JP5119459B2 - Fuel cell - Google Patents
Fuel cell Download PDFInfo
- Publication number
- JP5119459B2 JP5119459B2 JP2001301937A JP2001301937A JP5119459B2 JP 5119459 B2 JP5119459 B2 JP 5119459B2 JP 2001301937 A JP2001301937 A JP 2001301937A JP 2001301937 A JP2001301937 A JP 2001301937A JP 5119459 B2 JP5119459 B2 JP 5119459B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon material
- catalyst
- catalyst layer
- gas diffusion
- electrolyte
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000446 fuel Substances 0.000 title claims description 35
- 239000003575 carbonaceous material Substances 0.000 claims description 177
- 239000003054 catalyst Substances 0.000 claims description 146
- 238000009792 diffusion process Methods 0.000 claims description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 80
- 239000002001 electrolyte material Substances 0.000 claims description 57
- 238000001179 sorption measurement Methods 0.000 claims description 42
- 239000003792 electrolyte Substances 0.000 claims description 24
- 239000012528 membrane Substances 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 87
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 40
- 239000000976 ink Substances 0.000 description 34
- 239000002904 solvent Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 29
- 238000002360 preparation method Methods 0.000 description 24
- 238000011156 evaluation Methods 0.000 description 21
- 229910052697 platinum Inorganic materials 0.000 description 20
- 239000000243 solution Substances 0.000 description 19
- 239000006229 carbon black Substances 0.000 description 16
- 235000019241 carbon black Nutrition 0.000 description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 13
- 229910052799 carbon Inorganic materials 0.000 description 13
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- 229920000642 polymer Polymers 0.000 description 11
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 11
- 239000004810 polytetrafluoroethylene Substances 0.000 description 11
- 239000007788 liquid Substances 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- 238000010298 pulverizing process Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 238000001035 drying Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 7
- 229920000557 Nafion® Polymers 0.000 description 7
- 239000004809 Teflon Substances 0.000 description 7
- 229920006362 Teflon® Polymers 0.000 description 7
- 230000036571 hydration Effects 0.000 description 7
- 238000006703 hydration reaction Methods 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- 239000006087 Silane Coupling Agent Substances 0.000 description 6
- 239000011324 bead Substances 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 239000005518 polymer electrolyte Substances 0.000 description 5
- 239000005871 repellent Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- FUZZWVXGSFPDMH-UHFFFAOYSA-M hexanoate Chemical compound CCCCCC([O-])=O FUZZWVXGSFPDMH-UHFFFAOYSA-M 0.000 description 4
- 238000007731 hot pressing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910000510 noble metal Inorganic materials 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 239000012018 catalyst precursor Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 230000002940 repellent Effects 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000003456 ion exchange resin Substances 0.000 description 2
- 229920003303 ion-exchange polymer Polymers 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical group OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- SRSXLGNVWSONIS-UHFFFAOYSA-N benzenesulfonic acid Chemical compound OS(=O)(=O)C1=CC=CC=C1 SRSXLGNVWSONIS-UHFFFAOYSA-N 0.000 description 1
- 229940092714 benzenesulfonic acid Drugs 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 238000010299 mechanically pulverizing process Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、燃料電池に関し、特に、触媒層中で水が凝集しやすい条件下で作動する、例えば固体高分子形燃料電池等の燃料電池において、触媒層を改良した燃料電池に関する。
【0002】
【従来の技術】
一般的な固体高分子形燃料電池は、高分子電解質膜を挟んで、一方に正極、もう一方に負極となる触媒層が接合されており、さらに、これらを挟んで両極に撥水処理されたカーボンペーパー等がガス拡散層として接しているような基本構造をとっている。
【0003】
このような基本構造の燃料電池から電流を取り出すためには、正極側に酸素あるいは空気等の酸化性ガス、負極側には水素等の還元性ガスを、外部からガス拡散層を介してそれぞれ供給する。例えば水素ガスと酸素ガスを利用する場合、負極の触媒上で起こる
【0004】
【化1】
【0005】
の化学反応と、正極の触媒上で起こる
【0006】
【化2】
【0007】
の化学反応のエネルギー差を利用して電流を取り出すこととなる。このためには、触媒層内部の触媒まで酸素ガスあるいは水素ガスを供給できるガス拡散経路や、負極触媒上で発生したプロトンと電子をそれぞれ正極の触媒まで伝達できるプロトン伝導経路と電子伝達経路が、少なくとも触媒層内で分断されることなく連なっていないと、電流を取り出すことができない。触媒層内部では、一般に、ガス拡散経路として材料の間隙に形成される気孔、プロトン伝導経路として電解質材料、及び電子伝導経路として炭素材料が、それぞれのネットワークを機能させて成り立っている。
【0008】
特に、プロトン伝導経路には、高分子電解質材料としてパーフルオロスルホン酸ポリマーやスチレンジビニルベンゼンスルホン酸等のイオン交換樹脂が用いられている。これら一般に用いられるイオン交換樹脂は、湿潤環境下で初めて高いプロトン伝導性を発現し、乾燥環境下ではプロトン導電性が低下してしまう。これは、プロトンの移動に水分子の介在や随伴が必須であるためと考えられている。従って、効率良く燃料電池を作動させるためには、常に電解質材料が湿潤状態であることが必須であり、両極に供給するガスとともに、常に水蒸気を供給する必要がある。
【0009】
一般には、電解質材料へ水を供給する目的で、セルに供給するガスを加湿し、露点以下でセルを作動する方法が採用されている。この方法によると、セル内に供給された水蒸気は一部凝集し、凝集水の液滴を形成する。また、上述した正極反応により、正極触媒上では水が生成する。セルの運転条件にもよるが、生成した水は、触媒層内の水蒸気が過飽和になった時点で凝集し、凝集水の液滴となる。
【0010】
これら反応によって生成した水が凝集したり、加湿するために供給された水蒸気が触媒層内で凝集してできた液滴は、ガス拡散経路を遮断する。この現象は、フラッディングと呼ばれ、大電流放電時に水が大量に生成する正極で顕著であり、極度の電圧低下を招く。
【0011】
このように、安定して燃料電池を作動させるためには、触媒層内を十分に加湿しつつ、凝集水は速やかに系外に排出するといった相反する要求を満たす必要がある。このために従来から、触媒層に使われる炭素材料等をポリテトラフルオロエチレン(以下、PTFEと称する)やシランカップリング剤等を用いて、触媒層内部を撥水処理する工夫が提案されてきた。
【0012】
特開平5−36418号公報ではPTFE粉末を、特開平4−264367号公報ではPTFEコロイドを、特開平7−183035号公報ではPTFEにより撥水処理した炭素粉末を、特開2000−243404号公報ではシランカップリング剤で撥水処理した炭素材を触媒層内に含有させることによって、触媒層内部の撥水性を高め、凝集水を速やかに系外に排出する工夫が提案されてきた。
【0013】
【発明が解決しようとする課題】
従来提案された触媒層では、PTFEやシランカップリング剤といった触媒層の電子伝導経路を分断する化合物を用いるため、電池性能低下を招くといった性能上の課題や、工程が複雑化したり、比較的高価な化合物を使用するため、製造コストが増加するといった課題があった。
【0014】
また、これらシランカップリング剤やPTFEのような撥水性物質の撥水性が極めて高いため、これらの化合物を使用した触媒層内部では電解質材料に好適な湿潤環境が保たれなくなり、従来の触媒層は必ずしも効率的な電池特性を実現できなかった。従って、従来では、電解質材料に好適な湿潤環境を保つ材料の提案が無いばかりか、触媒層設計のために有用な好適な湿潤環境を保つ材料の水和性に関して定量的な指標が明確に示されていなかった。
【0015】
そこで、本発明は、燃料電池の触媒層中の電子伝導経路を分断することなく好適な湿潤環境を保ち、極めて効率的な電池性能を発現できる燃料電池を提供することを目的とする。
【0016】
【課題を解決するための手段】
以上の課題を解決するため、検討を重ねた結果、触媒層の主成分のひとつである炭素材料の水和性に適正な範囲が存在すること、触媒層の主成分である炭素材料を、触媒成分を担持した炭素材料(以下、触媒担持炭素材料)と触媒成分を担持していない炭素材料(以下、ガス拡散炭素材料)とに分けて、触媒層に含有させると、凝集水によるガス拡散経路の閉塞を防ぐことができ、特に、大電流放電時の電池特性を大幅に改善できること、さらに、ガス拡散炭素材料の含有比率に最適な範囲が存在すること、また、ガス拡散炭素材料の水和性に好適な範囲が存在すること、等を見出し、本発明に至った。
【0017】
すなわち、本発明の要旨とするところは、以下の通りである。
【0018】
(1)プロトン伝導性電解質膜を挟んだ一対の触媒層を含む燃料電池であって、前記一対の触媒層が、触媒成分と、電解質材料と、炭素材料とからなり、前記炭素材料は、前記触媒成分を担持した触媒担持炭素材料および前記触媒成分を担持していないガス拡散炭素材料を構成し、前記ガス拡散炭素材料は触媒層中に5質量%以上50質量%以下含まれ、前記炭素材料の25℃、相対湿度90%における水蒸気吸着量が100ml/g以下であることを特徴とする燃料電池。
【0020】
(2)前記ガス拡散炭素材料は、25℃、相対湿度90%における水蒸気吸着量が1ml/g以上100ml/g以下である炭素材料の1種類以上からなることを特徴とする(1)に記載の燃料電池。
【0021】
(3)前記ガス拡散炭素材料は、25℃、相対湿度90%における水蒸気吸着量が1ml/g以上50ml/g以下である炭素材料の1種類以上からなることを特徴とする(2)に記載の燃料電池。
【0022】
【発明の実施の形態】
本発明の燃料電池は、触媒成分と、炭素材料と、電解質材料とを含む触媒層を有し、かつ、触媒層の主成分の一つである炭素材料の25℃、相対湿度90%における水蒸気吸着量が100ml/g以下であることを特徴とする。
【0023】
指標となる25℃、相対湿度90%における水蒸気吸着量の測定は、市販の水蒸気吸着量測定装置を用いて測定することができる。あるいは、25℃、相対湿度90%の恒温恒湿槽に乾燥した炭素材料を十分な時間静置し、質量変化から測定することもできる。なお、触媒層中に複数の炭素材料を用いる場合は、それら炭素材料の含有率で混合して得られた混合物の水蒸気吸着量を測定するものとする。
【0024】
炭素材料の25℃、相対湿度90%における水蒸気吸着量が100ml/g以下であれば、大電流放電時のガス拡散経路の閉塞を抑制でき、安定した電流を取り出すことができる。100ml/g超であると触媒層中に凝集水が滞り、ガス拡散経路が遮断されやすくなり、大電流放電時の電圧挙動が不安定になる。
【0025】
25℃、相対湿度90%における水蒸気吸着量が、100ml/g以下の炭素材料は、一般に存在する炭素材料中から水蒸気吸着量を指標に選択できる。あるいは、水蒸気吸着量が多すぎる炭素材料である場合においても、不活性雰囲気下で焼成する事によって、水蒸気吸着量を好適な範囲にまで低下させることができる。特に条件を限定するものではないが、アルゴン、窒素、ヘリウム、真空等の雰囲気下で加熱処理することによって、水蒸気吸着量を所望の範囲まで低下させることができる。
【0026】
本発明の燃料電池に含まれる触媒層に使用される炭素材料の種類は、一般的に存在する電子伝導性を有する炭素材料であれば、特に限定するものではないが、本来求められる反応以外の化学反応を起こしたり、凝集水との接触によって炭素材料を構成する物質が溶出するような材料は好ましくなく、化学的に安定な炭素材料が好ましい。また、炭素材料の一次粒子径は1μm以下が好ましく、これより大きな炭素材料は粉砕して用いることができる。一次粒子径が1μm超であると、ガス拡散経路やプロトン伝導経路を分断する恐れが高くなるほか、触媒層中の炭素材料の分布が不均一になり易く好ましくない。好ましい炭素材料としては、カーボンブラックをあげることができる。
【0027】
本発明の燃料電池に含まれる触媒層の主成分の一つである炭素材料は、触媒担持炭素材料およびガス拡散炭素材料を構成することが好ましい。触媒成分が担持されていない炭素材料、即ち、ガス拡散炭素材料を触媒層中に含ませることによって、触媒層中にガスが拡散できる経路を発達でき、負極であれば水素あるいは水素を主体とした混合ガス、正極であれば酸素あるいは空気等が、触媒層中に拡散しやすくなり、多くの触媒表面と接触できる。そのため、効率的に触媒層での反応を進行させ、高い電池性能が得られるものである。
【0028】
さらに、ガス拡散炭素材料の触媒層中における含有率が、5質量%以上50質量%以下の範囲内にあると、より好ましい。5質量%未満では、ガス拡散経路を十分拡大することができず、ガス拡散炭素材料を含ませる効果が不明確になる。50質量%超では、プロトン伝導経路が貧弱になり、IRドロップが大きくなるため電池性能が低下する。使用する炭素材料の種類や形態にもよるが、10質量%〜40質量%がもっとも好ましい。この範囲にあると、プロトン伝導経路と電子伝導経路を損なうことなく、ガス拡散経路を発達させることができる。
【0029】
さらに高い効果を得るためには、表面の水和性、すなわち、水蒸気吸着量が適切な範囲にあるガス拡散炭素材料を用いる。具体的には、25℃、相対湿度90%における水蒸気吸着量が1ml/g以上100ml/g以下である炭素材料を、ガス拡散炭素材料として選択することである。25℃、相対湿度90%における水蒸気吸着量が1ml/g未満であると、撥水性が強くなりすぎて、触媒層中に共存する電解質材料が湿潤状態を維持しづらくなり、プロトン伝導性が低下する恐れがあるため、ガス拡散炭素材料を添加する効果が低くなることがある。25℃、相対湿度90%における水蒸気吸着量が1ml/g以上であれば、触媒層中に共存する電解質材料に好適な湿潤状態を維持できるため、プロトン伝導性を損なうこと無く、ガス拡散経路を拡大することができる。また、25℃、相対湿度90%における水蒸気吸着量が1ml/g以上である炭素材料であれば、2種類以上の炭素材料を混合してガス拡散炭素材料として使用することもできる。一方、25℃、相対湿度90%における水蒸気吸着量が100ml/g超になると、大電流放電時に触媒層内部で生成する水の排出が追いつかず、ガス拡散経路を遮断してしまう恐れがあるため、ガス拡散炭素材料を添加する効果が低くなることがある。
【0030】
また、ガス拡散炭素材料の25℃、相対湿度90%における水蒸気吸着量が1ml/g以上50ml/g以下であると、さらに好ましい。この範囲内であると、正極の内部で生成する水が少ない小電流放電時においても、正極中の電解質材料の乾燥を防ぎ、好適な湿潤状態を維持でき、かつ、大電流放電時にも、触媒層内部で生成する水を効率よく触媒層外へ拡散することができるため、低負荷から高負荷まで負荷条件によらず、全域にわたって効率の良い電池を得ることができる。25℃、相対湿度90%における水蒸気吸着量が50ml/g超になると、大電流放電時に触媒層内部で生成する水の排出が追いつかず、ガス拡散経路を遮断してしまう恐れがあるため、ガス拡散炭素材料を添加する効果が低くなることがある。
【0031】
ガス拡散炭素材料表面の水和性の制御は、一般に存在する炭素材料中から水蒸気吸着量を指標に選択することによって達成できる。あるいは、好適な範囲より少ない水蒸気吸着量を持つ炭素材料である場合においても、炭素材料を酸や塩基等で炭素材料表面を処理したり、酸化雰囲気環境に曝したりすることによって、水蒸気吸着量を好適な範囲にまで増加させることができる。特に条件を限定するものでは無いが、例えば、加温した濃硝酸中で処理したり、過酸化水素水溶液中に浸漬したり、アンモニア気流中で熱処理したり、加温した水酸化ナトリウム水溶液中に浸漬したり、希薄酸素や希薄NO、あるいはNO2中で加熱処理したりすることによって、水蒸気吸着量を増加させることができる。逆に、水蒸気吸着量が多すぎる場合、前述のように、不活性雰囲気下で焼成することによって、水蒸気吸着量を好適な範囲にまで低下させることもできる。特に限定するものではないが、アルゴン、窒素、ヘリウム、真空等の雰囲気下で加熱処理することによって、水蒸気吸着量を低下させることができる。
【0032】
本発明の燃料電池に含まれる触媒層は、使用される電解質膜、電解質材料の種類や形態によらず効果を発揮するものであって、これらに特に限定されるものではない。
【0033】
本発明の燃料電池に含まれる触媒層がもっとも効果を発揮する燃料電池は、触媒層中で水が凝集しやすい条件下で作動する燃料電池であり、電解質膜の種類や形態などに本発明の触媒層の効果が依存されるものではない。例えば、固体高分子形燃料電池等に使用されることが好ましい。
【0034】
本発明の燃料電池に使用される電解質膜や触媒層中に使用される電解質材料は、リン酸基、スルホン酸基等を導入した高分子、例えばパーフルオロスルホン酸ポリマーやベンゼンスルホン酸が導入されたポリマー等をあげることができるが、高分子に限定するものではなく、無機系、無機−有機ハイブリッド系等の電解質膜を使用した燃料電池に使用しても差し支えない。特に好適な作動温度範囲を例示するならば、室温〜150℃の範囲内で作動する燃料電池が好ましい。また、触媒担持炭素材料と電解質材料との触媒層中での質量比は1:2〜5:1が好ましい。1:2より触媒担持炭素材料が少ないと、過度に触媒表面が電解質材料に覆われてしまい、反応ガスが触媒成分と接触できる面積が小さくなるため好ましくなく、5:1より過剰に触媒担持炭素材料が含有すると電解質材料のネットワークが貧弱になり、プロトン伝導性が低くなるため好ましくない。
【0035】
本発明の触媒層に使用される触媒担持炭素材料は、供給されるガスの種類に対して効果的な触媒成分が担持されており電子伝導性が良好な炭素材料であれば、触媒成分や炭素材料の種類を限定するものではない。触媒成分の例としては、白金、パラジウム、ルテニウム、金、ロジウム、オスミウム、イリジウム等の貴金属、これらの貴金属を2種類以上複合化した貴金属の複合体や合金、貴金属と有機化合物や無機化合物との錯体、遷移金属、遷移金属と有機化合物や無機化合物との錯体等をあげることができる。これら触媒成分の触媒担持炭素材料への担持量は、それぞれ固有の適切な範囲を有しているため一概には言えないが、例えば、白金の場合、炭素材料に対し白金換算で5〜60質量%の範囲で担持されることが好ましい。また、これらの2種類以上を複合したもの等も用いることもできる。なお、このような触媒成分の触媒担持炭素材料への担持方法は、当業界周知の任意の方法を用いることができ特には限定されないが、炭素材料や触媒成分に応じて適宜選択されるべきである。
【0036】
触媒を担持する炭素材料の例としては、カーボンブラックがもっとも一般的であるが、そのほかにも黒鉛、炭素繊維等やこれらの粉砕物、カーボンナノファイバー、カーボンナノチューブ等の炭素化合物等が使用できる。また、これらの2種類以上を使用することもできる。
【0037】
本発明の燃料電池に含まれる触媒層の作成方法は、特に限定はしない。例えば、触媒担持炭素材料とガス拡散炭素材料を混合し、これにパーフルオロスルホン酸ポリマーのような電解質を溶解あるいは分散した溶液を加え、必要に応じて水や有機溶媒を加えてインクを作成する。このインクを膜状に乾燥し触媒層として用いることができる。
【0038】
ただし、本発明の燃料電池に含まれる触媒層を効果的に機能させるためには、ガス拡散炭素材料表面にできるだけ電解質材料が接触しないように作成する方法を選択することが好ましい。特に、好ましい触媒層作成方法を以下に述べる。
【0039】
A)触媒担持炭素材料と電解質材料とを電解質材料の良溶媒中で粉砕混合した後に電解質材料の貧溶媒を加え電解質材料と触媒担持炭素材料とをヘテロ凝集させて得られるA液と、触媒成分を担持していないガス拡散炭素材料を電解質材料の貧溶媒中で粉砕して得られるB液を作成し、A液とB液とを混合して得られるC液を膜状に乾燥して触媒層とする。
【0040】
この方法では、触媒担持炭素材料を電解質材料とともに電解質材料の良溶媒中で粉砕混合すると、大きな凝集体であった触媒担持炭素材料が微細な凝集体に粉砕され、その表面近傍に電解質材料が溶解して存在している状態になる。これに電解質材料の貧溶媒を加え電解質材料を凝集させると、触媒担持粒子と電解質材料粒子がヘテロ凝集を起こし、電解質材料が触媒担持炭素材料表面に固定される。さらにこの溶液に微細なガス拡散炭素材料が添加されると、電解質材料は触媒担持炭素材料表面に固定されているため、ガス拡散炭素材料表面が電解質材料によって覆われにくく、ガス拡散炭素材料の表面が本来持ち合わせている表面性状を活かすことができる。特に、表面の水和性を制御したガス拡散炭素材料を使用する場合、この方法は有効である。
【0041】
B)触媒担持炭素材料と電解質材料とを電解質材料の良溶媒中で粉砕混合した後に乾燥によって固化し、これに電解質材料の貧溶媒を加え得られた固形物を粉砕して得られるA液と、触媒成分を担持していないガス拡散炭素材料を電解質材料の貧溶媒中で粉砕して得られるB液を作成し、A液とB液を混合して得られるC液を膜状に乾燥して触媒層とする。
【0042】
この方法でも、触媒担持炭素材料を電解質材料とともに電解質材料の良溶媒中で粉砕混合した後に乾燥すると、電解質材料が触媒担持炭素材料表面に膜状に固定される。これを電解質材料の貧溶媒中で粉砕すると、ほとんどの電解質材料が触媒担持炭素材料に固定されたまま微粒化する。さらに、この溶液に微細なガス拡散炭素材料が添加されると、Aの方法と同様に電解質材料は触媒担持炭素材料表面に固定されているため、ガス拡散炭素材料表面が電解質材料によって覆われにくく、ガス拡散炭素材料の表面が本来持ち合わせている表面性状を活かすことができる。この方法も特に表面の水和性を制御したガス拡散炭素材料を使用する場合に有効である。
【0043】
これらの触媒層作成方法で使用する電解質材料の良溶媒とは、実質的に使用する電解質材料を溶解する溶媒のことであり、電解質材料の種類や分子量によるため限定はできない。具体例を例示すれば、市販されているアルドリッチ社製5%ナフィオン溶液に含まれるパーフルオロスルホン酸ポリマーの良溶媒としては、メタノール、エタノール、イソプロピルアルコールなどをあげることができる。
【0044】
また、これらの好ましい触媒層作成方法で使用する電解質材料の貧溶媒とは、実質的に使用する電解質材料を溶解しない溶媒のことであり、電解質材料の種類や分子量により、溶媒が異なるため特定することはできない。例えば、市販されているアルドリッチ社製5%ナフィオン溶液に含まれるパーフルオロスルホン酸ポリマーの貧溶媒を例示するならば、ヘキサン、トルエン、ベンゼン、酢酸エチル、酢酸ブチルなどをあげることができる。
【0045】
上述したA)あるいはB)の好ましい触媒層作成方法の中で粉砕あるいは粉砕混合する方法としては、大きな凝集体となっている触媒担持炭素材料やガス拡散炭素材料を粉砕し、少なくとも1μm以下の凝集体に粉砕する目的を果たすことができれば、手段は限定しない。一般的な手法としては例を挙げるならば、超音波を利用する方法、ボールミルやガラスビーズ等を用いて機械的に粉砕する方法などをあげることができる。
【0046】
インクを膜状に乾燥する場合、一般に提案されている方法が適用でき、特に限定しないが、例えば、ガス拡散層であるカーボンペーパー上に塗布し乾燥した後、パーフルオロスルホン酸ポリマーのような電解質膜にホットプレス等で圧着する方法、パーフルオロスルホン酸ポリマーのような電解質膜に塗布後、乾燥する方法、一度テフロン(登録商標)シート等に塗布後、乾燥し、これをパーフルオロスルホン酸ポリマーのような電解質膜にホットプレスなどで転写する方法、等があげられる。このようにして本発明の燃料電池を作成することができる。
【0047】
【実施例】
<ガス拡散炭素材料の水蒸気吸着量測定>
触媒層に含有させる炭素材料として、水蒸気吸着量が異なるカーボンブラックA、B、C、D、E、F、G、Hの計8種類を用意した。C及びGは市販のカーボンブラックで、AはCをアルゴン中で加熱処理したもの、D及びHは、それぞれC及びGを加温した濃硝酸中で処理し、水洗・乾燥したもの、B、E及びFは、Gをアルゴン中で加熱処理し、温度や加熱時間を変化させたもの、とした。これらカーボンブラックの水蒸気吸着量測定は、水蒸気量を定容量式水蒸気吸着装置(日本ベル社製、BELSORPIS)を用いて測定し、120℃、1Pa以下で2時間脱気前処理を行った試料を25℃の恒温中に保持し、徐々に水蒸気分圧を高めたときの試料に吸着した水蒸気量を測定した。得られた測定結果から吸着等温線図を描き、図から相対湿度90%の時の水蒸気吸着量を読みとった。その結果を表1に示した。
【0048】
【表1】
【0049】
<触媒担持炭素材料の調製>
塩化白金酸水溶液中にカーボンブラックGを分散し、ロータリーエバポレーターを用いて溶媒を減圧乾固して得た触媒前駆体を10%水素−90%Ar気流中、300℃で3時間、還元処理を行い、白金換算で白金担持率20質量%の触媒担持炭素材料α、白金換算で白金担持率30質量%の触媒担持炭素材料βを得た。カーボンブラックCとHについても同様の手順によって、白金換算で白金担持率20質量%の触媒担持炭素材料γ及びδを得た。
【0050】
また、塩化白金酸水溶液中にカーボンブラックGを分散し、50℃に保温し、撹拌しながら過酸化水素水を加え、次いで、Na2S2O4水溶液を添加して触媒前駆体を得た。この触媒前駆体を濾過、水洗、乾燥した後に100%H2気流中、300℃で3時間、還元処理を行い、白金換算で白金担持率20質量%の触媒担持炭素材料εを得た。
【0051】
透過型電子顕微鏡で調製した触媒担持炭素材料を観察し、担持された白金の粒子径を比較すると、α、β、γ、δの白金粒子径分布はいずれも2〜50nm程度と広かったが、εの白金粒子径分布は2〜6nm程度であり、α、β、γ、δと比較すると、細かく均一な粒子径分布であった。
【0052】
<触媒電解質混合溶液の作成>
触媒担持炭素材料αを容器に取り、これに5%ナフィオン溶液(アルドリッチ社製)を触媒担持炭素材料とナフィオンの質量比が1/1となるように加え、さらに、炭素材料を粉砕する目的でガラスビーズを加えて、撹拌により粉砕混合し、触媒担持炭素材料とナフィオンを合わせた固形分濃度が6質量%となるようにエタノールを加え、さらに撹拌し、触媒電解質混合溶液α1を得た。同様の方法で、触媒担持炭素材料β、γ、δ、εを用いて触媒電解質混合溶液β1、γ1、δ1、ε1を得た。
【0053】
<ガス拡散炭素材料溶液の調製>
カーボンブラックCを容器に取り、これにエタノールを加え、炭素材料を粉砕する目的でガラスビーズを加えて、撹拌により粉砕混合し、触媒成分を担持していないカーボンブラックCを6質量%含んだガス拡散炭素材料溶液C1を得た。
【0054】
また、カーボンブラックAを容器に取り、これに酢酸ブチルを加え、炭素材料を粉砕する目的でガラスビーズを加えて、撹拌により粉砕混合し、触媒成分を担持していないカーボンブラックAを6質量%含んだガス拡散炭素材料溶液A2を得た。同様の方法でカーボンブラックB、C、D、E、F、G、Hを用いて、ガス拡散炭素材料溶液B2、C2、D2、E2、F2、G2、H2を得た。
【0055】
さらに、カーボンブラックCを容器に取り、これにヘキサンを加え、炭素材料を粉砕する目的でガラスビーズを加えて、撹拌により粉砕混合し、触媒成分を担持していないカーボンブラックCを6質量%含んだガス拡散炭素材料溶液C3を得た。
【0056】
<インクの調製>
触媒電解質混合溶液とガス拡散炭素材料溶液を下記表2に示した比率で撹拌混合し、インクを調製した。
【0057】
【表2】
【0058】
例えば、インク4は、3.2gの触媒電解質混合溶液α1を容器に取り、撹拌しながら、溶媒として5gのエタノールを加え、十分に撹拌後、撹拌しながら0.8gのガス拡散炭素材料溶液C1を加えて調製した。インク1〜3、14〜16も同様の手順で作成した。なお、インク1〜3、14には、ガス拡散炭素材料溶液を加えなかった。
【0059】
また、インク6は、3.8gの触媒電解質混合溶液α1を容器に取り、撹拌しながら、電解質の貧溶媒である5gの酢酸ブチルを加えて、24時間以上撹拌し、触媒炭素材料と電解質材料をヘテロ凝集させた後、撹拌しながら0.2gのガス拡散炭素材料溶液C2を加えて調製した。インク5、7〜13、17〜32、37、38も同様にして作成した。なお、インク18、25の調製時に加える貧溶媒にはヘキサンを使用した。また、インク5、17、18、37には、ガス拡散炭素材料溶液を加えなかった。
【0060】
さらに、インク35は、2.8gの触媒電解質混合溶液β1を容器に取り、100℃で一晩乾燥した後に、電解質材料の貧溶媒である7.6gの酢酸ブチルとガラスビーズを投入し、撹拌により十分に粉砕混合し、撹拌しながら1.2gのガス拡散炭素材料溶液C2を加えて調製した。インク33、34、36も、同様に作成した。なお、インク34と36の調製時に加える貧溶媒にはヘキサンを使用した。また、インク33、34には、ガス拡散炭素材料溶液を加えなかった。
【0061】
<触媒層の調製と性能評価(その1)>
まず、水蒸気吸着量が異なるカーボンブラックを用いて調製した触媒担持炭素材料を含有する触媒層をそれぞれ調製し、電池性能を比較した。インクは、溶媒として電解質材料の良溶媒を使用したインク1〜4を用いた。下記表3に、負極及び正極それぞれに用いたインクの種類と、出来上がった触媒層中に含有する触媒担持炭素材料の種類と、ガス拡散炭素材料の種類と含有率を、電池性能評価結果とともに示した。
【0062】
電極の作成方法と評価方法を以下に述べる。
【0063】
予めPTFEで撥水処理されたカーボンペーパーを2.5cm×2.5cmの正方形に切断し、この上にインクを塗布・乾燥を繰り返して、カーボンペーパーに接合した触媒層を作成した。このとき、塗布前後のカーボンペーパーの質量変化測定と使用したインクの組成により、白金含有量を求め、0.5mg/cm2となるように条件を調整した。このカーボンペーパーに接合した触媒層2枚を用いて電解質膜(ナフィオン112)をはさみ、140℃、100kg/cm2の条件でホットプレスを5分間行い、カーボンペーパー−触媒層−電解質膜−触媒層−カーボンペーパーの接合体を得た。
【0064】
さらに、得られた接合体を燃料電池測定装置に組み込み、電池性能測定を行った。電池性能測定は、開放電圧(通常0.9〜1.0V程度)から0.2Vまで段階的に電圧を変化させ、0.5Vの時に流れる電流密度を測定した。なお、電極面積は6.25cm2とした。ガスは、正極に純酸素、負極に純水素を、利用率がそれぞれ50%と80%となるように供給し、それぞれのガスはセル下流に設けられた背圧弁で圧力調整し、0.1MPaに設定した。セル温度は80℃に設定し、供給する純酸素と純水素は、それぞれ75℃と85℃に保温された蒸留水中でバブリングを行い、加湿した。
【0065】
【表3】
【0066】
表3に示すように、25℃、相対湿度90%における水蒸気吸着量が100ml/g以下である炭素材料を使用した実施例1〜3の電池性能が、100ml/g超の炭素材料を使用した比較例1よりも優れていた。また、ガス拡散炭素材料Cを触媒層中に20%含有させた実施例3の電池性能が、特に優れていた。
【0067】
<触媒層の調製と性能評価(その2)>
次に、触媒担持炭素材料をαに固定し、ガス拡散炭素材料の種類や触媒層中の含有量を変化させた触媒層をそれぞれ調製し、電池性能を比較した。すなわちインクは、触媒担持炭素材料としてαを含み、かつ溶媒として電解質材料の貧溶媒を使用したインク5〜13を用いた。下記表4に、負極及び正極それぞれに用いたインクの種類と、出来上がった触媒層中に含有する触媒担持炭素材料の種類と、ガス拡散炭素材料の種類と含有率を、電池性能評価結果とともに示した。
【0068】
電極の作成方法と評価方法は、<触媒層の調製と性能評価(その1)>と同様の手順で行った。
【0069】
【表4】
【0070】
表4に示すように、ガス拡散炭素材料を触媒層中に5質量%以上50質量%以下含有させた実施例5〜11の電池性能が、特に優れていた。ガス拡散炭素材料を50質量%超含有する実施例12では、電池性能がやや劣る結果となった。電池性能測定中にカレントインターラプト法によって電池の抵抗を測定したところ、実施例4〜11の抵抗値より実施例12の抵抗値が大きかったことから、ガス拡散炭素材料が過剰となって電解質材料のネットワークが分断され、プロトン伝導性が低くなったため、電池性能が低下したものと考えられる。
【0071】
また、ガス拡散炭素材料の含有率が20質量%である実施例7〜10の中で比較すると、25℃、相対湿度90%の時の水蒸気吸着量が1ml/g以上100ml/g以下であるガス拡散炭素材料C及びGを含有した実施例9及び10が特に優れており、25℃、相対湿度90%の時の水蒸気吸着量が1ml/g以上50ml/g以下であるガス拡散炭素材料Cを含有した実施例9が最も優れていた。
【0072】
<触媒層の調製と性能評価(その3)>
次に、触媒担持炭素材料をβに固定し、ガス拡散炭素材料の種類を変化させた触媒層をそれぞれ調製し、少なくとも片方の極に配した時の電池性能を比較した。すなわちインクは、触媒担持炭素材料としてβを含み、かつ、溶媒として電解質材料の良溶媒を使用したインク14〜16を用いた。下記表5に、負極及び正極それぞれに用いたインクの種類と、出来上がった触媒層中に含有する触媒担持炭素材料の種類と、ガス拡散炭素材料の種類と含有率を、電池性能評価結果とともに示した。
【0073】
また、電極の評価方法は、<触媒層の調製と性能評価(その1)>と同様の手順で行ったが、電極の作成方法は、以下の手順に従い行った。
【0074】
インクを薄いテフロン(登録商標)シートに塗布・乾燥を繰り返し、これを2.5cm×2.5cmの正方形に切断し、触媒層−テフロン(登録商標)シート接合体を作成した。作成した触媒層−テフロン(登録商標)シート接合体2枚を用いて電解質膜(ナフィオン112)をはさみ、140℃、100kg/cm2の条件でホットプレスを3分間行った後に、テフロン(登録商標)シートのみを剥がし、触媒層−電解質膜−触媒層の接合体を作成した。このとき、触媒層−テフロン(登録商標)シート接合体の質量と剥がしたテフロン(登録商標)シートの質量差により、電解質膜に転写された触媒層の質量を決定し、これとインクの組成により白金含有量を求め、白金含有量が、白金換算で0.05mg/cm2となるように塗布量と塗布回数を調整した。さらに、予めPTFEで撥水処理されたカーボンペーパーを2.5cm×2.5cmの正方形に切断し、2枚を用いて触媒層−電解質膜−触媒層接合体を挟み、140℃、100kg/cm2の条件でさらにホットプレスを3分間行い、カーボンペーパー−触媒層−電解質膜−触媒層−カーボンペーパーの接合体を得た。
【0075】
【表5】
【0076】
表5に示すように、少なくとも片側の触媒層にガス拡散炭素材料を触媒層中に含有させた実施例14〜16の電池性能が特に優れていた。
【0077】
<触媒層の調製と性能評価(その4)>
次に、触媒担持炭素材料をβに固定し、ガス拡散炭素材料の種類や触媒層中の含有量を変化させた触媒層をそれぞれ調製し、電池性能を比較した。すなわちインクは、触媒担持炭素材料としてβを含み、かつ、基本的に溶媒として電解質材料の貧溶媒を使用したインク17〜32を用い、一部良溶媒を使用したインク14を使用した。下記表6に、負極及び正極それぞれに用いたインクの種類と、出来上がった触媒層中に含有する触媒担持炭素材料の種類と、ガス拡散炭素材料の種類と含有率を、電池性能評価結果とともに示した。
電極の作成方法と評価方法は、<触媒層の調製と性能評価(その3)>と同様の手順で行った。
【0078】
【表6】
【0079】
表6に示すように、25℃、相対湿度90%における水蒸気吸着量が100ml/g以下である炭素材料を使用した実施例17〜34の電池性能が、100ml/g超の炭素材料を使用した実施例30よりも優れていた。また、少なくとも片側の触媒層にガス拡散炭素材料を5質量%以上50質量%以下含有させた実施例19〜33の電池性能が優れていることが分かった。
【0080】
また、ガス拡散炭素材料の含有率が30質量%である実施例22〜29の中で比較すると、25℃、相対湿度90%の時の水蒸気吸着量が1ml/g以上100ml/g以下であるガス拡散炭素材料C、D、E、F、Gを含有した実施例24〜29が優れており、その中でも25℃、相対湿度90%の時の水蒸気吸着量が1ml/g以上50ml/g以下であるガス拡散炭素材料C、D、E、Fを含有した実施例24〜28が特に優れていることが分かった。
【0081】
<触媒層の調製と性能評価(その5)>
次に、触媒担持炭素材料上に薄い電解質材料の膜を形成させるように調製したインク34〜37を用いて電極を作成し、電池性能を比較した。下記表7に、負極及び正極それぞれに用いたインクの種類と、出来上がった触媒層中に含有する触媒担持炭素材料の種類と、ガス拡散炭素材料の種類と含有率を、電池性能評価結果とともに示した。
【0082】
また、電極の作成方法及び評価方法は、<触媒層の調製と性能評価(その3)>と同様の手順で行った。
【0083】
【表7】
【0084】
表7に示すように、触媒担持炭素材料上に薄い電解質材料の膜を形成させるように調製したインクを用いて触媒層を作成した場合においても、触媒層にガス拡散炭素材料を含有させた実施例37及び38の電池性能が特に優れていることが分かった。
【0085】
<触媒層の調製と性能評価(その6)>
ここでは、微細な白金が担持された触媒担持炭素材料εを含有したインク37及び38を用いて電極を作成し、電池性能を比較した。下記表8に、負極及び正極それぞれに用いたインクの種類と、出来上がった触媒層中に含有する触媒担持炭素材料の種類と、ガス拡散炭素材料の種類と含有率を、電池性能評価結果とともに示した。
【0086】
また、電極の作成方法および評価方法は、<触媒層の調製と性能評価(その3)>と同様の手順で行った。
【0087】
【表8】
【0088】
表8に示すように、微細な白金が担持された触媒担持炭素材料を用いた場合においても、触媒層にガス拡散炭素材料を含有させた実施例40の電池性能が、特に優れていることが分かった。
【0089】
【発明の効果】
以上述べたように、本発明の燃料電池は、触媒層中にPTFEやシランカップリング剤といった化合物を用いないため、電子伝導経路を分断することなく、電解質材料に好適な湿潤環境を保つことが可能であり、極めて効率的な電池性能を発現できる。また、PTFEやシランカップリング剤といった化合物を用いないため、触媒層製造コストを低減し、安価で高性能な触媒層を安定して供給できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell, and more particularly to a fuel cell having an improved catalyst layer in a fuel cell such as a polymer electrolyte fuel cell that operates under conditions where water easily aggregates in the catalyst layer.
[0002]
[Prior art]
A general polymer electrolyte fuel cell has a polymer electrolyte membrane sandwiched between them and a catalyst layer that serves as a positive electrode on one side and a negative electrode on the other. The basic structure is such that carbon paper or the like is in contact as a gas diffusion layer.
[0003]
In order to extract the current from the fuel cell having such a basic structure, an oxidizing gas such as oxygen or air is supplied to the positive electrode side, and a reducing gas such as hydrogen is supplied to the negative electrode side from the outside through the gas diffusion layer. To do. For example, when hydrogen gas and oxygen gas are used, it occurs on the negative electrode catalyst.
[0004]
[Chemical 1]
[0005]
Occurs on the positive electrode catalyst
[0006]
[Chemical 2]
[0007]
The current is extracted using the energy difference of the chemical reaction. For this purpose, there are a gas diffusion path that can supply oxygen gas or hydrogen gas to the catalyst inside the catalyst layer, and a proton conduction path and an electron transmission path that can transmit protons and electrons generated on the negative electrode catalyst to the positive electrode catalyst, The current cannot be taken out unless it is continuous without being divided in at least the catalyst layer. In the catalyst layer, generally, pores formed in a gap between materials as a gas diffusion path, an electrolyte material as a proton conduction path, and a carbon material as an electron conduction path are formed by functioning respective networks.
[0008]
In particular, ion exchange resins such as perfluorosulfonic acid polymer and styrenedivinylbenzenesulfonic acid are used as the polymer electrolyte material in the proton conduction path. These generally used ion exchange resins exhibit high proton conductivity for the first time in a wet environment, and the proton conductivity decreases in a dry environment. This is thought to be due to the interposition and accompanying of water molecules for proton transfer. Therefore, in order to operate the fuel cell efficiently, it is essential that the electrolyte material is always in a wet state, and it is necessary to always supply water vapor together with the gas supplied to both electrodes.
[0009]
In general, for the purpose of supplying water to the electrolyte material, a method of operating the cell below the dew point by humidifying the gas supplied to the cell is employed. According to this method, the water vapor supplied into the cell partially aggregates to form droplets of aggregated water. In addition, water is generated on the positive electrode catalyst by the positive electrode reaction described above. Although depending on the operating conditions of the cell, the generated water aggregates when the water vapor in the catalyst layer becomes supersaturated, and forms aggregated water droplets.
[0010]
The water droplets produced by the agglomeration of water generated by these reactions or the agglomeration of the water vapor supplied for humidification within the catalyst layer block the gas diffusion path. This phenomenon is called flooding, and is remarkable in the positive electrode in which a large amount of water is generated during a large current discharge, resulting in an extreme voltage drop.
[0011]
As described above, in order to operate the fuel cell stably, it is necessary to satisfy the conflicting requirements that the condensed water is quickly discharged out of the system while sufficiently humidifying the inside of the catalyst layer. For this reason, conventionally, a device has been proposed in which the inside of the catalyst layer is subjected to a water repellent treatment using polytetrafluoroethylene (hereinafter referred to as PTFE), a silane coupling agent, or the like as a carbon material used in the catalyst layer. .
[0012]
JP-A-5-36418 discloses PTFE powder, JP-A-4-264367 discloses PTFE colloid, JP-A-7-183035 discloses carbon powder water-repellent treated with PTFE, JP-A-2000-243404 discloses There has been proposed a device for increasing the water repellency inside the catalyst layer and quickly discharging the condensed water out of the system by containing a carbon material treated with a silane coupling agent for water repellency in the catalyst layer.
[0013]
[Problems to be solved by the invention]
Conventionally proposed catalyst layers use compounds such as PTFE and silane coupling agents that disrupt the electron conduction path of the catalyst layer, resulting in performance issues such as battery performance degradation, complicated processes, and relatively high costs. Because a new compound is used, there is a problem that the manufacturing cost increases.
[0014]
In addition, since the water repellency of these water-repellent substances such as silane coupling agents and PTFE is extremely high, a moist environment suitable for the electrolyte material cannot be maintained inside the catalyst layer using these compounds. It was not always possible to achieve efficient battery characteristics. Therefore, in the past, there has been no proposal of a material that maintains a moist environment suitable for an electrolyte material, and a quantitative index is clearly shown regarding the hydration property of a material that maintains a suitable moist environment useful for catalyst layer design. Was not.
[0015]
Therefore, an object of the present invention is to provide a fuel cell that can maintain a suitable wet environment without breaking an electron conduction path in a catalyst layer of the fuel cell and can exhibit extremely efficient cell performance.
[0016]
[Means for Solving the Problems]
As a result of repeated studies to solve the above problems, there is an appropriate range in the hydration property of the carbon material that is one of the main components of the catalyst layer, and the carbon material that is the main component of the catalyst layer is When the carbon material carrying the component (hereinafter referred to as catalyst-carrying carbon material) and the carbon material not carrying the catalyst component (hereinafter referred to as gas-diffusion carbon material) are contained in the catalyst layer, the gas diffusion path due to the condensed water In particular, the battery characteristics during large current discharge can be greatly improved, and there is an optimum range for the content ratio of the gas diffusion carbon material, and the hydration of the gas diffusion carbon material The present inventors have found that there is a suitable range for the property, and have reached the present invention.
[0017]
That is, the gist of the present invention is as follows.
[0018]
(1) A fuel cell including a pair of catalyst layers sandwiching a proton conductive electrolyte membrane, wherein the pair of catalyst layers includes a catalyst component, an electrolyte material, and a carbon material, The carbon material comprises a catalyst-carrying carbon material carrying the catalyst component and a gas-diffusion carbon material not carrying the catalyst component, and the gas-diffusion carbon material is 5% by mass to 50% by mass in the catalyst layer. Included, A fuel cell, wherein the carbon material has a water vapor adsorption amount of 100 ml / g or less at 25 ° C. and a relative humidity of 90%.
[0020]
( 2 ) The gas diffusion carbon material is characterized by comprising at least one carbon material having a water vapor adsorption amount of 1 ml / g or more and 100 ml / g or less at 25 ° C. and a relative humidity of 90% ( 1 ) Fuel cell.
[0021]
( 3 ) The gas diffusion carbon material is characterized by comprising at least one carbon material having a water vapor adsorption amount of 1 ml / g or more and 50 ml / g or less at 25 ° C. and a relative humidity of 90% ( 2 ) Fuel cell.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The fuel cell of the present invention has a catalyst layer containing a catalyst component, a carbon material, and an electrolyte material, and water vapor at 25 ° C. and 90% relative humidity of the carbon material that is one of the main components of the catalyst layer. The adsorption amount is 100 ml / g or less.
[0023]
The measurement of the water vapor adsorption amount at 25 ° C. and 90% relative humidity as an index can be performed using a commercially available water vapor adsorption amount measuring device. Alternatively, the carbon material dried in a constant temperature and humidity chamber at 25 ° C. and a relative humidity of 90% can be allowed to stand for a sufficient time and measured from a change in mass. In addition, when using a some carbon material in a catalyst layer, the water vapor | steam adsorption amount of the mixture obtained by mixing with the content rate of these carbon materials shall be measured.
[0024]
If the water vapor adsorption amount at 25 ° C. and 90% relative humidity of the carbon material is 100 ml / g or less, blockage of the gas diffusion path during large current discharge can be suppressed, and a stable current can be taken out. If it exceeds 100 ml / g, the condensed water is stagnated in the catalyst layer, the gas diffusion path is easily blocked, and the voltage behavior during large current discharge becomes unstable.
[0025]
A carbon material having a water vapor adsorption amount of 100 ml / g or less at 25 ° C. and a relative humidity of 90% can be selected from the generally existing carbon materials using the water vapor adsorption amount as an index. Alternatively, even when the carbon material has an excessive amount of water vapor adsorption, the water vapor adsorption amount can be reduced to a suitable range by firing in an inert atmosphere. Although the conditions are not particularly limited, the water vapor adsorption amount can be reduced to a desired range by heat treatment in an atmosphere of argon, nitrogen, helium, vacuum or the like.
[0026]
The type of carbon material used for the catalyst layer included in the fuel cell of the present invention is not particularly limited as long as it is a carbon material having electron conductivity that is generally present, but other than the originally required reaction. A material that causes a chemical reaction or elutes a substance constituting the carbon material by contact with the condensed water is not preferable, and a chemically stable carbon material is preferable. Further, the primary particle diameter of the carbon material is preferably 1 μm or less, and a carbon material larger than this can be pulverized and used. When the primary particle diameter is more than 1 μm, there is a high possibility that the gas diffusion path and the proton conduction path are divided, and the distribution of the carbon material in the catalyst layer tends to be nonuniform, which is not preferable. A preferable carbon material is carbon black.
[0027]
The carbon material which is one of the main components of the catalyst layer included in the fuel cell of the present invention preferably constitutes a catalyst-supporting carbon material and a gas diffusion carbon material. By including a carbon material in which the catalyst component is not supported, that is, a gas diffusion carbon material, in the catalyst layer, it is possible to develop a path through which the gas can diffuse into the catalyst layer. In the case of a mixed gas or a positive electrode, oxygen or air easily diffuses into the catalyst layer and can come into contact with many catalyst surfaces. Therefore, the reaction in the catalyst layer is efficiently advanced, and high battery performance can be obtained.
[0028]
Furthermore, the content of the gas diffusion carbon material in the catalyst layer is more preferably in the range of 5% by mass or more and 50% by mass or less. If it is less than 5% by mass, the gas diffusion path cannot be sufficiently expanded, and the effect of including the gas diffusion carbon material becomes unclear. If it exceeds 50 mass%, the proton conduction path becomes poor and the IR drop becomes large, so that the battery performance is lowered. Although depending on the type and form of the carbon material used, 10% by mass to 40% by mass is most preferable. Within this range, the gas diffusion path can be developed without impairing the proton conduction path and the electron conduction path.
[0029]
In order to obtain a higher effect, a gas diffusion carbon material having a surface hydration property, that is, a water vapor adsorption amount in an appropriate range is used. Specifically, a carbon material having a water vapor adsorption amount of 1 ml / g or more and 100 ml / g or less at 25 ° C. and a relative humidity of 90% is selected as the gas diffusion carbon material. When the water vapor adsorption amount at 25 ° C. and relative humidity 90% is less than 1 ml / g, the water repellency becomes too strong, and the electrolyte material coexisting in the catalyst layer becomes difficult to maintain a wet state, resulting in a decrease in proton conductivity. Therefore, the effect of adding the gas diffusion carbon material may be reduced. If the water vapor adsorption amount at 25 ° C. and 90% relative humidity is 1 ml / g or more, a wet state suitable for the electrolyte material coexisting in the catalyst layer can be maintained, so that the gas diffusion path can be formed without impairing proton conductivity. Can be enlarged. Further, if the carbon material has a water vapor adsorption amount of 1 ml / g or more at 25 ° C. and a relative humidity of 90%, two or more kinds of carbon materials can be mixed and used as a gas diffusion carbon material. On the other hand, if the amount of water vapor adsorbed at 25 ° C. and 90% relative humidity exceeds 100 ml / g, the water generated inside the catalyst layer during the large current discharge cannot catch up and may block the gas diffusion path. The effect of adding the gas diffusion carbon material may be lowered.
[0030]
Further, it is more preferable that the water vapor adsorption amount of the gas diffusion carbon material at 25 ° C. and 90% relative humidity is 1 ml / g or more and 50 ml / g or less. Within this range, the electrolyte material in the positive electrode can be prevented from drying even during a small current discharge with a small amount of water generated inside the positive electrode, and a suitable moist state can be maintained. Since the water generated inside the bed can be efficiently diffused outside the catalyst bed, an efficient battery can be obtained over the entire region regardless of load conditions from low load to high load. If the amount of water vapor adsorbed at 25 ° C. and 90% relative humidity exceeds 50 ml / g, there is a risk that the water generated inside the catalyst layer will not be able to catch up during large current discharge, and the gas diffusion path may be blocked. The effect of adding the diffusion carbon material may be reduced.
[0031]
Control of the hydration property on the surface of the gas diffusion carbon material can be achieved by selecting the water vapor adsorption amount as an index from the carbon materials generally present. Alternatively, even in the case of a carbon material having a water vapor adsorption amount less than the preferred range, the water vapor adsorption amount can be reduced by treating the carbon material surface with an acid, a base, or the like, or exposing the carbon material to an oxidizing atmosphere environment. It can be increased to a suitable range. Although there is no particular limitation on the conditions, for example, treatment in warm concentrated nitric acid, immersion in an aqueous hydrogen peroxide solution, heat treatment in an ammonia stream, or in a heated aqueous sodium hydroxide solution Immersion, dilute oxygen, dilute NO, or NO 2 The amount of water vapor adsorption can be increased by heat treatment in the inside. Conversely, when the water vapor adsorption amount is too large, as described above, the water vapor adsorption amount can be reduced to a suitable range by firing in an inert atmosphere. Although not particularly limited, the amount of water vapor adsorption can be reduced by heat treatment in an atmosphere of argon, nitrogen, helium, vacuum, or the like.
[0032]
The catalyst layer included in the fuel cell of the present invention exhibits an effect regardless of the type and form of the electrolyte membrane and electrolyte material used, and is not particularly limited thereto.
[0033]
The fuel cell in which the catalyst layer included in the fuel cell of the present invention is most effective is a fuel cell that operates under conditions in which water easily aggregates in the catalyst layer. The effect of the catalyst layer is not dependent on it. For example, it is preferably used for a polymer electrolyte fuel cell.
[0034]
The electrolyte material used in the electrolyte membrane and the catalyst layer used in the fuel cell of the present invention is a polymer in which a phosphoric acid group, a sulfonic acid group or the like is introduced, such as a perfluorosulfonic acid polymer or benzenesulfonic acid. However, the polymer is not limited to a polymer, and may be used for a fuel cell using an electrolyte membrane such as inorganic or inorganic-organic hybrid. If a particularly preferable operating temperature range is exemplified, a fuel cell that operates within a range of room temperature to 150 ° C. is preferable. The mass ratio of the catalyst-carrying carbon material and the electrolyte material in the catalyst layer is preferably 1: 2 to 5: 1. If the amount of the catalyst-supporting carbon material is less than 1: 2, the catalyst surface is excessively covered with the electrolyte material, which is not preferable because the area where the reaction gas can come into contact with the catalyst component becomes small. When the material is contained, the network of the electrolyte material becomes poor and the proton conductivity is lowered, which is not preferable.
[0035]
The catalyst-supporting carbon material used in the catalyst layer of the present invention is a catalyst material or carbon as long as it is a carbon material that supports an effective catalyst component for the type of gas supplied and has good electron conductivity. The kind of material is not limited. Examples of catalyst components include noble metals such as platinum, palladium, ruthenium, gold, rhodium, osmium, and iridium, composites and alloys of noble metals in which two or more of these noble metals are combined, noble metals and organic compounds and inorganic compounds. Complexes, transition metals, complexes of transition metals with organic compounds and inorganic compounds, and the like can be given. The amount of these catalyst components supported on the catalyst-carrying carbon material cannot be generally specified because each has a proper range, but in the case of platinum, for example, 5 to 60 mass in terms of platinum with respect to the carbon material. % Is preferably supported. Moreover, what compounded these 2 or more types can also be used. The method for supporting the catalyst component on the catalyst-supported carbon material can be any method known in the art and is not particularly limited, but should be appropriately selected according to the carbon material and the catalyst component. is there.
[0036]
As an example of the carbon material supporting the catalyst, carbon black is the most common, but in addition, carbon compounds such as graphite and carbon fibers, pulverized products thereof, carbon nanofibers, and carbon nanotubes can be used. Two or more of these can also be used.
[0037]
The method for preparing the catalyst layer included in the fuel cell of the present invention is not particularly limited. For example, a catalyst-supporting carbon material and a gas diffusion carbon material are mixed, and a solution in which an electrolyte such as perfluorosulfonic acid polymer is dissolved or dispersed is added thereto, and water or an organic solvent is added as necessary to create an ink. . This ink can be dried into a film and used as a catalyst layer.
[0038]
However, in order for the catalyst layer included in the fuel cell of the present invention to function effectively, it is preferable to select a method in which the electrolyte material is made so as not to contact the surface of the gas diffusion carbon material as much as possible. In particular, a preferable method for preparing a catalyst layer will be described below.
[0039]
A) Liquid A obtained by pulverizing and mixing the catalyst-carrying carbon material and the electrolyte material in a good solvent of the electrolyte material, and then adding the poor solvent of the electrolyte material to hetero-aggregate the electrolyte material and the catalyst-carrying carbon material, and the catalyst component A liquid B obtained by pulverizing a gas-diffusing carbon material that does not carry lysine in a poor solvent of an electrolyte material, and the liquid C obtained by mixing the liquid A and the liquid B is dried into a film to form a catalyst. Layer.
[0040]
In this method, when the catalyst-carrying carbon material is pulverized and mixed together with the electrolyte material in a good solvent for the electrolyte material, the catalyst-carrying carbon material that was a large aggregate is crushed into fine aggregates, and the electrolyte material is dissolved in the vicinity of the surface. And become an existing state. If the poor solvent of the electrolyte material is added to this and the electrolyte material is agglomerated, the catalyst-carrying particles and the electrolyte material particles cause heteroaggregation, and the electrolyte material is fixed on the surface of the catalyst-carrying carbon material. Furthermore, when a fine gas diffusion carbon material is added to this solution, the electrolyte material is fixed on the surface of the catalyst-carrying carbon material, so that the surface of the gas diffusion carbon material is not easily covered with the electrolyte material. Can take advantage of the surface properties originally possessed. In particular, this method is effective when a gas diffusion carbon material whose surface hydration property is controlled is used.
[0041]
B) A liquid obtained by crushing and mixing the catalyst-carrying carbon material and the electrolyte material in a good solvent of the electrolyte material, then solidifying by drying, and adding the poor solvent of the electrolyte material to the obtained solid material, The liquid B obtained by pulverizing the gas diffusion carbon material not supporting the catalyst component in the poor solvent of the electrolyte material is prepared, and the liquid C obtained by mixing the liquid A and the liquid B is dried into a film. To make a catalyst layer.
[0042]
Also in this method, when the catalyst-carrying carbon material is pulverized and mixed together with the electrolyte material in a good solvent for the electrolyte material and then dried, the electrolyte material is fixed on the surface of the catalyst-carrying carbon material in a film form. When this is pulverized in a poor solvent for the electrolyte material, most of the electrolyte material is atomized while being fixed to the catalyst-supporting carbon material. Further, when a fine gas diffusion carbon material is added to this solution, the electrolyte material is fixed on the surface of the catalyst-carrying carbon material as in the method A, so that the surface of the gas diffusion carbon material is not easily covered with the electrolyte material. The surface properties inherently possessed by the surface of the gas diffusion carbon material can be utilized. This method is also particularly effective when a gas diffusion carbon material with controlled surface hydration properties is used.
[0043]
The good solvent of the electrolyte material used in these catalyst layer preparation methods is a solvent that substantially dissolves the electrolyte material to be used, and is not limited because it depends on the type and molecular weight of the electrolyte material. As a specific example, methanol, ethanol, isopropyl alcohol, and the like can be given as good solvents for the perfluorosulfonic acid polymer contained in a commercially available 5% Nafion solution manufactured by Aldrich.
[0044]
In addition, the poor solvent of the electrolyte material used in these preferable catalyst layer preparation methods is a solvent that does not substantially dissolve the electrolyte material to be used, and is specified because the solvent differs depending on the type and molecular weight of the electrolyte material. It is not possible. For example, if the poor solvent of the perfluorosulfonic acid polymer contained in the commercially available 5% Nafion solution made by Aldrich is exemplified, hexane, toluene, benzene, ethyl acetate, butyl acetate and the like can be mentioned.
[0045]
As a method of pulverizing or pulverizing and mixing in the preferred catalyst layer preparation method of A) or B) described above, a catalyst-supporting carbon material or a gas diffusion carbon material that is a large aggregate is pulverized, and at least 1 μm or less is aggregated. The means is not limited as long as the purpose of pulverizing the aggregate can be achieved. Examples of general techniques include a method using ultrasonic waves and a method of mechanically pulverizing using a ball mill, glass beads, or the like.
[0046]
In the case of drying the ink into a film, a generally proposed method can be applied, and is not particularly limited. For example, after applying and drying on a carbon paper which is a gas diffusion layer, an electrolyte such as a perfluorosulfonic acid polymer is used. A method of pressure bonding to a membrane with a hot press or the like, a method of applying to an electrolyte membrane such as a perfluorosulfonic acid polymer and drying, a method of applying once to a Teflon (registered trademark) sheet, and drying, and then perfusing the perfluorosulfonic acid polymer And a method of transferring to an electrolyte membrane such as by hot pressing. In this way, the fuel cell of the present invention can be produced.
[0047]
【Example】
<Measurement of water vapor adsorption amount of gas diffusion carbon material>
Eight types of carbon blacks A, B, C, D, E, F, G, and H with different water vapor adsorption amounts were prepared as carbon materials to be contained in the catalyst layer. C and G are commercially available carbon blacks, A is a heat-treated C in argon, D and H are treated in concentrated nitric acid with C and G heated, washed and dried, B, E and F were obtained by heat-treating G in argon and changing the temperature and heating time. The amount of water vapor adsorption of these carbon blacks is determined by measuring the amount of water vapor using a constant volume water vapor adsorption device (BELSORPIS, manufactured by Nippon Bell Co., Ltd.), and performing a degassing pretreatment at 120 ° C. and 1 Pa or less for 2 hours. The amount of water vapor adsorbed on the sample was measured when the temperature was kept at a constant temperature of 25 ° C. and the water vapor partial pressure was gradually increased. An adsorption isotherm was drawn from the obtained measurement results, and the water vapor adsorption amount at a relative humidity of 90% was read from the figure. The results are shown in Table 1.
[0048]
[Table 1]
[0049]
<Preparation of catalyst-supporting carbon material>
A catalyst precursor obtained by dispersing carbon black G in a chloroplatinic acid aqueous solution and drying the solvent under reduced pressure using a rotary evaporator is reduced at 300 ° C. for 3 hours in a 10% hydrogen-90% Ar gas stream. The catalyst-carrying carbon material α having a platinum loading rate of 20% by mass in terms of platinum was obtained, and the catalyst-carrying carbon material β having a platinum loading rate of 30% by mass in terms of platinum was obtained. For carbon blacks C and H, catalyst-supported carbon materials γ and δ having a platinum support rate of 20% by mass in terms of platinum were obtained by the same procedure.
[0050]
Also, carbon black G is dispersed in a chloroplatinic acid aqueous solution, kept at 50 ° C., hydrogen peroxide water is added with stirring, and then Na 2 S 2 O Four An aqueous solution was added to obtain a catalyst precursor. The catalyst precursor is filtered, washed with water and dried, and then 100% H 2 A reduction treatment was performed at 300 ° C. for 3 hours in an air stream to obtain a catalyst-carrying carbon material ε having a platinum loading rate of 20 mass% in terms of platinum.
[0051]
Observing the catalyst-supported carbon material prepared with a transmission electron microscope and comparing the supported platinum particle size, the platinum particle size distribution of α, β, γ, and δ was as wide as about 2 to 50 nm. The platinum particle size distribution of ε was about 2 to 6 nm, and it was a fine and uniform particle size distribution as compared with α, β, γ, and δ.
[0052]
<Preparation of catalyst electrolyte mixed solution>
For the purpose of taking the catalyst-carrying carbon material α in a container, adding a 5% Nafion solution (manufactured by Aldrich) so that the mass ratio of the catalyst-carrying carbon material and Nafion is 1/1, and further crushing the carbon material. Glass beads were added, pulverized and mixed by stirring, ethanol was added so that the solid content concentration of the catalyst-carrying carbon material and Nafion was 6% by mass, and the mixture was further stirred to obtain a catalyst electrolyte mixed solution α1. In the same manner, catalyst electrolyte mixed solutions β1, γ1, δ1, and ε1 were obtained using the catalyst-supporting carbon materials β, γ, δ, and ε.
[0053]
<Preparation of gas diffusion carbon material solution>
Carbon black C is put in a container, ethanol is added to this, glass beads are added for the purpose of pulverizing the carbon material, pulverized and mixed by stirring, and a gas containing 6% by mass of carbon black C not supporting a catalyst component. A diffusion carbon material solution C1 was obtained.
[0054]
Further, carbon black A is taken into a container, butyl acetate is added thereto, glass beads are added for the purpose of pulverizing the carbon material, and pulverized and mixed by stirring, and 6% by mass of carbon black A not supporting a catalyst component is added. A gas diffusion carbon material solution A2 was obtained. Gas diffusion carbon material solutions B2, C2, D2, E2, F2, G2, and H2 were obtained using carbon blacks B, C, D, E, F, G, and H in the same manner.
[0055]
Further, carbon black C is taken into a container, hexane is added thereto, glass beads are added for the purpose of pulverizing the carbon material, the mixture is pulverized and mixed by stirring, and contains 6% by mass of carbon black C not supporting a catalyst component. A gas diffusion carbon material solution C3 was obtained.
[0056]
<Preparation of ink>
The catalyst electrolyte mixed solution and the gas diffusion carbon material solution were stirred and mixed at a ratio shown in Table 2 below to prepare an ink.
[0057]
[Table 2]
[0058]
For example, in the ink 4, 3.2 g of the catalyst electrolyte mixed solution α1 is placed in a container, and 5 g of ethanol is added as a solvent while stirring, and after stirring sufficiently, 0.8 g of the gas diffusion carbon material solution C1 is stirred. Was prepared. Inks 1 to 3 and 14 to 16 were prepared in the same procedure. In addition, the gas diffusion carbon material solution was not added to the inks 1 to 3 and 14.
[0059]
Ink 6 was charged with 3.8 g of the catalyst electrolyte mixed solution α1 in a container, and while stirring, 5 g of butyl acetate, which is a poor solvent for the electrolyte, was added and stirred for 24 hours or more. Was then agglomerated, and 0.2 g of the gas diffusion carbon material solution C2 was added while stirring. Inks 5, 7 to 13, 17 to 32, 37 and 38 were prepared in the same manner. Note that hexane was used as a poor solvent to be added during the preparation of the inks 18 and 25. In addition, the gas diffusion carbon material solution was not added to the inks 5, 17, 18, and 37.
[0060]
Furthermore, after taking 2.8 g of the catalyst electrolyte mixed solution β1 in a container and drying it at 100 ° C. overnight, the ink 35 is charged with 7.6 g of butyl acetate, which is a poor solvent for the electrolyte material, and glass beads, and stirred. And 1.2 g of the gas diffusion carbon material solution C2 was added with stirring. Inks 33, 34, and 36 were prepared in the same manner. Note that hexane was used as a poor solvent to be added during the preparation of the inks 34 and 36. Further, the gas diffusion carbon material solution was not added to the inks 33 and 34.
[0061]
<Preparation of catalyst layer and performance evaluation (1)>
First, catalyst layers containing catalyst-carrying carbon materials prepared using carbon blacks having different water vapor adsorption amounts were prepared, and battery performance was compared. As the ink, inks 1 to 4 using a good solvent of an electrolyte material as a solvent were used. Table 3 below shows the type of ink used for each of the negative electrode and the positive electrode, the type of catalyst-supporting carbon material contained in the finished catalyst layer, the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was.
[0062]
The electrode preparation method and evaluation method are described below.
[0063]
Carbon paper that had been subjected to water repellent treatment with PTFE in advance was cut into 2.5 cm × 2.5 cm squares, and ink was repeatedly applied and dried thereon to form a catalyst layer bonded to the carbon paper. At this time, the platinum content was determined by measuring the mass change of the carbon paper before and after coating and the composition of the ink used, and 0.5 mg / cm 2 The conditions were adjusted so that Using two catalyst layers bonded to the carbon paper, an electrolyte membrane (Nafion 112) is sandwiched, 140 ° C., 100 kg / cm 2 Under the conditions, hot pressing was performed for 5 minutes to obtain a carbon paper-catalyst layer-electrolyte membrane-catalyst layer-carbon paper joined body.
[0064]
Furthermore, the obtained joined body was incorporated in a fuel cell measuring apparatus, and battery performance was measured. In the battery performance measurement, the voltage was changed stepwise from an open circuit voltage (usually about 0.9 to 1.0 V) to 0.2 V, and the current density flowing at 0.5 V was measured. The electrode area is 6.25 cm. 2 It was. The gas was supplied with pure oxygen at the positive electrode and pure hydrogen at the negative electrode so that the utilization rates would be 50% and 80%, respectively, and the pressure of each gas was adjusted by a back pressure valve provided downstream of the cell. Set to. The cell temperature was set to 80 ° C., and the supplied pure oxygen and pure hydrogen were bubbled in distilled water kept at 75 ° C. and 85 ° C., respectively, and humidified.
[0065]
[Table 3]
[0066]
As shown in Table 3, the battery performance of Examples 1 to 3 using a carbon material having a water vapor adsorption amount of 100 ml / g or less at 25 ° C. and a relative humidity of 90% used a carbon material of more than 100 ml / g. It was superior to Comparative Example 1. Further, the battery performance of Example 3 in which the gas diffusion carbon material C was contained 20% in the catalyst layer was particularly excellent.
[0067]
<Preparation of catalyst layer and performance evaluation (2)>
Next, the catalyst-supporting carbon material was fixed to α, and catalyst layers were prepared by changing the type of the gas diffusion carbon material and the content in the catalyst layer, and the battery performance was compared. That is, inks 5 to 13 containing α as the catalyst-carrying carbon material and using a poor solvent of the electrolyte material as the solvent were used. Table 4 below shows the type of ink used for each of the negative electrode and the positive electrode, the type of catalyst-carrying carbon material contained in the finished catalyst layer, the type and content of the gas diffusion carbon material, and the results of battery performance evaluation. It was.
[0068]
The electrodes were prepared and evaluated in the same manner as in <Catalyst Layer Preparation and Performance Evaluation (Part 1)>.
[0069]
[Table 4]
[0070]
As shown in Table 4, the battery performances of Examples 5 to 11 in which the gas diffusion carbon material was contained in the catalyst layer by 5% by mass or more and 50% by mass or less were particularly excellent. In Example 12 containing more than 50% by mass of the gas diffusion carbon material, the battery performance was slightly inferior. When the resistance of the battery was measured by the current interrupt method during the battery performance measurement, the resistance value of Example 12 was larger than the resistance values of Examples 4 to 11, so that the gas diffusion carbon material became excessive and the electrolyte material It was considered that the battery performance was lowered because the proton conductivity was lowered because the network was divided.
[0071]
Further, when compared with Examples 7 to 10 in which the content of the gas diffusion carbon material is 20% by mass, the water vapor adsorption amount at 25 ° C. and relative humidity 90% is 1 ml / g or more and 100 ml / g or less. Examples 9 and 10 containing gas diffusion carbon materials C and G are particularly excellent, and the gas diffusion carbon material C has a water vapor adsorption amount of 1 ml / g or more and 50 ml / g or less at 25 ° C. and a relative humidity of 90%. Example 9 containing the most excellent.
[0072]
<Preparation of catalyst layer and performance evaluation (3)>
Next, the catalyst-supporting carbon material was fixed to β, catalyst layers with different types of gas diffusion carbon materials were prepared, and the battery performance when arranged on at least one of the electrodes was compared. That is, inks 14 to 16 were used that contained β as the catalyst-carrying carbon material and used a good solvent of the electrolyte material as the solvent. Table 5 below shows the type of ink used for each of the negative electrode and the positive electrode, the type of catalyst-carrying carbon material contained in the finished catalyst layer, the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was.
[0073]
The electrode evaluation method was performed in the same procedure as in <Catalyst Layer Preparation and Performance Evaluation (Part 1)>. The electrode preparation method was performed according to the following procedure.
[0074]
The ink was repeatedly applied to and dried on a thin Teflon (registered trademark) sheet, and this was cut into a 2.5 cm × 2.5 cm square to form a catalyst layer-Teflon (registered trademark) sheet assembly. The prepared catalyst layer-Teflon (registered trademark) sheet assembly is used to sandwich the electrolyte membrane (Nafion 112), 140 ° C., 100 kg / cm. 2 After performing hot pressing for 3 minutes under the above conditions, only the Teflon (registered trademark) sheet was peeled off to form a catalyst layer-electrolyte membrane-catalyst layer assembly. At this time, the mass of the catalyst layer transferred to the electrolyte membrane is determined by the mass difference between the catalyst layer-Teflon (registered trademark) sheet assembly and the peeled Teflon (registered trademark) sheet. The platinum content is determined, and the platinum content is 0.05 mg / cm in terms of platinum. 2 The coating amount and the number of coatings were adjusted so that Further, carbon paper that has been subjected to water repellent treatment with PTFE in advance is cut into a 2.5 cm × 2.5 cm square, and the catalyst layer-electrolyte membrane-catalyst layer assembly is sandwiched between the two sheets at 140 ° C., 100 kg / cm. 2 Further, hot pressing was performed for 3 minutes under the above conditions to obtain a carbon paper-catalyst layer-electrolyte membrane-catalyst layer-carbon paper joined body.
[0075]
[Table 5]
[0076]
As shown in Table 5, the battery performances of Examples 14 to 16 in which the gas diffusion carbon material was contained in the catalyst layer in at least one catalyst layer were particularly excellent.
[0077]
<Preparation of catalyst layer and performance evaluation (4)>
Next, the catalyst-supporting carbon material was fixed to β, and catalyst layers were prepared by changing the type of the gas diffusion carbon material and the content in the catalyst layer, and the battery performance was compared. That is, the ink used was an ink 14 that used β as a catalyst-carrying carbon material and basically used a poor solvent of an electrolyte material as a solvent and partially used a good solvent. Table 6 below shows the type of ink used for each of the negative electrode and the positive electrode, the type of catalyst-supporting carbon material contained in the finished catalyst layer, the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was.
The electrodes were prepared and evaluated in the same manner as in <Catalyst Layer Preparation and Performance Evaluation (Part 3)>.
[0078]
[Table 6]
[0079]
As shown in Table 6, the battery performance of Examples 17 to 34 using a carbon material having a water vapor adsorption amount of 100 ml / g or less at 25 ° C. and a relative humidity of 90% used a carbon material of more than 100 ml / g. It was superior to Example 30. Moreover, it turned out that the battery performance of Examples 19-33 which made 5 mass% or more and 50 mass% or less of gas diffusion carbon materials contain in the catalyst layer of at least one side is excellent.
[0080]
Moreover, when compared in Examples 22 to 29 in which the content of the gas diffusion carbon material is 30% by mass, the water vapor adsorption amount at 25 ° C. and relative humidity of 90% is 1 ml / g or more and 100 ml / g or less. Examples 24 to 29 containing gas diffusion carbon materials C, D, E, F, and G are excellent. Among them, the water vapor adsorption amount at 25 ° C. and relative humidity 90% is 1 ml / g or more and 50 ml / g or less. It turned out that Examples 24-28 containing gas diffusion carbon materials C, D, E, and F which are are especially excellent.
[0081]
<Preparation of catalyst layer and performance evaluation (5)>
Next, electrodes were prepared using inks 34 to 37 prepared so as to form a thin electrolyte material film on the catalyst-supporting carbon material, and the battery performance was compared. Table 7 below shows the type of ink used for each of the negative electrode and the positive electrode, the type of catalyst-carrying carbon material contained in the finished catalyst layer, the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was.
[0082]
Moreover, the preparation method and evaluation method of an electrode were performed in the same procedure as <Preparation of catalyst layer and performance evaluation (part 3)>.
[0083]
[Table 7]
[0084]
As shown in Table 7, even when a catalyst layer was prepared using an ink prepared to form a thin electrolyte material film on the catalyst-carrying carbon material, the catalyst layer contained a gas diffusion carbon material. The battery performance of Examples 37 and 38 was found to be particularly excellent.
[0085]
<Preparation of catalyst layer and performance evaluation (6)>
Here, electrodes were prepared using inks 37 and 38 containing a catalyst-carrying carbon material ε carrying fine platinum, and the battery performance was compared. Table 8 below shows the type of ink used for each of the negative electrode and the positive electrode, the type of catalyst-carrying carbon material contained in the finished catalyst layer, the type and content of the gas diffusion carbon material, together with the battery performance evaluation results. It was.
[0086]
Moreover, the preparation method and evaluation method of an electrode were performed in the same procedure as in <Preparation of catalyst layer and performance evaluation (part 3)>.
[0087]
[Table 8]
[0088]
As shown in Table 8, even when a catalyst-carrying carbon material carrying fine platinum is used, the battery performance of Example 40 in which a gas diffusion carbon material is contained in the catalyst layer is particularly excellent. I understood.
[0089]
【Effect of the invention】
As described above, since the fuel cell of the present invention does not use a compound such as PTFE or a silane coupling agent in the catalyst layer, it can maintain a moist environment suitable for the electrolyte material without dividing the electron conduction path. It is possible and can express extremely efficient battery performance. Moreover, since a compound such as PTFE or a silane coupling agent is not used, the production cost of the catalyst layer can be reduced, and an inexpensive and high-performance catalyst layer can be stably supplied.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001301937A JP5119459B2 (en) | 2001-09-28 | 2001-09-28 | Fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001301937A JP5119459B2 (en) | 2001-09-28 | 2001-09-28 | Fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003109643A JP2003109643A (en) | 2003-04-11 |
JP5119459B2 true JP5119459B2 (en) | 2013-01-16 |
Family
ID=19122271
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001301937A Expired - Fee Related JP5119459B2 (en) | 2001-09-28 | 2001-09-28 | Fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5119459B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4520815B2 (en) * | 2004-10-19 | 2010-08-11 | 新日本製鐵株式会社 | Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell |
CA2563932C (en) * | 2004-04-22 | 2013-12-03 | Nippon Steel Corporation | Fuel cell |
CN100466345C (en) * | 2004-04-22 | 2009-03-04 | 新日本制铁株式会社 | Fuel cells and gas diffusion electrodes for fuel cells |
JP4799897B2 (en) * | 2004-04-22 | 2011-10-26 | 新日本製鐵株式会社 | Fuel cell |
JP4817622B2 (en) * | 2004-07-12 | 2011-11-16 | 株式会社巴川製紙所 | Method for producing gas diffusion electrode for polymer electrolyte fuel cell |
JP5252408B2 (en) * | 2005-12-27 | 2013-07-31 | 日産自動車株式会社 | High durability fuel cell |
JP5217131B2 (en) * | 2006-08-09 | 2013-06-19 | トヨタ自動車株式会社 | Catalyst ink for fuel cell, membrane electrode assembly, and production method thereof |
US8546042B2 (en) | 2006-09-13 | 2013-10-01 | Hitachi Maxell, Ltd. | Membrane electrode assembly and polymer electrolyte fuel cell |
JP5017981B2 (en) * | 2006-09-21 | 2012-09-05 | 凸版印刷株式会社 | Varnish for forming catalyst electrode for fuel cell, method for producing the same, and method for producing catalyst electrode using the same |
JP5021292B2 (en) * | 2006-12-26 | 2012-09-05 | 新日本製鐵株式会社 | Fuel cell |
JP5105928B2 (en) * | 2007-03-28 | 2012-12-26 | 三洋電機株式会社 | FUEL CELL ELECTRODE, METHOD FOR PRODUCING FUEL CELL ELECTRODE, AND FUEL CELL |
JP4930241B2 (en) * | 2007-07-19 | 2012-05-16 | トヨタ自動車株式会社 | Electrode powder constituting fuel cell and catalyst layer thereof |
JP5417288B2 (en) * | 2010-09-06 | 2014-02-12 | トヨタ自動車株式会社 | Electrode catalyst on anode side and cathode side, membrane electrode assembly and fuel cell |
US10731440B2 (en) | 2013-06-18 | 2020-08-04 | Baker Hughes, A Ge Company, Llc | Downhole fuel cell with steam adsorption and pressure compensation and methods of using same |
US9593562B2 (en) | 2013-06-18 | 2017-03-14 | Baker Hughes Incorporated | Downhole fuel cell with steam adsorption and pressure compensation |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04162365A (en) * | 1990-10-25 | 1992-06-05 | Tanaka Kikinzoku Kogyo Kk | Method for preparing electrode of fuel cell |
JP3573771B2 (en) * | 1993-11-09 | 2004-10-06 | 株式会社豊田中央研究所 | Fuel cell |
JPH1125992A (en) * | 1997-07-01 | 1999-01-29 | Tanaka Kikinzoku Kogyo Kk | Electrode for high polymer solid electrolyte fuel cell and manufacture of the same |
JP3433172B2 (en) * | 2000-09-22 | 2003-08-04 | 本田技研工業株式会社 | Polymer electrolyte fuel cell |
JP3433171B2 (en) * | 2000-09-22 | 2003-08-04 | 本田技研工業株式会社 | Polymer electrolyte fuel cell |
JP3433170B2 (en) * | 2000-09-22 | 2003-08-04 | 本田技研工業株式会社 | Polymer electrolyte fuel cell |
-
2001
- 2001-09-28 JP JP2001301937A patent/JP5119459B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003109643A (en) | 2003-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5021292B2 (en) | Fuel cell | |
CN102017248B (en) | Fuel cell | |
JP5119459B2 (en) | Fuel cell | |
CN101222049B (en) | Catalyst coated membrane, membrane electrode assembly containing the same, method of producing the same, and fuel cell including the membrane electrode assembly | |
WO2010047415A1 (en) | Catalyst for solid polymer furl cell, electrode for solid polymer furl cell, and fuel cell | |
JP4960000B2 (en) | Gas diffusion electrode for fuel cell and fuel cell | |
JP5458801B2 (en) | Fuel cell | |
JP4204272B2 (en) | Fuel cell electrode catalyst and fuel cell | |
JPH103929A (en) | Gas diffusing electrode for membrane fuel cell and its manufacture | |
JP2006253030A (en) | Cathode electrode for liquid fuel type solid high polymer fuel cell, and the liquid fuel type solid high polymer fuel cell | |
JP4799897B2 (en) | Fuel cell | |
CN108232215A (en) | The electrode catalyst of fuel cell | |
WO2010070994A1 (en) | Anode catalyst layer for solid polymer fuel cell | |
CN108808027B (en) | Electrode catalyst for fuel cell and method for producing same | |
JP5397241B2 (en) | Catalyst for polymer electrolyte fuel cell and electrode for polymer electrolyte fuel cell using the same | |
JP2002015745A (en) | Solid polymer fuel cell | |
CN103858261A (en) | Catalyst particles, catalyst ink, electrode catalyst layer for fuel cells, membrane electrode assembly, solid polymer fuel cell, method for producing catalyst particles, and method for producing catalyst ink | |
JP2004152489A (en) | Catalyst electrode for fuel cell, fuel cell, catalyst carrier particle for fuel cell, and manufacturing method of catalyst electrode | |
JP2017073310A (en) | Catalyst layer for fuel cell, and fuel cell | |
JP5458799B2 (en) | Fuel cell | |
JP2003151564A (en) | Electrode for solid high polymer fuel cell | |
JP2010027512A (en) | Manufacturing method for membrane-electrode assembly of solid polymer fuel cell, membrane-electrode assembly of solid polymer fuel cell, and solid polymer fuel cell | |
JP4520815B2 (en) | Gas diffusion layer for fuel cell, gas diffusion electrode for fuel cell, and fuel cell | |
JPH08130020A (en) | Manufacture of electrode for polymer solid-electrolytic electrochemical cell | |
JP2012212661A (en) | Electrode catalyst layer for fuel cell, manufacturing method of electrode catalyst layer, membrane electrode assembly for fuel cell, and solid polymer fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080307 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110829 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120120 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120123 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120710 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120830 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120918 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121001 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151102 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5119459 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151102 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |