[go: up one dir, main page]

WO2024128737A1 - High strength steel sheet having high yield ratio, and manufacturing method therefor - Google Patents

High strength steel sheet having high yield ratio, and manufacturing method therefor Download PDF

Info

Publication number
WO2024128737A1
WO2024128737A1 PCT/KR2023/020374 KR2023020374W WO2024128737A1 WO 2024128737 A1 WO2024128737 A1 WO 2024128737A1 KR 2023020374 W KR2023020374 W KR 2023020374W WO 2024128737 A1 WO2024128737 A1 WO 2024128737A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
excluding
steel
ferrite
Prior art date
Application number
PCT/KR2023/020374
Other languages
French (fr)
Korean (ko)
Inventor
한성호
이재훈
최용훈
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202380085306.9A priority Critical patent/CN120283074A/en
Publication of WO2024128737A1 publication Critical patent/WO2024128737A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Definitions

  • the present invention relates to materials used for automobile interior panels, reinforcements, etc., and to a high-yield ratio high-strength steel plate and a method of manufacturing the same.
  • high-strength steel plates capable of reducing plate thickness is increasing in automobile parts.
  • high-strength steel plates are widely used in automobile bodies to ensure the safety of occupants, and to improve the crash performance of automobile bodies, the yield strength of steel is increased to efficiently absorb collision energy even with low deformation.
  • steel plates with a high yield ratio are required.
  • DP steel dual phase steel
  • DP steel has a problem of low yield ratio because its main phase is soft ferrite and hard structures such as bainite, martensite, and tempered martensite are used as secondary phases. Therefore, there are some limits to the application of DP steel for automobile parts that absorb impact energy while suppressing deformation.
  • Patent Document 1 proposed a steel sheet that prevents recrystallization of ferrite and has a structure composed of unrecrystallized ferrite and a hard second phase. However, if excessive unrecrystallized ferrite exists, strength and yield ratio increase, but there is a problem of insufficient formability due to low elongation.
  • Patent Documents 5 to 7 proposed a steel sheet with improved elongation flangeability by using unrecrystallized ferrite and using unrecrystallized ferrite having an intermediate hardness of soft ferrite and hard secondary phase.
  • the steel sheets proposed in Patent Documents 5 and 6 have a small amount of Nb or Ti added, so the recrystallization inhibition effect is small, so rapid heating is necessary during annealing, and the steel sheets proposed in Patent Document 7 have a small amount of Nb or Ti added. Since the temperature increase rate during annealing is low, below 10°C/s, the time available for recrystallization increases, and the effect of using unrecrystallized ferrite is not sufficient.
  • Patent Document 1 Japanese Patent Laid-open Publication 1978-005018
  • Patent Document 2 Japanese Patent Application Publication 2007-138261
  • Patent Document 3 Japanese Patent Laid-open Publication 2007-107099
  • Patent Document 4 Japanese Patent Laid-open Publication 2001-152288
  • Patent Document 5 Japanese Patent Laid-open Publication 2008-106351
  • Patent Document 6 Japanese Patent Laid-open Publication 2008-106352
  • Patent Document 7 Japanese Patent Laid-open Publication 2008-156680
  • One aspect of the present invention is to provide a steel plate with a high yield ratio and high strength, and excellent formability, and a method for manufacturing the same.
  • One aspect of the present invention is weight percent, carbon (C): 0.05 to 0.12%, manganese (Mn): 1.0 to 1.8%, silicon (Si): 0.6% or less (excluding 0%), phosphorus (P): 0.03. % or less (excluding 0%), Sulfur (S): 0.01% or less (excluding 0%), Nitrogen (N): 0.01% or less (excluding 0%), Aluminum (sol.Al): 0.01 to 0.08%, titanium (Ti): 0.02 ⁇ 0.06%, Niobium (Nb): 0.02 ⁇ 0.06%, Boron (B): 0.005% or less (excluding 0%), including the remaining Fe and inevitable impurities,
  • the microstructure includes 80 to 99% of ferrite in terms of area percent, the remainder includes pearlite and other inevitable structures, and unrecrystallized ferrite is 20 to 50% of the ferrite,
  • a steel plate having an aspect ratio of 5 to 15 of the ferrite is provided.
  • the total amount of Ti and Nb may be 0.1% or less.
  • the cold rolled steel sheet may satisfy the following relational expression 1.
  • the steel sheet may further include a hot-dip galvanized layer on the surface.
  • the steel plate may have a yield strength of 460 MPa or more and a tensile strength of 520 MPa or more.
  • the product of yield strength and elongation may be 8600 or more.
  • Another embodiment of the present invention is by weight percentage, carbon (C): 0.05 to 0.12%, manganese (Mn): 1.0 to 1.8%, silicon (Si): 0.6% or less (excluding 0%), phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.01% or less (excluding 0%), Nitrogen (N): 0.01% or less (excluding 0%), Aluminum (sol.Al): 0.01 to 0.08%, Ti (titanium): 0.02 ⁇ 0.06%, niobium (Nb): 0.02 ⁇ 0.06%, boron (B): 0.005% or less (excluding 0%), steel slabs containing the remaining Fe and inevitable impurities are stored at 1100 ⁇ 1250°C. Heating with;
  • a method of manufacturing a steel sheet including the step of continuously annealing the cold rolled steel sheet at a temperature range of 770 to 820°C.
  • the method of manufacturing the steel plate can satisfy the conditions of [Relational Expression 2] and [Relational Expression 3] below.
  • CR is the cold rolling reduction rate (%)
  • SS is the annealing temperature (°C)
  • LS is the line speed (mpm) during continuous annealing.
  • the method of manufacturing the steel sheet may further include hot-dip galvanizing the continuously annealed steel sheet.
  • the steel plate of the present invention has high strength and high yield ratio, so when used as an inner plate, reinforcement, etc., the resistance (collision resistance characteristics) increases during a collision, which is advantageous in ensuring the safety of passengers. Additionally, according to the present invention, a steel plate with excellent formability can be provided.
  • Figure 1 is a photograph showing the microstructure of invention steel 1 in Examples.
  • Non-recrystallized ferrite is ferrite stretched in the rolling direction by cold rolling, meaning that recrystallization has not been completed and dislocations within the particles have been recovered.
  • the material of the cold rolled steel sheet has large deviations in the width and length directions, and even a slight difference in the unrecrystallized fraction may cause the material to appear very non-uniform. Therefore, it was recognized that the best method was to minimize the unredetermining tissue as much as possible.
  • Ti titanium
  • Nb niobium
  • C carbon
  • the annealing temperature must be managed very high or a special process is required to suppress precipitation of TiC, NbC, etc.
  • the special process is to shorten the time for TiC, NbC, etc. to precipitate through very rapid quenching or very rapid heating.
  • this is a process that cannot be achieved during normal operation, and special equipment is required to achieve it.
  • it is necessary to maintain a temperature of almost 900°C or higher.
  • Such high-temperature annealing can cause problems such as coil meandering and increased manufacturing costs. Even if the annealing temperature is raised to 900°C or higher, the yield strength decreases due to material softening due to the creation of a recrystallization structure, so it is difficult to secure the high yield ratio required in the present invention.
  • the present inventors conducted in-depth research to manufacture a steel plate with a high yield ratio, preferably a yield strength of 460 to 600 MPa, a tensile strength of 520 to 700 MPa, and a yield ratio of 0.8 to 0.9.
  • a method was derived that could secure the above-mentioned yield ratio using unrecrystallized ferrite and at the same time have excellent formability with an elongation of 10% or more, leading to the present invention.
  • the content of the alloy composition is based on weight%.
  • the steel sheet contains carbon (C): 0.05-0.12%, manganese (Mn): 1.0-1.8%, silicon (Si): 0.6% or less (excluding 0%), phosphorus (P): 0.03% or less (excluding 0%). , Sulfur (S): 0.01% or less (excluding 0%), Nitrogen (N): 0.01% or less (excluding 0%), Aluminum (sol.Al): 0.01 to 0.08%, Titanium (Ti): 0.02 to 0.06 %, niobium (Nb): 0.02 ⁇ 0.06%, boron (B): 0.005% or less (excluding 0%).
  • Carbon (C) is an element that contributes to the increase in strength and the creation of pearlite, and is added in an appropriate amount to secure the target strength. In addition, it is an essential element to give strength to steel sheets by forming precipitates with Ti, Nb, etc. in the ferrite phase. If it is less than 0.05%, it is difficult to secure the strength required for the present invention steel, and if it exceeds 0.12%, formability or weldability will be deteriorated, so it is effective that the C content is 0.05 to 0.12%.
  • Manganese (Mn) is an element that lowers the Ac3 transformation temperature, which is the temperature at which Ac1 and ⁇ - ⁇ transformations are completed and austenite becomes a single phase. That is, if the amount of Mn is small, it is necessary to increase the annealing temperature to promote transformation, which makes it difficult to secure the appropriate fraction of unrecrystallized ferrite required by the present invention. Additionally, Mn is an element that contributes to solid solution strengthening along with Si and is also effective in increasing strength. From this point of view, a Mn content of 1.0% or more is effective. On the other hand, if the Mn content exceeds 1.8%, hardenability increases, bainite and martensite are easily formed, and the yield ratio is lowered, so it is effective not to exceed 1.8%.
  • Si is a deoxidizing element and is effective in increasing strength as a solid solution strengthening element.
  • the Si amount exceeds 0.6%, Ac1 becomes too high and it is necessary to increase the annealing temperature, which accelerates transformation and makes it difficult to secure unrecrystallized ferrite. Therefore, it is effective to manage it to 0.6% or less.
  • excessive addition of Si may cause problems such as deterioration of plating adhesion due to oxide during hot dip galvanizing.
  • 0% is excluded.
  • Phosphorus (P) is an impurity and segregates at grain boundaries, causing a decrease in the toughness of the steel sheet and deterioration of weldability.
  • the alloying reaction is very slow during hot dip galvanizing and productivity decreases, it is effective for P to be 0.03% or less.
  • S Sulfur
  • S is an impurity that is inevitably included in steel, and it is desirable to keep its content as low as possible. Therefore, considering that the S content in steel is inevitably included, 0% is excluded. In particular, since S in steel increases the possibility of causing red heat embrittlement, it is effective to control its content to 0.01% or less.
  • N Nitrogen
  • 0% is excluded (i.e., exceeds 0%).
  • the refining cost of the steel increases rapidly, so it is managed to 0.01% or less, which is the range within which operating conditions are possible.
  • Acid-soluble aluminum is an element added for particle size refinement and deoxidation. If the sol.Al content is less than 0.01%, aluminum killed (Al-killed) steel cannot be manufactured in a normal stable state. On the other hand, if the sol.Al content exceeds 0.08%, it is advantageous to increase strength due to the grain refinement effect, but the possibility of surface defects in the plated steel sheet increases due to excessive formation of inclusions during steelmaking operation. In addition, because there is a problem that causes a sharp increase in manufacturing cost, it is desirable to manage the sol.Al content at 0.01 to 0.08%.
  • the Ti and Nb are elements that promote the retention of unrecrystallized ferrite by suppressing recrystallization of ferrite during an annealing process for deformed ferrite generated by cold rolling.
  • the amount of unrecrystallized ferrite increases due to the formation of carbides such as TiC and NbC, the yield strength and yield ratio may increase excessively, and excessive addition of alloy elements may cause an increase in manufacturing costs.
  • Boron (B) is an element that improves hardenability, increases strength, and suppresses the nucleation of grain boundaries. If the content of B exceeds 0.005% by weight, the effect becomes excessive and causes an increase in manufacturing costs, so it is preferable to control the content of B to 0.005% by weight or less.
  • the unavoidable impurities may be included as long as they can be unintentionally introduced during the manufacturing process of ordinary cold rolled steel sheets (and plated steel sheets). Since a person skilled in the art can easily understand the meaning, it is not particularly limited here.
  • the microstructure of the steel sheet is expressed in terms of area percentage and includes 80 to 99% ferrite, and the remainder includes pearlite and other inevitable structures.
  • the inevitable structure is not particularly limited, but may be cementite, carbide, etc. More specifically, ferrite may be included in 80 to 95%.
  • the unrecrystallized ferrite it is effective for the unrecrystallized ferrite to be 20 to 50% by area among the ferrites.
  • the area % of the non-nodulated ferrite refers to the fraction of the entire microstructure.
  • the fraction of unrecrystallized ferrite can be determined by analyzing crystal orientation measurement data from electron back scattering diffraction (EBSD) using the Kernel Average Misorientation method (KAM method). Since the KAM method can quantitatively express the crystal orientation difference with adjacent pixels (measurement points), in the present invention, particles with an average crystal orientation difference with adjacent measurement points of less than 1° are defined as unrecrystallized ferrite. In order to secure sufficient yield strength and yield ratio, it is effective for the area percent of the unrecrystallized ferrite to be 20 to 50%.
  • the unrecrystallized ferrite is less than 20%, sufficient yield strength and yield ratio cannot be obtained, and if it exceeds 50%, the yield strength and yield ratio become excessive due to the high unrecrystallized structure, and the aspect ratio of the grains increases. . Therefore, it is effective to have 20 to 350% of unrecrystallized ferrite.
  • the total ferrite fraction including the unrecrystallized ferrite is 80 to 99%. More specifically, a total ferrite fraction of 80-95% may be more effective.
  • the steel sheet of the present invention contains pearlite and inevitable structures other than ferrite.
  • microstructure of the steel sheet especially the grain aspect ratio (A/R) of ferrite, is 5 to 15.
  • the grain aspect ratio is determined by etching the microstructure with 5% Nital etching solution, observing it at 500x with a scanning electron microscope (SEM), and analyzing the grains using the Image Analyzer program.
  • the major axis length and minor axis length were obtained.
  • the aspect ratio was obtained as the major axis length of the grain/ellipse minor axis length.
  • the average aspect ratio of each ferrite obtained by this technique was defined as the grain aspect ratio.
  • A/R exceeds 15
  • the formation of such excessive stretched grains causes an excessive increase in yield strength, exceeding the yield strength and yield ratio required by the present invention.
  • A/R is less than 5, it means that recrystallization has progressed to a significant extent, which means that due to softness of the steel, the yield strength is insufficient and the yield ratio is lower than the level required for the steel of the present invention.
  • the X-ray diffraction integrated intensity ratio is the relative intensity based on the X-ray diffraction integrated intensity of the non-oriented standard sample.
  • X-ray diffraction can be performed using an X-ray diffraction device widely used in the technical field to which the present invention belongs, such as an energy dispersive type. If the X-ray diffraction integrated intensity ratio calculated in equation 1 above exceeds 2, it means that the (222) texture, that is, the fraction of recrystallized texture increases, which means that the fraction of unrecrystallized ferrite in the steel is not formed in an appropriate range. This means that the aspect ratio cannot be secured.
  • a steel sheet that satisfies the above alloy composition and microstructure may have a yield strength of 460 MPa or more, a tensile strength of 520 MPa or more, and a yield ratio of 0.8 to 0.9. At the same time, the steel sheet may have an elongation of 10% or more than 10%. More specifically, the yield strength of the steel plate may be 460 to 600 MPa. The tensile strength of the steel plate can be 520 to 700 MPa.
  • the product of the yield strength and elongation of the steel plate may be 8500 or more. More specifically, the product of yield strength and elongation may be 8900 or more. Typically, as yield strength increases, elongation may decrease. However, according to one embodiment of the present invention, the product of yield strength and elongation is 8500 or more, so the yield strength and elongation can be improved simultaneously.
  • the steel sheet of the present invention may include a plating layer to improve corrosion resistance.
  • the plating layer is not particularly limited, and any plating type or plating method performed in the technical field to which the present invention belongs is sufficient.
  • a preferred example may be a hot-dip galvanized layer.
  • a steel slab satisfying the above-described composition can be manufactured through the process of reheating, hot rolling, coiling, cold rolling, and annealing. Below, each process is described in detail.
  • the reheated steel slab is hot rolled at a temperature of 880°C or higher to produce a hot rolled steel sheet. If the temperature of the hot rolling is less than 880°C, ferrite transformation occurs during rolling and an elongated structure is created, which may cause problems such as anisotropy deterioration and cold rolling resistance. Therefore, the hot rolling is performed at 880°C or higher. It is effective.
  • Cold rolled steel sheets are manufactured by cold rolling the hot rolled steel sheets after coiling and pickling. It is effective to perform the cold rolling reduction rate (cold rolling reduction rate) at 45 to 70%. If the cold rolling reduction ratio is less than 45%, the recrystallization driving force is very low and excessive unrecrystallized ferrite is formed, making it difficult to secure the strength required in the present invention. On the other hand, when the cold rolling reduction ratio exceeds 70%, the recrystallization driving force becomes too high, making it easy to recrystallize ferrite even at low annealing temperatures, making it difficult to manufacture high-strength steel with a yield ratio of 0.8 to 0.9.
  • CR is the cold rolling reduction rate (%)
  • SS is the annealing temperature (°C)
  • LS is the line speed (mpm) during continuous annealing.
  • the above [Relational Expression 2] and [Relational Expression 3] are operation factors that control the recrystallization driving force and include annealing temperature, cold rolling reduction rate, and line speed during annealing.
  • it is effective for the transfer speed to be 90 to 150 mpm.
  • the transfer speed is controlled differently depending on the thickness of the steel plate. In other words, for thick materials, the line speed is low, and for thin materials, high-speed work is performed. It is desirable to manage the cold rolling reduction rate and annealing temperature together to suit these conditions.
  • plating may be additionally performed after the continuous annealing.
  • the plating may be performed in a manner commonly performed in the technical field to which the present invention pertains, and the type and method of plating are not particularly limited.
  • hot dip galvanizing conditions are not particularly limited, and hot dip galvanizing can be performed under normal conditions that can be applied in the same technical field.
  • the steel sheet according to an embodiment of the present invention may include a hot dip galvanizing layer on the surface.
  • a molten zinc-based galvanized steel sheet is manufactured by immersing the steel sheet in a molten zinc-based plating bath at 440 to 500°C.
  • the steel sheet may be subjected to alloying heat treatment.
  • the hot-dip galvanized steel sheet is subjected to alloying heat treatment at a temperature range of 460 to 530° C. and then cooled to room temperature. You can. Through alloying heat treatment, the steel sheet may include an alloyed hot-dip galvanized layer on the surface.
  • temper rolling can be performed. Temper rolling can also be performed within the normal range of 0.1 to 1.0%. If the temper rolling elongation is less than 0.1%, it is difficult to control the plate shape. On the other hand, if it exceeds 1.0%, material deterioration due to excessive increase in dislocation density in the surface layer may occur, and side effects such as plate fracture may occur due to limitations in facility capacity.
  • CR is the cold rolling reduction rate (%)
  • SS is the continuous annealing temperature (°C)
  • LS is the feed speed (line speed, mpm).
  • a tensile test was performed in the rolling direction using the DIN-L standard to measure the yield strength (YP), tensile strength (TS), and elongation (El.) of the steel sheet. It is shown in Table 3 above.
  • the grain aspect ratio of ferrite and the fractions (area %) of unrecrystallized and recrystallized ferrite were measured using the microstructure measured using the previously described scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). Meanwhile, the X-ray diffraction intensity values for each texture component were measured for the manufactured steel sheet, and the X-ray diffraction intensity ratio was calculated using the equation in Equation 1.
  • invention steels 1 to 8 that meet the alloy composition and manufacturing conditions of the present invention have a yield strength of 469 to 545 MPa, a tensile strength of 545 to 655 MPa, an elongation of 18 to 21%, and a yield ratio (YR) of 0.82 to 0.86, and the product of yield strength and elongation is 8900 or more, satisfying the mechanical properties presented in the present invention steel.
  • the inventive steel has a grain aspect ratio of 5.9 to 10.2, which satisfies the condition of 5 to 15 grain aspect ratio proposed in the present invention, and the unrecrystallized ferrite fraction is 29 to 45%, which is 29 to 45%.
  • the suggested 20 to 50% conditions are met.
  • the X-ray diffraction ratio of these steels is also 0.6 to 1.2, which sufficiently satisfies the conditions presented in the present invention.
  • Figure 1 shows an SEM photograph showing the microstructure of the annealed plate of invention steel 1 among the examples.
  • the microstructure included unrecrystallized ferrite (code 1) and recrystallized ferrite (code 2), and some pearlite.
  • Comparative steels 1 and 3 had cold rolling reduction rates much lower than the conditions suggested in the present invention. This caused a lack of ferrite recrystallization during annealing, so the yield strength was very high and the yield ratio exceeded the standards of the present invention. Additionally, the grain aspect ratio value was very high due to lack of recrystallization.
  • comparative steels 2 and 7 have a very high cold rolling reduction rate of 80%.
  • the cold rolling reduction rate is high, ferrite recrystallization easily occurs even at low annealing temperatures. This is due to a decrease in strength due to an increase in the recrystallization fraction, making it impossible to satisfy the yield strength and yield ratio conditions required for the steel of the present invention.
  • the grain aspect ratio and X-ray integrated intensity exceeded the standards of the present invention.
  • Comparative steel 4 had very low Ti and Nb addition amounts of 0.01% each. Recrystallization was promoted due to the lack of TiC and NbC precipitates, and the fraction of unrecrystallized ferrite after annealing was lowered, and as a result, the yield strength and yield ratio were outside the conditions of the present invention.
  • Comparative steels 5 and 8 are cases where no Ti or Nb is added. Due to the lack of precipitates in the steel, recrystallization easily occurred during annealing, and as a result, the yield strength of the steel sheet was low and the grain aspect ratio and X-ray diffraction intensity ratio did not meet the conditions of the present invention.
  • Comparative steel 6 has the same composition as comparative steel 5 and is a steel with no added Nb, and its cold rolling reduction rate was very low at 35% under conditions of insufficient precipitates, so it did not satisfy the conditions of the present invention even after high-temperature annealing at 860°C.
  • Comparative steel 10 has a Mn content outside the range of the present invention and an annealing temperature of 750°C, which is very low. This low annealing temperature causes excessive lack of ferrite recrystallization, which causes problems such as deterioration of workability when the elongation is below 10% due to excessive increase in yield strength and yield ratio.
  • Comparative steel 11 has a carbon content of 0.14%, which is outside the composition range of the present invention steel. Due to the excessive carbon content, the amount of carbide in the steel increased, which caused problems such as increased yield ratio and deterioration of elongation. Additionally, excessive addition of carbon causes deterioration of weldability.
  • Comparative steel 12 had a Ti content of 0.08%, which was outside the standard for the present invention steel, and the total amount of Ti+Nb was also outside the standard. This increase in carbonitride forming elements causes excessive TiC and NbC precipitation, which causes problems such as increased yield ratio due to delayed recrystallization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to a material used for an automobile interior panel, a reinforcement and the like, and to a high strength steel sheet having a high yield ratio, and a manufacturing method therefor.

Description

고항복비형 고강도 강판 및 그 제조방법High-yield ratio high-strength steel plate and manufacturing method thereof

본 발명은 자동차 내판 판넬용, 보강재용 등으로 사용되는 소재에 관한 것으로서, 고항복비형 고강도 강판과 이를 제조하는 방법에 관한 것이다.The present invention relates to materials used for automobile interior panels, reinforcements, etc., and to a high-yield ratio high-strength steel plate and a method of manufacturing the same.

자동차 연비 향상을 목적으로 최근 자동차 차체의 경량화가 진행되고 있으며, 이를 위해 자동차의 부품에는 판 두께의 감소가 가능한 고강도 강판의 적용이 증가하고 있다. 또한 탑승자의 안정성을 확보하기 위해서 고강도 강판이 자동차 차체에 많이 사용되고 있으며, 자동차 차체의 충돌 성능을 향상시키고자 강재의 항복강도를 증가시켜 낮은 변형량에도 효율적으로 충돌에너지는 흡수시키고자 한다. 이를 위해 높은 항복비를 갖는 강판이 요구되고 있다.In order to improve automobile fuel efficiency, lightweighting of automobile bodies has recently been made, and to this end, the application of high-strength steel plates capable of reducing plate thickness is increasing in automobile parts. In addition, high-strength steel plates are widely used in automobile bodies to ensure the safety of occupants, and to improve the crash performance of automobile bodies, the yield strength of steel is increased to efficiently absorb collision energy even with low deformation. For this purpose, steel plates with a high yield ratio are required.

고강도 강판을 자동차 차체에 적용하기 위해서는 우수한 가공성도 요구되며, 이러한 강도와 가공성을 양립시킨 강재로서, 페라이트를 주상으로 하고, 경질 조직을 제2상으로 구성되는 복합조직을 가지는 이상조직 강(Dual Phase 강, 이하 DP강)이 대표적이다. 그러나 DP강은 주상을 연질의 페라이트로 하고, 경질 조직인 베이나이트, 마르텐사이트, 템퍼링 마르텐사이트 등을 제2상으로 이용하고 있어 항복비가 낮다는 문제가 있다. 따라서, 자동차 부품으로서 변형을 억제하면서, 충돌 에너지를 흡수하는 용도로 DP강의 적용에는 어느 정도 한계가 있다. In order to apply high-strength steel sheets to automobile bodies, excellent processability is also required, and as a steel material that achieves both strength and processability, it is a dual phase steel (dual phase steel) that has a composite structure consisting of ferrite as the main phase and a hard structure as the second phase. Steel, hereinafter referred to as DP steel) is a representative example. However, DP steel has a problem of low yield ratio because its main phase is soft ferrite and hard structures such as bainite, martensite, and tempered martensite are used as secondary phases. Therefore, there are some limits to the application of DP steel for automobile parts that absorb impact energy while suppressing deformation.

한편, 특허문헌 1은 페라이트의 재결정을 방지하고, 미재결정 페라이트와 경질 제2상으로 구성되는 조직을 가지는 강판이 제안되었다. 그러나 과다한 미재결정 페라이트가 존재하게 되면, 강도 및 항복비가 높아지지만, 연신율이 낮기 때문에 성형성이 불충분하다는 문제가 있다. On the other hand, Patent Document 1 proposed a steel sheet that prevents recrystallization of ferrite and has a structure composed of unrecrystallized ferrite and a hard second phase. However, if excessive unrecrystallized ferrite exists, strength and yield ratio increase, but there is a problem of insufficient formability due to low elongation.

이러한 문제에 대해서 결정립의 미세화나 석출강화, 또는 페라이트 중의 고용 C량 감소에 의해 페라이트와 펄라이트로 구성되는 조직을 가지는 강판과 고강도화와 신장 플랜지성 향상 양립을 도모한 강판이 특허문헌 2 내지 4에 제시되었다. 그러나, 제안된 강재 모두 인장강도가 500MPa 이하로서, 500MPa를 넘는 고강도화는 달성하기 어려웠다.In response to this problem, steel sheets with a structure composed of ferrite and pearlite by refining grains, precipitation strengthening, or reducing the amount of dissolved C in ferrite, and steel sheets that achieve both high strength and improved elongation flangeability are presented in Patent Documents 2 to 4. It has been done. However, all of the proposed steels had tensile strengths of 500 MPa or less, making it difficult to achieve high strength exceeding 500 MPa.

한편, 특허문헌 5 내지 7은 미재결정 페라이트를 활욜하여 연질의 페라이트와 경질 제2상의 중간 경도를 가지는 미재결정 페라이트에 의해 신장 플랜지성을 향상시킨 강판을 제안하였다. 그러나, 특허문헌 5 및 6에서 제안되는 강판은 Nb나 Ti의 첨가량이 작아 재결정 억제 효과가 작기 때문에 소둔 시에 급속 가열을 할 필요하고, 특허문헌 7에서 제안된 강판은 Nb나 Ti의 첨가량이 적고 소둔 시 승온 속도도 10℃/s 이하로 낮기 때문에 재결정 가능 시간이 증가하고, 미재결정 페라이트의 활용에 의한 효과가 충분하지 않다.Meanwhile, Patent Documents 5 to 7 proposed a steel sheet with improved elongation flangeability by using unrecrystallized ferrite and using unrecrystallized ferrite having an intermediate hardness of soft ferrite and hard secondary phase. However, the steel sheets proposed in Patent Documents 5 and 6 have a small amount of Nb or Ti added, so the recrystallization inhibition effect is small, so rapid heating is necessary during annealing, and the steel sheets proposed in Patent Document 7 have a small amount of Nb or Ti added. Since the temperature increase rate during annealing is low, below 10°C/s, the time available for recrystallization increases, and the effect of using unrecrystallized ferrite is not sufficient.

(특허문헌 1) 일본 특허공개공보 1978-005018(Patent Document 1) Japanese Patent Laid-open Publication 1978-005018

(특허문헌 2) 일본 특허출원공보 2007-138261(Patent Document 2) Japanese Patent Application Publication 2007-138261

(특허문헌 3) 일본 특허공개공보 2007-107099(Patent Document 3) Japanese Patent Laid-open Publication 2007-107099

(특허문헌 4) 일본 특허공개공보 2001-152288(Patent Document 4) Japanese Patent Laid-open Publication 2001-152288

(특허문헌 5) 일본 특허공개공보 2008-106351(Patent Document 5) Japanese Patent Laid-open Publication 2008-106351

(특허문헌 6) 일본 특허공개공보 2008-106352(Patent Document 6) Japanese Patent Laid-open Publication 2008-106352

(특허문헌 7) 일본 특허공개공보 2008-156680(Patent Document 7) Japanese Patent Laid-open Publication 2008-156680

본 발명의 일측면은 고항복비 및 고강도를 가지면서, 성형성이 우수한 강판과 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a steel plate with a high yield ratio and high strength, and excellent formability, and a method for manufacturing the same.

본 발명의 과제는 상술한 사항에 한정되지 아니한다. 본 발명의 추가적인 과제는 명세서 전반적인 내용에 기술되어 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 명세서에 기재된 내용으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.The object of the present invention is not limited to the above-mentioned matters. The additional problems of the present invention are described throughout the specification, and those skilled in the art will have no difficulty in understanding the additional problems of the present invention from the content described in the specification of the present invention.

본 발명의 일태양은 중량%로, 탄소(C): 0.05~0.12%, 망간(Mn): 1.0~1.8%, 실리콘(Si): 0.6% 이하(0% 제외), 인(P): 0.03% 이하(0% 제외), 황(S): 0.01% 이하(0%는 제외), 질소(N): 0.01% 이하(0% 제외), 알루미늄(sol.Al): 0.01~0.08%, 티타늄(Ti): 0.02~0.06%, 니오븀(Nb): 0.02~0.06%, 보론(B): 0.005% 이하(0%는 제외), 나머지 Fe 및 불가피한 불순물을 포함하고, One aspect of the present invention is weight percent, carbon (C): 0.05 to 0.12%, manganese (Mn): 1.0 to 1.8%, silicon (Si): 0.6% or less (excluding 0%), phosphorus (P): 0.03. % or less (excluding 0%), Sulfur (S): 0.01% or less (excluding 0%), Nitrogen (N): 0.01% or less (excluding 0%), Aluminum (sol.Al): 0.01 to 0.08%, titanium (Ti): 0.02~0.06%, Niobium (Nb): 0.02~0.06%, Boron (B): 0.005% or less (excluding 0%), including the remaining Fe and inevitable impurities,

미세조직은 면적%로 페라이트 80~99%를 포함하고, 나머지는 펄라이트 및 기타 불가피한 조직을 포함하고, 상기 페라이트 중 미재결정 페라이트가 20~50%이며,The microstructure includes 80 to 99% of ferrite in terms of area percent, the remainder includes pearlite and other inevitable structures, and unrecrystallized ferrite is 20 to 50% of the ferrite,

상기 페라이트의 종횡비(Aspect Ratio)가 5~15인 강판을 제공한다.A steel plate having an aspect ratio of 5 to 15 of the ferrite is provided.

상기 Ti 및 Nb의 합량이 0.1% 이하일 수 있다.The total amount of Ti and Nb may be 0.1% or less.

상기 냉연강판은 하기 관계식 1을 만족할 수 있다.The cold rolled steel sheet may satisfy the following relational expression 1.

[관계식 1][Relational Expression 1]

X(222)/[X(200)+X(110)+X(112] ≤ 2 X(222)/[X(200)+X(110)+X(112] ≤ 2

(냉연 강판의 판 두께의 1/4 두께의 깊이 위치에 있어서의 면에 평행한 {222}면, {110}면, {200}면 및 {112}의 각 X선 회절 적분 강도비)(X-ray diffraction integrated intensity ratio of the {222} plane, {110} plane, {200} plane, and {112} plane parallel to the plane at the depth of 1/4 the thickness of the cold rolled steel sheet)

상기 강판은 표면에 용융아연도금층을 더 포함할 수 있다.The steel sheet may further include a hot-dip galvanized layer on the surface.

상기 강판은, 항복강도가 460MPa 이상이고, 인장강도가 520MPa 이상일 수 있다.The steel plate may have a yield strength of 460 MPa or more and a tensile strength of 520 MPa or more.

상기 강판은, 항복강도와 연신율의 곱이 8600 이상일 수 있다.In the steel plate, the product of yield strength and elongation may be 8600 or more.

본 발명의 다른 일태양은 중량%로, 탄소(C): 0.05~0.12%, 망간(Mn): 1.0~1.8%, 실리콘(Si): 0.6% 이하(0% 제외), 인(P): 0.03% 이하(0% 제외), 황(S): 0.01% 이하(0%는 제외), 질소(N): 0.01% 이하(0% 제외), 알루미늄(sol.Al): 0.01~0.08%, Ti(티타늄): 0.02~0.06%, 니오븀(Nb): 0.02~0.06%, 보론(B): 0.005% 이하(0%는 제외), 나머지 Fe 및 불가피한 불순물을 포함하는 강슬라브를 1100~1250℃로 가열하는 단계;Another embodiment of the present invention is by weight percentage, carbon (C): 0.05 to 0.12%, manganese (Mn): 1.0 to 1.8%, silicon (Si): 0.6% or less (excluding 0%), phosphorus (P): 0.03% or less (excluding 0%), Sulfur (S): 0.01% or less (excluding 0%), Nitrogen (N): 0.01% or less (excluding 0%), Aluminum (sol.Al): 0.01 to 0.08%, Ti (titanium): 0.02~0.06%, niobium (Nb): 0.02~0.06%, boron (B): 0.005% or less (excluding 0%), steel slabs containing the remaining Fe and inevitable impurities are stored at 1100~1250℃. Heating with;

상기 가열된 강 슬라브를 880℃ 이상으로 열간압연하여 열연강판을 얻는 단계;Obtaining a hot rolled steel sheet by hot rolling the heated steel slab to 880°C or higher;

상기 열연강판을 500~600℃까지 냉각하여 권취하는 단계;Cooling the hot rolled steel sheet to 500-600°C and winding it;

상기 권취된 열연강판을 45~70%의 압하율로 냉간압연하는 단계; 및Cold rolling the coiled hot-rolled steel sheet at a reduction ratio of 45 to 70%; and

상기 냉간압연된 강판을 770~820℃의 온도범위로 연속소둔하는 단계를 포함하는 강판의 제조방법을 제공한다. A method of manufacturing a steel sheet is provided including the step of continuously annealing the cold rolled steel sheet at a temperature range of 770 to 820°C.

상기 강판의 제조방법은 하기 [관계식 2] 및 [관계식 3]의 조건을 만족할 수 있다.The method of manufacturing the steel plate can satisfy the conditions of [Relational Expression 2] and [Relational Expression 3] below.

[관계식 2][Relational Expression 2]

2566 +2.1*0.192*CR - 1.79*SS - 5.64*LS ≥ 5202566 +2.1*0.192*CR - 1.79*SS - 5.64*LS ≥ 520

[관계식 3][Relational Expression 3]

2438 +1.9*0.192*CR - 1.79*SS - 5.64*LS ≤ 7002438 +1.9*0.192*CR - 1.79*SS - 5.64*LS ≤ 700

여기서 CR은 냉간압하율(%), SS는 소둔온도(℃), LS는 연속소둔작업시 line speed(mpm)Here, CR is the cold rolling reduction rate (%), SS is the annealing temperature (℃), and LS is the line speed (mpm) during continuous annealing.

상기 강판의 제조방법은 상기 연속소둔된 강판을 용융아연도금하는 단계를 더 포함할 수 있다.The method of manufacturing the steel sheet may further include hot-dip galvanizing the continuously annealed steel sheet.

본 발명의 강판은 고강도 및 고항복비를 가짐으로써, 내판재, 보강재 등으로 사용될 때 충돌 시 저항성(내충돌특성)이 증가하여 승객의 안정성 확보에 유리하다. 또한, 본 발명에 의하면, 우수한 성형성이 우수한 강판을 제공할 수 있다. The steel plate of the present invention has high strength and high yield ratio, so when used as an inner plate, reinforcement, etc., the resistance (collision resistance characteristics) increases during a collision, which is advantageous in ensuring the safety of passengers. Additionally, according to the present invention, a steel plate with excellent formability can be provided.

본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 태양을 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.The various and beneficial advantages and effects of the present invention are not limited to the above-described content, and may be more easily understood through description of specific embodiments of the present invention.

도 1는 실시예 중 발명강 1의 미세조직을 나타낸 사진이다.Figure 1 is a photograph showing the microstructure of invention steel 1 in Examples.

본 명세서에서 사용되는 용어는 본 발명을 설명하기 위한 것이고, 본 발명을 한정하는 것을 의도하지 않는다. 또한, 본 명세서에서 사용되는 단수 형태들은 관련 정의가 이와 명백히 반대되는 의미를 나타내지 않는 한 복수 형태들도 포함한다. The terms used in this specification are for describing the present invention and are not intended to limit the present invention. Additionally, as used herein, singular forms include plural forms unless the relevant definition clearly indicates the contrary.

명세서에서 사용되는 "포함하는"의 의미는 구성을 구체화하고, 다른 구성의 존재나 부가를 제외하는 것은 아니다.The meaning of “including” used in the specification specifies a configuration and does not exclude the presence or addition of another configuration.

달리 정의하지 않는 한, 본 명세서에서 사용되는 기술 용어 및 과학 용어를 포함하는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 의미와 동일한 의미를 가진다. 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지도록 해석된다.Unless otherwise defined, all terms, including technical and scientific terms, used in this specification have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in the dictionary are interpreted to have meanings consistent with related technical literature and current disclosure.

냉연강판의 미세조직에서, 페라이트 일부를 미재결정 상태로 잔류시키는 것은 일반적인 발상이 아니라고 할 수 있다. 미재결정 페라이트는 냉간 압연에 의해 압연 방향으로 연신된 페라이트로서, 재결정이 완료되지 않고, 입자 내의 전위가 회복된 것을 의미한다. 이러한, 미재결정 페라이트 조직이 강 중에 존재하게 되면, 냉연 강판의 재질이 폭 방향 및 길이 방향으로 편차가 크고, 약간의 미재결정 분율 차이에 의해서도 재질이 매우 불균일하게 나타날 수 있다. 따라서, 미재결정 조직을 가능한 최소화하는 것이 최선의 방법이라고 인식되었다. In the microstructure of cold rolled steel sheets, it can be said that it is not a common idea to leave some ferrite in an unrecrystallized state. Non-recrystallized ferrite is ferrite stretched in the rolling direction by cold rolling, meaning that recrystallization has not been completed and dislocations within the particles have been recovered. When such an unrecrystallized ferrite structure exists in steel, the material of the cold rolled steel sheet has large deviations in the width and length directions, and even a slight difference in the unrecrystallized fraction may cause the material to appear very non-uniform. Therefore, it was recognized that the best method was to minimize the unredetermining tissue as much as possible.

강도 확보를 위해 0.05 중량% 이상의 탄소(C)가 첨가된 강에 상당량의 티타늄(Ti), 니오븀(Nb)가 첨가되게 되면, 소둔 공정에 의해 완전한 재결정 조직을 얻기가 매우 곤란하다. 상기 Ti, Nb는 열간압연 단계에서 냉각공정 및 소둔 공정에서의 승온과정에서 TiC, NbC 등 탄화물을 형성하게 되며, 재결정을 방해하고 결정립 성장을 억제하는 원소로 알려져 있다. If a significant amount of titanium (Ti) or niobium (Nb) is added to steel with more than 0.05% by weight of carbon (C) added to ensure strength, it is very difficult to obtain a complete recrystallized structure through an annealing process. The Ti and Nb form carbides such as TiC and NbC during the temperature increase process in the cooling process and annealing process in the hot rolling step, and are known as elements that interfere with recrystallization and suppress grain growth.

따라서, 재결정 조직을 얻기 위해서는 소둔 온도를 매우 높게 관리하거나, TiC, NbC 등의 석출이 억제되는 특별한 공정이 필요하다. 여기서 특별한 공정이란 매우 빠른 급냉 또는 매우 빠른 승온을 통해 TiC, NbC 등이 석출할 수 있는 시간을 부족하게 만드는 것이다. 그러나, 이는 통상 조업과정에서 달성이 불가능한 과정이며, 달성하기 위해서는 특수한 설비가 필요하다. 한편, 소둔 온도를 높게 관리하는 것 또한 TiC, NbC 등에 의한 재결정 억제는 방지하기 위해서는 거의 900℃ 이상의 온도 유지가 필요하다. 이러한 고온 소둔은 코일의 사행, 제조원가 상승 등의 문제를 야기할 수 있다. 설령 소둔 온도를 900℃ 이상 올리더라도 재결정 조직 생성에 의한 재질 연화로 인해 항복강도의 저하 등이 발생하므로, 본 발명에서 요구되는 고항복비를 확보하는 것이 어렵다.Therefore, in order to obtain a recrystallized structure, the annealing temperature must be managed very high or a special process is required to suppress precipitation of TiC, NbC, etc. Here, the special process is to shorten the time for TiC, NbC, etc. to precipitate through very rapid quenching or very rapid heating. However, this is a process that cannot be achieved during normal operation, and special equipment is required to achieve it. Meanwhile, in order to maintain a high annealing temperature and prevent inhibition of recrystallization by TiC, NbC, etc., it is necessary to maintain a temperature of almost 900°C or higher. Such high-temperature annealing can cause problems such as coil meandering and increased manufacturing costs. Even if the annealing temperature is raised to 900°C or higher, the yield strength decreases due to material softening due to the creation of a recrystallization structure, so it is difficult to secure the high yield ratio required in the present invention.

이에, 본 발명자들은 고항복비, 바람직하게는 항복강도 460~600MPa, 인장강도 520~700MPa이며, 항복비가 0.8~0.9인 강판을 제조하기 위해 깊이 연구하였다. 그 결과, 미재결정 페라이트를 이용하여 상술한 항복비를 확보하는 동시에, 연신율 10% 이상의 우수한 성형성을 가질 수 있는 방법을 도출하여, 본 발명에 이르게 되었다.Accordingly, the present inventors conducted in-depth research to manufacture a steel plate with a high yield ratio, preferably a yield strength of 460 to 600 MPa, a tensile strength of 520 to 700 MPa, and a yield ratio of 0.8 to 0.9. As a result, a method was derived that could secure the above-mentioned yield ratio using unrecrystallized ferrite and at the same time have excellent formability with an elongation of 10% or more, leading to the present invention.

이하, 본 발명 강판의 일구현예에 대해 상세히 설명한다. 먼저, 상기 강판의 합금조성에 대해 상세히 설명한다. 이하, 본 발명에서 특별히 다르게 언급하지 않는 한 합금조성의 함량은 중량%를 기준으로 한다.Hereinafter, an embodiment of the steel sheet of the present invention will be described in detail. First, the alloy composition of the steel sheet will be described in detail. Hereinafter, unless otherwise specifically stated in the present invention, the content of the alloy composition is based on weight%.

상기 강판은 탄소(C): 0.05~0.12%, 망간(Mn): 1.0~1.8%, 실리콘(Si): 0.6% 이하(0% 제외), 인(P): 0.03% 이하(0% 제외), 황(S): 0.01% 이하(0%는 제외), 질소(N): 0.01% 이하(0% 제외), 알루미늄(sol.Al): 0.01~0.08%, 티타늄(Ti): 0.02~0.06%, 니오븀(Nb): 0.02~0.06%, 보론(B): 0.005% 이하(0%는 제외)을 포함한다. The steel sheet contains carbon (C): 0.05-0.12%, manganese (Mn): 1.0-1.8%, silicon (Si): 0.6% or less (excluding 0%), phosphorus (P): 0.03% or less (excluding 0%). , Sulfur (S): 0.01% or less (excluding 0%), Nitrogen (N): 0.01% or less (excluding 0%), Aluminum (sol.Al): 0.01 to 0.08%, Titanium (Ti): 0.02 to 0.06 %, niobium (Nb): 0.02~0.06%, boron (B): 0.005% or less (excluding 0%).

탄소(C): 0.05~0.12%Carbon (C): 0.05~0.12%

탄소(C)는 강도의 증가 및 펄라이트(Pearlite)의 생성에 기여하는 원소이며, 목표로 하는 강도 확보를 위해 적당량을 첨가한다. 또한 페라이트 상 중에 Ti, Nb 등과 함께 석출물을 형성하여 강판에 강도를 부여하기 위해 불가결한 원소이다. 0.05% 미만이면 본 발명강에서 요구하는 강도 확보가 어려우며, 0.12%를 초과하게 되면 성형성이나 용접성 열화를 초래하게 되므로, 상기 C의 함량은 0.05~0.12 %인 것이 효과적이다. Carbon (C) is an element that contributes to the increase in strength and the creation of pearlite, and is added in an appropriate amount to secure the target strength. In addition, it is an essential element to give strength to steel sheets by forming precipitates with Ti, Nb, etc. in the ferrite phase. If it is less than 0.05%, it is difficult to secure the strength required for the present invention steel, and if it exceeds 0.12%, formability or weldability will be deteriorated, so it is effective that the C content is 0.05 to 0.12%.

망간(Mn): 1.0~1.8%Manganese (Mn): 1.0~1.8%

망간(Mn)은 Ac1 및 α-γ 변태가 완료되어 오스테나이트 단상이 되는 온도인 Ac3 변태 온도를 저하시키는 원소이다. 즉 Mn량이 적으면 변태 촉진을 위해 소둔 온도를 높일 필요가 있으며, 이는 본 발명에서 요구하는 적정 분율의 미재결정 페라이트 확보를 어렵게 만든다. 또한 Mn는 Si와 함께 고용 강화에 기여하는 원소로서 강도를 증가시키기 위해서도 유효하다. 이러한 관점에서 Mn 함량은 1.0% 이상이 효과적이다. 한편, Mn 함량이 1.8%를 초과하면 경화능이 증가하게 되어, 베이나이트, 마르텐사이트가 생성이 용이하여 항복비가 낮아지므로, 1.8%를 넘지 않는 것이 효과적이다. Manganese (Mn) is an element that lowers the Ac3 transformation temperature, which is the temperature at which Ac1 and α-γ transformations are completed and austenite becomes a single phase. That is, if the amount of Mn is small, it is necessary to increase the annealing temperature to promote transformation, which makes it difficult to secure the appropriate fraction of unrecrystallized ferrite required by the present invention. Additionally, Mn is an element that contributes to solid solution strengthening along with Si and is also effective in increasing strength. From this point of view, a Mn content of 1.0% or more is effective. On the other hand, if the Mn content exceeds 1.8%, hardenability increases, bainite and martensite are easily formed, and the yield ratio is lowered, so it is effective not to exceed 1.8%.

실리콘(Si): 0.6% 이하 (0%는 제외)Silicon (Si): 0.6% or less (excluding 0%)

실리콘(Si)은 탈산 원소이며 고용강화 원소로서 강도를 증가시키는데 유효하다. 그러나 Si량이 0.6%을 초과하면 Ac1가 너무 높아져서 소둔 온도를 높일 필요가 있으며, 이는 변태의 촉진으로 미재결정 페라이트의 확보를 어렵게 만든다. 따라서 0.6% 이하로 관리하는 것이 효과적이다. 또한 Si을 과도하게 첨가하면 용융 아연도금시 산화물에 의한 도금 밀착성 저하 등의 문제가 발생할 수 있다. 다만, 제조상 불가피하게 첨가되는 양을 고려하여 0%는 제외한다. Silicon (Si) is a deoxidizing element and is effective in increasing strength as a solid solution strengthening element. However, if the Si amount exceeds 0.6%, Ac1 becomes too high and it is necessary to increase the annealing temperature, which accelerates transformation and makes it difficult to secure unrecrystallized ferrite. Therefore, it is effective to manage it to 0.6% or less. Additionally, excessive addition of Si may cause problems such as deterioration of plating adhesion due to oxide during hot dip galvanizing. However, considering the amount inevitably added during manufacturing, 0% is excluded.

인(P): 0.03% 이하 (0%는 제외)Phosphorus (P): 0.03% or less (excluding 0%)

인(P)은 불순물이며 입계에 편석하기 때문에, 강판의 인성 저하나 용접성 열화 등을 초래한다. 또한 용융 아연도금 시에 합금화 반응이 매우 늦어져, 생산성이 저하하게 되므로 P는 0.03% 이하인 것이 효과적이다.Phosphorus (P) is an impurity and segregates at grain boundaries, causing a decrease in the toughness of the steel sheet and deterioration of weldability. In addition, since the alloying reaction is very slow during hot dip galvanizing and productivity decreases, it is effective for P to be 0.03% or less.

황(S): 0.01% 이하 (0%는 제외)Sulfur (S): 0.01% or less (excluding 0%)

황(S)은 강 중에 불가피하게 포함되는 불순물로서, 가능한 한 그 함량을 낮게 관리하는 것이 바람직하다. 따라서, 강 중 S 함량은 불가피하게 포함되는 경우를 감안하여 0%를 제외한다. 특히, 강 중 S는 적열 취성을 발생시킬 가능성을 높이기 때문에, 그 함량을 0.01% 이하로 관리하는 것이 효과적이다.Sulfur (S) is an impurity that is inevitably included in steel, and it is desirable to keep its content as low as possible. Therefore, considering that the S content in steel is inevitably included, 0% is excluded. In particular, since S in steel increases the possibility of causing red heat embrittlement, it is effective to control its content to 0.01% or less.

질소(N): 0.01% 이하 (0%는 제외)Nitrogen (N): 0.01% or less (excluding 0%)

질소(N)는 강 중 불가피하게 포함되는 불순물로서, 가능한 한 N 함량을 낮게 관리하는 것이 중요하다. 따라서, 강 중 N 함량은 불가피하게 포함되는 경우를 감안하여 0%를 제외한다(즉, 0% 초과). 그러나, 강 중의 N 함량을 매우 낮게 관리하게 위해서는 강의 정련 비용이 급격히 상승하는 문제가 있으므로, 조업 조건이 가능한 범위인 0.01% 이하로 관리한다. Nitrogen (N) is an impurity that is inevitably included in steel, and it is important to keep the N content as low as possible. Therefore, considering the case where N content in steel is inevitably included, 0% is excluded (i.e., exceeds 0%). However, in order to manage the N content in the steel to a very low level, there is a problem that the refining cost of the steel increases rapidly, so it is managed to 0.01% or less, which is the range within which operating conditions are possible.

산가용 알루미늄(sol.Al): 0.01~0.08%Aluminum for acid value (sol.Al): 0.01~0.08%

산가용 알루미늄(sol.Al)은 입도 미세화와 탈산을 위해 첨가되는 원소로서, sol.Al 함량이 0.01% 미만인 경우, 통상의 안정된 상태로 알루미늄 킬드(Al-killed) 강을 제조할 수 없다. 반면, sol.Al 함량이 0.08%를 초과할 경우, 결정립 미세화 효과로 인해 강도 상승에는 유리하지만, 제강 연주 조업시 개재물이 과다 형성되어 도금강판의 표면 불량이 발생할 가능성이 높아진다. 뿐만 아니라, 제조 원가의 급격한 상승을 초래하는 문제가 있으므로, 상기 sol.Al 함량을 0.01~0.08%로 관리하는 것이 바람직하다.Acid-soluble aluminum (sol.Al) is an element added for particle size refinement and deoxidation. If the sol.Al content is less than 0.01%, aluminum killed (Al-killed) steel cannot be manufactured in a normal stable state. On the other hand, if the sol.Al content exceeds 0.08%, it is advantageous to increase strength due to the grain refinement effect, but the possibility of surface defects in the plated steel sheet increases due to excessive formation of inclusions during steelmaking operation. In addition, because there is a problem that causes a sharp increase in manufacturing cost, it is desirable to manage the sol.Al content at 0.01 to 0.08%.

티타늄(Ti): 0.02~0.06% 및 니오븀(Nb): 0.02~0.06% Titanium (Ti): 0.02~0.06% and Niobium (Nb): 0.02~0.06%

상기 Ti 및 Nb는 냉각 압연에 의해 발생한 변형 페라이트에 대해 소둔 공정 시 페라이트의 재결정을 억제함으로써, 미재결정 페라이트의 잔류를 촉진시키는 원소이다. 이러한 효과를 얻기 위해서는 Nb 및 Ti 각각 최소 0.02%이상 첨가하는 것이 바람직하다. 그러나, 과도하게 첨가될 경우에는 TiC, NbC 등 탄화물의 생성으로 미재결정 페라이트 양이 증가하고, 항복강도와 항복비가 과도하게 높아질 수 있으며, 합금원소의 과도한 첨가로 인해 제조비용 상승을 유발할 수 있다. 더욱이, 상기 Ti와 Nb의 합량(Ti+Nb)가 0.1% 이하로 관리하는 것이 보다 효과적이다. The Ti and Nb are elements that promote the retention of unrecrystallized ferrite by suppressing recrystallization of ferrite during an annealing process for deformed ferrite generated by cold rolling. In order to achieve this effect, it is desirable to add at least 0.02% or more of Nb and Ti each. However, if added excessively, the amount of unrecrystallized ferrite increases due to the formation of carbides such as TiC and NbC, the yield strength and yield ratio may increase excessively, and excessive addition of alloy elements may cause an increase in manufacturing costs. Moreover, it is more effective to keep the total amount of Ti and Nb (Ti+Nb) below 0.1%.

보론(B): 0.005%이하 (0%는 제외)Boron (B): 0.005% or less (excluding 0%)

보론(B)은 경화능을 향상시켜 강도를 높이고 결정립계의 핵 생성을 억제하는 원소이다. 상기 B의 함유량이 0.005 중량%를 초과하면 효과가 과도해질 뿐만 아니라 제조원가 상승의 원인이 되므로 상기 B의 함유량을 0.005 중량% 이하로 제어하는 것이 바람직하다.Boron (B) is an element that improves hardenability, increases strength, and suppresses the nucleation of grain boundaries. If the content of B exceeds 0.005% by weight, the effect becomes excessive and causes an increase in manufacturing costs, so it is preferable to control the content of B to 0.005% by weight or less.

이외에 나머지 Fe 및 불가피한 불순물을 포함한다. 상기 조성 이외에 유효한 성분의 첨가가 배제되는 것은 아니다. 즉, 상기 불가피한 불순물은 통상의 냉연강판(및 도금강판)의 제조공정에서 의도치 않게 혼입될 수 있는 것이라면, 모두 포함될 수 있다. 당해 기술분야의 기술자라면 그 의미를 쉽게 이해할 수 있으므로, 여기서 특별히 이를 한정하지 않는다.In addition, it includes the remaining Fe and inevitable impurities. The addition of effective ingredients other than the above composition is not excluded. In other words, the unavoidable impurities may be included as long as they can be unintentionally introduced during the manufacturing process of ordinary cold rolled steel sheets (and plated steel sheets). Since a person skilled in the art can easily understand the meaning, it is not particularly limited here.

다음으로, 상기 강판의 미세조직에 대해 상세히 설명한다. 상기 강판의 미세조직은 면적%로, 80~99%의 페라이트를 포함하고, 나머지는 펄라이트와 기타 불가피한 조직을 포함한다. 이때 불가피한 조직은 특별히 한정하기 않지만 세멘타이트, 탄화물 등이 될 수 있다. 보다 구체적으로, 페라이트는, 80~95%로 포함할 수 있다.Next, the microstructure of the steel plate will be described in detail. The microstructure of the steel sheet is expressed in terms of area percentage and includes 80 to 99% ferrite, and the remainder includes pearlite and other inevitable structures. At this time, the inevitable structure is not particularly limited, but may be cementite, carbide, etc. More specifically, ferrite may be included in 80 to 95%.

한편, 상기 페라이트 중 미재결정 페라이트가 면적%로 20~50%인 것이 효과적이다. 상기 미재결절 페라이트의 면적%는 미세조직 전체에 대한 분율을 의미한다. Meanwhile, it is effective for the unrecrystallized ferrite to be 20 to 50% by area among the ferrites. The area % of the non-nodulated ferrite refers to the fraction of the entire microstructure.

여기서 미재결정 페라이트의 분율은 전자 후방 산란 해석상(Electron back scattering diffraction, EBSD라고 한다.)의 결정 방위 측정 데이터를 Kernel Average Misorientation법(KAM법)으로 해석함으로써 판별할 수 있다. 상기 KAM법에 의해서는 인접한 픽셀(측정점)과의 결정 방위차를 정량적으로 나타낼 수 있으므로, 본 발명에서는 인접 측정점과의 평균 결정 방위차가 1°이내인 입자를 미재결정 페라이트로 정의한다. 충분한 항복강도와 항복비를 확보하기 위해서, 상기 미재결정 페라이트의 면적%가 20~50%인 것이 효과적이다. 상기 미재결정 페라이트가 20% 미만인 경우에는 충분한 항복강도와 항복비를 얻을 수 없으며, 50%를 초과하는 경우에는 높은 미재결정 조직에 의해 항복강도 및 항복비가 과도하게 되고, 결정립의 종횡비가 증가하게 된다. 따라서, 미재결정 페라이트는 20~350%인 것이 효과적이다. Here, the fraction of unrecrystallized ferrite can be determined by analyzing crystal orientation measurement data from electron back scattering diffraction (EBSD) using the Kernel Average Misorientation method (KAM method). Since the KAM method can quantitatively express the crystal orientation difference with adjacent pixels (measurement points), in the present invention, particles with an average crystal orientation difference with adjacent measurement points of less than 1° are defined as unrecrystallized ferrite. In order to secure sufficient yield strength and yield ratio, it is effective for the area percent of the unrecrystallized ferrite to be 20 to 50%. If the unrecrystallized ferrite is less than 20%, sufficient yield strength and yield ratio cannot be obtained, and if it exceeds 50%, the yield strength and yield ratio become excessive due to the high unrecrystallized structure, and the aspect ratio of the grains increases. . Therefore, it is effective to have 20 to 350% of unrecrystallized ferrite.

상기 미재결정 페라이트를 포함한 전체 페라이트 분율이 80~99%인 것이 효과적이다. 보다 구체적으로, 전체 페라이트 분율이 80~95%이 더 효과적일 수 있다.It is effective that the total ferrite fraction including the unrecrystallized ferrite is 80 to 99%. More specifically, a total ferrite fraction of 80-95% may be more effective.

한편, 본 발명의 강판은 페라이트를 이외에는 펄라이트와 불가피한 조직을 포함한다.Meanwhile, the steel sheet of the present invention contains pearlite and inevitable structures other than ferrite.

상기 강판의 미세조직 특히, 페라이트의 결정립 종횡비(Aspect Ratio, A/R)가 5~15인 것이 효과적이다. It is effective that the microstructure of the steel sheet, especially the grain aspect ratio (A/R) of ferrite, is 5 to 15.

여기서 결정립 종횡비(Asepct ratio)는 5% 나이탈 에칭(Nital etching)액으로 미세조직을 부식시킨 후 주사형 전자현미경(SEM)으로 500배에서 관찰하고 Image Analyzer 프로그램을 이용하여 화상 해석 처리에 의해 결정립의 장축 길이와 단축 길이를 구하였다. 상기 종횡비는 결정립의 장축 길이/타원 단축 길이로 구하였다. 이러한 기법에 의해 구한 각각의 페라이트의 종횡비 평균치를 가지고, 결정립 종횡비로 정의하였다.Here, the grain aspect ratio is determined by etching the microstructure with 5% Nital etching solution, observing it at 500x with a scanning electron microscope (SEM), and analyzing the grains using the Image Analyzer program. The major axis length and minor axis length were obtained. The aspect ratio was obtained as the major axis length of the grain/ellipse minor axis length. The average aspect ratio of each ferrite obtained by this technique was defined as the grain aspect ratio.

만약 A/R이 15를 초과하면, 압연방향으로 연신립이 매우 크다는 의미로서, 이는 냉간압연 조직이 거의 회복 또는 재결정되지 않았다는 의미이다. 이러한 과도한 연신립의 형성은 항복강도의 과도한 상승을 초래하여, 본 발명에서 요구하는 항복강도와 항복비를 초과하게 된다. 그러나 A/R이 5 미만인 경우는 재결정이 상당부분 진행되었다는 의미이며, 이는 강의 연질화로 인해 항복강도가 미달하고 항복비가 본 발명강에서 요구하는 수준보다 낮아진다는 의미이다.If A/R exceeds 15, it means that the stretching grains in the rolling direction are very large, which means that the cold rolling structure has hardly been recovered or recrystallized. The formation of such excessive stretched grains causes an excessive increase in yield strength, exceeding the yield strength and yield ratio required by the present invention. However, if A/R is less than 5, it means that recrystallization has progressed to a significant extent, which means that due to softness of the steel, the yield strength is insufficient and the yield ratio is lower than the level required for the steel of the present invention.

상기 강판의 집합조직은 하기 관계식 1의 조건을 만족하는 것이 효과적이다. It is effective that the texture of the steel sheet satisfies the conditions of equation 1 below.

[관계식 1][Relational Expression 1]

X(222)/[X(200)+X(110)+X(112] ≤ 2 X(222)/[X(200)+X(110)+X(112] ≤ 2

(냉연 강판의 판 두께의 1/4 두께의 깊이 위치에 있어서의 면에 평행한 {222}면, {110}면, {200}면 및 {112}의 각 X선 회절 적분 강도비)(X-ray diffraction integrated intensity ratio of the {222} plane, {110} plane, {200} plane, and {112} plane parallel to the plane at the depth of 1/4 the thickness of the cold rolled steel sheet)

여기서, X선 회절 적분 강도비는 무방향성 표준 시료의 X선 회절 적분 강도를 기준으로 했을 때의 상대적인 강도이다. X선 회절은 에너지 분산형 등 본 발명이 속한 기술분야에서 널리 사용되는 X선 회절 장치를 사용할 수 있다. 상기 관계식 1에서 계산된 X선 회절 적분 강도비가 2를 초과하게 되면, (222) 집합조직, 즉 재결정 집합조직의 분율이 증가한다는 것을 의미하며, 이는 강 중 미재결정 페라이트 분율이 적정 범위로 형성되지 않고, 종횡비를 확보할 수 없다는 의미가 된다.Here, the X-ray diffraction integrated intensity ratio is the relative intensity based on the X-ray diffraction integrated intensity of the non-oriented standard sample. X-ray diffraction can be performed using an X-ray diffraction device widely used in the technical field to which the present invention belongs, such as an energy dispersive type. If the X-ray diffraction integrated intensity ratio calculated in equation 1 above exceeds 2, it means that the (222) texture, that is, the fraction of recrystallized texture increases, which means that the fraction of unrecrystallized ferrite in the steel is not formed in an appropriate range. This means that the aspect ratio cannot be secured.

이상의 합금 성분 조성과 미세조직을 만족하는 강판은, 항복강도 460MPa 이상, 인장강도 520MPa 이상이며, 항복비가 0.8~0.9일 수 있다. 이와 동시에, 강판은, 10% 이상의 연신율 10%을 가질 수 있다. 보다 구체적으로, 강판의 항복강도는 460~600MPa 일 수 있다. 강판의 인장강도는 520~700MPa일 수 있다.A steel sheet that satisfies the above alloy composition and microstructure may have a yield strength of 460 MPa or more, a tensile strength of 520 MPa or more, and a yield ratio of 0.8 to 0.9. At the same time, the steel sheet may have an elongation of 10% or more than 10%. More specifically, the yield strength of the steel plate may be 460 to 600 MPa. The tensile strength of the steel plate can be 520 to 700 MPa.

보다 구체적으로, 강판은, 항복강도와 연신율의 곱이 8500이상일 수 있다. 보다 구체적으로, 항복강도와 연신율의 곱이 8900 이상일 수 있다. 통상적으로, 항복강도가 높아질수록 연신율이 저하될 수 있다. 그러나, 본 발명의 일구현예에 따르면 항복강도와 연신율의 곱이 8500이상인 바, 항복강도와 연신율을 동시에 개선할 수 있다.More specifically, the product of the yield strength and elongation of the steel plate may be 8500 or more. More specifically, the product of yield strength and elongation may be 8900 or more. Typically, as yield strength increases, elongation may decrease. However, according to one embodiment of the present invention, the product of yield strength and elongation is 8500 or more, so the yield strength and elongation can be improved simultaneously.

한편, 본 발명의 강판은 내식성을 향상하기 위한 도금층을 포함할 수 있다. 본 발명에서 상기 도금층을 특별히 제한되지 않으며, 본 발명의 속하는 기술분야에서 행해지는 도금 종류, 도금 방식이면 충분하다. 바람직한 일예로 용융아연도금층일 수 있다. Meanwhile, the steel sheet of the present invention may include a plating layer to improve corrosion resistance. In the present invention, the plating layer is not particularly limited, and any plating type or plating method performed in the technical field to which the present invention belongs is sufficient. A preferred example may be a hot-dip galvanized layer.

다음으로, 본 발명 강판을 제조하는 방법의 일구현예에 대해 상세히 설명한다. 다만, 본 발명의 강판은 반드시 이하의 제조방법에 의해 제조되어야 함을 의미하는 것은 아니다.Next, an embodiment of the method for manufacturing the steel sheet of the present invention will be described in detail. However, this does not mean that the steel sheet of the present invention must be manufactured by the following manufacturing method.

본 발명 강판을 제조하기 위해, 전술한 조성을 충족하는 강 슬라브를 재가열, 열간압연, 권취, 냉간압연 및 소둔을 행하는 과정을 거쳐 제조될 수 있다. 이하, 각 과정을 상세히 설명한다.In order to manufacture the steel sheet of the present invention, a steel slab satisfying the above-described composition can be manufactured through the process of reheating, hot rolling, coiling, cold rolling, and annealing. Below, each process is described in detail.

재가열: 1100~1250℃Reheating: 1100~1250℃

전술한 조성을 갖는 강 슬라브를 1100~1250℃의 온도범위로 재가열하는 것이 효과적이다. 상기 재가열 온도가 1100℃ 미만이면, 슬라브 개재물 등이 충분히 재용해되지 않아, 열간압연 이후 재질편차, 표면결함 등의 원인이 될 수 있다. 이에 비해, 슬라브 재가열 온도가 1250℃를 초과하면 오스테나이트 결정립의 과도한 성장에 의해 강도가 저하되는 문제가 생길 수 있다.It is effective to reheat the steel slab having the above-described composition to a temperature range of 1100 to 1250°C. If the reheating temperature is less than 1100°C, slab inclusions, etc. are not sufficiently re-dissolved, which may cause material deviation and surface defects after hot rolling. In contrast, if the slab reheating temperature exceeds 1250°C, strength may be reduced due to excessive growth of austenite grains.

열간압연: 880℃ 이상Hot rolling: above 880℃

상기 재가열된 강 슬라브를 880℃ 이상의 온도에서 열간압연하여 열연강판을 제조한다. 상기 열간압연의 온도가 880℃ 미만이면 압연 도중에 페라이트 변태가 발생하여 연신된 조직이 생성되고, 이에 따라 이방성 열화, 냉간압연성 저하 등의 문제가 발생할 수 있으므로, 상기 열간압연은 880℃ 이상에서 행하는 것이 효과적이다. The reheated steel slab is hot rolled at a temperature of 880°C or higher to produce a hot rolled steel sheet. If the temperature of the hot rolling is less than 880°C, ferrite transformation occurs during rolling and an elongated structure is created, which may cause problems such as anisotropy deterioration and cold rolling resistance. Therefore, the hot rolling is performed at 880°C or higher. It is effective.

권취: 500~600℃ Winding: 500~600℃

상기 열연강판을 500~600℃의 온도범위에서 권취하는 것이 효과적이다. 상기 권취온도가 500℃보다 낮게 되면 강판의 형상이 불량해지고 침상 페라이트(acicular ferrite)와 같은 변태조직이 생성하게 되어 소둔 이후에 강판의 과도한 강도 증가 및 연성 저하를 초래할 수 있다. 그러나 권취온도가 600℃를 초과하게 되면 조대한 페라이트 결정립이 형성되고, 조대한 탄화물 및 질화물이 형성되기 쉬워 강의 재질이 열화될 수 있다. 또한 고온 권취에 의한 좌굴문제 등이 발생하여 냉간압연성이 열화하는 문제가 발생한다.It is effective to wind the hot rolled steel sheet at a temperature range of 500 to 600°C. If the coiling temperature is lower than 500°C, the shape of the steel sheet becomes poor and a transformation structure such as acicular ferrite is generated, which may result in an excessive increase in strength and a decrease in ductility of the steel sheet after annealing. However, if the coiling temperature exceeds 600°C, coarse ferrite grains are formed, and coarse carbides and nitrides are easily formed, which may deteriorate the steel material. In addition, problems such as buckling due to high-temperature coiling occur and cold rolling properties deteriorate.

냉간압연: 냉간압하율 45~70%Cold rolling: Cold rolling reduction rate 45~70%

권취 및 산세 후의 열연강판을 냉간압연하여 냉연강판을 제조한다. 상기 냉간압연시 압하율(냉간압하율)은 45~70%로 행하는 것이 효과적이다. 상기 냉간압하율이 45% 미만이면 재결정 구동력이 매우 낮아 과도한 미재결정 페라이트가 형성되게 되므로, 본 발명에서 요구하는 강도를 확보하기 어렵다. 반면, 냉간압하율이 70%를 초과하게 되면 재결정 구동력이 너무 높아져 낮은 소둔 온도에서도 페라이트의 재결정이 용이하게 되어, 항복비 0.8~0.9인 고강도강 제조가 어렵다.Cold rolled steel sheets are manufactured by cold rolling the hot rolled steel sheets after coiling and pickling. It is effective to perform the cold rolling reduction rate (cold rolling reduction rate) at 45 to 70%. If the cold rolling reduction ratio is less than 45%, the recrystallization driving force is very low and excessive unrecrystallized ferrite is formed, making it difficult to secure the strength required in the present invention. On the other hand, when the cold rolling reduction ratio exceeds 70%, the recrystallization driving force becomes too high, making it easy to recrystallize ferrite even at low annealing temperatures, making it difficult to manufacture high-strength steel with a yield ratio of 0.8 to 0.9.

연속 소둔: 770~820℃Continuous annealing: 770~820℃

상기 냉연강판을 770~820℃의 온도범위로 연속 소둔하는 것이 효과적이다. 상기 소둔 온도가 770℃ 미만이면 미재결정 페라이트 분율이 과도하게 형성되어, 항복강도가 높고 연성이 열화하게 된다. 반면, 소둔 온도가 820℃를 초과하게 미재결정 페라이트 분율이 너무 적어 본 발명에서 요구되는 고항복비 확보가 어렵다.It is effective to continuously anneale the cold rolled steel sheet at a temperature range of 770 to 820°C. If the annealing temperature is less than 770°C, the unrecrystallized ferrite fraction is excessively formed, resulting in high yield strength and deteriorated ductility. On the other hand, when the annealing temperature exceeds 820°C, the unrecrystallized ferrite fraction is too small, making it difficult to secure the high yield ratio required in the present invention.

본 발명은 일정량의 미재결정 조직을 확보하기 위해, 재결정 구동력을 제어하는 조업인자를 적절히 관리하는 것이 중요하므로, 하기 [관계식 2] 및 [관계식 3]의 조건을 충족하는 것이 효과적이다. In the present invention, in order to secure a certain amount of unrecrystallized tissue, it is important to properly manage the operation factor that controls the recrystallization driving force, so it is effective to satisfy the conditions of [Relational Expression 2] and [Relational Expression 3] below.

[관계식 2][Relational Expression 2]

2566 +2.1*0.192*CR - 1.79*SS - 5.64*LS ≥ 5202566 +2.1*0.192*CR - 1.79*SS - 5.64*LS ≥ 520

[관계식 3][Relational Expression 3]

2438 +1.9*0.192*CR - 1.79*SS - 5.64*LS ≤ 7002438 +1.9*0.192*CR - 1.79*SS - 5.64*LS ≤ 700

여기서 CR은 냉간압하율(%), SS는 소둔온도(℃), LS는 연속소둔작업시 line speed(mpm)Here, CR is the cold rolling reduction rate (%), SS is the annealing temperature (℃), and LS is the line speed (mpm) during continuous annealing.

상기 [관계식 2] 및 [관계식 3]은 재결정 구동력을 제어하는 조업인자로서, 소둔 온도, 냉간압하율 및 소둔시 이송속도(line speed)를 포함하다. 본 발명에서 상기 이송속도는 90~150mpm인 것이 효과적이다. 상기 이송속도는 강판의 두께에 따라 다르게 제어하게 된다. 즉 후물재의 경우는 이송속도(line speed)를 낮게, 박물재에 대해서는 고속작업을 수행하게 되며, 이러한 조건에 맞게 냉간압하율과 소둔 온도를 함께 관리하는 것이 바람직하다.The above [Relational Expression 2] and [Relational Expression 3] are operation factors that control the recrystallization driving force and include annealing temperature, cold rolling reduction rate, and line speed during annealing. In the present invention, it is effective for the transfer speed to be 90 to 150 mpm. The transfer speed is controlled differently depending on the thickness of the steel plate. In other words, for thick materials, the line speed is low, and for thin materials, high-speed work is performed. It is desirable to manage the cold rolling reduction rate and annealing temperature together to suit these conditions.

본 발명에서는 후속하여, 상기 연속 소둔 후 도금을 추가적으로 행할 수 있다. In the present invention, plating may be additionally performed after the continuous annealing.

상기 도금을 본 발명이 속하는 기술분야에서 통상 행해지는 방식으로 행할 수 있으며, 도금 종류 및 방식을 특별히 제한하지 않는다. 본 발명에서는 용융아연도금 조건은 특별히 한정하지 않으며, 동일 기술분야에서 적용될 수 있는 통상의 조건으로 용융아연도금을 행할 수 있다. 용융아연도금을 통해서 본 발명의 일 실시예에 따른 강판은 표면에 용융아연도금층을 포함할 수 있다. 바람직한 일예로, 440~500℃의 용융 아연계 도금욕에 침지하여 용융아연계 도금강판을 제조한다. 또한, 필요에 따라, 용융아연도금 단계 후, 강판을 합금화 열처리할 수 있으며, 일 실시예로, 상기 용융아연도금된 강판을 460~530℃의 온도범위로 합금화 열처리를 행한 후, 상온까지 냉각할 수 있다. 합금화 열처리를 통해, 강판은 표면에 합금화 용융아연도금층을 포함할 수도 있다. The plating may be performed in a manner commonly performed in the technical field to which the present invention pertains, and the type and method of plating are not particularly limited. In the present invention, hot dip galvanizing conditions are not particularly limited, and hot dip galvanizing can be performed under normal conditions that can be applied in the same technical field. Through hot dip galvanizing, the steel sheet according to an embodiment of the present invention may include a hot dip galvanizing layer on the surface. In a preferred example, a molten zinc-based galvanized steel sheet is manufactured by immersing the steel sheet in a molten zinc-based plating bath at 440 to 500°C. In addition, if necessary, after the hot-dip galvanizing step, the steel sheet may be subjected to alloying heat treatment. In one embodiment, the hot-dip galvanized steel sheet is subjected to alloying heat treatment at a temperature range of 460 to 530° C. and then cooled to room temperature. You can. Through alloying heat treatment, the steel sheet may include an alloyed hot-dip galvanized layer on the surface.

상기 용융 아연도금 후 조질압연을 행할 수 있다. 조질압연 역시 통상의 범위인 0.1~1.0% 범위에서 실시할 수 있다. 만일 조질압연 연신율이 0.1% 미만일 경우, 판 형상 제어가 곤란하다. 반면, 1.0%를 초과할 경우, 표층부의 과도한 전위밀도 증가에 따른 재질 열화와 더불어, 설비 능력 한계로 인해 판 파단 발생 등의 부작용이 야기될 수 있다.After the hot dip galvanizing, temper rolling can be performed. Temper rolling can also be performed within the normal range of 0.1 to 1.0%. If the temper rolling elongation is less than 0.1%, it is difficult to control the plate shape. On the other hand, if it exceeds 1.0%, material deterioration due to excessive increase in dislocation density in the surface layer may occur, and side effects such as plate fracture may occur due to limitations in facility capacity.

이하, 본 발명의 실시예에 대해 설명한다. 하기 실시예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 하기 실시예는 본 발명의 이해를 위한 것으로서, 본 발명의 권리범위는 하기 실시예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.Hereinafter, embodiments of the present invention will be described. Of course, various modifications to the following examples can be made by those skilled in the art without departing from the scope of the present invention. The following examples are for understanding of the present invention, and the scope of the present invention should not be limited to the following examples, but should be determined by the claims described below as well as their equivalents.

(실시예)(Example)

하기 표 1에 기재된 합금 조성(단위는 중량%이며, 나머지는 불가피한 불순물임)을 갖는 강 슬라브를 재가열온도 1200℃, 열간압연 마무리 온도 Ar3 온도 이상인 900℃, 권취 온도 560℃에서 열간 압연 및 권취를 실시하였다. Steel slabs having the alloy composition shown in Table 1 below (unit is weight %, the remainder being inevitable impurities) were hot rolled and coiled at a reheating temperature of 1200°C, a hot rolling finishing temperature of 900°C above Ar3 temperature, and a coiling temperature of 560°C. It was carried out.

코일에 대한 권취 작업 후 염산을 이용하여 산세하였으며, 표 2에 기재된 냉간압연 및 연속소둔 조건으로 소둔을 행하여 강판을 제조하였다.After winding the coil, it was pickled using hydrochloric acid, and annealed under the cold rolling and continuous annealing conditions listed in Table 2 to manufacture a steel sheet.

Figure PCTKR2023020374-appb-img-000001
Figure PCTKR2023020374-appb-img-000001

Figure PCTKR2023020374-appb-img-000002
Figure PCTKR2023020374-appb-img-000002

상기 표 2에서, CR은 냉간압하율(%), SS는 연속 소둔 온도(℃), LS는 이송속도(line speed, mpm)이다. 한편, 관계식 2 및 3은 다음과 같다.In Table 2, CR is the cold rolling reduction rate (%), SS is the continuous annealing temperature (°C), and LS is the feed speed (line speed, mpm). Meanwhile, relations 2 and 3 are as follows.

[관계식 2][Relational Expression 2]

2566 +2.1*0.192*CR - 1.79*SS - 5.64*LS ≥ 5202566 +2.1*0.192*CR - 1.79*SS - 5.64*LS ≥ 520

[관계식 3][Relational Expression 3]

2438 +1.9*0.192*CR - 1.79*SS - 5.64*LS ≤ 7002438 +1.9*0.192*CR - 1.79*SS - 5.64*LS ≤ 700

상기와 같이 제조된 강판에 대해서, DIN-L규격을 이용하여 압연방향으로 인장시험을 실시하여 강판의 항복강도(YP), 인장강도(TS) 및 연신율(El.)을 측정하였으며, 그 결과를 상기 표 3에 나타내었다. 또한 앞서 설명한 SEM(scanning electron microscope)과 EBSD(electron backscatter diffraction)를 이용하여 측정된 미세조직을 이용하여 페라이트의 결정립 종횡비(Aspect ratio)와 미재결정 및 재결정 페라이트 분율(면적%)을 측정하였다. 한편 제조된 강판에 대해 집합조직 성분별 X선 회절강도값을 측정하여 관계식 1의 식을 이용하여 X선 회절강도비를 계산하였다.For the steel sheet manufactured as above, a tensile test was performed in the rolling direction using the DIN-L standard to measure the yield strength (YP), tensile strength (TS), and elongation (El.) of the steel sheet. It is shown in Table 3 above. In addition, the grain aspect ratio of ferrite and the fractions (area %) of unrecrystallized and recrystallized ferrite were measured using the microstructure measured using the previously described scanning electron microscope (SEM) and electron backscatter diffraction (EBSD). Meanwhile, the X-ray diffraction intensity values for each texture component were measured for the manufactured steel sheet, and the X-ray diffraction intensity ratio was calculated using the equation in Equation 1.

[관계식 1][Relational Expression 1]

X(222)/[X(200)+X(110)+X(112] ≤ 2 X(222)/[X(200)+X(110)+X(112] ≤ 2

(냉연 강판의 판 두께의 1/4 두께의 깊이 위치에 있어서의 면에 평행한 {222}면, {110}면, {200}면 및 {112}의 각 X선 회절 적분 강도비임)(This is the X-ray diffraction integrated intensity ratio of the {222} plane, {110} plane, {200} plane, and {112} plane parallel to the plane at the depth of 1/4 the thickness of the cold rolled steel sheet.)

Figure PCTKR2023020374-appb-img-000003
Figure PCTKR2023020374-appb-img-000003

상기 표 3에서 볼 수 있듯이, 본 발명의 합금 조성 및 제조 조건을 충족하는 발명강 1 내지 8은 항복강도 469~545MPa, 인장강도 545~655MPa, 연신율 18~21%이며, 항복비(YR)가 0.82~0.86, 및 항복강도와 연신율의 곱이 8900이상으로서 본 발명강에서 제시하는 기계적 물성을 만족하고 있다. 또한 상기 발명강은 결정립 종횡비(Aspect ratio)가 5.9~10.2로서 본 발명에서 제시하는 결정립 종횡비(Aspect ratio) 5~15의 조건을 만족하고, 또한 미재결정 페라이트 분율은 29~45%로서 본 발명에서 제시하는 20~50%의 조건을 만족하고 있다. 이러한 강재들의 X선 회절비 또한 0.6~1.2로서 본 발명에서 제시하는 조건을 충분히 만족하고 있다.As can be seen in Table 3, invention steels 1 to 8 that meet the alloy composition and manufacturing conditions of the present invention have a yield strength of 469 to 545 MPa, a tensile strength of 545 to 655 MPa, an elongation of 18 to 21%, and a yield ratio (YR) of 0.82 to 0.86, and the product of yield strength and elongation is 8900 or more, satisfying the mechanical properties presented in the present invention steel. In addition, the inventive steel has a grain aspect ratio of 5.9 to 10.2, which satisfies the condition of 5 to 15 grain aspect ratio proposed in the present invention, and the unrecrystallized ferrite fraction is 29 to 45%, which is 29 to 45%. The suggested 20 to 50% conditions are met. The X-ray diffraction ratio of these steels is also 0.6 to 1.2, which sufficiently satisfies the conditions presented in the present invention.

도 1은 실시예들 중 발명강 1의 소둔판 미세조직을 나타낸 SEM 사진을 나타낸 것이다. 미세조직은 미재결정 페라이트(부호 ①)과 재결정 페라이트(부호 ②)를 포함하고, 일부 펄라이트(Pearlite)를 포함하는 것을 있었다.Figure 1 shows an SEM photograph showing the microstructure of the annealed plate of invention steel 1 among the examples. The microstructure included unrecrystallized ferrite (code ①) and recrystallized ferrite (code ②), and some pearlite.

비교강 1 및 3은 냉간압하율이 본 발명에서 제시하는 조건보다 매우 낮았다. 이는 소둔시 페라이트 재결정 부족을 야기하게 되므로 항복강도가 매우 높고 항복비가 본 발명의 기준을 초과하였다. 또한 재결정 부족으로 결정립 종횡비(Aspect ratio)값이 매우 높았다.Comparative steels 1 and 3 had cold rolling reduction rates much lower than the conditions suggested in the present invention. This caused a lack of ferrite recrystallization during annealing, so the yield strength was very high and the yield ratio exceeded the standards of the present invention. Additionally, the grain aspect ratio value was very high due to lack of recrystallization.

비교강 2와 7은 비교강 1과 반대로 냉간압하율이 80%로 매우 높은 경우에 해당한다. 냉간압하율이 높게 되면 낮은 소둔온도에도 쉽게 페라이트 재결정이 발생한다. 이는 재결정 분율 증가로 인한 강도하락으로 본 발명강에서 요구하는 항복강도와 항복비 조건을 만족할 수 없게 된다. 또한 결정립 종횡비(Aspect ratio)와 X선 적분강도가 본 발명의 기준을 벗어났다.Contrary to comparative steel 1, comparative steels 2 and 7 have a very high cold rolling reduction rate of 80%. When the cold rolling reduction rate is high, ferrite recrystallization easily occurs even at low annealing temperatures. This is due to a decrease in strength due to an increase in the recrystallization fraction, making it impossible to satisfy the yield strength and yield ratio conditions required for the steel of the present invention. Additionally, the grain aspect ratio and X-ray integrated intensity exceeded the standards of the present invention.

비교강 4는 Ti, Nb첨가량이 각각 0.01%로서 매우 낮았다. TiC, NbC 석출물의 부족으로 재결정이 촉진되어 소둔후 미재결정 페라이트 분율이 낮아졌으며, 이로 인해 항복강도, 항복비 등이 본 발명의 조건을 벗어났다.Comparative steel 4 had very low Ti and Nb addition amounts of 0.01% each. Recrystallization was promoted due to the lack of TiC and NbC precipitates, and the fraction of unrecrystallized ferrite after annealing was lowered, and as a result, the yield strength and yield ratio were outside the conditions of the present invention.

비교강 5와 8은 Ti 또는 Nb가 전혀 첨가되지 않은 경우이다. 강중 석출물 부족으로 소둔시 재결정이 쉽게 일어났으며, 이로 인해 강판의 항복강도가 낮고 결정립 종횡비(Aspect ratio)와 X선 회절강도비가 본 발명의 조건을 만족하지 못했다.Comparative steels 5 and 8 are cases where no Ti or Nb is added. Due to the lack of precipitates in the steel, recrystallization easily occurred during annealing, and as a result, the yield strength of the steel sheet was low and the grain aspect ratio and X-ray diffraction intensity ratio did not meet the conditions of the present invention.

비교강 6은 비교강 5와 동일 성분계로 Nb가 첨가되지 않은 강이며 석출물이 부족한 조건에서 냉간압하율이 35%로 매우 낮아 860℃의 고온 소둔에 의해서도 본 발명의 조건을 만족시키지 못하였다.Comparative steel 6 has the same composition as comparative steel 5 and is a steel with no added Nb, and its cold rolling reduction rate was very low at 35% under conditions of insufficient precipitates, so it did not satisfy the conditions of the present invention even after high-temperature annealing at 860°C.

비교강 9는 첨가된 성분들은 본 발명강의 범위를 모두 만족하고 있으나 소둔 온도가 850℃으로 매우 높았다. 소둔 온도의 증가에 의해 페라이트 재결정 분율이 증가하게 되며, 이로 인해 항복강도 및 항복비가 낮으며, 결정립 종횡비(Aspect ratio) 등의 결과가 본 발명의 조건을 벗어났다.Comparative steel 9 satisfied all of the added components within the range of the present invention steel, but the annealing temperature was very high at 850°C. As the annealing temperature increases, the ferrite recrystallization fraction increases, which results in low yield strength and yield ratio, and results such as grain aspect ratio are outside the conditions of the present invention.

비교강 10은 Mn함량이 본 발명의 범위를 벗어나고 있으며 소둔온도가 750℃로서 매우 낮은 경우에 해당된다. 이러한 낮은 소둔온도는 과도한 페라이트 재결정 부족을 야기시키며, 이는 항복강도 및 항복비의 과도한 증가로 인해 연신율 10%이하로 가공성이 열화하는 등의 문제를 발생시킨다.Comparative steel 10 has a Mn content outside the range of the present invention and an annealing temperature of 750°C, which is very low. This low annealing temperature causes excessive lack of ferrite recrystallization, which causes problems such as deterioration of workability when the elongation is below 10% due to excessive increase in yield strength and yield ratio.

비교강 11은 탄소함량이 0.14%로서 본 발명강의 성분 제시범위를 벗어난 경우이다. 과도한 탄소함량으로 인해 강중 탄화물이 증가하였으며, 이로 인해 항복비가 증가하고 연신율이 열화되는 등의 문제가 발생하였다. 또한 과도한 탄소의 첨가는 용접성 열화를 유발하게 된다.Comparative steel 11 has a carbon content of 0.14%, which is outside the composition range of the present invention steel. Due to the excessive carbon content, the amount of carbide in the steel increased, which caused problems such as increased yield ratio and deterioration of elongation. Additionally, excessive addition of carbon causes deterioration of weldability.

비교강 12는 Ti함량이 0.08%로서 본 발명강의 기준을 벗어났으며, Ti+Nb 합량 또한 기준을 벗어난 경우이다. 이러한 탄질화물 형성원소의 증가는 과도한 TiC, NbC 석출을 유발하며, 이로 인해 재결정 지연에 의한 항복비 증가 등의 문제가 발생하였다.Comparative steel 12 had a Ti content of 0.08%, which was outside the standard for the present invention steel, and the total amount of Ti+Nb was also outside the standard. This increase in carbonitride forming elements causes excessive TiC and NbC precipitation, which causes problems such as increased yield ratio due to delayed recrystallization.

Claims (9)

중량%로, 탄소(C): 0.05~0.12%, 망간(Mn): 1.0~1.8%, 실리콘(Si): 0.6% 이하(0% 제외), 인(P): 0.03% 이하(0% 제외), 황(S): 0.01% 이하(0%는 제외), 질소(N): 0.01% 이하(0% 제외), 알루미늄(sol.Al): 0.01~0.08%, 티타늄(Ti): 0.02~0.06%, 니오븀(Nb): 0.02~0.06%, 보론(B): 0.005% 이하(0%는 제외), 나머지 Fe 및 불가피한 불순물을 포함하고, In weight percent, carbon (C): 0.05-0.12%, manganese (Mn): 1.0-1.8%, silicon (Si): 0.6% or less (excluding 0%), phosphorus (P): 0.03% or less (excluding 0%) ), Sulfur (S): 0.01% or less (excluding 0%), Nitrogen (N): 0.01% or less (excluding 0%), Aluminum (sol.Al): 0.01~0.08%, Titanium (Ti): 0.02~ 0.06%, Niobium (Nb): 0.02~0.06%, Boron (B): 0.005% or less (excluding 0%), including the remaining Fe and inevitable impurities, 미세조직은 면적%로 페라이트 80~99%를 포함하고, 나머지는 펄라이트 및 기타 불가피한 조직을 포함하고, 상기 페라이트 중 미재결정 페라이트가 20~50%이며,The microstructure includes 80 to 99% of ferrite in terms of area percent, the remainder includes pearlite and other inevitable structures, and unrecrystallized ferrite is 20 to 50% of the ferrite, 상기 페라이트의 종횡비(Aspect Ratio)가 5~15인 강판.A steel plate with an aspect ratio of the ferrite of 5 to 15. 청구항 1에 있어서, In claim 1, 상기 Ti 및 Nb의 합량이 0.1% 이하인 강판.A steel plate containing a total amount of Ti and Nb of 0.1% or less. 청구항 1에 있어서,In claim 1, 상기 강판은 하기 관계식 1을 만족하는 강판.The steel sheet satisfies the following relational expression 1. [관계식 1][Relational Expression 1] X(222)/[X(200)+X(110)+X(112] ≤ 2 X(222)/[X(200)+X(110)+X(112] ≤ 2 (강판의 판 두께의 1/4 두께의 깊이 위치에 있어서의 면에 평행한 {222}면, {110}면, {200}면 및 {112}의 각 X선 회절 적분 강도비)(X-ray diffraction integrated intensity ratio of the {222} plane, {110} plane, {200} plane, and {112} plane parallel to the plane at the depth of 1/4 of the steel plate thickness) 청구항 1에 있어서, In claim 1, 상기 강판은 표면에 용융아연도금층을 더 포함하는 강판.The steel sheet further includes a hot-dip galvanized layer on the surface. 청구항 1에 있어서,In claim 1, 상기 강판은,The steel plate is, 항복강도가 460MPa 이상이고, 인장강도가 520MPa 이상인 강판.Steel plate with a yield strength of 460 MPa or more and a tensile strength of 520 MPa or more. 제1항에 있어서,According to paragraph 1, 상기 강판은,The steel plate is, 항복강도와 연신율의 곱이 8600 이상인 강판.Steel plate whose product of yield strength and elongation is 8600 or more. 중량%로, 탄소(C): 0.05~0.12%, 망간(Mn): 1.0~1.8%, 실리콘(Si): 0.6% 이하(0% 제외), 인(P): 0.03% 이하(0% 제외), 황(S): 0.01% 이하(0%는 제외), 질소(N): 0.01% 이하(0% 제외), 알루미늄(sol.Al): 0.01~0.08%, Ti(티타늄): 0.02~0.06%, 니오븀(Nb): 0.02~0.06%, 보론(B): 0.005% 이하(0%는 제외), 나머지 Fe 및 불가피한 불순물을 포함하는 강슬라브를 1100~1250℃로 가열하는 단계;In weight percent, carbon (C): 0.05-0.12%, manganese (Mn): 1.0-1.8%, silicon (Si): 0.6% or less (excluding 0%), phosphorus (P): 0.03% or less (excluding 0%) ), Sulfur (S): 0.01% or less (excluding 0%), Nitrogen (N): 0.01% or less (excluding 0%), Aluminum (sol.Al): 0.01~0.08%, Ti (titanium): 0.02~ 0.06%, niobium (Nb): 0.02-0.06%, boron (B): 0.005% or less (excluding 0%), heating the steel slab containing the remaining Fe and inevitable impurities to 1100-1250°C; 상기 가열된 강 슬라브를 880℃ 이상으로 열간압연하여 열연강판을 얻는 단계;Obtaining a hot rolled steel sheet by hot rolling the heated steel slab to 880°C or higher; 상기 열연강판을 500~600℃까지 냉각하여 권취하는 단계;Cooling the hot rolled steel sheet to 500-600°C and winding it; 상기 권취된 열연강판을 45~70%의 압하율로 냉간압연하는 단계; 및Cold rolling the coiled hot-rolled steel sheet at a reduction ratio of 45 to 70%; and 상기 냉간압연된 강판을 770~820℃의 온도범위로 연속소둔하는 단계를The step of continuously annealing the cold rolled steel sheet at a temperature range of 770 to 820 ° C. 포함하는 강판의 제조방법.A method of manufacturing a steel plate comprising: 청구항 7에 있어서,In claim 7, 상기 제조방법은 하기 [관계식 2] 및 [관계식 3]의 조건을 만족하는 강판의 제조방법.The manufacturing method is a method of manufacturing a steel plate that satisfies the conditions of [Relational Expression 2] and [Relational Expression 3] below. [관계식 2][Relational Expression 2] 2566 +2.1*0.192*CR - 1.79*SS - 5.64*LS ≥ 5202566 +2.1*0.192*CR - 1.79*SS - 5.64*LS ≥ 520 [관계식 3][Relational Expression 3] 2438 +1.9*0.192*CR - 1.79*SS - 5.64*LS ≤ 7002438 +1.9*0.192*CR - 1.79*SS - 5.64*LS ≤ 700 여기서 CR은 냉간압하율(%), SS는 소둔온도(℃), LS는 연속소둔작업시 line speed(mpm)Here, CR is the cold rolling reduction rate (%), SS is the annealing temperature (℃), and LS is the line speed (mpm) during continuous annealing. 청구항 7에 있어서,In claim 7, 상기 연속소둔된 강판을 용융아연도금하는 단계를 더 포함하는 강판의 제조방법.A method of manufacturing a steel sheet further comprising hot-dip galvanizing the continuously annealed steel sheet.
PCT/KR2023/020374 2022-12-12 2023-12-12 High strength steel sheet having high yield ratio, and manufacturing method therefor WO2024128737A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380085306.9A CN120283074A (en) 2022-12-12 2023-12-12 High-yield ratio high-strength steel plate and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220172520 2022-12-12
KR10-2022-0172520 2022-12-12

Publications (1)

Publication Number Publication Date
WO2024128737A1 true WO2024128737A1 (en) 2024-06-20

Family

ID=91485287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/020374 WO2024128737A1 (en) 2022-12-12 2023-12-12 High strength steel sheet having high yield ratio, and manufacturing method therefor

Country Status (2)

Country Link
CN (1) CN120283074A (en)
WO (1) WO2024128737A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535018A (en) 1976-07-06 1978-01-18 Nippon Steel Corp High tensile cold rolled steel sheet and its production method
JP2001152288A (en) 1999-11-19 2001-06-05 Kobe Steel Ltd Hot dip galvanized steel sheet excellent in ductility and producing method therefor
JP2007107099A (en) 2006-11-24 2007-04-26 Kobe Steel Ltd Cold-rolled sheet steel excellent in workability, its production method and hot-dip galvanized steel sheet obtained using the steel sheet as base material
JP2007138261A (en) 2005-11-21 2007-06-07 Jfe Steel Kk High strength steel plate and manufacturing method thereof
JP2008106352A (en) 2006-09-27 2008-05-08 Nippon Steel Corp High Young's modulus high strength cold-rolled steel sheet with excellent local ductility and method for producing the same
JP2008106351A (en) 2006-09-29 2008-05-08 Nippon Steel Corp High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP2008156680A (en) 2006-12-21 2008-07-10 Nippon Steel Corp High strength cold-rolled steel sheet having high yield ratio and method for producing the same
JP2008190032A (en) * 2007-01-10 2008-08-21 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP2010285656A (en) * 2009-06-11 2010-12-24 Nippon Steel Corp Precipitation strengthened cold rolled steel sheet and method for producing the same
JP2011021224A (en) * 2009-07-15 2011-02-03 Jfe Steel Corp High strength cold-rolled steel sheet and method of manufacturing the same
KR20160097348A (en) * 2014-01-06 2016-08-17 신닛테츠스미킨 카부시키카이샤 Hot-formed member and process for manufacturing same
US20180057907A1 (en) * 2015-03-27 2018-03-01 Jfe Steel Corporation High-strength steel sheet and production method therefor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS535018A (en) 1976-07-06 1978-01-18 Nippon Steel Corp High tensile cold rolled steel sheet and its production method
JP2001152288A (en) 1999-11-19 2001-06-05 Kobe Steel Ltd Hot dip galvanized steel sheet excellent in ductility and producing method therefor
JP2007138261A (en) 2005-11-21 2007-06-07 Jfe Steel Kk High strength steel plate and manufacturing method thereof
JP2008106352A (en) 2006-09-27 2008-05-08 Nippon Steel Corp High Young's modulus high strength cold-rolled steel sheet with excellent local ductility and method for producing the same
JP2008106351A (en) 2006-09-29 2008-05-08 Nippon Steel Corp High-strength cold-rolled steel sheet with excellent workability and method for producing the same
JP2007107099A (en) 2006-11-24 2007-04-26 Kobe Steel Ltd Cold-rolled sheet steel excellent in workability, its production method and hot-dip galvanized steel sheet obtained using the steel sheet as base material
JP2008156680A (en) 2006-12-21 2008-07-10 Nippon Steel Corp High strength cold-rolled steel sheet having high yield ratio and method for producing the same
JP2008190032A (en) * 2007-01-10 2008-08-21 Nippon Steel Corp High-strength cold-rolled steel sheet excellent in workability and impact resistance and method for producing the same
JP2010285656A (en) * 2009-06-11 2010-12-24 Nippon Steel Corp Precipitation strengthened cold rolled steel sheet and method for producing the same
JP2011021224A (en) * 2009-07-15 2011-02-03 Jfe Steel Corp High strength cold-rolled steel sheet and method of manufacturing the same
KR20160097348A (en) * 2014-01-06 2016-08-17 신닛테츠스미킨 카부시키카이샤 Hot-formed member and process for manufacturing same
US20180057907A1 (en) * 2015-03-27 2018-03-01 Jfe Steel Corporation High-strength steel sheet and production method therefor

Also Published As

Publication number Publication date
CN120283074A (en) 2025-07-08

Similar Documents

Publication Publication Date Title
WO2018110867A1 (en) High strength cold rolled steel plate having excellent yield strength, ductility, and hole expandability, hot dip galvanized steel plate, and method for producing same
WO2017222189A1 (en) Ultrahigh-strength high-ductility steel sheet having excellent yield strength, and manufacturing method therefor
WO2020067752A1 (en) High-strength cold rolled steel sheet having high hole expansion ratio, high-strength hot-dip galvanized steel sheet, and manufacturing methods therefor
WO2020050573A1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio and manufacturing method for same
WO2021117989A1 (en) Cold rolled steel sheet with ultra-high strength, and manufacturing method therefor
WO2020022778A1 (en) High-strength steel sheet having excellent impact resistant property and method for manufacturing thereof
WO2021091140A1 (en) High-strength steel having high yield ratio and excellent durability, and method for producing same
WO2018105904A1 (en) Hot-dip galvanized steel plate with excellent bake hardenability and anti-aging property at room temperature and manufacturing method therefor
WO2022065797A1 (en) High-strength thick hot-rolled steel sheet and method for manufacturing same
WO2017051998A1 (en) Plated steel plate and manufacturing method thereof
WO2022139400A1 (en) Ultra high strength cold rolled steel sheet having excellent spot weldability and formability, ultra high strength plated steel sheet and manufacturing method therefor
WO2023022445A1 (en) Steel material for hot forming, hot-formed member, and manufacturing method therefor
WO2022131596A1 (en) High-strength steel sheet having excellent bendability and formability and method for manufacturing same
WO2022145857A1 (en) Dent-resistant cold-rolled steel sheet having excellent dent-resistance properties, dent-resistant plated steel sheet, and method for manufacturing same
WO2022124811A1 (en) High strength plated steel sheet having excellent formability and surface property, and method for manufacturing same
WO2024136311A1 (en) Steel sheet and method for manfuacturing same
WO2024128737A1 (en) High strength steel sheet having high yield ratio, and manufacturing method therefor
WO2021125878A1 (en) Steel for hot forming, hot-formed member, and manufacturing methods therefor
WO2025127500A1 (en) Steel sheet and manufacturing method thereof
WO2025127567A1 (en) Hot-rolled steel sheet and hot-rolled plated steel sheet with high-strength, and method of manufacturing same
WO2024080657A1 (en) Steel sheets and methods for manufacturing same
WO2025127881A1 (en) Steel sheet and manufacturing method therefor
WO2022108219A1 (en) Plated steel sheet having excellent strength, formability and surface quality, and manufacturing method therefor
WO2025127877A1 (en) Cold-rolled steel sheet and manufacturing method therefor
WO2025127862A1 (en) Steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23903940

Country of ref document: EP

Kind code of ref document: A1