[go: up one dir, main page]

JP5103806B2 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP5103806B2
JP5103806B2 JP2006180004A JP2006180004A JP5103806B2 JP 5103806 B2 JP5103806 B2 JP 5103806B2 JP 2006180004 A JP2006180004 A JP 2006180004A JP 2006180004 A JP2006180004 A JP 2006180004A JP 5103806 B2 JP5103806 B2 JP 5103806B2
Authority
JP
Japan
Prior art keywords
liquid crystal
pair
electric field
observation side
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006180004A
Other languages
Japanese (ja)
Other versions
JP2008009154A (en
Inventor
君平 小林
利晴 西野
則博 荒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006180004A priority Critical patent/JP5103806B2/en
Publication of JP2008009154A publication Critical patent/JP2008009154A/en
Application granted granted Critical
Publication of JP5103806B2 publication Critical patent/JP5103806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

この発明は、液晶分子の配向方位を基板面と実質的に平行な面内において制御して画像を表示する液晶表示素子に関する。   The present invention relates to a liquid crystal display element that displays an image by controlling the orientation direction of liquid crystal molecules in a plane substantially parallel to a substrate surface.

液晶表示素子として、予め定めた間隙を設けて対向配置された一対の基板間の間隙に、液晶分子がその分子長軸を予め定めた一方の方向に揃えて前記基板面と実質的に平行に配列された液晶層を封入し、前記一対の基板の互いに対向する内面のうちのいずれか一方に、互いに絶縁して配置され、前記基板面と実質的に平行な横電界を生成し、この横電界によって前記液晶分子の配向方位が制御される複数の画素をマトリックス状に配列させて形成するための複数の信号電極及び複数のコモン電極を設け、前記一対の基板の外面にそれぞれ偏光板を配置したものがある(特許文献1参照)。   As a liquid crystal display element, a liquid crystal molecule is aligned substantially in parallel with the substrate surface with its molecular long axis aligned in one predetermined direction in a gap between a pair of substrates opposed to each other with a predetermined gap. The aligned liquid crystal layer is sealed, and arranged on either one of the mutually facing inner surfaces of the pair of substrates so as to be insulated from each other, thereby generating a lateral electric field substantially parallel to the substrate surface. Provided are a plurality of signal electrodes and a plurality of common electrodes for arranging a plurality of pixels in which the orientation direction of the liquid crystal molecules is controlled by an electric field in a matrix, and a polarizing plate is disposed on each of the outer surfaces of the pair of substrates. (See Patent Document 1).

この液晶表示素子は、一方の基板の内面に設けられた複数の信号電極とコモン電極との間にそれぞれ表示データに対応した横電界を生成することにより、前記液晶分子の配向方位を前記基板面と実質的に平行な面内において制御して画像を表示する。
特開2002−82357号公報
The liquid crystal display element generates a lateral electric field corresponding to display data between a plurality of signal electrodes and a common electrode provided on the inner surface of one substrate, thereby changing the orientation direction of the liquid crystal molecules to the substrate surface. And display an image in a plane substantially parallel to the.
JP 2002-82357 A

上述した液晶表示素子は、観察側とは反対側から入射し、液晶層を透過した光によって画像を表示する透過型の表示素子であって、観察側から入射した外光によって画像を表示することができなかった。   The above-described liquid crystal display element is a transmissive display element that displays an image by light incident from the side opposite to the observation side and transmitted through the liquid crystal layer, and displays an image by external light incident from the observation side. I could not.

この発明は、液晶分子の配向方位を基板面と実質的に平行な面内において制御して画像を表示し、しかも、観察側から入射した光を反射し、その光の前記観察側への出射を制御して画像を表示する反射表示と、観察側とは反対側から入射した光の前記観察側への出射を制御して画像を表示する透過表示とを、明暗を反転させること無く行なうことができる液晶表示素子を提供することを目的としたものである。   The present invention displays an image by controlling the orientation direction of liquid crystal molecules in a plane substantially parallel to the substrate surface, reflects light incident from the observation side, and emits the light to the observation side. Reflective display for displaying an image by controlling the image and transmissive display for displaying an image by controlling the emission of light incident from the opposite side to the observation side to display the image without reversing light and dark An object of the present invention is to provide a liquid crystal display element capable of achieving the above.

この発明の液晶表示素子は、
予め定めた間隙を設けて対向配置された観察側及びその反対側の一対の基板と、
前記一対の基板間の間隙に封入され、液晶分子がその分子長軸を予め定めた一方の方向に揃えて前記基板面と実質的に平行に配列された液晶層と、
前記一対の基板の互いに対向する内面のうちのいずれか一方に互いに絶縁して配置され、前記基板面と実質的に平行な横電界を生成し、この横電界によって前記液晶分子の配向方位が制御される複数の画素をマトリックス状に配列させて形成するための複数の信号電極及び複数のコモン電極と、
前記反対側の基板の内面または外面に、前記複数の画素内の予め定めた領域にそれぞれ対応させて設けられ、前記観察側から入射した光を反射して前記観察側へ出射する反射表示部と、前記観察側とは反対側から入射した光を透過させて前記観察側へ出射する前記反射表示部以外の透過表示部とを前記複数の画素毎に形成するための反射膜と、
前記一対の基板の少なくともいずれか一方の内面に、前記複数の画素の前記反射表示部にそれぞれ対応させて設けられ、前記反射表示部の前記液晶の屈折率異方性Δnと液晶層厚dとの積Δndが、前記透過表示部の前記液晶の屈折率異方性Δnと液晶層厚dとの積Δndに比べて透過光の1/4波長に相当する値だけ小さくなるように、前記反射表示部の液晶層厚を調整するための液晶層厚調整層と、
前記一対の基板の外面に、それぞれの吸収軸を実質的に平行にしてそれぞれ配置された観察側及びその反対側の一対の偏光板と、
観察側とは反対側の基板とその外面に配置された反対側偏光板との間に、その遅相軸を前記反対側偏光板の吸収軸と実質的に平行にする位相差板と、
を備えることを特徴とする。
The liquid crystal display element of the present invention is
A pair of substrates on the opposite side and the observation side disposed opposite each other with a predetermined gap;
A liquid crystal layer encapsulated in a gap between the pair of substrates, wherein the liquid crystal molecules are aligned substantially parallel to the substrate surface with their molecular long axes aligned in one predetermined direction;
Insulated on either one of the opposing inner surfaces of the pair of substrates, generates a lateral electric field substantially parallel to the substrate surface, and the orientation of the liquid crystal molecules is controlled by the lateral electric field A plurality of signal electrodes and a plurality of common electrodes for forming a plurality of pixels arranged in a matrix,
A reflective display unit provided on an inner surface or an outer surface of the substrate on the opposite side so as to correspond to a predetermined region in each of the plurality of pixels, which reflects light incident from the observation side and emits the light to the observation side; A reflective film for forming a transmissive display unit other than the reflective display unit that transmits light incident from the opposite side to the observation side and emits the light to the observation side; and
The inner surface of at least one of the pair of substrates is provided so as to correspond to the reflective display portion of the plurality of pixels, and the refractive index anisotropy Δn of the liquid crystal and the liquid crystal layer thickness d of the reflective display portion, Is reduced by a value corresponding to a quarter wavelength of transmitted light as compared to the product Δnd of the refractive index anisotropy Δn of the liquid crystal and the liquid crystal layer thickness d of the transmissive display unit. A liquid crystal layer thickness adjusting layer for adjusting the liquid crystal layer thickness of the display unit;
A pair of polarizing plates on the outer side of the pair of substrates, on the observation side and on the opposite side, each arranged substantially parallel to the respective absorption axes ;
A retardation plate having a slow axis substantially parallel to the absorption axis of the opposite polarizing plate between the substrate opposite to the observation side and the opposite polarizing plate disposed on the outer surface thereof;
It is characterized by providing.

その場合、前記一対の偏光板は、それぞれの吸収軸を無電界時の液晶分子の分子長軸の向きに対して実質的に45°ずらして配置するのが好ましい。   In that case, it is preferable that the pair of polarizing plates be arranged so that their respective absorption axes are substantially shifted by 45 ° with respect to the direction of the molecular long axis of the liquid crystal molecules when there is no electric field.

この発明の液晶表示素子は、一対の基板の互いに対向する内面のうちのいずれか一方に互いに絶縁して配置され、前記基板面と実質的に平行な横電界を生成し、この横電界によって前記液晶分子の配向方位が制御される複数の画素をマトリックス状に配列させて形成するための複数の信号電極及び複数のコモン電極との間にそれぞれ表示データに対応した横電界を生成することにより、前記複数の画素の液晶分子の配向方位を制御して画像を表示する。   The liquid crystal display element of the present invention is disposed on either one of the opposing inner surfaces of a pair of substrates so as to be insulated from each other, and generates a lateral electric field substantially parallel to the substrate surface. By generating a lateral electric field corresponding to display data between a plurality of signal electrodes and a plurality of common electrodes for forming and arranging a plurality of pixels in which the orientation direction of liquid crystal molecules is controlled in a matrix, An image is displayed by controlling the orientation direction of the liquid crystal molecules of the plurality of pixels.

そして、この液晶表示素子は、観察側とは反対側の基板の内面または外面に、前記複数の画素内の予め定めた領域にそれぞれ対応させて、前記観察側から入射した光を反射して前記観察側へ出射する反射表示部と、前記観察側とは反対側から入射した光を透過させて前記観察側へ出射する前記反射表示部以外の透過表示部とを前記複数の画素毎に形成するための反射膜を設けているため、観察側から入射した光を反射し、その光の前記観察側への出射を制御して画像を表示する反射表示と、観察側とは反対側から入射した光の前記観察側への出射を制御して画像を表示する透過表示とを行なうことができる。   Then, the liquid crystal display element reflects the light incident from the observation side to correspond to the predetermined regions in the plurality of pixels on the inner surface or the outer surface of the substrate opposite to the observation side, respectively. A reflective display unit that emits light to the observation side and a transmissive display unit that transmits light incident from the side opposite to the observation side and emits the light to the observation side are formed for each of the plurality of pixels. In order to reflect the incident light from the observation side and control the emission of the light to the observation side to display the image, and the incident light from the opposite side to the observation side It is possible to perform transmission display in which an image is displayed by controlling the emission of light to the observation side.

しかも、この液晶表示素子は、前記一対の基板の少なくともいずれか一方の内面に、前記複数の画素の前記反射表示部にそれぞれ対応させて、前記反射表示部の前記液晶の屈折率異方性Δnと液晶層厚dとの積Δndが、前記透過表示部の前記液晶の屈折率異方性Δnと液晶層厚dとの積Δndに比べて透過光の1/4波長に相当する値だけ小さくなるように、前記反射表示部の液晶層厚を調整するための液晶層厚調整層を設けているため、前記反射表示と透過表示とを、明暗を反転させること無く行なうことができる。   In addition, the liquid crystal display element has a refractive index anisotropy Δn of the liquid crystal of the reflective display unit on the inner surface of at least one of the pair of substrates, corresponding to the reflective display unit of the plurality of pixels, respectively. The product Δnd of the liquid crystal layer thickness d is smaller than the product Δnd of the refractive index anisotropy Δn of the liquid crystal and the liquid crystal layer thickness d of the transmissive display unit by a value corresponding to a quarter wavelength of the transmitted light. As described above, since the liquid crystal layer thickness adjusting layer for adjusting the liquid crystal layer thickness of the reflective display portion is provided, the reflective display and the transmissive display can be performed without reversing the brightness.

この発明の液晶表示素子において、前記一対の偏光板は、それぞれの吸収軸を実質的に平行にして配置するのが望ましく、このようにすることにより、前記反射表示部と透過表示部の両方の表示を、前記横電界が生成されないときに輝度が最小となる無電界暗表示にすることができる。   In the liquid crystal display element according to the present invention, it is desirable that the pair of polarizing plates be arranged with their absorption axes substantially parallel to each other. By doing so, both the reflective display portion and the transmissive display portion are arranged. The display can be a dark field-free display in which the luminance is minimized when the lateral electric field is not generated.

その場合、前記一対の偏光板は、それぞれの吸収軸を無電界時の液晶分子の分子長軸の向きに対して実質的に45°ずらして配置するのが好ましく、このようにすることにより、前記反射表示と透過表示の両方の明るさ及びコントラストを高くすることができる。   In that case, it is preferable that the pair of polarizing plates are arranged so that their respective absorption axes are substantially shifted by 45 ° with respect to the direction of the molecular long axis of the liquid crystal molecules when no electric field is applied. The brightness and contrast of both the reflective display and the transmissive display can be increased.

また、前記一対の偏光板を、それぞれの吸収軸を実質的に平行にして配置する場合は、前記観察側とは反対側の基板とその外面に配置された反対側偏光板との間に、視角依存性を補償するための位相差板を、その遅相軸を前記反対側偏光板の吸収軸と実質的に平行にするか、或いは実質的に直交させて配置するのが好ましく、このようにすることにより、前記透過表示の視野を広くすることができる。   Further, when the pair of polarizing plates are arranged with their respective absorption axes substantially parallel, between the substrate on the opposite side to the observation side and the opposite side polarizing plate arranged on the outer surface thereof, It is preferable that the retardation plate for compensating the viewing angle dependency is arranged so that its slow axis is substantially parallel to or substantially perpendicular to the absorption axis of the opposite polarizing plate. By doing so, the field of view of the transmissive display can be widened.

この発明の液晶表示素子において、前記一対の偏光板は、それぞれの吸収軸を実質的に直交させて配置し、前記観察側とは反対側の基板とその外面に配置された反対側偏光板との間に、透過光に1/2波長の位相差を与えるλ/2位相差板を、その遅相軸を前記反対側偏光板の吸収軸に対して実質的に45°ずらして配置するのが望ましく、このようにすることにより、前記反射表示部と透過表示部の両方の表示を無電界暗表示にするとともに、前記透過表示の視野を広くすることができる。   In the liquid crystal display element of the present invention, the pair of polarizing plates are arranged with their absorption axes substantially orthogonal to each other, a substrate on the side opposite to the observation side, and an opposite side polarizing plate arranged on the outer surface thereof. In the meantime, a λ / 2 retardation plate that gives a half-wave phase difference to the transmitted light is arranged with its slow axis substantially shifted by 45 ° with respect to the absorption axis of the opposite polarizing plate. In this way, the display of both the reflective display unit and the transmissive display unit can be made dark-free display and the field of view of the transmissive display can be widened.

その場合、前記一対の偏光板は、それぞれの吸収軸を無電界時の液晶分子の分子長軸の向きに対して互いに反対方向に実質的に45°ずらして配置し、前記λ/2位相差板は、その遅相軸を前記無電界時の液晶分子の分子長軸の向きと実質的に平行にして配置するのが好ましく、このようにすることにより、前記反射表示と透過表示の両方の明るさ及びコントラストを高くすることができる。   In that case, the pair of polarizing plates are arranged so that their absorption axes are substantially shifted by 45 ° in directions opposite to each other with respect to the direction of the molecular long axis of the liquid crystal molecules when no electric field is applied. The plate is preferably arranged so that the slow axis thereof is substantially parallel to the direction of the molecular long axis of the liquid crystal molecules when no electric field is applied. In this way, both the reflection display and the transmission display are performed. Brightness and contrast can be increased.

さらに、この発明の液晶表示素子において、前記一対の偏光板は、それぞれの吸収軸を実質的に直交させて配置し、前記観察側の基板とその外面に配置された観察側偏光板との間に、透過光に1/2波長の位相差を与えるλ/2位相差板を、その遅相軸を前記観察側偏光板の吸収軸に対して実質的に45°ずらして配置するのが望ましく、このようにすることにより、前記反射表示部と透過表示部の両方の表示を無電界暗表示にするとともに、前記透過表示の視野を広くすることができる。   Furthermore, in the liquid crystal display element of the present invention, the pair of polarizing plates are arranged with their absorption axes substantially orthogonal to each other, and between the observation side substrate and the observation side polarizing plate arranged on the outer surface thereof. In addition, it is desirable to arrange a λ / 2 retardation plate that gives a half-wave phase difference to transmitted light, with its slow axis substantially shifted from the absorption axis of the observation side polarizing plate by 45 °. By doing in this way, the display of both the said reflective display part and a transmissive display part can be made into a non-electric field dark display, and the visual field of the said transmissive display can be expanded.

その場合、前記一対の偏光板は、それぞれの吸収軸を無電界時の液晶分子の分子長軸の向きに対して互いに反対方向に実質的に45°ずらして配置し、前記λ/2位相差板は、その遅相軸を前記無電界時の液晶分子の分子長軸の向きに対して実質的に直交させて配置するのが好ましく、このようにすることにより、前記反射表示と透過表示の両方の明るさ及びコントラストを高くすることができる。   In that case, the pair of polarizing plates are arranged so that their absorption axes are substantially shifted by 45 ° in directions opposite to each other with respect to the direction of the molecular long axis of the liquid crystal molecules when no electric field is applied. The plate is preferably disposed so that its slow axis is substantially perpendicular to the direction of the molecular long axis of the liquid crystal molecules when no electric field is applied. In this way, the reflective display and the transmissive display are arranged. Both brightness and contrast can be increased.

(第1の実施形態)
図1〜図6はこの発明の第1の実施例を示しており、図1は液晶表示素子の一方の基板の一部分の平面図、図2は前記液晶表示素子の図1のII−II線に沿う断面図、図3は前記液晶表示素子の図1のIII−III線に沿う断面図、図4は前記液晶表示素子の図1のIV−IV線に沿う断面図、図5は前記液晶表示素子の一対の基板の配向処理方向と一対の偏光板の吸収軸の向きと視角依存性補償位相差板の遅相軸の向きを観察側から見た図、図6は前記液晶表示素子の1つの画素における無電界時と横電界生成時の液晶分子の分子長軸の向きを観察側から見た図である。
(First embodiment)
1 to 6 show a first embodiment of the present invention. FIG. 1 is a plan view of a part of one substrate of a liquid crystal display element, and FIG. 2 is a line II-II in FIG. 1 of the liquid crystal display element. 3 is a cross-sectional view of the liquid crystal display element taken along line III-III in FIG. 1, FIG. 4 is a cross-sectional view of the liquid crystal display element taken along line IV-IV in FIG. 1, and FIG. FIG. 6 is a view of the orientation processing direction of the pair of substrates of the display element, the direction of the absorption axis of the pair of polarizing plates, and the direction of the slow axis of the viewing angle dependence compensation phase difference plate, viewed from the observation side. It is the figure which looked at the direction of the molecular long axis of the liquid crystal molecule at the time of no electric field and horizontal electric field generation in one pixel from the observation side.

この液晶表示素子は、図1〜図4のように、予め定めた間隙を設けて対向配置された観察側(図2〜図4において上側)及びその反対側の一対の透明基板1,2と、前記一対の基板1,2間の間隙に封入され、液晶分子3aがその分子長軸を予め定めた一方の方向に揃えて前記基板1,2面と実質的に平行に配列された液晶層3と、前記一対の基板1,2の互いに対向する内面のうちの一方の基板の内面、例えば観察側とは反対側の基板2の内面に、互いに絶縁して配置され、前記基板1,2面と実質的に平行な横電界を生成し、この横電界によって前記液晶分子3aの配向方位が制御される複数の画素100を行方向(画面の左右方向)及び列方向(画面の上下方向)にマトリックス状に配列させて形成するための複数の信号電極4及び複数のコモン電極5と、前記一対の基板1,2の外面にそれぞれ配置された観察側及びその反対側の一対の偏光板21,22とを備えている。   As shown in FIGS. 1 to 4, the liquid crystal display element includes an observation side (upper side in FIGS. 2 to 4) and a pair of transparent substrates 1 and 2 on the opposite side, facing each other with a predetermined gap. A liquid crystal layer enclosed in a gap between the pair of substrates 1 and 2 and having liquid crystal molecules 3a aligned substantially parallel to the surfaces of the substrates 1 and 2 with their molecular long axes aligned in one predetermined direction. 3 and the inner surface of one of the opposing inner surfaces of the pair of substrates 1 and 2, for example, the inner surface of the substrate 2 on the opposite side to the observation side, are arranged insulated from each other, A horizontal electric field substantially parallel to the surface is generated, and the plurality of pixels 100 in which the orientation direction of the liquid crystal molecules 3a is controlled by the horizontal electric field are arranged in the row direction (left and right direction of the screen) and the column direction (up and down direction of the screen). A plurality of signal electrodes 4 and a plurality of signal electrodes 4 are arranged in a matrix. It includes a common electrode 5, and a pair of polarizing plates 21 and 22 the outer surface of each arranged observation side and the opposite side of the pair of substrates 1 and 2.

以下、前記観察側の基板1を前基板、観察側とは反対側の基板2を後基板、前記前基板1の外面に配置された観察側の偏光板21を前側偏光板、前記後基板2の外面に配置された反対側の偏光板22を後側偏光板という。   Hereinafter, the substrate 1 on the observation side is the front substrate, the substrate 2 opposite to the observation side is the rear substrate, the polarizing plate 21 on the observation side arranged on the outer surface of the front substrate 1 is the front polarizing plate, and the rear substrate 2. The polarizing plate 22 on the opposite side disposed on the outer surface is referred to as a rear polarizing plate.

前記一対の基板1,2は、図示しない枠状のシール材を介して接合されており、前記液晶層3は、前記一対の基板1,2間の間隙の前記シール材により囲まれた領域に封入されている。   The pair of substrates 1 and 2 are joined via a frame-shaped sealing material (not shown), and the liquid crystal layer 3 is in a region surrounded by the sealing material in the gap between the pair of substrates 1 and 2. It is enclosed.

この液晶表示素子は、アクティブマトリックス液晶表示素子であり、前記複数の信号電極4及びコモン電極5が設けられた後基板2の内面に、前記信号電極4とコモン電極5との間に生成された前記横電界により前記液晶分子3aの配向方位が制御される領域からなるマトリックス状に配列した複数の画素100毎に配置された能動素子6を備えている。   This liquid crystal display element is an active matrix liquid crystal display element, and is formed between the signal electrode 4 and the common electrode 5 on the inner surface of the substrate 2 after the plurality of signal electrodes 4 and the common electrode 5 are provided. An active element 6 is provided for each of a plurality of pixels 100 arranged in a matrix composed of a region in which the orientation direction of the liquid crystal molecules 3a is controlled by the lateral electric field.

この能動素子6は、信号の入力電極10及び出力電極11と、前記入力電極10と出力電極11との間の導通を制御する制御電極7とを有しており、前記制御電極7が各行毎に走査線12に接続され、前記入力電極10が各列毎に信号線13に接続され、前記出力電極11が前記信号電極4に接続されている。   The active element 6 includes a signal input electrode 10 and an output electrode 11, and a control electrode 7 that controls conduction between the input electrode 10 and the output electrode 11. The control electrode 7 is provided for each row. Are connected to the scanning line 12, the input electrode 10 is connected to the signal line 13 for each column, and the output electrode 11 is connected to the signal electrode 4.

前記能動素子6は、TFT(薄膜トランジスタ)であり、前記後基板2の基板面上に形成されたゲート電極(制御電極)7と、前記ゲート電極7を覆って後基板2の略全面に形成された透明なゲート絶縁膜8と、このゲート絶縁膜8の上に前記ゲート電極7と対向させて形成されたi型半導体膜9と、前記i型半導体膜9の両側部の上にn型半導体膜(図示せず)を介して設けられたドレイン電極(入力電極)10及びソース電極(出力電極)11とからなっている。   The active element 6 is a TFT (thin film transistor), and is formed on a substantially entire surface of the rear substrate 2 covering the gate electrode 7 and a gate electrode (control electrode) 7 formed on the substrate surface of the rear substrate 2. A transparent gate insulating film 8, an i-type semiconductor film 9 formed on the gate insulating film 8 so as to face the gate electrode 7, and an n-type semiconductor on both sides of the i-type semiconductor film 9. It consists of a drain electrode (input electrode) 10 and a source electrode (output electrode) 11 provided via a film (not shown).

前記走査線12は、前記後基板2の基板面上に、前記行方向に配列された複数の画素100からなる各画素行毎に、前記各画素行の間(図1において下側)に前記画素行と平行に形成され、各行のTFT6のゲート電極7に接続されており、前記信号線13は、前記ゲート絶縁膜8の上に、前記列方向に配列された複数の画素100からなる各画素列毎に、前記画素列の間(図1において左側)に前記画素列と平行に形成され、各列のTFT6のドレイン電極10に接続されている。   The scanning line 12 is provided between the pixel rows (lower side in FIG. 1) for each pixel row including a plurality of pixels 100 arranged in the row direction on the substrate surface of the rear substrate 2. The signal lines 13 are formed in parallel to the pixel rows and connected to the gate electrodes 7 of the TFTs 6 in each row, and the signal lines 13 are each composed of a plurality of pixels 100 arranged in the column direction on the gate insulating film 8. Each pixel column is formed between the pixel columns (on the left side in FIG. 1) in parallel with the pixel columns, and is connected to the drain electrode 10 of the TFT 6 in each column.

なお、前記後基板2の縁部には、前記前基板1の外方に張出す端子配列部(図示せず)が形成されており、前記走査線12及び信号線13は、前記端子配列部に設けられた複数の走査線端子及び信号線端子に接続されている。   Note that a terminal array portion (not shown) extending outward from the front substrate 1 is formed at an edge of the rear substrate 2, and the scanning line 12 and the signal line 13 are connected to the terminal array portion. Are connected to a plurality of scanning line terminals and signal line terminals.

そして、前記コモン電極5は、前記ゲート絶縁膜8の上に形成され、前記複数の信号電極4は、前記コモン電極5及びTFT6を覆って前記後基板2の略全面に形成された透明な層間絶縁膜14の上に形成されている。すなわち、前記複数の信号電極4と前記コモン電極5は、前記層間絶縁膜14により絶縁されている。   The common electrode 5 is formed on the gate insulating film 8, and the plurality of signal electrodes 4 cover the common electrode 5 and the TFT 6 and are formed on a transparent interlayer formed on substantially the entire surface of the rear substrate 2. It is formed on the insulating film 14. That is, the plurality of signal electrodes 4 and the common electrode 5 are insulated by the interlayer insulating film 14.

前記複数の信号電極4はそれぞれ、縦幅(画面の上下方向の幅)が横幅(画面の左右方向の幅)よりも大きい縦長の矩形形状の領域に、その長手方向に沿う複数の櫛歯部4bが間隔を設けて互いに平行に形成され、前記長手方向の一端側に、前記複数の櫛歯部4b,4b同士をつなぐ櫛歯接続部4dが形成された透明な櫛形導電膜(例えばITO膜)4aからなっている。   Each of the plurality of signal electrodes 4 has a plurality of comb teeth along a longitudinal direction thereof in a vertically long rectangular region in which the vertical width (width in the vertical direction of the screen) is larger than the horizontal width (width in the horizontal direction of the screen). A transparent comb-shaped conductive film (for example, an ITO film) in which 4b is formed in parallel to each other at intervals, and a comb-teeth connection portion 4d that connects the plurality of comb-tooth portions 4b, 4b is formed on one end side in the longitudinal direction. 4a.

この櫛形導電膜4aの各櫛歯部4bは、図6のように、前記画面の上下方向、つまり画面の縦軸yに対して、左右いずれか一方回りの方向、例えば観察側から見て右回り方向に5°〜15°の角度θで傾いた方向に沿う細長形状に形成されており、これらの櫛歯部4bのうち、前記櫛歯接続部4dに直接つながらない櫛歯部(図1において、櫛形導電膜4aの左端の櫛歯部)4bは、前記櫛歯接続部4dとは反対側の端部において隣合う櫛歯部に接続され、その隣合う櫛歯部4bを介して前記櫛歯接続部4dにつながっている。   As shown in FIG. 6, each comb tooth portion 4b of the comb-shaped conductive film 4a has a vertical direction of the screen, that is, a direction around either the left or right with respect to the vertical axis y of the screen, for example, the right side when viewed from the observation side. Of these comb teeth 4b, the comb teeth 4b (in FIG. 1) are not directly connected to the comb teeth connection 4d. The comb teeth 4b are formed in an elongated shape along the direction inclined at an angle θ of 5 ° to 15 ° in the rotation direction. The comb tooth portion 4b on the left end of the comb-shaped conductive film 4a is connected to the adjacent comb tooth portion at the end opposite to the comb connection portion 4d, and the comb is connected via the adjacent comb tooth portion 4b. It is connected to the tooth connecting part 4d.

また、この櫛形導電膜4aの各櫛歯部4bの幅D1と、隣合う櫛歯部4b,4b間の間隔D2との比D2/D1は、1/3〜3/1、好ましくは1/1に設定されている。   The ratio D2 / D1 between the width D1 of each comb tooth portion 4b of the comb-shaped conductive film 4a and the distance D2 between the adjacent comb tooth portions 4b and 4b is 1/3 to 3/1, preferably 1 / 1 is set.

そして、前記櫛形導電膜4aの櫛歯接続部4dの一端側は、前記TFT6のソース電極11上に前記層間絶縁膜14を介して重なっており、前記層間絶縁膜14に設けられた図示しないコンタクト孔において前記ソース電極11に接続されている。   One end side of the comb-teeth connecting portion 4d of the comb-shaped conductive film 4a overlaps the source electrode 11 of the TFT 6 with the interlayer insulating film 14 interposed therebetween, and a contact (not shown) provided on the interlayer insulating film 14 The hole is connected to the source electrode 11.

また、前記ゲート絶縁膜8の上に形成された前記コモン電極5は、前記各画素行毎にその全長にわたって設けられた透明な行方向導電膜(例えばITO膜)5aからなっており、前記櫛形導電膜4aからなる信号電極4と、前記行方向導電膜5aからなるコモン電極5とにより、前記信号電極4の各櫛歯部4bの縁部4cと、前記コモン電極5の前記各櫛歯部4bの縁部4cに隣接する部分(隣合う櫛歯部4b,4bの間に対応する部分)との間に、前記後基板2の基板面と実質的に平行な方向の横電界Eを生成し、この横電界Eにより前記液晶分子3aの配向方位を前記基板1,2面と実質的に平行な面内において制御する実質的に縦長矩形形状の画素100が形成されている。   The common electrode 5 formed on the gate insulating film 8 is formed of a transparent row direction conductive film (for example, ITO film) 5a provided over the entire length of each pixel row, and the comb shape The signal electrode 4 made of the conductive film 4 a and the common electrode 5 made of the row direction conductive film 5 a, the edge 4 c of each comb tooth portion 4 b of the signal electrode 4, and each comb tooth portion of the common electrode 5 A lateral electric field E in a direction substantially parallel to the substrate surface of the rear substrate 2 is generated between a portion adjacent to the edge portion 4c of 4b (a portion corresponding to a portion between the adjacent comb teeth portions 4b and 4b). The horizontal electric field E forms a substantially vertically long rectangular pixel 100 that controls the orientation direction of the liquid crystal molecules 3a in a plane substantially parallel to the surfaces of the substrates 1 and 2.

なお、この実施例では、前記行方向導電膜5aを、図1のように、前記櫛形導電膜4aからなる各信号電極4にそれぞれ対応する領域を、縦長矩形形状の電極部5bにパターニングし、これらの電極部5b,5bをその一端側(走査線12が設けられた側とは反対側)において接続部5cにより接続した形状に形成しているが、この行方向導電膜5aは、前記画素行の全長にわたって前記画素100の縦幅(画面の上下方向の幅)に対応する幅に形成してもよい。   In this embodiment, as shown in FIG. 1, the row direction conductive film 5a is patterned into regions corresponding to the respective signal electrodes 4 made of the comb-shaped conductive film 4a to vertically long rectangular electrode portions 5b. These electrode portions 5b and 5b are formed in a shape connected by a connection portion 5c on one end side (the side opposite to the side on which the scanning line 12 is provided). You may form in the width | variety corresponding to the vertical width (width of the up-down direction of a screen) of the said pixel 100 over the full length of a line.

前記行方向導電膜5aは、前記複数の信号線13の上を横切って形成されており、この前記行方向導電膜5aと前記信号線13との交差部は、前記信号線13を覆って設けられた図示しない絶縁膜により絶縁されている。   The row direction conductive film 5 a is formed across the plurality of signal lines 13, and an intersection between the row direction conductive film 5 a and the signal line 13 is provided to cover the signal line 13. It is insulated by an insulating film (not shown).

また、前記各画素行にそれぞれ対応する複数の行方向導電膜5aは、前記複数の信号電極4の配列領域の一端側の外側において共通接続されており(図示せず)、その共通接続部は、前記後基板2の前記端子配列部に設けられたコモン電極端子に接続されている。   The plurality of row-direction conductive films 5a corresponding to the respective pixel rows are commonly connected (not shown) outside one end side of the array region of the plurality of signal electrodes 4, and the common connection portion is , And connected to a common electrode terminal provided in the terminal array portion of the rear substrate 2.

一方、前記前基板1の内面には、前記複数の画素100の間の領域及び前記複数のTFT6に対応する遮光膜15が形成されており、その上に、前記複数の画素100にそれぞれ対応する赤、緑、青の3色のカラーフィルタ16R,16G,16Bが設けられている。   On the other hand, light shielding films 15 corresponding to the regions between the plurality of pixels 100 and the plurality of TFTs 6 are formed on the inner surface of the front substrate 1 and correspond to the plurality of pixels 100 respectively. Three color filters 16R, 16G, and 16B of red, green, and blue are provided.

そして、前記一対の基板1,2の内面にはそれぞれ、前記前基板1に設けられたカラーフィルタ16R,16G,16B及び前記後基板2に設けられたコモン電極5を覆って、ポリイミド膜等からなる水平配向膜17,18が形成されており、これらの基板1,2の内面は、前記配向膜17,18の膜面を互いに平行で且つ逆向き方向にラビングすることにより配向処理されている。   The inner surfaces of the pair of substrates 1 and 2 cover the color filters 16R, 16G, and 16B provided on the front substrate 1 and the common electrode 5 provided on the rear substrate 2, respectively, and are made of a polyimide film or the like. Horizontal alignment films 17 and 18 are formed, and the inner surfaces of these substrates 1 and 2 are subjected to alignment treatment by rubbing the film surfaces of the alignment films 17 and 18 in parallel and in opposite directions. .

また、前記液晶層3は、正の誘電異方性を有するネマティック液晶からなっており、その液晶分子3aは、分子長軸を、前記一対の基板1,2の内面の配向処理方向により規定される予め定めた一方の方向に揃え、その方向に僅かにプレチルトした状態で、前記基板1,2面と実質的に平行に配列している。   The liquid crystal layer 3 is made of nematic liquid crystal having positive dielectric anisotropy, and the liquid crystal molecules 3a have molecular long axes defined by the alignment treatment direction of the inner surfaces of the pair of substrates 1 and 2. Are aligned substantially in parallel with the surfaces of the substrates 1 and 2 in a state where they are aligned in one predetermined direction and are slightly pretilted in that direction.

そして、この液晶層3の液晶層厚dは、後述する透過表示部において、液晶の屈折率異方性Δnと前記液晶層厚dとの積Δndが、透過光に1/2波長の位相差を与える値(約275nm)になるように設定されている。   The liquid crystal layer thickness d of the liquid crystal layer 3 is such that the product Δnd of the refractive index anisotropy Δn of the liquid crystal and the liquid crystal layer thickness d is a phase difference of ½ wavelength in the transmitted light. Is set to a value (approximately 275 nm).

さらに、この液晶表示素子は、前記一方の基板1,2のうち、前記後基板2の内面に、前記複数の画素(信号電極4とコモン電極5との間に生成された横電界Eにより液晶分子3aの配向方位が制御される領域)100内の予め定めた領域にそれぞれ対応させて反射膜19が設けられている。   Further, the liquid crystal display element has a liquid crystal formed on the inner surface of the rear substrate 2 of the one substrate 1 or 2 by a horizontal electric field E generated between the plurality of pixels (the signal electrode 4 and the common electrode 5). The reflective film 19 is provided corresponding to each predetermined region in the region 100 in which the orientation direction of the molecules 3a is controlled.

この反射膜19は、前記それぞれの画素100に、前記観察側、つまり前記前基板1の外面側から入射した光を反射して前記観察側へ出射する反射表示部100aと、前記観察側とは反対側から入射した光を透過させて前記観察側へ出射する前記反射表示部以外の透過表示部100bとを形成している。   The reflection film 19 reflects the light incident on the respective pixels 100 from the observation side, that is, the outer surface side of the front substrate 1, and emits the light to the observation side, and the observation side A transmissive display portion 100b other than the reflective display portion that transmits light incident from the opposite side and emits the light to the observation side is formed.

また、前記一対の基板1,2の少なくともいずれか一方の内面、例えば前記前基板1の内面には、前記複数の画素100の前記反射表示部100aにそれぞれ対応させて、前記反射表示部100aの液晶層厚dを、前記反射表示部100aの液晶の屈折率異方性Δnと液晶層厚dとの積Δndが、透過光に1/4波長の位相差を与える値(約137nm)になる厚さに調整する液晶層厚調整層20が設けられている。 Further, the inner surface of at least one of the pair of substrates 1 and 2, for example, the inner surface of the front substrate 1, is associated with the reflective display unit 100 a of the plurality of pixels 100, respectively. The liquid crystal layer thickness d 1 is a value (about 137 nm) that gives the product a phase difference of ¼ wavelength to the transmitted light by the product Δnd 1 of the refractive index anisotropy Δn of the liquid crystal of the reflective display unit 100 a and the liquid crystal layer thickness d 1. The liquid crystal layer thickness adjusting layer 20 is adjusted so as to adjust the thickness to (1).

すなわち、この液晶層厚調整層20は、前記画素100の反射表示部100aのΔndが、前記透過表示部100bのΔndに比べて透過光の1/4波長に相当する値だけ小さくなる厚さに形成されている。。 That is, the liquid crystal layer thickness adjusting layer 20 has a thickness in which Δnd 1 of the reflective display unit 100 a of the pixel 100 is smaller than a value corresponding to ¼ wavelength of transmitted light compared to Δnd 2 of the transmissive display unit 100 b. Is formed. .

前記反射膜19は、銀またはアルミニウム合金膜等の高い光反射率を有する金属膜からなっており、前記後基板2の基板面上に、前記複数の画素100内の予め定めた領域、例えば矩形形状をなす画素100の長手方向の中央部から一端側の領域にそれぞれ対応させて形成されている。   The reflective film 19 is made of a metal film having a high light reflectance such as silver or an aluminum alloy film, and a predetermined region, for example, a rectangular shape, in the plurality of pixels 100 is formed on the substrate surface of the rear substrate 2. The pixel 100 having a shape is formed so as to correspond to a region on one end side from the center in the longitudinal direction.

また、前記液晶層厚調整層20は、前記カラーフィルタ15R,15G,15Bの上に透明な絶縁材により形成されており、前記前基板1の内面の配向膜18は、前記液晶層厚調整層20を覆って形成されている。   The liquid crystal layer thickness adjusting layer 20 is formed of a transparent insulating material on the color filters 15R, 15G, and 15B, and the alignment film 18 on the inner surface of the front substrate 1 is formed of the liquid crystal layer thickness adjusting layer. 20 is formed.

そして、この液晶表示素子では、液晶層厚調整層20を、前記反射表示部100aの液晶層厚dが、前記画素100の前記反射表示部100aを除いた他の領域からなる透過表示部100bの液晶層厚dの略1/2になる膜厚に形成し、前記反射表示部100aのΔndを、透過光に1/4波長の位相差を与える約137nmに設定している。 Then, in this liquid crystal display device, a liquid crystal layer thickness-adjusting layer 20, the liquid crystal layer thickness d 1 of the reflective display portion 100a is transmissive display section 100b composed of other areas except for the reflective display part 100a of the pixel 100 The liquid crystal layer thickness d is approximately ½ of the liquid crystal layer thickness d, and Δnd 1 of the reflective display portion 100a is set to about 137 nm which gives a phase difference of ¼ wavelength to the transmitted light.

なお、前記複数の画素100の透過表示部100bの液晶層厚dは、前記透過表示部100bのΔndが、透過光に1/2波長の位相差を与える約275nmとなるように設定してある。 Note that the liquid crystal layer thickness d 2 of the transmissive display portion 100b of the plurality of pixels 100 is set so that Δnd 2 of the transmissive display portion 100b is about 275 nm that gives a half-wave phase difference to the transmitted light. It is.

すなわち、この液晶表示素子は、一対の基板1,2間の間隙に、液晶分子3aがその分子長軸を予め定めた一方の方向に揃えて前記基板1,2面と実質的に平行に配列された液晶層3を封入し、前記一対の基板1,2のうちの後基板2の内面に、互いに絶縁して配置され、前記基板1,2面と実質的に平行な横電界Eを生成し、この横電界Eによって前記液晶分子3aの配向方位が制御される複数の画素100をマトリックス状に配列させて形成するための複数の信号電極4及び複数のコモン電極5を設け、さらに、前記後基板2の内面に、前記複数の画素100内の予め定めた領域にそれぞれ対応させて、観察側から入射した光を反射して前記観察側へ出射する反射表示部100aと、前記観察側とは反対側から入射した光を透過させて前記観察側へ出射する前記反射表示部100a以外の透過表示部100bとを前記複数の画素100毎に形成するための反射膜19を設け、且つ、前記複数の画素100の透過表示部100bのΔndを、透過光に1/2波長の位相差を与える値(約275nm)に設定し、前記前基板1の内面に前記液晶層厚調整層20を設けることにより、前記複数の画素100の反射表示部100aのΔndを、透過光に1/4波長の位相差を与える値(137nm)に設定したものである。 That is, in this liquid crystal display element, in the gap between the pair of substrates 1 and 2, the liquid crystal molecules 3a are aligned substantially parallel to the surfaces of the substrates 1 and 2 with their molecular long axes aligned in one predetermined direction. The liquid crystal layer 3 is encapsulated, and arranged on the inner surface of the rear substrate 2 of the pair of substrates 1 and 2 so as to be insulated from each other, thereby generating a lateral electric field E substantially parallel to the surfaces of the substrates 1 and 2. In addition, a plurality of signal electrodes 4 and a plurality of common electrodes 5 for forming a plurality of pixels 100 in which the orientation direction of the liquid crystal molecules 3a is controlled by the lateral electric field E are arranged in a matrix, and A reflection display unit 100a that reflects light incident from the observation side and emits the light toward the observation side, corresponding to predetermined areas in the plurality of pixels 100 on the inner surface of the rear substrate 2, and the observation side, Transmits the light incident from the opposite side before A reflective film 19 for the transmissive display portion 100b other than the reflective display portion 100a is formed for each of the plurality of pixels 100 that emit the observation side provided, and, [Delta] nd of the transmissive display portion 100b of the plurality of pixels 100 2 Is set to a value (about 275 nm) that gives a half-wave phase difference to transmitted light, and the liquid crystal layer thickness adjusting layer 20 is provided on the inner surface of the front substrate 1, thereby reflecting the display of the plurality of pixels 100. Δnd 1 of the part 100a is set to a value (137 nm) that gives the transmitted light a phase difference of ¼ wavelength.

そして、この実施例では、前記前基板1の外面と前記後基板2の外面とにそれぞれ配置された前側及び後側の一対の偏光板21,22を、それぞれの吸収軸を実質的に平行にして配置し、前記後基板2とその外面に配置された後側偏光板22との間に、液晶表示素子の視角依存性を補償するための位相差板23を配置している。   In this embodiment, the pair of polarizing plates 21 and 22 on the front side and the rear side respectively disposed on the outer surface of the front substrate 1 and the outer surface of the rear substrate 2 are made substantially parallel to the absorption axes thereof. A phase difference plate 23 for compensating the viewing angle dependency of the liquid crystal display element is disposed between the rear substrate 2 and the rear polarizing plate 22 disposed on the outer surface thereof.

さらに、この液晶表示素子は、前記前基板1とその外面に配置された前側偏光板21との間に、前記前基板1の全面にわたって、外部からの静電気を遮断するための一枚膜状の透明な静電気遮断導電膜24を設けている。   Further, the liquid crystal display element has a single film shape for blocking static electricity from the outside over the entire surface of the front substrate 1 between the front substrate 1 and the front polarizing plate 21 disposed on the outer surface thereof. A transparent electrostatic shielding conductive film 24 is provided.

前記一対の基板1,2の配向処理方向(配向膜17,18のラビング方向)1a,2aと、前記一対の偏光板21,22の吸収軸21a,22aの向きと、前記視角依存性補償位相差板23の遅相軸23aの向きは、図5のように設定されている。   The alignment treatment direction (rubbing direction of the alignment films 17 and 18) 1a and 2a of the pair of substrates 1 and 2; the directions of the absorption axes 21a and 22a of the pair of polarizing plates 21 and 22; The direction of the slow axis 23a of the phase difference plate 23 is set as shown in FIG.

すなわち、前基板1の内面と後基板2の内面は、前記画面の左右方向、つまり画面の横軸xに対して実質的に90°ずれた方向、つまり画面の上下方向に沿って互いに逆向きに配向処理されており、前記液晶層3の液晶分子3aは、分子長軸を、前記基板1,2の配向処理方向1a,2aに揃えて前記基板1,2面と実質的に平行に配列している。   That is, the inner surface of the front substrate 1 and the inner surface of the rear substrate 2 are opposite to each other along the horizontal direction of the screen, that is, the direction substantially shifted by 90 ° with respect to the horizontal axis x of the screen, that is, the vertical direction of the screen. The liquid crystal molecules 3a of the liquid crystal layer 3 are aligned substantially parallel to the surfaces of the substrates 1 and 2 with their molecular long axes aligned with the alignment treatment directions 1a and 2a of the substrates 1 and 2. is doing.

なお、前記信号電極4とコモン電極5との間に生成される横電界Eは、前記信号電極4の各櫛歯部4bの縁部4cの長さ方向に対して実質的に直交する方向の電界であり、この実施例では上述したように、前記櫛歯部4bを、画面の縦軸yに対して観察側から見て右回り方向に5°〜15°の角度θで傾いた方向に沿う細長形状に形成し、前記一対の基板1,2の内面(配向膜17,18の膜面)を前記縦軸yと実質的に平行な方向に配向処理しているため、前記一対の基板1,2の配向処理方向1a,2aは、前記横電界Eの方向に対して前記5°〜15°の角度で斜めに交差している。   The lateral electric field E generated between the signal electrode 4 and the common electrode 5 is in a direction substantially orthogonal to the length direction of the edge 4c of each comb tooth 4b of the signal electrode 4. In this embodiment, as described above, the comb-tooth portion 4b is inclined in the direction inclined clockwise by an angle θ of 5 ° to 15 ° with respect to the vertical axis y of the screen. The inner surfaces of the pair of substrates 1 and 2 (film surfaces of the alignment films 17 and 18) are aligned in a direction substantially parallel to the longitudinal axis y. The alignment processing directions 1a and 2a of 1 and 2 cross obliquely with respect to the direction of the transverse electric field E at an angle of 5 ° to 15 °.

そして、前側偏光板21と後側偏光板22は、それぞれの吸収軸21a,22aを実質的に平行にし、且つ、これらの吸収軸21a,22aを、前記画面の横軸xに対して、左右いずれか一方回りの方向、例えば観察側から見て左回り方向に実質的に45°ずれた方向、つまり前記信号電極4とコモン電極5との間に横電界Eを生成しない無電界時の液晶分子3aの分子長軸の向き(一対の基板1,2の配向処理方向1a,2a)に対して実質的に45°ずらして配置されている。   The front-side polarizing plate 21 and the rear-side polarizing plate 22 have the absorption axes 21a and 22a substantially parallel to each other, and these absorption axes 21a and 22a are set to the left and right with respect to the horizontal axis x of the screen. A liquid crystal in the absence of an electric field that does not generate a lateral electric field E between the signal electrode 4 and the common electrode 5, for example, a direction that is substantially shifted by 45 ° in a counterclockwise direction, for example, a counterclockwise direction when viewed from the observation side The molecules 3a are arranged so as to be substantially shifted by 45 ° with respect to the direction of the molecular major axis (the alignment processing directions 1a and 2a of the pair of substrates 1 and 2).

また、前記視角依存性補償位相差板23は、透過光に1/2波長の位相差を与えるλ/2位相差板からなっており、この位相差板23は、その遅相軸23aを前記後側偏光板22の吸収軸22aと実質的に平行にして配置されている。   The viewing angle dependency compensating phase difference plate 23 is a λ / 2 phase difference plate which gives a half-wave phase difference to transmitted light. The phase difference plate 23 has its slow axis 23a as the above-mentioned slow axis 23a. The rear polarizing plate 22 is disposed substantially parallel to the absorption axis 22a.

この液晶表示素子は、前記後基板2の内面に設けられた前記複数の信号電極4と前記コモン電極5との間にそれぞれ表示データに対応した横電界Eを生成することにより、前記液晶分子3aの配向方位を前記基板1,2面と実質的に平行な面内において制御して画像を表示する。   The liquid crystal display element generates a lateral electric field E corresponding to display data between the plurality of signal electrodes 4 and the common electrode 5 provided on the inner surface of the rear substrate 2, thereby the liquid crystal molecules 3 a. The orientation direction is controlled in a plane substantially parallel to the surfaces of the substrates 1 and 2, and an image is displayed.

そして、この液晶表示素子は、前記後基板2の内面に、前記信号電極4と前記コモン電極5との間に生成された横電界Eにより液晶分子3aの配向方位が制御される領域からなる複数の画素100内の予め定めた領域にそれぞれ対応させて、観察側(前基板1の外面側)から入射した光を反射して前記観察側へ出射する反射表示部100aと、観察側とは反対側から入射した光を透過させて前記観察側へ出射する前記反射表示部以外の透過表示部100bとを前記複数の画素100毎に形成するための反射膜19を設けているため、観察側から入射した光を反射し、その光の前記観察側への出射を制御して画像を表示する反射表示と、観察側とは反対側(後基板2の外面側)から入射した光の前記観察側への出射を制御して画像を表示する透過表示とを行なうことができる。   The liquid crystal display element includes a plurality of regions formed on the inner surface of the rear substrate 2 and in which the orientation direction of the liquid crystal molecules 3 a is controlled by a lateral electric field E generated between the signal electrode 4 and the common electrode 5. The reflective display unit 100a that reflects the light incident from the observation side (the outer surface side of the front substrate 1) and emits the light toward the observation side corresponding to the predetermined regions in the pixel 100 is opposite to the observation side. Since the reflection film 19 for forming the transmissive display unit 100b other than the reflective display unit that transmits the light incident from the side and emits the light to the observation side is provided for each of the plurality of pixels 100, the reflection film 19 is provided from the observation side. Reflective display that reflects incident light and controls the emission of the light to the observation side to display an image, and the observation side of light incident from the opposite side (the outer surface side of the rear substrate 2) from the observation side The image is displayed by controlling the emission to the screen. It is possible to perform a display.

しかも、この液晶表示素子は、前記透過表示部100bのΔndを、透過光に1/2波長の位相差を与える値に設定し、且つ、前基板1の内面に、前記複数の画素100の反射表示部100aにそれぞれ対応させて、前記反射表示部100aの液晶層厚dを、前記反射表示部100aのΔndが、前記透過表示部100bのΔndに比べて透過光の1/4波長に相当する値だけ小さくなる値、つまり透過光に1/4波長の位相差を与える値になる厚さに調整する液晶層厚調整層20を設けているため、前記反射表示と透過表示とを、明暗を反転させること無く行なうことができる。 In addition, in this liquid crystal display element, Δnd 2 of the transmissive display unit 100 b is set to a value that gives a phase difference of ½ wavelength to the transmitted light, and the inner surface of the front substrate 1 has the plurality of pixels 100. respectively to correspond to the reflective display portion 100a, the liquid crystal layer thickness d 1 of the reflective display unit 100a, [Delta] nd 1 of the reflective display portion 100a is the transmitted light as compared to the [Delta] nd 2 of the transmissive display section 100b 1/4 Since the liquid crystal layer thickness adjusting layer 20 for adjusting the thickness to a value that becomes smaller by a value corresponding to the wavelength, that is, a value that gives a phase difference of ¼ wavelength to the transmitted light is provided, the reflection display and the transmission display Can be performed without reversing light and dark.

また、この液晶表示素子は、前記観察側と反対側の偏光板21,22を、それぞれの吸収軸21a,22aを実質的に平行にして配置しているため、前記反射表示部100aと透過表示部100bの両方の表示を、前記横電界Eが生成されないときに輝度が最小となる無電界暗表示(以下、ノーマリーブラック表示という)にすることができる。   Further, in this liquid crystal display element, since the polarizing plates 21 and 22 on the opposite side to the observation side are arranged with their absorption axes 21a and 22a substantially parallel, the reflective display unit 100a and the transmissive display are arranged. Both displays of the unit 100b can be a non-field dark display (hereinafter referred to as a normally black display) in which the luminance is minimized when the lateral electric field E is not generated.

すなわち、前記液晶層3の液晶分子3aは、無電界時に、図6(a)のように一対の基板1,2の配向処理方向1a,2aに配列し、前記信号電極4とコモン電極5との間に横電界Eが生成されることにより、図6(b)のように、前記基板1,2面と実質的に平行な面内において、前記横電界Eの方向に対する分子長軸の角度が小さくなる方向に配列する。   That is, the liquid crystal molecules 3a of the liquid crystal layer 3 are arranged in the alignment processing directions 1a and 2a of the pair of substrates 1 and 2 as shown in FIG. As a result of the generation of the transverse electric field E, the angle of the molecular major axis with respect to the direction of the transverse electric field E in a plane substantially parallel to the surfaces of the substrates 1 and 2 as shown in FIG. Are arranged in the direction of decreasing.

なお、前記横電界Eは、上述したように、前記信号電極4の各櫛歯部4bの縁部4cと、前記コモン電極5の前記各櫛歯部4bの縁部4cに隣接する部分との間に、前記櫛歯部4bの長さ方向に対して実質的に直交する方向に沿って生成する。   As described above, the lateral electric field E is generated between the edge 4c of each comb tooth 4b of the signal electrode 4 and the portion adjacent to the edge 4c of each comb tooth 4b of the common electrode 5. In between, it produces | generates along the direction substantially orthogonal to the length direction of the said comb-tooth part 4b.

そして、前記信号電極4の各櫛歯部4bは、画面の縦軸y、つまり前記一対の基板1,2の配向処理方向1a,2aに対して5°〜15°の角度θで交差する方向に沿う細長形状に形成されているため、前記横電界Eは、前記無電界時における液晶分子3aの分子長軸に対して一方の方向に65°〜85°の角度で斜めにずれた方向の電界であり、前記液晶分子3aは、前記横電界Eが生成された画素100の略全域において、前記横電界Eに対する分子長軸の角度が小さい方向に一様に回転し、その方向に分子長軸を揃えて配列する。   And each comb-tooth part 4b of the said signal electrode 4 is the direction which cross | intersects at the angle (theta) of 5 degrees-15 degrees with respect to the vertical axis | shaft y of a screen, ie, the alignment process direction 1a, 2a of a pair of said board | substrates 1 and 2. Therefore, the lateral electric field E is obliquely displaced at an angle of 65 ° to 85 ° in one direction with respect to the molecular long axis of the liquid crystal molecules 3a when no electric field is applied. The liquid crystal molecules 3a are uniformly rotated in a direction in which the angle of the molecular long axis with respect to the lateral electric field E is small in almost the entire region of the pixel 100 where the lateral electric field E is generated. Arrange the axes aligned.

図6(b)に示した横電界生成時の液晶分子3aの配列方向は、前記信号電極4とコモン電極5との間に、液晶分子3aを前記配向処理方向1a,2aに対して実質的に45°の方向に配列させる強さの横電界Eを生成させたときの方向である。   The arrangement direction of the liquid crystal molecules 3a when generating the horizontal electric field shown in FIG. 6B is substantially the same as that between the signal electrode 4 and the common electrode 5 with respect to the alignment treatment directions 1a and 2a. This is the direction when the transverse electric field E having a strength to be arranged in the direction of 45 ° is generated.

そして、この液晶表示素子では、図5に示したように、前側偏光板21及び後側偏光板22を、それぞれの吸収軸21a,22aを無電界時の液晶分子3aの分子長軸の向き、つまり画面の上下方向に対して、観察側から見て右回り方向に実質的に45°ずらして配置し、前記櫛形導電膜4aの各櫛歯部を、図1のように画面の上下方向に対して観察側から見て右回り方向に傾いた方向に沿う細長形状に形成することにより、前記横電界Eの生成により液晶分子3aを前記配向処理方向1a,2aに対して実質的に45°の方向に配列させたときに、その分子長軸の向きが、前記前側偏光板21及び後側偏光板22の吸収軸21a,22aに対して実質的に直交するようにしている。   In this liquid crystal display element, as shown in FIG. 5, the front polarizing plate 21 and the rear polarizing plate 22 have their respective absorption axes 21a and 22a oriented in the direction of the molecular major axis of the liquid crystal molecules 3a when there is no electric field. That is, it is arranged to be shifted by 45 ° in the clockwise direction when viewed from the observation side with respect to the vertical direction of the screen, and each comb tooth portion of the comb-shaped conductive film 4a is arranged in the vertical direction of the screen as shown in FIG. On the other hand, the liquid crystal molecules 3a are substantially 45 ° with respect to the alignment processing directions 1a and 2a by the generation of the transverse electric field E by forming the elongated shape along the direction inclined in the clockwise direction when viewed from the observation side. When aligned in the direction, the orientation of the molecular long axis is substantially perpendicular to the absorption axes 21 a and 22 a of the front polarizing plate 21 and the rear polarizing plate 22.

この液晶表示素子は、外部環境の光である外光を利用する反射表示と、前記液晶表示素子の観察側とは反対側に配置された図示しない面光源からの照明光を利用する透過表示とを行なうものであり、いずれの表示を行なうときも、各画素100の信号電極4に、前記信号線13及びTFT6を介して、前記信号電極4とコモン電極5との間に前記液晶分子3aの分子長軸の向きを前記配向処理方向1a,2aに対して実質的に0°〜45°の範囲の角度で制御する横電界Eを生成する電圧値の表示データ信号を印加することにより表示駆動される。   The liquid crystal display element includes a reflective display that uses external light that is light from the external environment, and a transmissive display that uses illumination light from a surface light source (not shown) disposed on the opposite side of the liquid crystal display element from the observation side. In any display, the signal electrode 4 of each pixel 100 is connected to the liquid crystal molecules 3a between the signal electrode 4 and the common electrode 5 via the signal line 13 and the TFT 6. Display drive by applying a display data signal of a voltage value that generates a transverse electric field E that controls the orientation of the molecular long axis at an angle substantially in the range of 0 ° to 45 ° with respect to the alignment processing directions 1a and 2a. Is done.

まず、反射表示について説明すると、このときは、前記液晶表示素子にその観察側から入射した外光が、前記前側偏光板21によって直線偏光になって液晶層3に入射し、その光(前側偏光板21の吸収軸21aに対して直交する直線偏光)のうち、各画素100の反射表示部100aに入射して前記液晶層3を透過した光が、前記反射膜19により反射され、前記液晶層3を再び透過して前記前側偏光板21に入射する。なお、前記各画素100の透過表示部100bに入射した光は、前記液晶層3を透過し、さらに視角依存性補償位相差板23と後側偏光板22とを透過して観察側とは反対側へ出射する。   First, the reflective display will be described. At this time, external light incident on the liquid crystal display element from the observation side becomes linearly polarized light by the front polarizing plate 21 and enters the liquid crystal layer 3, and the light (front polarized light). Light that is incident on the reflective display portion 100a of each pixel 100 and transmitted through the liquid crystal layer 3 is reflected by the reflective film 19, and is reflected by the liquid crystal layer. 3 again and enters the front polarizing plate 21. The light incident on the transmissive display portion 100b of each pixel 100 is transmitted through the liquid crystal layer 3, and further transmitted through the viewing angle dependent compensation phase difference plate 23 and the rear polarizing plate 22, and opposite to the observation side. To the side.

そして、前記反射表示部100aのΔndは、透過光に1/4波長の位相差を与える値に設定され、前記一対の基板1,2の配向処理方向1a,2aは、前記前側偏光板21の吸収軸21aに対して実質的に45°ずれているため、無電界時、つまり液晶分子3aが前記配向処理方向1a,2aに分子長軸を揃えて配列したときは、前記画素100の反射表示部100aに入射した前記直線偏光が、前記液晶層3を往復して透過する間に1/2波長の位相差を与えられて実質的に90°旋光し、前記前側偏光板21の吸収軸21aに平行な直線偏光になり、前記前側偏光板21により吸収される。そのため、前記反射表示部100aの無電界時の表示は、黒の暗表示である。   The Δnd of the reflective display unit 100a is set to a value that gives a quarter-wave phase difference to the transmitted light, and the alignment processing directions 1a and 2a of the pair of substrates 1 and 2 are the same as those of the front polarizing plate 21. Since it is substantially 45 ° offset from the absorption axis 21a, when there is no electric field, that is, when the liquid crystal molecules 3a are aligned in the alignment treatment directions 1a and 2a with their molecular long axes aligned, the reflective display of the pixel 100 is performed. The linearly polarized light incident on the portion 100a is rotated by 90 ° with a half-wave phase difference while passing back and forth through the liquid crystal layer 3, and is absorbed by the absorption axis 21a of the front polarizing plate 21. Linearly polarized light parallel to the light and absorbed by the front polarizing plate 21. Therefore, the display in the absence of an electric field of the reflective display unit 100a is a black dark display.

また、前記信号電極4とコモン電極5との間に、液晶分子3aを前記配向処理方向1a,2aに対して45°の方向に配列させる強さの横電界Eを生成させたとき、つまり、前記液晶分子3aが前側偏光板21及び後側偏光板22の吸収軸21a,22aに対して実質的に直交する方向に配向したときは、前記反射表示部100aに入射した前記直線偏光が、前記液晶層3をほとんど偏光状態を変えずに往復して透過し、前記前側偏光板21を透過して観察側へ出射する。そのため、前記反射表示部100aの液晶分子3aを前記配向処理方向1a,2aに対して45°の方向に配列させたときの表示は、最も明るい明表示である。   Further, when the lateral electric field E having a strength for arranging the liquid crystal molecules 3a in the direction of 45 ° with respect to the alignment processing directions 1a and 2a is generated between the signal electrode 4 and the common electrode 5, that is, When the liquid crystal molecules 3a are aligned in a direction substantially orthogonal to the absorption axes 21a and 22a of the front polarizing plate 21 and the rear polarizing plate 22, the linearly polarized light incident on the reflective display unit 100a is The light passes back and forth through the liquid crystal layer 3 with almost no change in the polarization state, passes through the front polarizing plate 21 and exits to the observation side. Therefore, the display when the liquid crystal molecules 3a of the reflective display unit 100a are aligned in a direction of 45 ° with respect to the alignment processing directions 1a and 2a is the brightest bright display.

次に、透過表示について説明すると、このときは、図示しない面光源から前記液晶表示素子に向けて照射された照明光が、前記後側偏光板22によって直線偏光にされ、遅相軸23aを前記後側偏光板22の吸収軸22aと実質的に平行にして配置された視角依存性補償位相差板23を透過し、その光(後側偏光板22の吸収軸22aに対して直交する直線偏光)のうち、各画素100の透過表示部100bに向かう光が前記液晶層3に入射する。なお、前記各画素100の反射表示部100aに入射した光は、前記反射膜19により反射され、前記視角依存性補償位相差板23と後側偏光板22とを再び透過して観察側とは反対側(面光源側)へ出射する。   Next, transmissive display will be described. At this time, illumination light emitted from a surface light source (not shown) toward the liquid crystal display element is linearly polarized by the rear polarizing plate 22 and the slow axis 23a is set to the slow axis 23a. The light (linearly polarized light orthogonal to the absorption axis 22a of the rear polarizing plate 22 is transmitted through the viewing angle dependent compensation phase difference plate 23 arranged substantially parallel to the absorption axis 22a of the rear polarizing plate 22. ), The light traveling toward the transmissive display portion 100b of each pixel 100 enters the liquid crystal layer 3. The light that has entered the reflective display portion 100a of each pixel 100 is reflected by the reflective film 19, and is transmitted again through the viewing angle dependent compensation phase difference plate 23 and the rear polarizing plate 22 to be the observation side. The light is emitted to the opposite side (surface light source side).

そして、前記透過表示部100bのΔndは、透過光に1/2波長の位相差を与える値に設定され、前記一対の基板1,2の配向処理方向1a,2aは、前記後側偏光板22の吸収軸22aに対して実質的に45°ずれているため、無電界時は、前記後側偏光板22と視角依存性補償位相差板23とを透過して前記画素100の透過表示部100bに入射した前記直線偏光が、前記液晶層3を透過する間に実質的に90°旋光され、前記後側偏光板22の吸収軸21aと実質的に平行な方向に吸収軸21aを向けて配置された前側偏光板21により吸収される。そのため、前記透過表示部100bの無電界時の表示は、黒の暗表示である。 In addition, Δnd 2 of the transmissive display unit 100b is set to a value that gives a phase difference of ½ wavelength to the transmitted light, and the alignment processing directions 1a and 2a of the pair of substrates 1 and 2 are the rear polarizing plate. 22 is substantially deviated by 45 ° with respect to the absorption axis 22a. Therefore, when there is no electric field, the transmissive display portion of the pixel 100 is transmitted through the rear polarizing plate 22 and the viewing angle dependent compensation phase difference plate 23. The linearly polarized light incident on 100b is substantially rotated by 90 ° while passing through the liquid crystal layer 3, and the absorption axis 21a is directed in a direction substantially parallel to the absorption axis 21a of the rear polarizing plate 22. It is absorbed by the arranged front polarizing plate 21. Therefore, the display of the transmissive display unit 100b when there is no electric field is black dark display.

また、前記信号電極4とコモン電極5との間に、液晶分子3aを前記配向処理方向1a,2aに対して45°の方向に配列させる強さの横電界Eを生成させたとき(液晶分子3aが前側偏光板21及び後側偏光板22の吸収軸21a,22aに対して実質的に直交する方向に配向したとき)は、前記画素100の透過表示部100bに入射した前記直線偏光が、前記液晶層3をほとんど偏光状態を変えずに透過し、前記前側偏光板21を透過して観察側へ出射する。そのため、前記透過表示部100bの液晶分子3aを前記配向処理方向1a,2aに対して45°の方向に配列させたときの表示は、最も明るい明表示である。   In addition, when a lateral electric field E is generated between the signal electrode 4 and the common electrode 5 such that the liquid crystal molecules 3a are arranged in a direction of 45 ° with respect to the alignment processing directions 1a and 2a (liquid crystal molecules). 3a is oriented in a direction substantially orthogonal to the absorption axes 21a and 22a of the front polarizing plate 21 and the rear polarizing plate 22), the linearly polarized light incident on the transmissive display portion 100b of the pixel 100 is The light passes through the liquid crystal layer 3 with almost no change in the polarization state, passes through the front polarizing plate 21 and exits to the observation side. Therefore, the display when the liquid crystal molecules 3a of the transmissive display unit 100b are arranged in a direction of 45 ° with respect to the alignment processing directions 1a and 2a is the brightest bright display.

なお、前記信号電極4とコモン電極5との間に、液晶分子3aを前記配向処理方向1a,2aに対して45°よりも小さい角度の方向に配列させる強さの横電界Eを生成させたときは、前記反射表示部100aと透過表示部100bの両方の表示が、前記黒の暗表示と最も明るい明表示との中間の明るさの表示になる。   In addition, between the signal electrode 4 and the common electrode 5, a transverse electric field E having a strength for arranging the liquid crystal molecules 3a in a direction having an angle smaller than 45 ° with respect to the alignment processing directions 1a and 2a was generated. In some cases, the display of both the reflective display unit 100a and the transmissive display unit 100b is a display having a brightness intermediate between the black dark display and the brightest bright display.

このように、前記各画素100の反射表示部100aの表示と透過表示部100bの表示は、いずれも、無電界時の表示が暗表示、横電界生成時の表示が明表示のノーマリーブラック表示であり、したがって、外光を利用する反射表示と、液晶表示素子の観察側とは反対側に配置された面光源からの照明光を利用する透過表示とを、表示の明暗を反転させること無く行なうとともに、外光の照度が不足するときに前記面光源を補助光源として利用し、反射表示と透過表示とを併用する表示を行なうことができる。   As described above, the display of the reflective display unit 100a and the display of the transmissive display unit 100b of each pixel 100 are both normally black display with dark display when no electric field is applied and bright display when horizontal electric field is generated. Therefore, a reflective display using external light and a transmissive display using illumination light from a surface light source arranged on the opposite side of the liquid crystal display element from the observation side can be performed without reversing the brightness of the display. In addition, when the illuminance of outside light is insufficient, the surface light source can be used as an auxiliary light source to perform display using both reflective display and transmissive display.

しかも、前記液晶表示素子は、前記観察側と反対側の偏光板21,22を、それぞれの吸収軸21a,22aを、無電界時の液晶分子3aの分子長軸の向きに対して実質的に45°ずらして配置しているため、前記反射表示のときも、前記透過表示のときも、無電界時の光の出射率をほとんど0にして暗表示を黒にし、横電界生成時の光の出射率を実質的に最大にして明表示を充分に明るくすることができ、したがって、前記反射表示と透過表示の両方の明るさ及びコントラストを高くすることができる。   In addition, the liquid crystal display element has substantially the polarizing plates 21 and 22 on the opposite side to the observation side, and the respective absorption axes 21a and 22a with respect to the direction of the molecular long axis of the liquid crystal molecules 3a when no electric field is applied. Since they are arranged at a 45 ° offset, in both the reflective display and the transmissive display, the light emission rate in the absence of an electric field is almost zero, the dark display is black, and the light in the horizontal electric field is generated. The emission rate can be substantially maximized to brighten the bright display sufficiently, and thus the brightness and contrast of both the reflective display and the transmissive display can be increased.

また、前記液晶表示素子は、前記後基板2と後側偏光板22との間に、視角依存性補償位相差板23を、その遅相軸23aを前記後側偏光板22の吸収軸22aと実質的に平行にして配置しているため、前記観察側と反対側の偏光板21,22の吸収軸21a,22aとを互いに平行に配置した場合の暗表示における視角依存性の低下を防止して、前記透過表示の視野を広くすることができる。   Further, the liquid crystal display element includes a viewing angle dependency compensating retardation plate 23 between the rear substrate 2 and the rear polarizing plate 22, and a slow axis 23 a of the retardation axis 23 with the absorption axis 22 a of the rear polarizing plate 22. Since they are arranged substantially in parallel, the viewing angle dependency in the dark display is prevented from being lowered when the absorption axes 21a, 22a of the polarizing plates 21, 22 on the opposite side to the observation side are arranged in parallel to each other. Thus, the visual field of the transmissive display can be widened.

なお、前記視角依存性補償位相差板23は、その遅相軸23aを前記後側偏光板22の吸収軸22aと実質的に直交させて配置してもよく、その場合も、透過表示の視角依存性を補償し、前記透過表示の視野を広くすることができる。   The viewing angle dependency compensating retardation plate 23 may be arranged with its slow axis 23a substantially orthogonal to the absorption axis 22a of the rear polarizing plate 22, and in this case, the viewing angle of transmissive display is also provided. The dependence can be compensated and the field of view of the transmissive display can be widened.

また、前記観察側と反対側の偏光板21,22は、その吸収軸21a,22aを、図5に示した向きに対して実質的に直交する方向に向けて配置してもよく、その場合は、前記横電界Eの生成により液晶分子3aを一対の基板1,2の配向処理方向1a,2aに対して実質的に45°の方向に配列させたときに、前記液晶分子3aの分子長軸が前記前側偏光板21及び後側偏光板22の吸収軸21a,22aに対して実質的に平行になるため、反射表示と透過表示とを、明暗を反転させること無く行なうことができる。   Further, the polarizing plates 21 and 22 on the opposite side to the observation side may have their absorption axes 21a and 22a arranged in a direction substantially orthogonal to the direction shown in FIG. Is the molecular length of the liquid crystal molecules 3a when the liquid crystal molecules 3a are aligned in a direction substantially 45 ° with respect to the alignment treatment directions 1a and 2a of the pair of substrates 1 and 2 by the generation of the transverse electric field E. Since the axes are substantially parallel to the absorption axes 21a and 22a of the front polarizing plate 21 and the rear polarizing plate 22, the reflective display and the transmissive display can be performed without reversing the brightness.

(第2の実施形態)
図7及び図8はこの発明の第2の実施例を示しており、図7は液晶表示素子の一部分の断面図、図8は、前記液晶表示素子の一対の基板の内面の配向処理方向と、一対の偏光板の吸収軸の向きと、λ/2位相差板の遅相軸の向きを観察側から見た図である。なお、この実施例において、上述した第1の実施例と同じものについては、図に同符号を付してその説明を省略する。
(Second Embodiment)
7 and 8 show a second embodiment of the present invention. FIG. 7 is a sectional view of a part of the liquid crystal display element, and FIG. 8 shows the orientation treatment direction of the inner surfaces of a pair of substrates of the liquid crystal display element. FIG. 5 is a view of the direction of the absorption axis of a pair of polarizing plates and the direction of the slow axis of a λ / 2 retardation plate as viewed from the observation side. In this embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals in the drawings, and the description thereof is omitted.

この実施例の液晶表示素子は、各画素100の反射表示部100aと透過表示部100bの構造及び前記反射表示部100aと透過表示部100bのΔnd,Δndを第1の実施例と同じにしたものであり、この実施例では、観察側と反対側の一対の偏光板21,22を、それぞれの吸収軸21a,22aを実質的に直交させて配置することにより、第1の実施例の視角依存性補償位相差板23を省略し、後基板2と後側偏光板22との間に、透過光に1/2波長の位相差を与えるλ/2位相差板25を、その遅相軸25aを前記後側偏光板22の吸収軸22aに対して実質的に45°ずらして配置している。 In the liquid crystal display element of this embodiment, the structure of the reflective display portion 100a and the transmissive display portion 100b of each pixel 100 and the Δnd 1 and Δnd 2 of the reflective display portion 100a and the transmissive display portion 100b are the same as in the first embodiment. In this embodiment, the pair of polarizing plates 21 and 22 on the opposite side to the observation side are arranged so that the absorption axes 21a and 22a are substantially orthogonal to each other. The viewing angle dependency compensating phase difference plate 23 is omitted, and a λ / 2 phase difference plate 25 that gives a phase difference of ½ wavelength to the transmitted light between the rear substrate 2 and the rear polarizing plate 22 is delayed. The shaft 25a is arranged so as to be substantially shifted from the absorption shaft 22a of the rear polarizing plate 22 by 45 °.

この液晶表示素子において、前記一対の偏光板21,22は、それぞれの吸収軸21a,22aを、一対の基板1,2の配向処理方向1a,2a、つまり無電界時の液晶分子3aの分子長軸の向きに対して互いに反対方向に実質的に45°ずらして配置され、前記λ/2位相差板25は、その遅相軸25aを、前記無電界時の液晶分子3aの分子長軸の向きと実質的に平行にして配置されている。   In this liquid crystal display element, the pair of polarizing plates 21 and 22 has their absorption axes 21a and 22a aligned with the alignment treatment directions 1a and 2a of the pair of substrates 1 and 2, that is, the molecular length of the liquid crystal molecules 3a when no electric field is applied. The λ / 2 phase difference plate 25 is arranged so as to be shifted by 45 ° in directions opposite to each other with respect to the direction of the axis. Arranged substantially parallel to the orientation.

なお、この実施例では、一対の基板1,2の配向処理方向1a,2aと前側偏光板21の吸収軸21aの向きをそれぞれ第1の実施例と同じにし、後側偏光板22を、その吸収軸22aを前記前側偏光板21の吸収軸21aに対して実質的に直交させて配置している。   In this embodiment, the orientation directions 1a and 2a of the pair of substrates 1 and 2 and the direction of the absorption axis 21a of the front polarizing plate 21 are the same as those in the first embodiment, and the rear polarizing plate 22 is The absorption axis 22a is arranged so as to be substantially orthogonal to the absorption axis 21a of the front polarizing plate 21.

この液晶表示素子は、上記のような構成であるため、反射表示と透過表示とを、明暗を反転させること無く行ない、且つ、前記反射表示部100aと透過表示部100bの両方の表示をノーマリーブラック表示にするとともに、前記透過表示の視野を広くすることができる。   Since the liquid crystal display element has the above-described configuration, the reflective display and the transmissive display are performed without reversing the brightness, and both the reflective display unit 100a and the transmissive display unit 100b are normally displayed. In addition to black display, the field of view of the transmissive display can be widened.

すなわち、この液晶表示素子による反射表示は、第1の実施例の液晶表示素子による反射表示と同じであり、無電界時は、前側偏光板21を透過して各画素100の反射表示部100aに入射した直線偏光が、前記液晶層3を往復して透過する間に実質的に90°旋光されて前記前側偏光板21により吸収され、前記信号電極4とコモン電極5との間に、液晶分子3aを前記配向処理方向1a,2aに対して実質的に45°の方向に配列させる強さの横電界Eを生成させたとき(液晶分子3aの分子長軸を前側偏光板21の吸収軸21aに対して実質的に直交させたとき)に、前記画素100の反射表示部100aに入射した前記直線偏光が、前記液晶層3をほとんど偏光状態を変えずに往復して透過し、前記前側偏光板21を透過して観察側へ出射する。   That is, the reflective display by the liquid crystal display element is the same as the reflective display by the liquid crystal display element of the first embodiment. When no electric field is applied, the reflective display unit 100a of each pixel 100 transmits the front polarizing plate 21. The incident linearly polarized light is substantially rotated by 90 ° while passing back and forth through the liquid crystal layer 3 and absorbed by the front polarizing plate 21, and liquid crystal molecules are interposed between the signal electrode 4 and the common electrode 5. When a lateral electric field E having a strength to align 3a in a direction substantially 45 ° with respect to the alignment treatment directions 1a and 2a is generated (the molecular long axis of the liquid crystal molecules 3a is the absorption axis 21a of the front polarizing plate 21) The linearly polarized light that has entered the reflective display portion 100a of the pixel 100 passes back and forth through the liquid crystal layer 3 almost without changing the polarization state, and the front polarized light. Observation side through plate 21 To exit.

一方、透過表示のときは、前記液晶表示素子の観察側とは反対側に配置された図示しない面光源から照射された照明光が、後側偏光板22によって直線偏光にされ、さらに、遅相軸25aを前記後側偏光板22の吸収軸22aに対して実質的に45°ずらして配置されたλ/2位相差板25により実質的に90°旋光され、その光のうち、各画素100の透過表示部100bに向かう光が、前記液晶層3に入射する。   On the other hand, at the time of transmissive display, illumination light emitted from a surface light source (not shown) disposed on the opposite side of the liquid crystal display element from the observation side is converted into linearly polarized light by the rear polarizing plate 22 and further, The axis 25a is substantially rotated by 90 ° by the λ / 2 phase difference plate 25 arranged so as to be shifted by 45 ° with respect to the absorption axis 22a of the rear polarizing plate 22, and each pixel 100 out of the light is rotated. The light traveling toward the transmissive display unit 100 b enters the liquid crystal layer 3.

前記後側偏光板22により直線偏光にされ、前記λ/2位相差板25により90°旋光された光は、前記後側偏光板22の吸収軸22aと平行な偏光面をもった直線偏光、つまり、前記無電界時の液晶分子3aの分子長軸の向きに対して、実質的に45°傾いた方向に偏光面をもった直線偏光である。   The light that has been linearly polarized by the rear polarizing plate 22 and rotated by 90 ° by the λ / 2 phase difference plate 25 is linearly polarized light having a polarization plane parallel to the absorption axis 22a of the rear polarizing plate 22, That is, it is linearly polarized light having a polarization plane in a direction substantially inclined by 45 ° with respect to the direction of the molecular major axis of the liquid crystal molecules 3a when no electric field is applied.

そして、前記透過表示部100bのΔndは、透過光に1/2波長の位相差を与える値(275nm)に設定されているため、無電界時は、前記透過表示部100bに入射した前記直線偏光(後側偏光板22により直線偏光され、λ/2位相差板25により90°旋光された光)が、前記液晶層3を透過する過程でさら実質的に90°旋光され、前記後側偏光板22の吸収軸21a実質的に平行な直線偏光として前記前側偏光板21に入射し、この前側偏光板21により吸収される。 Since Δnd 2 of the transmissive display unit 100b is set to a value (275 nm) that gives a transmitted light a half-wave phase difference, the straight line incident on the transmissive display unit 100b when there is no electric field. Polarized light (light linearly polarized by the rear polarizing plate 22 and rotated by 90 ° by the λ / 2 retardation film 25) is further rotated by 90 ° in the process of passing through the liquid crystal layer 3, and the rear side The absorption axis 21 a of the polarizing plate 22 is incident on the front polarizing plate 21 as linearly polarized light that is substantially parallel, and is absorbed by the front polarizing plate 21.

また、信号電極4とコモン電極5との間に、液晶分子3aを前記配向処理方向1a,2aに対して45°の方向に配列させる強さの横電界Eを生成させたとき(液晶分子3aが前側偏光板21の吸収軸21aに対して実質的に直交する方向に配向したとき)は、前記液晶分子3aの分子長軸の向きが、前記透過表示部100bに入射した前記直線偏光の偏光面と実質に平行になるため、前記透過表示部100bに入射した前記直線偏光が、前記液晶層3をほとんど偏光状態を変えずに透過し、前記前側偏光板21を透過して観察側へ出射する。   In addition, when a lateral electric field E having a strength for arranging the liquid crystal molecules 3a in a direction of 45 ° with respect to the alignment processing directions 1a and 2a is generated between the signal electrode 4 and the common electrode 5 (liquid crystal molecules 3a Is aligned in a direction substantially perpendicular to the absorption axis 21a of the front polarizing plate 21), the direction of the molecular long axis of the liquid crystal molecules 3a is the polarization of the linearly polarized light incident on the transmissive display unit 100b. Since it is substantially parallel to the surface, the linearly polarized light incident on the transmissive display unit 100b is transmitted through the liquid crystal layer 3 with almost no change in polarization state, and is transmitted through the front polarizing plate 21 and emitted to the observation side. To do.

このように、前記各画素100の反射表示部100aの表示と透過表示部100bの表示は、いずれも、無電界時の表示が暗表示、横電界生成時の表示が明表示のノーマリーブラック表示である。   As described above, the display of the reflective display unit 100a and the display of the transmissive display unit 100b of each pixel 100 are both normally black display with dark display when no electric field is applied and bright display when horizontal electric field is generated. It is.

そして、この液晶表示素子は、前記観察側と反対側の偏光板21,22を、それぞれの吸収軸21a,22aを実質的に直交させて配置しているため、前記透過表示部100bの視角依存性が小さく、前記透過表示の視野を広くすることができる。   In this liquid crystal display element, since the polarizing plates 21 and 22 on the opposite side to the observation side are arranged so that the absorption axes 21a and 22a are substantially orthogonal to each other, the viewing angle dependence of the transmissive display unit 100b is determined. Therefore, the visual field of the transmissive display can be widened.

また、この液晶表示素子は、前記観察側と反対側の偏光板21,22を、それぞれの吸収軸21a,22aを無電界時の液晶分子3aの分子長軸の向きに対して互いに反対方向に実質的に45°ずらして配置し、前記λ/2位相差板25を、その遅相軸25aを前記無電界時の液晶分子3aの分子長軸の向きと実質的に平行にして配置しているため、前記反射表示のときも、前記透過表示のときも、無電界時の光の出射率をほとんど0にして暗表示を黒にし、横電界生成時の光の出射率を実質的に最大にして明表示を充分に明るくすることができ、したがって、前記反射表示と透過表示の両方の明るさ及びコントラストを高くすることができる。   Further, in this liquid crystal display element, the polarizing plates 21 and 22 on the opposite side to the observation side are arranged so that the absorption axes 21a and 22a are opposite to each other in the direction of the molecular major axis of the liquid crystal molecules 3a when no electric field is applied. The λ / 2 phase difference plate 25 is arranged so as to be substantially shifted by 45 °, and the slow axis 25a thereof is arranged so as to be substantially parallel to the direction of the molecular long axis of the liquid crystal molecules 3a when no electric field is applied. Therefore, in both the reflective display and the transmissive display, the light emission rate when there is no electric field is set to almost zero, the dark display is black, and the light emission rate when generating a horizontal electric field is substantially maximized. Thus, the bright display can be sufficiently brightened, and therefore the brightness and contrast of both the reflective display and the transmissive display can be increased.

(第3の実施形態)
図9及び図10はこの発明の第3の実施例を示しており、図9は液晶表示素子の一部分の断面図、図10は、前記液晶表示素子の一対の基板の内面の配向処理方向と、一対の偏光板の吸収軸の向きと、λ/2位相差板の遅相軸の向きを観察側から見た図である。
(Third embodiment)
9 and 10 show a third embodiment of the present invention. FIG. 9 is a sectional view of a part of the liquid crystal display element, and FIG. 10 shows the orientation treatment direction of the inner surfaces of a pair of substrates of the liquid crystal display element. FIG. 5 is a view of the direction of the absorption axis of a pair of polarizing plates and the direction of the slow axis of a λ / 2 retardation plate as viewed from the observation side.

この実施例の液晶表示素子は、各画素100の反射表示部100aと透過表示部100bの構造及び前記反射表示部100aと透過表示部100bのΔnd,Δndを第1の実施例と同じにしたものであり、この実施例では、観察側と反対側の一対の偏光板21,22を、それぞれの吸収軸21a,22aを実質的に直交させて配置することにより、第1の実施例の視角依存性補償位相差板23を省略し、前基板1と前側偏光板21との間に、透過光に1/2波長の位相差を与えるλ/2位相差板26を、その遅相軸26aを前記前側偏光板21の吸収軸21aに対して実質的に45°ずらして配置している。 In the liquid crystal display element of this embodiment, the structure of the reflective display portion 100a and the transmissive display portion 100b of each pixel 100 and the Δnd 1 and Δnd 2 of the reflective display portion 100a and the transmissive display portion 100b are the same as in the first embodiment. In this embodiment, the pair of polarizing plates 21 and 22 on the opposite side to the observation side are arranged so that the absorption axes 21a and 22a are substantially orthogonal to each other. The viewing angle dependency compensating phase difference plate 23 is omitted, and a λ / 2 phase difference plate 26 that gives a half-wave phase difference to transmitted light between the front substrate 1 and the front polarizing plate 21 is a slow axis thereof. 26a is substantially shifted by 45 ° with respect to the absorption axis 21a of the front polarizing plate 21.

この液晶表示素子において、前記一対の偏光板21,22は、それぞれの吸収軸21a,22aを、一対の基板1,2の配向処理方向1a,2a、つまり無電界時の液晶分子3aの分子長軸の向きに対して互いに反対方向に実質的に45°ずらして配置され、前記λ/2位相差板26は、その遅相軸26aを、前記無電界時の液晶分子3aの分子長軸の向きと実質的に直交させて配置されている。   In this liquid crystal display element, the pair of polarizing plates 21 and 22 has their absorption axes 21a and 22a aligned with the alignment treatment directions 1a and 2a of the pair of substrates 1 and 2, that is, the molecular length of the liquid crystal molecules 3a when no electric field is applied. The λ / 2 phase difference plate 26 is arranged so as to be shifted by 45 ° in directions opposite to each other with respect to the direction of the axis. It is arranged so as to be substantially orthogonal to the direction.

なお、この実施例では、一対の基板1,2の配向処理方向1a,2aと前側偏光板21の吸収軸21aの向きをそれぞれ第1の実施例と同じにし、後側偏光板22を、その吸収軸22aを前記前側偏光板21の吸収軸21aに対して実質的に直交させて配置している。   In this embodiment, the orientation directions 1a and 2a of the pair of substrates 1 and 2 and the direction of the absorption axis 21a of the front polarizing plate 21 are the same as those in the first embodiment, and the rear polarizing plate 22 is The absorption axis 22a is arranged so as to be substantially orthogonal to the absorption axis 21a of the front polarizing plate 21.

この液晶表示素子は、上記のような構成であるため、反射表示と透過表示とを、明暗を反転させること無く行ない、且つ、前記反射表示部100aの表示と透過表示表示部100bの表示の両方をノーマリーブラック表示にするとともに、前記透過表示の視野を広くすることができる。   Since the liquid crystal display element has the above-described configuration, the reflective display and the transmissive display are performed without reversing the brightness, and both the display on the reflective display unit 100a and the display on the transmissive display display unit 100b are performed. Can be made a normally black display, and the field of view of the transmissive display can be widened.

すなわち、この液晶表示素子による反射表示について説明すると、このときは、前記液晶表示素子にその観察側から入射した外光が、前記前側偏光板21により直線偏光にされ、さらに、遅相軸26aを前記前側偏光板21の吸収軸21aに対して実質的に45°ずらして配置されたλ/2位相差板26により実質的に90°旋光され、その光(前側偏光板21の吸収軸21aに対して直交する直線偏光)のうち、各画素100の反射表示部100aに向かう光が、前記液晶層3に入射する。   That is, the reflective display by the liquid crystal display element will be described. At this time, the external light incident on the liquid crystal display element from the observation side is linearly polarized by the front polarizing plate 21, and the slow axis 26a is The light is substantially rotated by 90 ° by the λ / 2 phase difference plate 26 arranged so as to be shifted by 45 ° with respect to the absorption axis 21a of the front polarizing plate 21, and the light (to the absorption axis 21a of the front polarizing plate 21). Light that travels toward the reflective display portion 100 a of each pixel 100 is incident on the liquid crystal layer 3.

前記前側偏光板21により直線偏光され、前記λ/2位相差板25により90°旋光された光は、前記後側偏光板21の吸収軸21aと平行な偏光面を持った直線偏光、つまり、前記無電界時の液晶分子3aの分子長軸の向きに対して、実質的に45°傾いた方向に偏光面をもった直線偏光である。   The light linearly polarized by the front polarizing plate 21 and rotated by 90 ° by the λ / 2 phase difference plate 25 is linearly polarized light having a polarization plane parallel to the absorption axis 21a of the rear polarizing plate 21, that is, It is linearly polarized light having a polarization plane in a direction substantially inclined by 45 ° with respect to the direction of the molecular major axis of the liquid crystal molecules 3a when no electric field is applied.

そして、前記反射表示部100aのΔndは、透過光に1/4波長の位相差を与える値(137nm)に設定されているため、無電界時は、前記反射表示部100aに入射した前記直線偏光(前側偏光板21により直線偏光され、λ/2位相差板26により90°旋光された光)が、前記液晶層3を往復して透過する間に実質的に90°旋光され、さらに、前記λ/2位相差板26により実質的に90°旋光されて、前記前側偏光板21の吸収軸21aに平行な直線偏光になり、前記前側偏光板21により吸収される。 Since Δnd 1 of the reflective display unit 100a is set to a value (137 nm) that gives the transmitted light a ¼ wavelength phase difference, the straight line incident on the reflective display unit 100a when no electric field is applied. Polarized light (light linearly polarized by the front polarizing plate 21 and rotated by 90 ° by the λ / 2 phase difference plate 26) is substantially rotated by 90 ° while passing back and forth through the liquid crystal layer 3; The light is substantially rotated by 90 ° by the λ / 2 phase difference plate 26, becomes linearly polarized light parallel to the absorption axis 21 a of the front polarizing plate 21, and is absorbed by the front polarizing plate 21.

また、信号電極4とコモン電極5との間に、液晶分子3aを前記配向処理方向1a,2aに対して45°の方向に配列させる強さの横電界Eを生成させたとき(液晶分子3aが前側偏光板21の吸収軸21aに対して実質的に直交する方向に配向したとき)は、前記液晶分子3aの分子長軸の向きが、前記反射表示部100aに入射した前記直線偏光の偏光面と実質に直交するため、前記反射表示部100aに入射した前記直線偏光が、前記液晶層3をほとんど偏光状態を変えずに往復して透過し、さらに前記λ/2位相差板26により実質的に90°旋光されて、前記前側偏光板21の吸収軸21aに対して実質的に直交する直線偏光になり、前記前側偏光板21を透過して観察側へ出射する。   In addition, when a lateral electric field E having a strength for arranging the liquid crystal molecules 3a in a direction of 45 ° with respect to the alignment processing directions 1a and 2a is generated between the signal electrode 4 and the common electrode 5 (liquid crystal molecules 3a Is aligned in a direction substantially perpendicular to the absorption axis 21a of the front polarizing plate 21), the direction of the molecular long axis of the liquid crystal molecules 3a is the polarization of the linearly polarized light incident on the reflective display portion 100a. Since it is substantially orthogonal to the plane, the linearly polarized light incident on the reflective display portion 100a passes back and forth through the liquid crystal layer 3 almost without changing the polarization state, and is further substantially transmitted by the λ / 2 retardation plate 26. Thus, the light is rotated by 90 ° to become linearly polarized light substantially orthogonal to the absorption axis 21a of the front polarizing plate 21, passes through the front polarizing plate 21, and exits to the observation side.

一方、透過表示のときは、前記液晶表示素子の観察側とは反対側に配置された図示しない面光源から照射された照明光が、後側偏光板22により直線偏光にされ、その光(後側偏光板22の吸収軸22aに対して直交する直線偏光)のうち、各画素100の透過表示部100bに向かう光が、前記液晶層3に入射する。   On the other hand, during transmissive display, illumination light emitted from a surface light source (not shown) disposed on the opposite side of the liquid crystal display element from the observation side is converted into linearly polarized light by the rear polarizing plate 22 and the light (rear) Of the linearly polarized light orthogonal to the absorption axis 22 a of the side polarizing plate 22, light traveling toward the transmissive display unit 100 b of each pixel 100 is incident on the liquid crystal layer 3.

前記後側偏光板22により直線偏光にされた光は、前記無電界時の液晶分子3aの分子長軸の向きに対して、実質的に45°傾いた方向に偏光面をもった直線偏光である。   The light linearly polarized by the rear polarizing plate 22 is linearly polarized light having a polarization plane in a direction substantially inclined by 45 ° with respect to the direction of the molecular major axis of the liquid crystal molecules 3a when no electric field is applied. is there.

そして、前記透過表示部100bのΔndは、透過光に1/2波長の位相差を与える値(275nm)に設定されているため、無電界時は、前記透過表示部100bに入射した前記直線偏光(後側偏光板22により直線偏光された光)が、前記液晶層3を透過する間に実質的に90°旋光され、さらに前記λ/2位相差板26により実質的に90°旋光されて、前記前側偏光板21の吸収軸21aに対して実質的に平行な直線偏光になり、前記前側偏光板21により吸収される。 Since Δnd 2 of the transmissive display unit 100b is set to a value (275 nm) that gives a transmitted light a half-wave phase difference, the straight line incident on the transmissive display unit 100b when there is no electric field. Polarized light (light linearly polarized by the rear polarizing plate 22) is substantially rotated by 90 ° while passing through the liquid crystal layer 3, and further rotated by 90 ° by the λ / 2 phase difference plate 26. Thus, the linearly polarized light becomes substantially parallel to the absorption axis 21 a of the front polarizing plate 21 and is absorbed by the front polarizing plate 21.

また、信号電極4とコモン電極5との間に、液晶分子3aを前記配向処理方向1a,2aに対して45°の方向に配列させる強さの横電界Eを生成させたとき(液晶分子3aが前側偏光板21の吸収軸21aに対して実質的に直交する方向に配向したとき)は、前記液晶分子3aの分子長軸の向きが、前記透過表示部100bに入射した前記直線偏光の偏光面と実質に直交するため、前記透過表示部100bに入射した前記直線偏光が、前記液晶層3をほとんど偏光状態を変えずに透過し、前記λ/2位相差板26により実質的に90°旋光されて、前記前側偏光板21の吸収軸21aに対して実質的に直交する直線偏光になり、前記前側偏光板21を透過して観察側へ出射する。   In addition, when a lateral electric field E having a strength for arranging the liquid crystal molecules 3a in a direction of 45 ° with respect to the alignment processing directions 1a and 2a is generated between the signal electrode 4 and the common electrode 5 (liquid crystal molecules 3a Is aligned in a direction substantially perpendicular to the absorption axis 21a of the front polarizing plate 21), the direction of the molecular long axis of the liquid crystal molecules 3a is the polarization of the linearly polarized light incident on the transmissive display unit 100b. Since it is substantially perpendicular to the plane, the linearly polarized light incident on the transmissive display portion 100b is transmitted through the liquid crystal layer 3 with almost no change in polarization state, and is substantially 90 ° by the λ / 2 retardation plate 26. The light is rotated to become linearly polarized light substantially orthogonal to the absorption axis 21 a of the front polarizing plate 21, passes through the front polarizing plate 21, and exits to the observation side.

このように、前記各画素100の反射表示表示部100aの表示と透過表示表示部100bの表示は、いずれも、無電界時の表示が暗表示、横電界生成時の表示が明表示のノーマリーブラック表示である。   As described above, the display of the reflective display display unit 100a and the display of the transmissive display display unit 100b of each of the pixels 100 are both normally displayed with no display when no electric field is displayed and displayed bright when a horizontal electric field is generated. Black display.

そして、この液晶表示素子は、前記観察側と反対側の偏光板21,22を、それぞれの吸収軸21a,22aを実質的に直交させて配置しているため、前記透過表示部100bの視角依存性が小さく、前記透過表示の視野を広くすることができる。   In this liquid crystal display element, since the polarizing plates 21 and 22 on the opposite side to the observation side are arranged so that the absorption axes 21a and 22a are substantially orthogonal to each other, the viewing angle dependence of the transmissive display unit 100b is determined. Therefore, the visual field of the transmissive display can be widened.

また、この液晶表示素子は、前記観察側と反対側の偏光板21,22を、それぞれの吸収軸21a,22aを無電界時の液晶分子3aの分子長軸の向きに対して互いに反対方向に実質的に45°ずらして配置し、前記λ/2位相差板26を、その遅相軸26aを前記無電界時の液晶分子3aの分子長軸の向きと実質的に直交させて配置しているため、前記反射表示のときも、前記透過表示のときも、無電界時の光の出射率をほとんど0にして暗表示を黒にし、横電界生成時の光の出射率を実質的に最大にして明表示を充分に明るくすることができ、したがって、前記反射表示と透過表示の両方の明るさ及びコントラストを高くすることができる。   Further, in this liquid crystal display element, the polarizing plates 21 and 22 on the opposite side to the observation side are arranged so that the absorption axes 21a and 22a are opposite to each other in the direction of the molecular major axis of the liquid crystal molecules 3a when no electric field is applied. The λ / 2 phase difference plate 26 is arranged so as to be substantially shifted by 45 °, and the slow axis 26a thereof is arranged so as to be substantially orthogonal to the direction of the molecular long axis of the liquid crystal molecules 3a when no electric field is applied. Therefore, in both the reflective display and the transmissive display, the light emission rate when there is no electric field is set to almost zero, the dark display is black, and the light emission rate when generating a horizontal electric field is substantially maximized. Thus, the bright display can be sufficiently brightened, and therefore the brightness and contrast of both the reflective display and the transmissive display can be increased.

(他の実施形態)
上述した第1〜第3の実施例の液晶表示素子は、櫛形導電膜4aからなる信号電極4を備えたものであるが、前記信号電極4は、複数のスリットを互いに平行に形成したスリット付き導電膜により形成してもよい。
(Other embodiments)
The liquid crystal display elements of the first to third embodiments described above are provided with the signal electrode 4 made of the comb-shaped conductive film 4a. The signal electrode 4 has a slit in which a plurality of slits are formed in parallel to each other. You may form with a electrically conductive film.

また、上記各実施例では、後基板2の内面の信号電極4よりも前記基板2側に、前記信号電極4と絶縁してコモン電極5を設けているが、TFT6に接続された信号電極を、画素領域に対応する形状の導電膜により形成し、その信号電極よりも液晶層側に、前記信号電極と絶縁して、櫛形導電膜またはスリット付き導電膜からなるコモン電極を設けてもよい。   Further, in each of the above embodiments, the common electrode 5 is provided on the substrate 2 side of the inner surface of the rear substrate 2 on the substrate 2 side so as to be insulated from the signal electrode 4, but the signal electrode connected to the TFT 6 is provided. Alternatively, a conductive electrode having a shape corresponding to the pixel region may be formed, and a common electrode made of a comb-shaped conductive film or a conductive film with a slit may be provided on the liquid crystal layer side of the signal electrode so as to be insulated from the signal electrode.

さらに、上記各実施例では、後基板2の内面に、複数の信号電極4とコモン電極5を設けているが、前記信号電極4とコモン電極5は、前基板1の内面に設けてもよく、また、前記画素100を反射表示部100aと透過表示部100bとに区分する反射膜19は、前記後基板2の内面に設けてもよい。   Further, in each of the above embodiments, the plurality of signal electrodes 4 and the common electrode 5 are provided on the inner surface of the rear substrate 2. However, the signal electrode 4 and the common electrode 5 may be provided on the inner surface of the front substrate 1. In addition, the reflective film 19 that divides the pixel 100 into the reflective display part 100 a and the transmissive display part 100 b may be provided on the inner surface of the rear substrate 2.

また、上記各実施例では、前基板1の内面に液晶層厚調整層20を設けているが、前記液晶層厚調整層20は、後基板2の内面に設けても、或いは,一対の基板1,2の両方の内面に設けてもよい。   In each of the above embodiments, the liquid crystal layer thickness adjusting layer 20 is provided on the inner surface of the front substrate 1. However, the liquid crystal layer thickness adjusting layer 20 may be provided on the inner surface of the rear substrate 2 or a pair of substrates. You may provide in the inner surface of both of 1 and 2.

この発明の第1の実施例を示す液晶表示素子の一方の基板の一部分の平面図。1 is a plan view of a part of one substrate of a liquid crystal display device showing a first embodiment of the present invention; 第1の実施例の液晶表示素子の図1のII−II線に沿う断面図。Sectional drawing which follows the II-II line | wire of FIG. 1 of the liquid crystal display element of a 1st Example. 第1の実施例の液晶表示素子の図1のII−II線に沿う断面図。Sectional drawing which follows the II-II line | wire of FIG. 1 of the liquid crystal display element of a 1st Example. 第1の実施例の液晶表示素子の図1のIV−IV線に沿う断面図。Sectional drawing which follows the IV-IV line | wire of FIG. 1 of the liquid crystal display element of a 1st Example. 第1の実施例の液晶表示素子の一対の基板の配向処理方向と、一対の偏光板の吸収軸の向きと、視角依存性補償位相差板の遅相軸の向きを観察側から見た図。The figure which looked at the orientation processing direction of a pair of board | substrate of the liquid crystal display element of 1st Example, the direction of the absorption axis of a pair of polarizing plate, and the direction of the slow axis of a viewing angle dependence compensation phase difference plate from the observation side. . 前記液晶表示素子の1つの画素における無電界時と横電界生成時の液晶分子の分子長軸の向きを観察側から見た図。The figure which looked at the direction of the molecular long axis of the liquid crystal molecule from the observation side at the time of no electric field and horizontal electric field generation in one pixel of the liquid crystal display element. この発明の第2の実施例を示す液晶表示素子の一部分の断面図。Sectional drawing of the part of liquid crystal display element which shows 2nd Example of this invention. 第2の実施例の液晶表示素子の一対の基板の内面の配向処理方向と、一対の偏光板の吸収軸の向きと、λ/2位相差板の遅相軸の向きを観察側から見た図。The orientation processing direction of the inner surfaces of the pair of substrates of the liquid crystal display element of the second embodiment, the direction of the absorption axis of the pair of polarizing plates, and the direction of the slow axis of the λ / 2 retardation plate were viewed from the observation side. Figure. この発明の第3の実施例を示す液晶表示素子の一部分の平面図。The top view of a part of liquid crystal display element which shows the 3rd Example of this invention. 第3の実施例の液晶表示素子の一対の基板の内面の配向処理方向と、一対の偏光板の吸収軸の向きと、λ/2位相差板の遅相軸の向きを観察側から見た図。The orientation processing direction of the inner surfaces of the pair of substrates of the liquid crystal display element of the third example, the direction of the absorption axis of the pair of polarizing plates, and the direction of the slow axis of the λ / 2 retardation plate were viewed from the observation side. Figure.

符号の説明Explanation of symbols

1…前基板(観察側基板)、2…後基板(反対側基板)、1a,2a…配向処理方向、3…液晶層、3a…液晶分子、4…信号電極、4a…櫛形導電膜、4b…櫛歯部、5…コモン電極、5a…行方向導電膜、5b…電極部、6…TFT(能動素子)、7…ゲート電極(制御電極)、8…ゲート絶縁膜、9…i型半導体膜、10…ドレイン電極(入力電極)、11…ソース電極(出力電極)、12…走査線、13…信号線、14…層間絶縁膜、15…遮光膜、16R,16G,16B…カラーフィルタ、17,18…配向膜、19…反射膜、20…液晶層厚調整層、21…前側(観察側)偏光板、21a…吸収軸、22…後側(反対側)偏光板、22a…吸収軸、23…視角依存性補償位相差板、23a…遅相軸、24…静電気遮断導電膜、25,26…λ/2位相差板、25a,26a…遅相軸、100…画素、100a…反射表示部、100b…透過表示部。   DESCRIPTION OF SYMBOLS 1 ... Front board | substrate (observation side board | substrate), 2 ... Back board | substrate (opposite side board | substrate), 1a, 2a ... Orientation process direction, 3 ... Liquid crystal layer, 3a ... Liquid crystal molecule, 4 ... Signal electrode, 4a ... Comb-shaped electrically conductive film, 4b ... comb tooth part, 5 ... common electrode, 5a ... row direction conductive film, 5b ... electrode part, 6 ... TFT (active element), 7 ... gate electrode (control electrode), 8 ... gate insulating film, 9 ... i-type semiconductor Membrane, 10 ... Drain electrode (input electrode), 11 ... Source electrode (output electrode), 12 ... Scanning line, 13 ... Signal line, 14 ... Interlayer insulating film, 15 ... Light shielding film, 16R, 16G, 16B ... Color filter, 17, 18 ... Alignment film, 19 ... Reflective film, 20 ... Liquid crystal layer thickness adjusting layer, 21 ... Front side (observation side) polarizing plate, 21a ... Absorption axis, 22 ... Rear side (opposite side) polarizing plate, 22a ... Absorption axis , 23 ... Viewing angle dependent compensation phase difference plate, 23a ... Slow axis, 24 ... Electrostatic shielding conductive film, 5,26 ... λ / 2 phase plate, 25a, 26a ... slow axis, 100 ... pixel, 100a ... reflective display portion, 100b ... transmissive display unit.

Claims (2)

予め定めた間隙を設けて対向配置された観察側及びその反対側の一対の基板と、
前記一対の基板間の間隙に封入され、液晶分子がその分子長軸を予め定めた一方の方向に揃えて前記基板面と実質的に平行に配列された液晶層と、
前記一対の基板の互いに対向する内面のうちのいずれか一方に互いに絶縁して配置され、前記基板面と実質的に平行な横電界を生成し、この横電界によって前記液晶分子の配向方位が制御される複数の画素をマトリックス状に配列させて形成するための複数の信号電極及び複数のコモン電極と、
前記反対側の基板の内面または外面に、前記複数の画素内の予め定めた領域にそれぞれ対応させて設けられ、前記観察側から入射した光を反射して前記観察側へ出射する反射表示部と、前記観察側とは反対側から入射した光を透過させて前記観察側へ出射する前記反射表示部以外の透過表示部とを前記複数の画素毎に形成するための反射膜と、
前記一対の基板の少なくともいずれか一方の内面に、前記複数の画素の前記反射表示部にそれぞれ対応させて設けられ、前記反射表示部の前記液晶の屈折率異方性Δnと液晶層厚dとの積Δndが、前記透過表示部の前記液晶の屈折率異方性Δnと液晶層厚dとの積Δndに比べて透過光の1/4波長に相当する値だけ小さくなるように、前記反射表示部の液晶層厚を調整するための液晶層厚調整層と、
前記一対の基板の外面に、それぞれの吸収軸を実質的に平行にしてそれぞれ配置された観察側及びその反対側の一対の偏光板と、
観察側とは反対側の基板とその外面に配置された反対側偏光板との間に、その遅相軸を前記反対側偏光板の吸収軸と実質的に平行にする位相差板と、
を備えることを特徴とする液晶表示素子。
A pair of substrates on the opposite side and the observation side disposed opposite each other with a predetermined gap;
A liquid crystal layer encapsulated in a gap between the pair of substrates, wherein the liquid crystal molecules are aligned substantially parallel to the substrate surface with their molecular long axes aligned in one predetermined direction;
Insulated on either one of the opposing inner surfaces of the pair of substrates, generates a lateral electric field substantially parallel to the substrate surface, and the orientation of the liquid crystal molecules is controlled by the lateral electric field A plurality of signal electrodes and a plurality of common electrodes for forming a plurality of pixels arranged in a matrix,
A reflective display unit provided on an inner surface or an outer surface of the substrate on the opposite side so as to correspond to a predetermined region in each of the plurality of pixels, which reflects light incident from the observation side and emits the light to the observation side; A reflective film for forming a transmissive display unit other than the reflective display unit that transmits light incident from the opposite side to the observation side and emits the light to the observation side; and
The inner surface of at least one of the pair of substrates is provided so as to correspond to the reflective display portion of the plurality of pixels, and the refractive index anisotropy Δn of the liquid crystal and the liquid crystal layer thickness d of the reflective display portion, Is reduced by a value corresponding to a quarter wavelength of transmitted light as compared to the product Δnd of the refractive index anisotropy Δn of the liquid crystal and the liquid crystal layer thickness d of the transmissive display unit. A liquid crystal layer thickness adjusting layer for adjusting the liquid crystal layer thickness of the display unit;
A pair of polarizing plates on the outer side of the pair of substrates, on the observation side and on the opposite side, each arranged substantially parallel to the respective absorption axes ;
A retardation plate having a slow axis substantially parallel to the absorption axis of the opposite polarizing plate between the substrate opposite to the observation side and the opposite polarizing plate disposed on the outer surface thereof;
A liquid crystal display element comprising:
一対の偏光板は、それぞれの吸収軸を無電界時の液晶分子の分子長軸の向きに対して実質的に45°ずらして配置されていることを特徴とする請求項に記載の液晶表示素子。 2. The liquid crystal display according to claim 1 , wherein the pair of polarizing plates are arranged such that their absorption axes are substantially shifted by 45 ° with respect to the direction of the molecular long axis of the liquid crystal molecules when there is no electric field. element.
JP2006180004A 2006-06-29 2006-06-29 Liquid crystal display element Active JP5103806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006180004A JP5103806B2 (en) 2006-06-29 2006-06-29 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006180004A JP5103806B2 (en) 2006-06-29 2006-06-29 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2008009154A JP2008009154A (en) 2008-01-17
JP5103806B2 true JP5103806B2 (en) 2012-12-19

Family

ID=39067441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006180004A Active JP5103806B2 (en) 2006-06-29 2006-06-29 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP5103806B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5207946B2 (en) * 2008-12-15 2013-06-12 株式会社ジャパンディスプレイウェスト LCD panel

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100394987B1 (en) * 2000-04-07 2003-08-19 엘지.필립스 엘시디 주식회사 transflective liquid crystal display device
JP4117148B2 (en) * 2002-05-24 2008-07-16 日本電気株式会社 Transflective liquid crystal display device

Also Published As

Publication number Publication date
JP2008009154A (en) 2008-01-17

Similar Documents

Publication Publication Date Title
US6466290B2 (en) Fringe field switching mode LCD
JP4002105B2 (en) Liquid crystal display
JP3971778B2 (en) Display device
JP4039444B2 (en) Liquid crystal display device and electronic device
US8120739B2 (en) LCD device including an insulator film having a contact hole for exposing a pixel electrode
JP2007004126A (en) Liquid crystal device and electronic apparatus
US8743332B2 (en) Liquid crystal display device
KR19980042256A (en) Liquid crystal display
CN116594208A (en) Display panel with switchable viewing angle, display device and driving method
JP2007240726A (en) Liquid crystal display device and method for manufacturing the liquid crystal display device
JP3993263B2 (en) Liquid crystal display
KR100377944B1 (en) Lcd having liquid crystal layers prepared in the homogeneous orientation of liquid crystal molecule
JP5103806B2 (en) Liquid crystal display element
JP4923916B2 (en) Liquid crystal display element
JP2008009155A (en) Liquid crystal display element
JP4846231B2 (en) Liquid crystal display
JP2009229970A (en) Liquid crystal display panel
JP4817667B2 (en) Liquid crystal display
JP2009237022A (en) Liquid crystal display device and electronic apparatus
JP5177861B2 (en) Liquid crystal display
KR101124396B1 (en) Transflective mode In-Plane switching type liquid crystal display device
JP4711439B2 (en) Display device
JP2005292302A (en) Liquid crystal display element
KR101688593B1 (en) In-plane switching mode transflective type liquid crystal display device
JP5041436B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120917

R150 Certificate of patent or registration of utility model

Ref document number: 5103806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151012

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250