[go: up one dir, main page]

JP5118941B2 - Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body - Google Patents

Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body Download PDF

Info

Publication number
JP5118941B2
JP5118941B2 JP2007286560A JP2007286560A JP5118941B2 JP 5118941 B2 JP5118941 B2 JP 5118941B2 JP 2007286560 A JP2007286560 A JP 2007286560A JP 2007286560 A JP2007286560 A JP 2007286560A JP 5118941 B2 JP5118941 B2 JP 5118941B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
superconducting bulk
precursor
bulk body
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007286560A
Other languages
Japanese (ja)
Other versions
JP2009114006A (en
Inventor
浩之 藤本
秀二 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2007286560A priority Critical patent/JP5118941B2/en
Publication of JP2009114006A publication Critical patent/JP2009114006A/en
Application granted granted Critical
Publication of JP5118941B2 publication Critical patent/JP5118941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

本発明は、超電導電流リード、フライホイール用電力貯蔵装置、超電導磁気浮上機器、超電導磁気軸受け、超電導磁気分離浄化装置、リニアモータなどに応用開発が進められている酸化物超電導バルク体の製造方法と酸化物超電導バルク体に関する。     The present invention relates to a superconducting current lead, a flywheel power storage device, a superconducting magnetic levitation device, a superconducting magnetic bearing, a superconducting magnetic separation and purification device, a production method of an oxide superconducting bulk body that is being developed and applied to a linear motor, etc. The present invention relates to an oxide superconducting bulk body.

大型の酸化物超電導バルク体を製造する方法の一例として溶融凝固法が知られている。
この溶融凝固法とは、REBaCu7−X(REは希土類元素を示す)なる組成の酸化物超電導バルク体を製造するに際し、REBaCu相またはREBaCu10相と、Ba−Cu−Oを主成分とした液相とが共存する温度領域まで原料粉末の圧密体を加熱した後、REBaCu7−X相が生成する包晶温度直上の温度まで冷却し、その温度から徐冷することにより前駆体の内部において結晶成長させ、核生成と結晶方位の制御を行い、酸化物超電導バルク体を得る製造方法である。
As an example of a method for producing a large oxide superconducting bulk material, a melt solidification method is known.
This melt solidification method refers to the production of an RE 2 Ba 1 Cu 1 O 5 phase or RE 4 when an oxide superconducting bulk body having a composition of RE 1 Ba 2 Cu 3 O 7-X (RE represents a rare earth element) is produced. After heating the compact of the raw material powder to a temperature range in which the Ba 2 Cu 2 O 10 phase and the liquid phase mainly composed of Ba—Cu—O coexist, the RE 1 Ba 2 Cu 3 O 7-X phase It is a manufacturing method to obtain an oxide superconducting bulk body by cooling to the temperature just above the peritectic temperature to be generated, and gradually cooling from that temperature to grow crystals inside the precursor, and control nucleation and crystal orientation. .

また、1つの種結晶を使用し、結晶成長開始温度が異なる材料を順次組み合わせて核生成、結晶方位および結晶成長方向を制御して酸化物超電導バルク体を製造するトップシード溶融凝固法(Top Seeding Melt Growth)が知られている。
このトップシード溶融凝固法は、酸化物超電導バルク体を構成する元素の化合物粉末を混合してなる原料粉末を圧密して前駆体を得た後、この前駆体を利用してREBaCu7−X(REは希土類元素を示す)なる組成の酸化物超電導体を製造するに際し、REBaCu相またはREBaCu10相と、Ba−Cu−Oを主成分とした液相とが共存する温度領域まで前駆体を加熱して半溶融状態とした後、半溶融状態の前駆体上に種結晶を設置し、REBaCu7−X相が生成する包晶温度直上の温度まで冷却し、その温度から徐冷することにより半溶融状態の前駆体の内部で種結晶に沿わせて徐々に結晶成長を行い、前駆体全体を酸化物超電導バルク体とする方法の一例として知られている。
In addition, a top seed melting solidification method (Top Seeding) that uses a single seed crystal and sequentially combines materials with different crystal growth start temperatures to produce an oxide superconducting bulk body by controlling the nucleation, crystal orientation, and crystal growth direction. Melt Growth) is known.
In this top seed melt solidification method, a precursor powder obtained by mixing compound powders of elements constituting an oxide superconducting bulk body is obtained and then a precursor is used to make a RE 1 Ba 2 Cu using this precursor. In producing an oxide superconductor having a composition of 3 O 7-X (RE represents a rare earth element), the RE 2 Ba 1 Cu 1 O 5 phase or the RE 4 Ba 2 Cu 2 O 10 phase, and the Ba—Cu— The precursor is heated to a temperature range in which a liquid phase containing O as a main component coexists to be in a semi-molten state, then a seed crystal is placed on the precursor in a semi-molten state, and RE 1 Ba 2 Cu 3 O 7 -Cooling to a temperature just above the peritectic temperature where the X phase is formed, and gradually cooling from that temperature, the crystal gradually grows along the seed crystal inside the semi-molten precursor, Known as an example of a method for forming an oxide superconducting bulk material It has been.

前記酸化物超電導バルク体は、通常、前述の溶融法、あるいは、原料混合粉末を圧密後に焼成する焼結法により製造されているが、いずれにおいても酸化物超電導体は一般的にはセラミックスの一種であり、ボイドやクラックを必然的に伴う材料であって、これらが原因となって強度低下を引き起こし易いので、実用強度を高めるための補強構造が課題として認識されている。
このような背景から、外面に樹脂含浸層を設けて酸化物超電導バルク体の強度を向上させた構造が知られている。(特許文献1参照)また、酸化物超電導バルク体の機械的強度向上のために、布に樹脂を含浸させた密着被覆層を酸化物超電導バルク体の外表面に密着させた構造が知られている。(特許文献2参照)更に、酸化物超電導バルク体の強度向上のためにフィラー入り樹脂の被覆層を外表面に設けた構造が知られている。(特許文献3参照)
特開2000−178025号公報 特開2001−010879号公報 特開2000−256082号公報
The oxide superconducting bulk body is usually manufactured by the above-described melting method or a sintering method in which the raw material mixed powder is sintered after being compacted. In any case, the oxide superconductor is generally a kind of ceramics. Since these materials are inevitably accompanied by voids and cracks, and they tend to cause a decrease in strength, a reinforcing structure for increasing practical strength has been recognized as a problem.
From such a background, a structure in which a resin-impregnated layer is provided on the outer surface to improve the strength of the oxide superconducting bulk body is known. (See Patent Document 1) Further, in order to improve the mechanical strength of the oxide superconducting bulk body, a structure is known in which a close-contact coating layer impregnated with a resin is adhered to the outer surface of the oxide superconducting bulk body. Yes. Further, a structure in which a coating layer of a resin containing filler is provided on the outer surface in order to improve the strength of the oxide superconducting bulk body is known. (See Patent Document 3)
JP 2000-178025 A JP 2001-010879 A JP 2000-260882 A

これまで開発されてきた前述のトップシード溶融凝固法あるいは一般に知られている焼結法のいずれにおいても、得られる酸化物超電導バルク体がセラミックスである限り、ボイドやクラックが強度低下の原因となり得るが、超電導材料自体のボイドやクラックを意識的に減少させようとする製造プロセスの研究開発は一部には見られるものの、酸化物超電導バルク体としての構造強度を高めようとする技術は前述の特許文献に記載の如く樹脂被覆層を設けた構造が提供されている程度であって、十分には開発されておらず、特に溶融凝固法などのように原料粉末を圧密して成形した前駆体に対して微妙な結晶成長を図るタイプの酸化物超電導バルク体において、良好な補強構造は提供されていないのが現状であった。
一方、この種の酸化物超電導バルク体は熱伝導性が悪いことも知られており、酸化物超電導バルク体に磁界を補足した場合、熱はけが課題であった。この点に鑑みると、外表面に樹脂層を被覆するタイプの構造では、熱はけの問題を解消するのは困難であった。
In any of the above-mentioned top seed melt solidification methods or the generally known sintering methods that have been developed so far, voids and cracks can cause strength reduction as long as the resulting oxide superconducting bulk material is ceramic. However, although some research and development of manufacturing processes that consciously reduce voids and cracks in the superconducting material itself can be seen in part, the technology for increasing the structural strength as an oxide superconducting bulk has been described above. A precursor provided with a resin coating layer as described in the patent literature, which has not been sufficiently developed, and in particular a precursor formed by compacting raw material powders such as a melt solidification method On the other hand, in the oxide superconducting bulk material of a type that is sensitive to crystal growth, a good reinforcing structure has not been provided.
On the other hand, it is known that this type of oxide superconducting bulk body has poor thermal conductivity, and when an oxide superconducting bulk body is supplemented with a magnetic field, there has been a problem of heat burn. In view of this point, it has been difficult to solve the problem of heat dissipation with a structure of a type in which the outer surface is coated with a resin layer.

本発明は前記事情に鑑みてなされたもので、補強構造を導入した酸化物超電導バルク体を製造できる技術の提供を目的とする。また、本発明は、酸化物超電導体としての良好な結晶成長がなされていて、酸化物超電導バルク体としての超電導特性に優れた上に、補強構造を適用し、熱はけ性も良好とすることが可能な酸化物超電導バルク体を提供する技術の提供を目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a technique capable of manufacturing an oxide superconducting bulk body in which a reinforcing structure is introduced. In addition, the present invention has good crystal growth as an oxide superconductor, is excellent in superconducting properties as an oxide superconducting bulk body, and also applies a reinforcing structure to improve heat dissipation. An object of the present invention is to provide a technique for providing an oxide superconducting bulk material that can be used.

本発明は前記事情に鑑みてなされたもので、REBaCu7−X(REは、Y、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの1種または2種以上を示す。)なる組成の酸化物超電導バルク体を製造するに際し、酸化物超電導バルク体を構成する元素の原料粉末を加圧成形して圧密する際、原料混合粉末中に溶融凝固法に伴う加熱温度において溶融しない貴金属の補強体を混入して圧密し、目的の形状の前駆体を得た後、この前駆体に対し、溶融凝固法を適用して結晶成長させることを特徴とする。
本発明は前記事情に鑑みてなされたもので、前記補強体を白金ロジウム線とすることを特徴とする。
本発明は前記事情に鑑みてなされたもので、前記前駆体を加熱して半溶融状態とした後に冷却し、前記前駆体上に設置した種結晶の結晶構造を基に先の半溶融状態の前駆体を結晶化して酸化物超電導バルク体とするトップシード溶融凝固法によって補強体入りの酸化物超電導バルク体を製造することを特徴とする。
The present invention has been made in view of the above circumstances, and RE 1 Ba 2 Cu 3 O 7-X (RE is Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb. In the production of an oxide superconducting bulk body having the composition of Lu), when mixing the raw material powders of the elements constituting the oxide superconducting bulk body by pressing and compacting, A precious metal reinforcement that does not melt at the heating temperature associated with the melting and solidification method is mixed in the powder and consolidated to obtain a precursor with the desired shape. It is characterized by making it.
The present invention has been made in view of the above circumstances, and is characterized in that the reinforcing body is a platinum rhodium wire.
The present invention has been made in view of the above circumstances, and the precursor is heated to be in a semi-molten state and then cooled, and the previous semi-molten state is based on the crystal structure of the seed crystal placed on the precursor. An oxide superconducting bulk body containing a reinforcing body is manufactured by a top seed melt solidification method by crystallizing a precursor to form an oxide superconducting bulk body.

本発明の酸化物超電導バルク体は、REBaCu7−X(REは、Y、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの1種または2種以上を示す。)なる組成を有し、溶融凝固法を適用して結晶成長された酸化物超電導バルク体であり、内部に貴金属製の補強体が複合されてなることを特徴とする。
本発明の酸化物超電導バルク体は、前記補強体が白金ロジウム線であることを特徴とする。
本発明の酸化物超電導バルク体は、前記補強体の内部に補強体を構成する金属材料の未溶融部が芯部として残留され、その外周部に補強体の構成材料元素と酸化物超電導体の原料元素とを具備する被覆層が形成され、該被覆層の外部側において酸化物超電導体の原料元素からなる結晶育成領域が生成されてなることを特徴とする。



The oxide superconducting bulk material of the present invention is composed of RE 1 Ba 2 Cu 3 O 7-X (RE is Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu. An oxide superconducting bulk body having a composition of 1) or 2), which is crystal-grown by applying a melt solidification method, and is characterized in that a noble metal reinforcement is compounded inside. And
The oxide superconducting bulk body of the present invention is characterized in that the reinforcing body is a platinum rhodium wire.
In the oxide superconducting bulk body according to the present invention, the unmelted portion of the metal material constituting the reinforcing body remains as a core portion in the reinforcing body, and the constituent material elements of the reinforcing body and the oxide superconductor are formed on the outer periphery thereof. A coating layer including a raw material element is formed, and a crystal growth region made of the raw material element of the oxide superconductor is generated on the outer side of the coating layer.



本発明の製造方法によれば、補強体を内部に複合することにより機械強度を向上させた酸化物超電導バルク体を製造することができる。また、この酸化物超電導バルク体は溶融凝固法により結晶成長させて製造されているので、欠陥やボイドなどの少ない、超電導特性の良好な酸化物超電導バルク体とすることができる。
更に、貴金属の補強体が溶融凝固法による高い加熱温度に耐えて溶解しないものであるので、前駆体の溶融物が凝固しながら結晶成長する場合の妨げにならず、良好な結晶成長がなされていると同時に、溶融凝固法による結晶成長後においても補強体が溶解することなく存在するので、機械的補強が満足になされており、超電導特性に優れると同時に、高強度の酸化物超電導バルク体が得られる。
According to the production method of the present invention, it is possible to produce an oxide superconducting bulk body with improved mechanical strength by combining a reinforcing body inside. Further, since this oxide superconducting bulk body is manufactured by crystal growth by the melt solidification method, it can be an oxide superconducting bulk body having few defects and voids and good superconducting characteristics.
Furthermore, since the precious metal reinforcing body is resistant to the high heating temperature by the melt solidification method and does not dissolve, it does not hinder the crystal growth of the precursor melt while solidifying, and good crystal growth is achieved. At the same time, since the reinforcing body exists without melting even after crystal growth by the melt solidification method, the mechanical reinforcement is satisfactorily achieved and the superconducting properties are excellent, and at the same time a high-strength oxide superconducting bulk body is formed. can get.

更に、貴金属の補強体は酸化物超電導バルク体を構成する材料よりも熱伝導性が良好であるので、この補強体を利用して酸化物超電導バルク体の熱を外部に効率良く排出することが可能となり、熱はけの良好な酸化物超電導バルク体を提供することができる。
本発明の製造方法において補強体を白金ロジウム線とするならば、溶融法により前駆体を溶融凝固させる処理を施しても、結晶成長が白金ロジウム線により影響されずに良好な結晶が確実になされるとともに、溶融凝固法に伴う高温加熱においても補強体が溶融することなく確実に残存して補強するので、高強度の酸化物超電導バルク体を確実に提供することができる。
Furthermore, since the precious metal reinforcing body has better thermal conductivity than the material constituting the oxide superconducting bulk body, the heat of the oxide superconducting bulk body can be efficiently discharged to the outside using this reinforcing body. It becomes possible to provide an oxide superconducting bulk body with good heat dissipation.
If the reinforcing body is a platinum rhodium wire in the production method of the present invention, even if the precursor is melted and solidified by the melting method, the crystal growth is not affected by the platinum rhodium wire, and a good crystal is surely made. In addition, since the reinforcing body reliably remains and reinforces without melting even in the high-temperature heating associated with the melt-solidification method, a high-strength oxide superconducting bulk body can be reliably provided.

また、トップシード溶融凝固法によって補強体入りの酸化物超電導バルク体を製造するならば、強度が高く、結晶成長が確実になされた超電導特性の良好な酸化物超電導バルク体を確実に得ることができる。   In addition, if an oxide superconducting bulk body containing a reinforcing body is manufactured by the top seed melt solidification method, an oxide superconducting bulk body having high strength and excellent superconducting characteristics with reliable crystal growth can be reliably obtained. it can.

図1は本発明に係る製造方法において利用される円盤状をなす酸化物超電導バルク体の前駆体1を示し、この前駆体1を元に後述する溶融法により結晶成長させ、更に、酸素雰囲気中において熱処理することにより、最終目的物として図3に示す円盤状の酸化物超電導バルク体3を得ることができる。
なお、酸化物超電導バルク体3とその前駆体1の形状は円盤状に限るものではなく、目的とする製品形状に合わせて棒状や他の立体形状など、その他任意の形状に成形することができるが、この実施形態では円盤状の前駆体1を例示して以下に説明する。
FIG. 1 shows a disk-shaped oxide superconducting bulk precursor 1 used in the manufacturing method according to the present invention. The precursor 1 is crystal-grown by a melting method described later, and further in an oxygen atmosphere. By performing the heat treatment in FIG. 3, the disc-shaped oxide superconducting bulk body 3 shown in FIG. 3 can be obtained as the final object.
In addition, the shape of the oxide superconducting bulk body 3 and its precursor 1 is not limited to a disc shape, and can be formed into any other shape such as a rod shape or other three-dimensional shape according to the target product shape. However, in this embodiment, the disk-shaped precursor 1 is illustrated and described below.

前記酸化物超電導バルク体の前駆体1とは、目的とする酸化物超電導バルク体の組成と同じ組成、あるいは近似する組成の原料混合体の圧密体であり、例えば、REBaCuO系(REはYを含む希土類元素(La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの1種または2種以上)を示す。)のものを例示することができるが、特にこれらの中でも系希土類系として知られる元素(Nd、Sm、Gdなど)を選択することが、酸化物超電導バルク体の臨界電流密度向上の面からは望ましい。
ここで例えば、目的の酸化物超電導バルク体がNdBaCu7−Xの組成の場合、前駆体1として例えば、NdBaCu7−Xの組成の粉末とNdBaCu10の組成の粉末を混合して圧密し、純酸素中で焼結したものが前駆体であり、目的の酸化物超電導バルク体がSmBaCu7−Xの組成の場合、前駆体1として例えば、SmBaCu7−Xの組成の粉末とSmBaCuOの組成の粉末を混合して圧密したものが前駆体であり、目的の酸化物超電導バルク体がGdBaCu7−Xの組成の場合、前駆体1として例えば、GdBaCu7−Xの組成の粉末とGdBaCuOの組成の粉末を混合して圧密した前駆体を例示することができる。
The precursor 1 of the oxide superconducting bulk body is a consolidated body of a raw material mixture having the same composition as that of the target oxide superconducting bulk body or an approximate composition. For example, REBaCuO (RE is Y) Examples of the rare earth elements (including La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) are included. Among these, it is desirable to select an element known as a rare earth system (Nd, Sm, Gd, etc.) from the viewpoint of improving the critical current density of the oxide superconducting bulk material.
Here, for example, when the target oxide superconducting bulk has a composition of NdBa 2 Cu 3 O 7-X , the precursor 1 may be, for example, a powder having a composition of NdBa 2 Cu 3 O 7-X and Nd 4 Ba 2 Cu 2. When a powder having a composition of O 10 is mixed and compacted and sintered in pure oxygen is a precursor, and the target oxide superconducting bulk is a composition of SmBa 2 Cu 3 O 7-X , the precursor for example, with 1, SmBa 2 Cu 3 O 7 -X of the powder composition of the powder and Sm 2 BaCuO 5 compositions by mixing those compaction is a precursor oxide superconducting bulk body of interest GdBa 2 Cu 3 In the case of the composition of O 7-X , examples of the precursor 1 may include a precursor that is compacted by mixing a powder having a composition of GdBa 2 Cu 3 O 7-X and a powder having a composition of Gd 2 BaCuO 5. .

また、目的の酸化物超電導バルク体がYBaCu7−x系の酸化物超電導バルク体である場合、前駆体1として例えば、Yの化合物粉末とBaの化合物粉末とCuの化合物粉末をY:Ba:Cu=1:2:3、またはそれに近似する組成で混合した原料混合粉末を圧密した前駆体などを用いることができる。Yの化合物として酸化物粉末、Baの炭酸塩粉末、Cuの酸化物粉末などを例示することができる。より具体的には、例えば酸化イットリウム(Y)粉末と炭酸バリウム(BaCO)粉末と酸化銅(CuO)粉末をR123相成分(YBaCu7−X相成分)とR211相成分(YBaCu相成分)の比を個別に秤量し、個別にめのう乳鉢などを用いて混合し、原料混合粉末を作製して圧密した前駆体を例示することができる。 Further, when the target oxide superconducting bulk body is a YBa 2 Cu 3 O 7-x based oxide superconducting bulk body, for example, a Y compound powder, a Ba compound powder, and a Cu compound powder are used as the precursor 1. Y: Ba: Cu = 1: 2: 3, or a precursor obtained by compacting a raw material mixed powder mixed with a composition close to that can be used. Examples of the Y compound include oxide powder, Ba carbonate powder, and Cu oxide powder. More specifically, for example, an yttrium oxide (Y 2 O 3 ) powder, a barium carbonate (BaCO 3 ) powder, and a copper oxide (CuO) powder are combined with an R123 phase component (Y 1 Ba 2 Cu 3 O 7-X phase component). The R211 phase component (Y 2 Ba 1 Cu 1 O 5 phase component) ratio is individually weighed and individually mixed using an agate mortar to exemplify a compacted precursor by preparing a raw material mixed powder. it can.

先の前駆体1は、先の組成の原料混合粉末をプレス装置、あるいは、CIP装置(静水圧装置)などの加圧装置により円盤状に成形したものを用いる。勿論、CIP装置が高価であるならば、プレス装置で前駆体1を製造する方が製造コストは安くなる。また、前駆体1の大きさは任意で良く、用いるプレス装置やCIP装置で製造可能な大きさの前駆体1とすれば良い。
前述の加圧装置により混合粉末を圧密する場合、本発明においては補強線4を組み込むので、加圧装置の金型などの成形空所に先の組成比の原料混合粉末を充填する際、原料混合粉末の充填物内に線状の補強体4を挿入しておく。
ここで用いる補強体4は貴金属からなるものが好ましく、具体的には白金、白金ロジウム合金、白金インジウム合金、白金パラジウム合金、白金タングステン合金などからなることが好ましい。白金(Pt)は融点1768℃であるが、白金に対してロジウム(Rh)を添加して合金化することで融点を向上させることができるので、後に行う溶融凝固法を実施する際に補強体が溶解し難いという観点からすると白金ロジウム合金の補強体4を用いることがより好ましい。例えば、87%Pt−13%Rh合金の融点は1865℃であるので、この組成比の白金ロジウム合金の補強線を用いることができる。
As the precursor 1, a raw material mixed powder having the above composition is formed into a disk shape by a pressing device or a pressing device such as a CIP device (hydrostatic pressure device). Of course, if the CIP apparatus is expensive, the manufacturing cost is lower when the precursor 1 is manufactured by the press apparatus. The size of the precursor 1 may be arbitrary, and the precursor 1 may be a size that can be manufactured by a press device or a CIP device to be used.
When the mixed powder is compacted by the above-described pressurizing apparatus, the reinforcing wire 4 is incorporated in the present invention. A linear reinforcing body 4 is inserted into the mixed powder filling.
The reinforcing body 4 used here is preferably made of a noble metal, specifically, platinum, a platinum rhodium alloy, a platinum indium alloy, a platinum palladium alloy, a platinum tungsten alloy, or the like. Although platinum (Pt) has a melting point of 1768 ° C., the melting point can be improved by adding rhodium (Rh) to platinum to form an alloy. It is more preferable to use a platinum rhodium alloy reinforcing body 4 from the viewpoint that it is difficult to dissolve. For example, since the melting point of the 87% Pt-13% Rh alloy is 1865 ° C., a platinum rhodium alloy reinforcing wire having this composition ratio can be used.

なお、白金ロジウム合金において、例えば、94%Pt−4%Rh合金の融点が1835℃、90%Pt10%Rh合金の融点が1860℃、87%Pt13%Rh合金の融点が1865℃、80%Pt20%Rh合金の融点が1915℃、70%Pt30%Rh合金の融点が1945℃、同様に60%Pt40%Rh合金の融点が1960℃、ロジウムの融点が1960℃であるので、後述する溶融凝固法適用時の最高加熱温度に耐える組成比の白金ロジウム合金や他の貴金属あるいはそれらの合金とすることが好ましい。勿論、前述の白金インジウム合金、白金パラジウム合金、白金タングステン合金などを用いても良い。   In the platinum rhodium alloy, for example, the melting point of 94% Pt-4% Rh alloy is 1835 ° C., the melting point of 90% Pt 10% Rh alloy is 1860 ° C., the melting point of 87% Pt 13% Rh alloy is 1865 ° C., 80% Pt 20 The melting point of the% Rh alloy is 1915 ° C., the melting point of the 70% Pt 30% Rh alloy is 1945 ° C., the melting point of the 60% Pt 40% Rh alloy is 1960 ° C., and the melting point of rhodium is 1960 ° C. It is preferable to use a platinum rhodium alloy having a composition ratio that can withstand the maximum heating temperature at the time of application, other noble metals, or alloys thereof. Of course, the aforementioned platinum indium alloy, platinum palladium alloy, platinum tungsten alloy, or the like may be used.

前記補強体4は、現状の技術において溶融凝固法により得られる酸化物超電導バルク体の大きさが直径10mm〜数10mm程度の大きさであることに鑑み、0.1mm〜0.5mm程度の直径の線状のものを複数本、例えば2〜10本程度用いることが望ましい。
この補強体4を前駆体1の例えば中心を囲むような点対称位置に、4本程度配置するように金型の内部に原料混合粉末とともに挿入し、金型を締めて原料混合粉末を圧密して図1に示すような4本の補強体4入りの前駆体1を得る。補強体4を金型の成形空所の原料混合粉末内に挿入する場合、原料混合粉末の圧密方向に沿って補強体4を配置することが補強体4を配置する向きの一例となるが、補強体4の配置方向については任意でよい。例えば、補強体4の配置は、縦方向、横方向、あるいはそれらの合成方向(斜め方向)でも差し支えない。
The reinforcing body 4 has a diameter of about 0.1 mm to 0.5 mm in view of the size of the oxide superconducting bulk body obtained by the melt-solidification method in the current technology having a diameter of about 10 mm to several tens of mm. It is desirable to use a plurality of, for example, about 2 to 10, for example.
The reinforcing body 4 is inserted into the mold together with the raw material mixed powder so that about four of the reinforcing bodies 4 are arranged at point-symmetrical positions surrounding the center of the precursor 1, for example, and the raw material mixed powder is consolidated by tightening the mold. Thus, a precursor 1 containing four reinforcing bodies 4 as shown in FIG. 1 is obtained. When the reinforcing body 4 is inserted into the raw material mixed powder in the molding cavity of the mold, disposing the reinforcing body 4 along the consolidation direction of the raw material mixed powder is an example of the direction in which the reinforcing body 4 is disposed. The arrangement direction of the reinforcing body 4 may be arbitrary. For example, the reinforcing body 4 may be arranged in the vertical direction, the horizontal direction, or the direction in which they are combined (oblique direction).

また、前駆体1を製造する場合、原料混合粉末を得た後、800〜1000℃程度で仮焼きしてから粉砕装置で粉砕した仮焼原料を再度混合するという仮焼き粉砕操作を必要回数行ったものを補強体4とともに成形装置の金型に投入して成形しても良い。粉末混合粉砕と仮焼き温度の条件として、めのう乳鉢あるいはアトライタやボールミル等の粉砕混合装置を用いて1時間程度混合した後に900℃程度で15時間程度仮焼きする条件等を例示することができる。   Moreover, when manufacturing the precursor 1, after obtaining raw material mixed powder, the calcining grinding operation of mixing again the calcining raw material calcined at about 800 to 1000 ° C. and then pulverized by a pulverizer is performed. You may shape | mold by putting the thing with the reinforcement body 4 in the metal mold | die of a shaping | molding apparatus. Examples of the conditions for powder mixing and calcination include calcining conditions such as an agate mortar or an attritor or ball mill for about 1 hour and then calcining at about 900 ° C. for about 15 hours.

また、繰り返し複数回仮焼きして最終粉砕し、混合する際、後に行う酸素雰囲気中での熱処理の際に密度を向上させるため、あるいは、バルク体の応力集中を防止する目的でAg粉末やAgO粉末を添加物質として混合し、成形体としたものを前駆体1とすることが好ましい。あるいは、前記原料粉末の混合時に予め目的の組成比でAg粉末やAgO粉末を添加物質として混合してなる混合粉末を用いても良い。
これらの添加物質は最終的に得られる酸化物超電導体の超電導特性を向上させるもの、あるいは超電導特性を阻害しないものであれば良い。例えば、添加物質がAgであれば、酸化物超電導体に対してAgOの状態で10〜40質量%程度の範囲で添加できることができる。
In addition, when calcining a plurality of times repeatedly for final pulverization and mixing, in order to improve the density during the subsequent heat treatment in an oxygen atmosphere, or for the purpose of preventing stress concentration in the bulk body, Ag powder or Ag The precursor 1 is preferably prepared by mixing 2 O powder as an additive substance into a molded body. Alternatively, it may be used a mixed powder obtained by mixing Ag powder and Ag 2 O powder as an additive material in advance in the target composition ratio upon mixing of the raw material powder.
These additive substances may be those that improve the superconducting properties of the finally obtained oxide superconductor or that do not impair the superconducting properties. For example, if the additive substance is Ag, it can be added in a range of about 10 to 40% by mass in the state of Ag 2 O with respect to the oxide superconductor.

図1に示す状態の前駆体1を得たならば、半溶融凝固法に基づいて前駆体1を加熱処理する。
ここで半溶融凝固法とは、RE−Ba−Cu−O系の酸化物超電導体を構成する各元素の化合物を複数混合して成形した原料混合成形体、即ち、前駆体1を得た後、この前駆体1を融点以上の温度で加熱溶融し、前駆体1の形を保持して半溶融状態とし、次いで温度勾配を加えながら徐冷工程を行ない、結晶化直前の温度で種結晶を前駆体の一部に設置し、種結晶を起点として前駆体内で結晶を成長させることにより酸化物超電導バルク体を得ようとする方法である。
即ち、前駆体1の融点よりも若干高い温度に全体を加熱して前駆体1をそれ自身の形が崩れないように半溶融状態とする。また、加熱雰囲気としては不活性ガス中に微量の酸素を供給した酸素雰囲気とする。例えば一例として、1%O濃度のArガス雰囲気を選択できる。
この際の加熱温度は、目的とする酸化物超電導体の組成によって、あるいは、熱処理する場合の雰囲気ガスの成分により若干異なるが、概ね1%O不活性ガス雰囲気中においてNd系の酸化物超電導体であるならば1000〜1200℃の範囲、他の系の酸化物超電導体でも概ね970〜1200℃の範囲である。
If the precursor 1 in the state shown in FIG. 1 is obtained, the precursor 1 is heat-treated based on the semi-melt solidification method.
Here, the semi-molten solidification method is a raw material mixed molded body obtained by mixing a plurality of compounds of each element constituting the RE-Ba-Cu-O-based oxide superconductor, that is, after obtaining the precursor 1 The precursor 1 is heated and melted at a temperature equal to or higher than the melting point to maintain the shape of the precursor 1 to be in a semi-molten state, and then a slow cooling process is performed while applying a temperature gradient, and the seed crystal is formed at the temperature immediately before crystallization. This is a method for obtaining an oxide superconducting bulk body by being placed in a part of the precursor and growing the crystal in the precursor starting from the seed crystal.
That is, the whole is heated to a temperature slightly higher than the melting point of the precursor 1 to bring the precursor 1 into a semi-molten state so that its shape does not collapse. The heating atmosphere is an oxygen atmosphere in which a small amount of oxygen is supplied in an inert gas. For example, an Ar gas atmosphere having a 1% O 2 concentration can be selected as an example.
The heating temperature at this time is slightly different depending on the composition of the target oxide superconductor or depending on the components of the atmospheric gas in the case of heat treatment, but is generally Nd-based oxide superconductivity in a 1% O 2 inert gas atmosphere. If it is a body, it is in the range of 1000 to 1200 ° C, and other oxide superconductors are in the range of 970 to 1200 ° C.

前駆体1を半溶融状態としたならば、前駆体1の温度を若干下げた後、結晶化直前の温度でその表面上部に種結晶を設置し、徐々に温度を段階的に下げて規定の温度で数10時間保持してから炉冷する。例えば、半溶融状態の温度よりも数10℃低い温度まで徐冷して図2に示す如く種結晶2を設置した後、更に数10℃低い温度まで徐冷してその温度で数10時間保持してから炉冷することで図2に示すような酸化物超電導体6を得ることができる。例えば、半溶融温度を1100℃とした場合、1010℃まで冷却し、種結晶を設置し、1000℃まで徐冷し、989℃まで徐冷した後、60時間保持し、炉冷する条件とする。なお、これらの冷却条件は本発明で適用できる条件の一例であって、本出願人は先に、特開平2004−235585号公報、特開2005−289684号公報、特開平2006−306692号公報、特開2007−131510号公報などにおいて開示した如く種々の溶融凝固法の条件を提供しているので、これらの公報に記載されているいずれの条件を採用しても良い。勿論、これらの条件以外に知られている溶融凝固法の条件を適用することもできる。   If the precursor 1 is in a semi-molten state, after slightly lowering the temperature of the precursor 1, a seed crystal is placed on the upper surface at the temperature immediately before crystallization, and the temperature is gradually lowered step by step. Hold at temperature for several tens of hours and then cool in furnace. For example, after gradually cooling to a temperature several tens of degrees C lower than the temperature in the semi-molten state and installing the seed crystal 2 as shown in FIG. Then, the oxide superconductor 6 as shown in FIG. 2 can be obtained by furnace cooling. For example, when the semi-melting temperature is 1100 ° C., it is cooled to 1010 ° C., a seed crystal is placed, gradually cooled to 1000 ° C., gradually cooled to 989 ° C., then held for 60 hours, and the furnace is cooled. . Note that these cooling conditions are examples of conditions that can be applied in the present invention. As disclosed in Japanese Patent Application Laid-Open No. 2007-131510 and the like, various conditions for melt solidification are provided, and any of the conditions described in these publications may be employed. Of course, the conditions of the melt-solidification method known besides these conditions can also be applied.

前駆体1の内部ではYBaCuO(Y211相)とL(液相)(3BaCuO+2CuO)とに分解し、種結晶を起点として、液相がY211相を下側に(種結晶から離れる側に)押し出すように移動しながら種結晶を起点としてYBaCu7−X(Y123相)なる組成比の酸化物超電導体の結晶が成長し、その結果として最終的に前駆体1の一部または全体が結晶化してYBaCu7−X(Y123相)の組成の図3に示す構造の酸化物超電導バルク体3が得られる。
前記の結晶化が進行する場合、前述の如き高融点の貴金属製の補強体4が溶融することがないので、酸化物超電導体の結晶成長に悪影響はなく、目的の結晶成長を行わせることができる。また、補強体4の外周部分のごく一部が部分溶融して周囲の原料混合粉末の成分元素と多少の元素拡散がなされたとしても、補強体4自体が貴金属製であり、周囲に存在する酸化物超電導体構成元素との反応性は低く、酸化物超電導体の結晶成長に与える影響は極めて少ないので、溶融凝固法による結晶成長は充分になされる。従って補強体4を内部に備えたとしても、初期の目的の結晶成長を充分になし得た酸化物超電導バルク体3を製造することができる。
Inside the precursor 1, it is decomposed into Y 2 BaCuO 5 (Y211 phase) and L (liquid phase) (3BaCuO 2 + 2CuO), and the liquid phase moves downward from the Y211 phase (separate from the seed crystal). The oxide superconductor crystal having a composition ratio of YBa 2 Cu 3 O 7-X (Y123 phase) grew from the seed crystal while moving so as to extrude to the side). Oxide superconducting bulk body 3 having a structure shown in FIG. 3 having a composition of YBa 2 Cu 3 O 7-X (Y123 phase) is obtained by crystallization partially or entirely.
When the crystallization proceeds, the noble metal reinforcing body 4 having a high melting point as described above does not melt, so that the crystal growth of the oxide superconductor is not adversely affected and the target crystal growth can be performed. it can. Further, even if only a small part of the outer peripheral portion of the reinforcing body 4 is partially melted and some element diffusion is performed with the constituent elements of the surrounding raw material mixed powder, the reinforcing body 4 itself is made of a noble metal and exists in the surroundings. Since the reactivity with the oxide superconductor constituent elements is low and the influence on the crystal growth of the oxide superconductor is very small, the crystal growth by the melt solidification method is sufficiently achieved. Therefore, even if the reinforcing body 4 is provided inside, the oxide superconducting bulk body 3 which can sufficiently achieve the initial target crystal growth can be manufactured.

なお、図3に示すこの形態の酸化物超電導バルク体3は、種結晶2を設置した中心部から外側に向けて単結晶領域5が生成され、その外側に多結晶領域6が生成されるとともに、種結晶2を設置した中心部分を囲む点対称位置に補強体4がバルク体の厚さ方向に4本複合された構造とされている。なお、この形態の酸化物超電導バルク体3は一例であって、多結晶領域6が形成されずに全域に単結晶領域5が成長されている構造となることもあり、単結晶領域5が酸化物超電導バルク体3の一部分のみに形成されている構造となることもある。また、単結晶領域の区画を示すファセットラインが図3のようには明確に表れないこともあるので、図3に示す形状は本発明の酸化物超電導バルク体の1つの例として示す。   In addition, in the oxide superconducting bulk body 3 of this form shown in FIG. 3, a single crystal region 5 is generated outward from the central portion where the seed crystal 2 is disposed, and a polycrystalline region 6 is generated outside thereof. The four reinforcing bodies 4 are combined in the thickness direction of the bulk body in a point-symmetric position surrounding the central portion where the seed crystal 2 is installed. The oxide superconducting bulk material 3 in this form is an example, and the single crystal region 5 may be grown in the whole region without the polycrystalline region 6 being formed. In some cases, the superconducting bulk material 3 may have a structure formed only on a part thereof. Further, the facet line indicating the section of the single crystal region may not be clearly shown as in FIG. 3, so the shape shown in FIG. 3 is shown as an example of the oxide superconducting bulk body of the present invention.

以上の工程により、補強体4を備えた酸化物超電導バルク体3であるならば、セラミックの1種である酸化物超電導体を貴金属の補強体4で補強した構造となるので、強度の高い酸化物超電導バルク体3を提供できる。また、酸化物超電導バルク体3は溶融凝固法により結晶成長させる場合に良好な結晶成長をなし得ているので、超電導特性にも優れている特徴を有する。
更に、本発明による酸化物超電導バルク体3においてAgを10〜40質量%の範囲で添加してなる場合、酸化物超電導バルク体3の内部に添加物としてのAgを適量添加し、内部応力集中を緩和することができてクラックの少ない構造になっているので、結果的に強度の向上した酸化物超電導バルク体3を得ることができる。
また、内部に金属の補強体4を備えているので、熱のこもりやすい酸化物超電導バルク体であっても補強体4の部分の熱伝導率が高いので、この補強体4の部分を介して冷媒等で効率良く冷却することが可能となり、熱はけの良好な酸化物超電導バルク体を提供できる特徴を有する。
If the oxide superconducting bulk body 3 is provided with the reinforcing body 4 by the above steps, the oxide superconductor, which is a kind of ceramic, is reinforced with the noble metal reinforcing body 4, so that the oxidation strength is high. A superconducting bulk material 3 can be provided. In addition, since the oxide superconducting bulk body 3 can achieve good crystal growth when crystal growth is performed by a melt solidification method, the oxide superconducting bulk material 3 has a feature of excellent superconducting characteristics.
Further, when Ag is added in the range of 10 to 40% by mass in the oxide superconducting bulk body 3 according to the present invention, an appropriate amount of Ag as an additive is added to the inside of the oxide superconducting bulk body 3 to concentrate internal stress. As a result, it is possible to obtain the oxide superconducting bulk body 3 with improved strength.
Further, since the metal reinforcing body 4 is provided inside, even if it is an oxide superconducting bulk body that tends to accumulate heat, the portion 4 of the reinforcing body 4 has high thermal conductivity. It can be efficiently cooled with a refrigerant or the like, and can provide an oxide superconducting bulk body with good heat dissipation.

次に、本発明による酸化物超電導バルク体3においては、補強体4を酸化物超電導バルク体3の中心を囲む点対称位置に複数本配置しているので、バランス良く酸化物超電導バルク体3を補強することができる。補強体4を設ける本数は特に限らないが、2〜10本程度、5〜10本程度の範囲が望ましい。これら本数の補強体4を設けることで、補強体4を利用して熱はけを良好とすることが可能となる。
例えば、液体窒素により冷却して酸化物超電導バルク体3を超電導状態で使用した場合、磁界を作用させた場合に磁界が移動して発熱のおそれを生じた場合であっても、熱伝導率の良好な補強体4を介して酸化物超電導バルク体3を液体窒素により効率良く冷却できるので超電導特性の劣化あるいは常伝導状態への遷移をいずれも抑制することができ、熱はけの良い構造を提供できる。
Next, in the oxide superconducting bulk body 3 according to the present invention, a plurality of reinforcing bodies 4 are arranged at point-symmetrical positions surrounding the center of the oxide superconducting bulk body 3, so that the oxide superconducting bulk body 3 is well balanced. Can be reinforced. The number of reinforcing bodies 4 is not particularly limited, but a range of about 2 to 10 and about 5 to 10 is desirable. By providing these number of reinforcing bodies 4, it is possible to improve heat dissipation using the reinforcing bodies 4.
For example, when the oxide superconducting bulk body 3 is used in a superconducting state after being cooled with liquid nitrogen, even if the magnetic field is moved and heat may be generated when the magnetic field is applied, the thermal conductivity Since the oxide superconducting bulk body 3 can be efficiently cooled with liquid nitrogen through the good reinforcing body 4, it is possible to suppress deterioration of superconducting properties or transition to the normal state, and a structure with good heat dissipation. Can be provided.

出発原料として、DyBaCu7−X成分の仮焼粉末とDyBaCu成分の仮焼粉末をモル比で1:0.3となるように秤量し、有機溶媒中にて混合した。また、クラック防止、融点降下の目的でAgO粉末を20質量%添加し、原料混合粉末とした。
次いで内径21mmの金型の成形空所に入れ、直径4mm、長さ8mmの白金ロジウム合金87%Pt−13%Rh線の補強線を2本、成形空所の原料混合粉末内にほぼ垂直に差し込み、一軸プレス機を用いて1〜3MPaの圧力で圧密し、直径21mm、高さ(厚さ)5mmの円盤状の前駆体に成形した。白金ロジウム線の位置は平面視した圧密体の中心を挟む、ほぼ180゜中心対称位置とした。
先のAgO粉末を添加する場合、添加量を10質量%、30質量%としてそれぞれ前駆体試料を作製し、各前駆体試料の空気中における融点を測定した結果を図4に示す。また、図4にはAgO粉末を添加することなく作製した前駆体試料の融点の測定結果も併せて示す。図4に示す結果から、AgO粉末を添加した前駆体試料の方が融点が下がっていることが明らかである。
As starting materials, calcined powder of Dy 1 Ba 2 Cu 3 O 7-X component and calcined powder of Dy 2 Ba 1 Cu 1 O 5 component were weighed so as to have a molar ratio of 1: 0.3, and organic Mixed in solvent. Further, crack prevention, the Ag 2 O powder for purposes of melting point depression was added 20 wt%, and the raw material mixed powder.
Next, it is put into a molding cavity of a die having an inner diameter of 21 mm, and two reinforcing wires of a platinum rhodium alloy 87% Pt-13% Rh wire having a diameter of 4 mm and a length of 8 mm are almost perpendicular to the raw material mixed powder in the molding cavity. It was inserted and compacted with a pressure of 1 to 3 MPa using a uniaxial press, and formed into a disk-shaped precursor having a diameter of 21 mm and a height (thickness) of 5 mm. The position of the platinum rhodium wire was approximately 180 ° center symmetrical with respect to the center of the compact in plan view.
When the previous Ag 2 O powder is added, precursor samples were prepared with addition amounts of 10% by mass and 30% by mass, respectively, and the results of measuring the melting point of each precursor sample in air are shown in FIG. FIG. 4 also shows the measurement results of the melting point of the precursor sample prepared without adding Ag 2 O powder. From the results shown in FIG. 4, it is clear that the precursor sample to which the Ag 2 O powder was added has a lower melting point.

次に、AgO粉末を20質量%添加した前駆体試料に対し、種結晶としてNdBaCu7−Xの組成の薄膜を利用し、大気中において以下の加熱パターンに応じて加熱処理した。この薄膜はMgOの基板上に先の組成比の10×10mmの厚さ700nmの酸化物超電導薄膜を成膜し、これを1mm角程度の大きさに割って使用したものである。
加熱処理においては、先の前駆体試料について以下の条件で行った。この加熱処理ではピーク温度の1030℃で1時間保持し、その後に975℃に降温させる。ここで核となる種結晶を半溶融状態のバルク体に種付けし、結晶化しやすいように100時間かけて930℃まで降温させた。また、これらの加熱を1%O−Arガス雰囲気中にて行った。
この後、溶融凝固法による酸素欠損を解消するために、100%酸素雰囲気中において450〜250℃にて200時間酸素アニール処理を行った。
Next, a thin film having a composition of Nd 1 Ba 2 Cu 3 O 7-X is used as a seed crystal for a precursor sample to which 20% by mass of Ag 2 O powder is added, and the following heating pattern is used in the atmosphere. Heat-treated. This thin film is obtained by forming an oxide superconducting thin film having a thickness of 10 × 10 mm 2 and having a thickness of 700 nm on an MgO substrate and dividing it into a size of about 1 mm square.
In the heat treatment, the previous precursor sample was performed under the following conditions. In this heat treatment, the peak temperature is maintained at 1030 ° C. for 1 hour, and then the temperature is lowered to 975 ° C. Here, seed crystals serving as nuclei were seeded into a semi-molten bulk body, and the temperature was lowered to 930 ° C. over 100 hours so as to facilitate crystallization. Moreover, performing these heated at 1% O 2 -Ar gas atmosphere.
Thereafter, in order to eliminate oxygen deficiency due to the melt solidification method, oxygen annealing treatment was performed at 450 to 250 ° C. for 200 hours in a 100% oxygen atmosphere.

得られた酸化物超電導バルク体試料の捕捉磁場測定結果を図5、図6に示す。捕捉磁場特性の測定は、液体窒素を用いて試料を冷却し、試料への印加磁場を1.8T(テスラ)として行った。また、図6に○印にて2本の白金ロジウム線の位置を示した。
図5と図6に示す結果から、本発明試料は、PtRh合金の補強線を内部に複合させているものの、捕捉磁場特性において補強線の位置に関連した悪影響は特に見られず、補強線を複合していても補強線の周囲で結晶成長が満足になされた結果の捕捉磁場特性と見受けられた。また、図5に示す捕捉磁場分布の山形図形を見ても、補強線を複合したことに起因するいびつな形状の凹凸などは見られず、酸化物超電導バルク体の中央側に1つのピークを有する好適な捕捉磁場特性が得られた。
また、補強体を複合したこの例の酸化物超電導バルク体試料の臨界温度(Tc)は約91K(オフセット値)を示した。これに対して補強体を複合していない酸化物超電導バルク体試料の臨界温度(Tc)は約90Kを示したので、本発明試料の酸化物超電導バルク体試料は、Pt−Rh合金の補強線を複合したことで臨界温度には殆ど影響がないことも判明し、良好な酸化物系超電導体であることを確認できた。
The captured magnetic field measurement results of the obtained oxide superconducting bulk material sample are shown in FIGS. The captured magnetic field characteristics were measured by cooling the sample using liquid nitrogen and setting the magnetic field applied to the sample to 1.8 T (Tesla). Further, the positions of the two platinum rhodium wires are indicated by circles in FIG.
From the results shown in FIG. 5 and FIG. 6, the sample of the present invention has a PtRh alloy reinforcing wire composited inside, but there is no particular adverse effect related to the position of the reinforcing wire in the trapping magnetic field characteristics. Even if they were combined, it seemed to be a trapped magnetic field characteristic as a result of satisfactory crystal growth around the reinforcing wire. In addition, even when looking at the chevron figure of the trapped magnetic field distribution shown in FIG. 5, there is no irregular shape or the like due to the composite of the reinforcing wires, and one peak is formed on the center side of the oxide superconducting bulk body. A suitable trapping magnetic field characteristic was obtained.
Further, the critical temperature (Tc) of the oxide superconducting bulk material sample of this example combined with the reinforcing body showed about 91 K (offset value). On the other hand, since the critical temperature (Tc) of the oxide superconducting bulk material sample not composited with the reinforcing body showed about 90 K, the oxide superconducting bulk material sample of the present invention sample is a reinforcing wire of Pt—Rh alloy. It was also found that there was almost no effect on the critical temperature due to the composite, and it was confirmed that the oxide was a good oxide superconductor.

図7は比較例の酸化物超電導バルク体試料と本発明に係る酸化物超電導バルク体試料の補強線とその周囲の金属組織を示すもので、図7(A)はPtの補強線を複合して製造した酸化物超電導バルク体の補強線とその周囲の金属組織写真、図7(B)はPtRh合金の補強線を複合して製造した酸化物超電導バルク体の補強線とその周囲の金属組織写真を示す。
Ptの補強線を適用した試料は上述の条件において空気中にて溶融凝固を行うと補強線が溶融してしまい、補強線を複合した位置で写真を撮影しても補強線の存在を確認することができなかった。これに対して図7(B)に示すPtRh合金の補強線を複合した酸化物超電導バルク体の補強線まわりの金属組織写真を見ると、PtRh合金の補強線の存在を明確に確認することができた。
複合した補強線の直径が400μm(0.4mm)であるので、図7(B)の組織写真から、外周部に他の元素と若干の拡散と伴ったと思われる被覆層が存在するが、殆ど全体がPtRh合金のまま残留したと思われ、それらの更に周囲側に元素拡散に起因する層の存在が見られるが、その更に外側においては一様な結晶成長が生じたと思われる領域が生成していた。これに対して図7(A)に示す組織ではPtの補強線の溶融に起因する不均一な組織が生成された痕跡が伺われる組織となった。
FIG. 7 shows the reinforcing wire of the oxide superconducting bulk sample of the comparative example and the oxide superconducting bulk sample according to the present invention and the surrounding metal structure. FIG. 7 (A) is a composite of Pt reinforcing wires. Fig. 7 (B) is a diagram of the oxide superconducting bulk body reinforcing wire and surrounding metal structure, and Fig. 7 (B) shows the oxide superconducting bulk body reinforcing wire manufactured by combining Pt Rh alloy reinforcing wire and the surrounding metal. A tissue photograph is shown.
A sample to which a Pt reinforcing wire is applied melts and solidifies in the air under the above conditions, and the reinforcing wire melts. Even if a photograph is taken at a position where the reinforcing wire is combined, the presence of the reinforcing wire is confirmed. I couldn't. On the other hand, when the metal structure photograph around the reinforcing wire of the oxide superconducting bulk body in which the reinforcing wire of the Pt Rh alloy shown in FIG. 7B is combined, the existence of the reinforcing wire of the Pt Rh alloy is clearly confirmed. I was able to.
Since the composite reinforcing wire has a diameter of 400 μm (0.4 mm), from the structure photograph of FIG. 7 (B), there is a coating layer that seems to be accompanied by other elements and some diffusion in the outer peripheral portion. It seems that the entire Pt Rh alloy remained, and there was a layer due to element diffusion on the further peripheral side, but on the outer side, a region where uniform crystal growth seems to have occurred was formed. Was. On the other hand, in the structure shown in FIG. 7 (A), there was a structure in which a trace of generation of a non-uniform structure due to melting of the Pt reinforcing wire was observed.

図7(B)に示す組織写真から、本実施例の酸化物超電導バルク体は、前記補強体の内部に補強体を構成する金属材料の未溶融部が芯部として残留され、その外周部に補強体の構成材料元素と酸化物超電導体の原料元素とが一部相互拡散して構成された被覆層が形成され、該被覆層の外部側において酸化物超電導体の原料元素からなる結晶育成領域が生成されてなる構造を有していることが判明した。
なお、白金の融点と溶融凝固法に基づく加熱温度を単純比較すると、溶融凝固法に基づく最高温度においても白金は溶解しないと想定されるが、溶融凝固法を実施する場合のピーク温度時において超電導バルク内に存在する化合物と白金との間で反応が生じる結果として白金製の補強体が溶融したものと理解できる。このため、補強線を用いる場合は、できるだけ高融点の金属からなる補強線を用いることが望ましく、そのため本実施例では白金の補強線よりもPtRh合金の補強線の方が有利であることが判明した。
From the structural photograph shown in FIG. 7B, the oxide superconducting bulk body of this example has an unmelted portion of the metal material constituting the reinforcing body as a core portion inside the reinforcing body, and the outer peripheral portion thereof. A crystal growth region comprising a coating layer formed by partially diffusing constituent material elements of the reinforcing body and raw material elements of the oxide superconductor, and comprising the raw material elements of the oxide superconductor on the outer side of the coating layer It has been found that it has a structure formed by.
If the melting point of platinum and the heating temperature based on the melt solidification method are simply compared, it is assumed that platinum does not dissolve even at the maximum temperature based on the melt solidification method, but superconductivity at the peak temperature when the melt solidification method is performed. It can be understood that the platinum reinforcing body has melted as a result of the reaction between the compound existing in the bulk and platinum. For this reason, when using a reinforcing wire, it is desirable to use a reinforcing wire made of a metal having a high melting point as much as possible. Therefore, in this example, it was found that the reinforcing wire of PtRh alloy is more advantageous than the reinforcing wire of platinum. did.

図1は本発明方法を実施する場合に用いる前駆体を示す説明図である。FIG. 1 is an explanatory view showing a precursor used in carrying out the method of the present invention. 図2は前駆体に種結晶を設置した状態を示す側面図である。FIG. 2 is a side view showing a state in which a seed crystal is installed on the precursor. 図3は本発明方法に従って得られた酸化物超電導バルク体の一例を示す平面図である。FIG. 3 is a plan view showing an example of an oxide superconducting bulk body obtained according to the method of the present invention. 図4は実施例において得られた前駆体試料のAgO添加量と融点との関係を示す図。FIG. 4 is a graph showing the relationship between the added amount of Ag 2 O and the melting point of the precursor sample obtained in the examples. 図5は実施例において得られたAgOを20質量%添加した酸化物超電導バルク体試料の捕捉磁場特性を示す図。FIG. 5 is a diagram showing a trapping magnetic field characteristic of an oxide superconducting bulk material sample added with 20% by mass of Ag 2 O obtained in Examples. 図6は同実施例で得られた捕捉磁場特性の等高線図。FIG. 6 is a contour map of the captured magnetic field characteristics obtained in the same example. 図7は酸化物超電導バルク体試料の補強線回りの金属組織を示すもので、図7(A)はPtの補強線を複合して製造した酸化物超電導バルク体の補強線まわりの金属組織写真、図7(B)はPtRh合金の補強線を複合して製造した酸化物超電導バルク体の補強線まわりの金属組織写真。FIG. 7 shows the metal structure around the reinforcing wire of the oxide superconducting bulk sample, and FIG. 7 (A) is a photograph of the metal structure around the reinforcing wire of the oxide superconducting bulk material manufactured by combining Pt reinforcing wires. FIG. 7B is a photograph of the metal structure around the reinforcing wire of the oxide superconducting bulk material manufactured by combining the reinforcing wires of the Pt Rh alloy.

符号の説明Explanation of symbols

1…前駆体、2…種結晶、3…酸化物超電導バルク体、4…補強線、5…単結晶領域、6…多結晶領域。   DESCRIPTION OF SYMBOLS 1 ... Precursor, 2 ... Seed crystal, 3 ... Oxide superconducting bulk body, 4 ... Reinforcement line, 5 ... Single-crystal region, 6 ... Polycrystalline region.

Claims (6)

REBaCu7−X(REは、Y、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの1種または2種以上を示す。)なる組成の酸化物超電導バルク体を製造するに際し、酸化物超電導バルク体を構成する元素の原料粉末を加圧成形して圧密する際、原料混合粉末中に溶融凝固法に伴う加熱温度において溶融しない貴金属の補強体を挿入して圧密し、目的の形状の前駆体を得た後、この前駆体に対し、溶融凝固法を適用して結晶成長させることを特徴とする酸化物超電導バルク体の製造方法。 RE 1 Ba 2 Cu 3 O 7-X (RE represents one or more of Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.) When the oxide superconducting bulk body having the composition described above is manufactured, when the raw material powder of the elements constituting the oxide superconducting bulk body is pressed and compacted, it does not melt at the heating temperature associated with the melt solidification method in the raw material mixed powder Production of oxide superconducting bulk material characterized by inserting a precious metal reinforcement and compacting to obtain a precursor of the desired shape, and then crystal-growing this precursor by applying a melt solidification method Method. 前記補強体を白金ロジウム線とすることを特徴とする請求項1に記載の酸化物超電導バルク体の製造方法。   The method for producing an oxide superconducting bulk body according to claim 1, wherein the reinforcing body is a platinum rhodium wire. 前記前駆体を加熱して半溶融状態とした後に冷却し、前記前駆体上に設置した種結晶の結晶構造を基に先の半溶融状態の前駆体を結晶化して酸化物超電導バルク体とするトップシード溶融凝固法によって補強体入りの酸化物超電導バルク体を製造することを特徴とする請求項1または2に記載の酸化物超電導バルク体の製造方法。   The precursor is heated to a semi-molten state and then cooled, and based on the crystal structure of the seed crystal placed on the precursor, the precursor in the semi-molten state is crystallized to form an oxide superconducting bulk body. The method for producing an oxide superconducting bulk body according to claim 1 or 2, wherein the oxide superconducting bulk body containing a reinforcing body is produced by a top seed melt solidification method. REBaCu7−X(REは、Y、La、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの1種または2種以上を示す。)なる組成を有し、溶融凝固法を適用して結晶成長された酸化物超電導バルク体であり、内部に貴金属製の補強体が複合されてなることを特徴とする酸化物超電導バルク体。 RE 1 Ba 2 Cu 3 O 7-X (RE represents one or more of Y, La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.) An oxide superconducting bulk body having a composition as described above and crystal-grown by applying a melt solidification method, wherein a reinforcing body made of noble metal is compounded inside. 前記補強体が白金ロジウム線であることを特徴とする請求項4に記載の酸化物超電導バルク体。   The oxide superconducting bulk body according to claim 4, wherein the reinforcing body is a platinum rhodium wire. 前記補強体の内部に補強体を構成する金属材料の未溶融部が芯部として残留され、その外周部に補強体の構成材料元素と酸化物超電導体の原料元素とを具備する被覆層が形成され、該被覆層の外部側において酸化物超電導体の原料元素からなる結晶育成領域が生成されてなることを特徴とする請求項4または5に記載の酸化物超電導バルク体。   An unmelted portion of the metal material constituting the reinforcing body remains as a core portion inside the reinforcing body, and a coating layer including the constituent material elements of the reinforcing body and the raw material elements of the oxide superconductor is formed on the outer periphery thereof. The oxide superconducting bulk body according to claim 4 or 5, wherein a crystal growth region made of a raw material element of the oxide superconductor is generated on the outer side of the coating layer.
JP2007286560A 2007-11-02 2007-11-02 Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body Expired - Fee Related JP5118941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007286560A JP5118941B2 (en) 2007-11-02 2007-11-02 Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007286560A JP5118941B2 (en) 2007-11-02 2007-11-02 Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body

Publications (2)

Publication Number Publication Date
JP2009114006A JP2009114006A (en) 2009-05-28
JP5118941B2 true JP5118941B2 (en) 2013-01-16

Family

ID=40781578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007286560A Expired - Fee Related JP5118941B2 (en) 2007-11-02 2007-11-02 Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body

Country Status (1)

Country Link
JP (1) JP5118941B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104233469B (en) * 2014-09-26 2017-05-24 上海交通大学 Method for inversely growing REBCO block

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3144675B2 (en) * 1998-12-18 2001-03-12 財団法人国際超電導産業技術研究センター Oxide superconductor and manufacturing method thereof
JP3100375B1 (en) * 1999-06-22 2000-10-16 財団法人国際超電導産業技術研究センター Oxide superconductor having excellent property maintaining performance and method for producing the same
JP3100370B2 (en) * 1999-03-09 2000-10-16 財団法人国際超電導産業技術研究センター Oxide superconductor and manufacturing method thereof
JP4174332B2 (en) * 2003-01-23 2008-10-29 財団法人国際超電導産業技術研究センター Oxide superconductor manufacturing method, oxide superconductor and its precursor support base material
JP4690774B2 (en) * 2005-03-28 2011-06-01 財団法人鉄道総合技術研究所 Manufacturing method of oxide superconducting bulk material
JP2007131510A (en) * 2005-09-08 2007-05-31 Railway Technical Res Inst Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body

Also Published As

Publication number Publication date
JP2009114006A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP2707499B2 (en) Manufacturing method of oxide superconductor
US5474976A (en) Production of oxide superconductors having large magnetic levitation force
JP4113113B2 (en) Oxide superconductor joining method and oxide superconductor joined body
JP5118941B2 (en) Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body
JP4174332B2 (en) Oxide superconductor manufacturing method, oxide superconductor and its precursor support base material
JPH1121126A (en) Manufacturing method of oxide superconducting bulk
JP5297148B2 (en) Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body
JP5098802B2 (en) Bulk oxide superconducting material and manufacturing method thereof
JP2007131510A (en) Manufacturing method of oxide superconducting bulk body and oxide superconducting bulk body
CN100538918C (en) RE-Ba-Cu-O is the manufacture method of oxide superconductor
JP4690774B2 (en) Manufacturing method of oxide superconducting bulk material
JP4190914B2 (en) Method for producing oxide superconductor and oxide superconductor
JPH1053415A (en) Oxide superconductor containing Ag with uniform crystal orientation and method for producing the same
JPH0751463B2 (en) Method for manufacturing oxide superconductor
JP2000247795A (en) Method for producing RE123-based bulk oxide superconductor
JP4967173B2 (en) Hollow oxide superconductor and method for producing the same
JPH0791057B2 (en) Rare earth oxide superconductor
JP4669998B2 (en) Oxide superconductor and manufacturing method thereof
JP4628042B2 (en) Oxide superconducting material and manufacturing method thereof
JP4951790B2 (en) Manufacturing method of oxide superconductivity
JP3242350B2 (en) Oxide superconductor and manufacturing method thereof
JP2854758B2 (en) Oxide superconductor with large magnetic levitation force
JP3115695B2 (en) Manufacturing method of oxide superconductor having large magnetic levitation force
JP4660326B2 (en) Manufacturing method of oxide superconducting material and substrate for supporting precursor thereof
JP3217727B2 (en) Manufacturing method of oxide superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151026

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees