% Mn) +16.7 (% Si)
... (Formula 1)
Ac 3 = 915-325.9 (% C) -35.9 (% Mn) +31.4 (% Si)
... (Formula 2)
請求項1又は2の何れか1項に記載の化学成分を有する鋼片を、仕上圧延温度をAr3変態温度以上とし、950℃から仕上圧延温度までの範囲内における圧下率の合計を30%以上として熱間圧延を行い、酸洗後、60%超の圧下率で冷間圧延を施し、鋼板を焼鈍することを特徴とする請求項6に記載の、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。 The steel slab having the chemical composition according to any one of claims 1 and 2, wherein the finishing rolling temperature is not less than the Ar 3 transformation temperature, and the total rolling reduction within the range from 950 ° C to the finishing rolling temperature is 30%. 7. Hot ducting as described above, pickling, cold rolling at a reduction rate of more than 60%, and annealing the steel sheet , local ductility, workability and impact resistance characteristics For producing high-strength cold-rolled steel sheets with excellent resistance. 請求項6又は7の何れか1項に記載の焼鈍後、350〜500℃まで冷却し、次いで溶融Znめっきを施すことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。 After annealing according to any one of claims 6 and 7, the steel is cooled to 350 to 500 ° C, and then hot-dip Zn plating is applied, and high strength excellent in local ductility, workability and impact resistance characteristics A method for producing a cold-rolled steel sheet. 請求項8記載の溶融Znめっきを施した後に450〜600℃の温度範囲で10s以上の熱処理を行うことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。 A high-strength cold-rolled steel sheet excellent in local ductility, workability, and impact resistance characteristics, characterized by performing heat treatment for 10 seconds or more in a temperature range of 450 to 600 ° C after performing hot-dip Zn plating according to claim 8. Production method. 請求項6〜9の何れか1項に記載の方法により製造した冷延鋼板に0.1〜5.0%のスキンパス圧延を施すことを特徴とする、局部延性、加工性及び耐衝突特性に優れた高強度冷延鋼板の製造方法。 The local ductility, workability, and impact resistance characteristics are characterized by subjecting the cold-rolled steel sheet produced by the method according to any one of claims 6 to 9 to 0.1% to 5.0% skin pass rolling. An excellent method for producing high-strength cold-rolled steel sheets.
JP2007334785A 2007-01-10 2007-12-26 High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same Active JP5151468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007334785A JP5151468B2 (en) 2007-01-10 2007-12-26 High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007002497 2007-01-10
JP2007002497 2007-01-10
JP2007334785A JP5151468B2 (en) 2007-01-10 2007-12-26 High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008190032A JP2008190032A (en) 2008-08-21
JP5151468B2 true JP5151468B2 (en) 2013-02-27

Family

ID=39750393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007334785A Active JP5151468B2 (en) 2007-01-10 2007-12-26 High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5151468B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5233142B2 (en) * 2007-03-28 2013-07-10 Jfeスチール株式会社 High-stiffness and high-strength steel sheet excellent in hole expansibility and method for producing the same
JP4995109B2 (en) * 2008-02-07 2012-08-08 新日本製鐵株式会社 High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP5549307B2 (en) * 2009-04-13 2014-07-16 Jfeスチール株式会社 Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same
CN103857815B (en) 2011-10-06 2016-01-20 新日铁住金株式会社 Steel plate and manufacture method thereof
TWI468530B (en) 2012-02-13 2015-01-11 新日鐵住金股份有限公司 Cold rolled steel plate, plated steel plate, and method of manufacturing the same
CN107406931B (en) * 2015-03-27 2019-04-05 杰富意钢铁株式会社 High-strength steel sheet and its manufacturing method
JP6834506B2 (en) * 2017-01-16 2021-02-24 日本製鉄株式会社 High Young's modulus ultra-thin steel plate and its manufacturing method
CN107699791B (en) * 2017-09-28 2019-05-03 邯郸钢铁集团有限责任公司 900MPa grades high cold-bending property low alloy high strength steel plate and preparation method thereof
EP4409049A1 (en) * 2021-09-29 2024-08-07 ArcelorMittal Cold rolled and heat treated steel sheet and a method of manufacturing thereof
WO2024128737A1 (en) * 2022-12-12 2024-06-20 주식회사 포스코 High strength steel sheet having high yield ratio, and manufacturing method therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858146B2 (en) * 2002-01-29 2006-12-13 Jfeスチール株式会社 Manufacturing method of high-strength cold-rolled steel sheet and high-strength hot-dip galvanized steel sheet
JP4506439B2 (en) * 2004-03-31 2010-07-21 Jfeスチール株式会社 High-rigidity and high-strength steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008190032A (en) 2008-08-21

Similar Documents

Publication Publication Date Title
JP4995109B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP6179675B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
JP5088023B2 (en) High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP5151468B2 (en) High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP5157375B2 (en) High-strength cold-rolled steel sheet excellent in rigidity, deep drawability and hole expansibility, and method for producing the same
JP5163835B2 (en) Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and production methods thereof
CN102341521B (en) High-strength steel sheet, hot-dipped steel sheet, and alloy hot-dipped steel sheet that have excellent fatigue, elongation, and collision characteristics, and manufacturing method for said steel sheets
JP6179674B2 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-plated steel sheet, high-strength electrogalvanized steel sheet, and methods for producing them
JP5347738B2 (en) Method for producing precipitation strengthened cold rolled steel sheet
EP3255164B1 (en) High-strength steel sheet and production method therefor
WO2017183349A1 (en) Steel plate, plated steel plate, and production method therefor
JP5088041B2 (en) High Young&#39;s modulus, high strength cold-rolled steel sheet with excellent local ductility and method for producing the same
CN111511945A (en) High-strength cold-rolled steel sheet and method for producing same
JP4959418B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2014188966A1 (en) Hot-rolled steel sheet and method for manufacturing same
CN111527223B (en) High-strength cold-rolled steel sheet and method for producing same
EP3255162B1 (en) High-strength steel sheet and production method therefor
US11035019B2 (en) High-strength steel sheet and production method therefor
JP2010285657A (en) Precipitation strengthened double-phase cold-rolled steel sheet and method for producing the same
WO2017183348A1 (en) Steel plate, plated steel plate, and production method therefor
JP5239562B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
WO2018092817A1 (en) High-strength steel sheet and method for producing same
JP4062961B2 (en) High tensile hot-rolled steel sheet excellent in mold galling resistance and fatigue resistance and method for producing the same
KR20220068245A (en) High-strength steel sheet and manufacturing method thereof
JP2007092127A (en) Method for producing high strength cold-rolled steel sheet excellent in stiffness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5151468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350