[go: up one dir, main page]

JP4923916B2 - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP4923916B2
JP4923916B2 JP2006263225A JP2006263225A JP4923916B2 JP 4923916 B2 JP4923916 B2 JP 4923916B2 JP 2006263225 A JP2006263225 A JP 2006263225A JP 2006263225 A JP2006263225 A JP 2006263225A JP 4923916 B2 JP4923916 B2 JP 4923916B2
Authority
JP
Japan
Prior art keywords
liquid crystal
pair
electrode
reflective display
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006263225A
Other languages
Japanese (ja)
Other versions
JP2008083388A (en
Inventor
則博 荒井
君平 小林
利晴 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2006263225A priority Critical patent/JP4923916B2/en
Publication of JP2008083388A publication Critical patent/JP2008083388A/en
Application granted granted Critical
Publication of JP4923916B2 publication Critical patent/JP4923916B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)

Description

この発明は、液晶分子の配向方位を基板面と実質的に平行な面内において制御して画像を表示する液晶表示素子に関する。   The present invention relates to a liquid crystal display element that displays an image by controlling the orientation direction of liquid crystal molecules in a plane substantially parallel to a substrate surface.

液晶表示素子として、予め定めた間隙を設けて対向配置された一対の基板間の間隙に、液晶層を、前記一対の基板の内面にそれぞれ設けられた配向膜により、液晶分子の分子長軸を予め定めた一方の方向に揃えて前記基板面と実質的に平行に配向させて封入し、前記一対の基板の互いに対向する内面のうちの一方の基板の内面に、前記基板面と実質的に平行な横電界を生成し、この横電界によって前記液晶分子の分子長軸の向きが制御される複数の画素をマトリックス状に配列させて形成するための複数の信号電極及び複数のコモン電極を設け、前記一対の基板の外面にそれぞれ偏光板を配置したものがある(特許文献1参照)。   As a liquid crystal display element, a liquid crystal layer is provided in a gap between a pair of substrates opposed to each other with a predetermined gap, and a molecular long axis of liquid crystal molecules is provided by an alignment film provided on each inner surface of the pair of substrates. Aligned in one predetermined direction and substantially parallel to the substrate surface and sealed, and the inner surface of one of the pair of substrates facing each other is substantially in contact with the substrate surface. A plurality of signal electrodes and a plurality of common electrodes are provided for generating a parallel lateral electric field and arranging a plurality of pixels in which the orientation of the molecular long axis of the liquid crystal molecules is controlled by the lateral electric field in a matrix. In some cases, polarizing plates are arranged on the outer surfaces of the pair of substrates (see Patent Document 1).

この液晶表示素子は、一方の基板の内面に設けられた複数の信号電極とコモン電極との間にそれぞれ表示データに対応した横電界を生成することにより、前記液晶分子の分子長軸の向きを、前記基板面と実質的に平行な面内において制御して画像を表示する。
特開2002−82357号公報
This liquid crystal display element generates a lateral electric field corresponding to display data between a plurality of signal electrodes and a common electrode provided on the inner surface of one substrate, thereby changing the orientation of the molecular major axis of the liquid crystal molecules. The image is displayed by controlling in a plane substantially parallel to the substrate surface.
JP 2002-82357 A

上述した液晶表示素子は、一対の基板のうちの観察側とは反対側の基板側から入射し、液晶層を透過した光によって画像を表示する透過型の表示素子であって、観察側から入射した光によって画像を表示する反射型の表示を行なうことができなかった。   The liquid crystal display element described above is a transmissive display element that displays an image by light incident on the opposite side of the pair of substrates from the viewing side and transmitted through the liquid crystal layer. It was not possible to perform a reflective display that displayed an image with the light.

この発明は、液晶分子の配向方位を基板面と実質的に平行な面内において制御して画像を表示し、しかも、観察側から入射した光を反射し、その光の前記観察側への出射を制御して画像を表示する反射表示と、観察側とは反対側から入射した光の前記観察側への出射を制御して画像を表示する透過表示とを、明暗を反転させること無く行なうことができる液晶表示素子を提供することを目的としたものである。   The present invention displays an image by controlling the orientation direction of liquid crystal molecules in a plane substantially parallel to the substrate surface, reflects light incident from the observation side, and emits the light to the observation side. Reflective display for displaying an image by controlling the image and transmissive display for displaying an image by controlling the emission of light incident from the opposite side to the observation side to display the image without reversing light and dark An object of the present invention is to provide a liquid crystal display element capable of achieving the above.

前記課題を解決するため、本発明の液晶表示素子の一態様は、予め定めた間隙を設けて対向配置された観察側及びその反対側の一対の基板と、前記一対の基板間の間隙に封入された液晶層と、前記一対の基板の互いに対向する内面のうちのいずれか一方に互いに絶縁して配置され、電圧の印加により、前記基板面平行で、且つ予め定めた位置から一方の側と他方の側とで向きが予め定めた角度ずれた2つの方向の横電界を生成し、これらの横電界によって前記液晶層の液晶分子の分子長軸の向きが制御される複数の画素を行方向及び列方向にマトリックス状に配列させて形成するための複数の信号電極及び複数のコモン電極と、前記反対側の基板の内面または外面に、前記複数の画素内の前記2つの方向の横電界の生成領域のうちの一方にそれぞれ対応させて設けられ、前記観察側から入射した光を反射して前記観察側へ出射する反射表示部と、前記観察側とは反対側から入射した光を透過させて前記観察側へ出射する前記反射表示部以外の透過表示部とを前記複数の画素毎に形成するための反射膜と、前記一対の基板の内面にそれぞれ設けられ、前記液晶分子を、前記基板面と平行な方向に分子長軸を向けて配向させるように、前記複数の画素の前記透過表示部に対応する部分にそれぞれ、前記液晶分子を前記列方向に分子長軸を揃えて配向させるための配向処理が施され、前記複数の画素の前記反射表示部に対応する部分にそれぞれ、前記液晶分子を前記列方向に対して観察側から見て左回り方向に45°傾いた方向に分子長軸を揃えて配向させるための配向処理が施された一対の配向膜と、前記一対の基板の外面にそれぞれ配置された観察側及びその反対側の一対の偏光板と、を備え、前記信号電極は、前記透過表示部に対応する部分が、前記列方向に対して、観察側から見て右回り方向に5°〜15°の角度で傾いた方向に沿う細長形状に形成され、前記反射表示部に対応する部分は、観察側から見て左回り方向に30°〜40°の角度で傾いた方向に沿う細長形状に形成された、複数の細長電極部を有する第1の導電膜からなり、前記コモン電極は、複数の前記信号電極にそれぞれ対向する領域において前記信号電極と平面視して重なりを持って形成された複数の対向部と、前記複数の対向部を接続する接続部と、を有して前記複数の画素の行毎に前記行の全長にわたって設けられた、第2の導電膜からなり、前記観察側の偏光板は、前記観察側の偏光板の吸収軸を前記列方向に対して平行または直交する方向に向けて配置され、前記観察側とは反対側の偏光板は、前記観察側とは反対側の偏光板の吸収軸を前記観察側の偏光板の吸収軸に対して直交させて配置されている、
ことを特徴とする。
In order to solve the above problems, an aspect of the liquid crystal display element according to the present invention is sealed in a pair of substrates on the observation side and the opposite side, which are opposed to each other with a predetermined gap, and the gap between the pair of substrates. One of the liquid crystal layer and the inner surfaces facing each other of the pair of substrates is insulated from each other, and is parallel to the substrate surface and applied to one side from a predetermined position by applying a voltage. generates two directions of the horizontal electric field orientation is deviated a predetermined angle and the other side, a row a plurality of pixels orientation of molecular long axis is control of the liquid crystal molecules of the liquid crystal layer by these lateral electric field A plurality of signal electrodes and a plurality of common electrodes to be arranged in a matrix in a direction and a column direction, and a transverse electric field in the two directions in the plurality of pixels on an inner surface or an outer surface of the opposite substrate In one of the generation regions Reflective display portions that are provided in correspondence with each other, reflect light incident from the observation side and emit the light to the observation side, and transmit light incident from the opposite side to the observation side to transmit to the observation side A reflective film for forming a transmissive display unit other than the reflective display unit for emitting each of the plurality of pixels , and an inner surface of the pair of substrates, and the liquid crystal molecules are parallel to the substrate surface An alignment process for aligning the liquid crystal molecules in the column direction with the molecular long axes aligned is performed on the portions corresponding to the transmissive display portions of the plurality of pixels so as to align the molecular long axes in the direction. The liquid crystal molecules are aligned at 45 ° in a counterclockwise direction when viewed from the observation side with respect to the column direction, respectively, at the portions corresponding to the reflective display portion of the plurality of pixels. Alignment treatment was applied to align A pair of alignment films, and a pair of polarizing plates on the observation side and opposite sides respectively disposed on the outer surfaces of the pair of substrates, and the signal electrode includes a portion corresponding to the transmissive display unit, It is formed in an elongated shape along a direction inclined at an angle of 5 ° to 15 ° clockwise when viewed from the observation side, and the portion corresponding to the reflective display portion is counterclockwise as viewed from the observation side. The first conductive film having a plurality of elongated electrode portions formed in an elongated shape along a direction inclined at an angle of 30 ° to 40 ° with respect to the direction , wherein the common electrode is opposed to the plurality of signal electrodes, respectively. A plurality of opposing portions formed to overlap with the signal electrode in a plan view, and a connection portion connecting the opposing portions, and the row for each row of the plurality of pixels. Consisting of a second conductive film provided over the entire length of The polarizing plate on the observation side is arranged with the absorption axis of the polarizing plate on the observation side oriented in a direction parallel or orthogonal to the column direction, and the polarizing plate on the opposite side to the observation side is the observation side Is arranged so that the absorption axis of the polarizing plate on the opposite side is orthogonal to the absorption axis of the polarizing plate on the observation side,
It is characterized by that.

この発明の液晶表示素子によれば、観察側から入射した光を反射し、その光の前記観察側への出射を制御して画像を表示する反射表示と、観察側とは反対側から入射した光の前記観察側への出射を制御して画像を表示する透過表示とを行なうことができる。   According to the liquid crystal display element of the present invention, the light incident from the observation side is reflected, the reflection display that displays the image by controlling the emission of the light to the observation side, and the light incident from the opposite side to the observation side It is possible to perform transmission display in which an image is displayed by controlling the emission of light to the observation side.

(第1の実施形態)
図1〜図7はこの発明の第1の実施例を示しており、図1は液晶表示素子の一方の基板の一部分の平面図、図2は前記液晶表示素子の図1のII−II線に沿う断面図、図3は前記液晶表示素子の図1のIII−III線に沿う断面図、図4は前記液晶表示素子の図1のIV−IV線に沿う断面図、図5は前記液晶表示素子の一対の基板の内面にそれぞれ設けられた一対の配向膜の配向処理方向と一対の偏光板の吸収軸の向きを観察側から見た図、図6は前記液晶表示素子の1つの画素における無電界時の液晶分子の分子長軸の向きを観察側から見た図、図7は前記液晶表示素子の1つの画素における横電界生成時の液晶分子の分子長軸の向きを観察側から見た図である。
(First embodiment)
1 to 7 show a first embodiment of the present invention. FIG. 1 is a plan view of a part of one substrate of a liquid crystal display element, and FIG. 2 is a line II-II in FIG. 1 of the liquid crystal display element. 3 is a cross-sectional view of the liquid crystal display element taken along line III-III in FIG. 1, FIG. 4 is a cross-sectional view of the liquid crystal display element taken along line IV-IV in FIG. 1, and FIG. FIG. 6 is a view of the alignment treatment direction of a pair of alignment films provided on the inner surfaces of a pair of substrates of the display element and the direction of the absorption axis of the pair of polarizing plates as viewed from the observation side, and FIG. 6 shows one pixel of the liquid crystal display element FIG. 7 is a view of the orientation of the molecular long axis of the liquid crystal molecules when no electric field is applied from the observation side. FIG. 7 is a diagram illustrating the orientation of the molecular long axis of the liquid crystal molecules when a horizontal electric field is generated in one pixel of the liquid crystal display element. FIG.

この液晶表示素子は、図1〜図4のように、予め定めた間隙を設けて対向配置された観察側(図2〜図4において上側)及びその反対側の一対の透明基板1,2と、前記一対の基板1,2間の間隙に封入された正の誘電異方性を有するネマティック液晶層3と、前記一対の基板1,2の互いに対向する内面のうちの一方の基板の内面、例えば観察側とは反対側の基板2の内面に、互いに絶縁して配置され、電圧の印加により、前記基板1,2面と実質的に平行で、且つ予め定めた位置から一方の側と他方の側とで向きが予め定めた角度で交差する2つの方向の横電界E,E(図7参照)を生成し、これらの横電界E,Eによって前記液晶層3の液晶分子3aの分子長軸の向きが制御される複数の画素100を行方向(画面の左右方向)及び列方向(画面の上下方向)にマトリックス状に配列させて形成するための複数の信号電極4及び複数のコモン電極5と、前記一対の基板1,2の外面にそれぞれ配置された観察側及びその反対側の一対の偏光板21,22とを備えている。 As shown in FIGS. 1 to 4, the liquid crystal display element includes an observation side (upper side in FIGS. 2 to 4) and a pair of transparent substrates 1 and 2 on the opposite side, facing each other with a predetermined gap. A nematic liquid crystal layer 3 having positive dielectric anisotropy enclosed in a gap between the pair of substrates 1 and 2 and an inner surface of one of the opposing inner surfaces of the pair of substrates 1 and 2; For example, they are arranged on the inner surface of the substrate 2 opposite to the observation side and insulated from each other, and are substantially parallel to the surfaces of the substrates 1 and 2 by applying a voltage, and one side and the other from a predetermined position. The horizontal electric fields E 1 and E 2 (see FIG. 7) in two directions whose directions intersect with each other at a predetermined angle are generated, and the liquid crystal molecules of the liquid crystal layer 3 are generated by these horizontal electric fields E 1 and E 2 . A plurality of pixels 100 in which the orientation of the molecular major axis of 3a is controlled in the row direction (right and left of the screen Direction) and column direction (up and down direction of the screen) arranged in a matrix form, a plurality of signal electrodes 4 and a plurality of common electrodes 5, and observations arranged on the outer surfaces of the pair of substrates 1 and 2, respectively. And a pair of polarizing plates 21 and 22 on the opposite side.

以下、前記観察側の基板1を前基板、観察側とは反対側の基板2を後基板、前記前基板1の外面に配置された観察側の偏光板21を前側偏光板、前記後基板2の外面に配置された反対側の偏光板22を後側偏光板という。   Hereinafter, the substrate 1 on the observation side is the front substrate, the substrate 2 opposite to the observation side is the rear substrate, the polarizing plate 21 on the observation side arranged on the outer surface of the front substrate 1 is the front polarizing plate, and the rear substrate 2. The polarizing plate 22 on the opposite side disposed on the outer surface is referred to as a rear polarizing plate.

前記一対の基板1,2は、図示しない枠状のシール材を介して接合されており、前記液晶層3は、前記一対の基板1,2間の間隙の前記シール材により囲まれた領域に封入されている。   The pair of substrates 1 and 2 are joined via a frame-shaped sealing material (not shown), and the liquid crystal layer 3 is in a region surrounded by the sealing material in the gap between the pair of substrates 1 and 2. It is enclosed.

この液晶表示素子は、アクティブマトリックス液晶表示素子であり、前記複数の信号電極4及び複数のコモン電極5が設けられた後基板2の内面に、前記複数の画素100毎に配置された能動素子6を備えている。   This liquid crystal display element is an active matrix liquid crystal display element, and an active element 6 disposed for each of the plurality of pixels 100 on the inner surface of the substrate 2 after the plurality of signal electrodes 4 and the plurality of common electrodes 5 are provided. It has.

この能動素子6は、信号の入力電極10及び出力電極11と、前記入力電極10と出力電極11との間の導通を制御する制御電極7とを有しており、前記制御電極7が各行毎に走査線12に接続され、前記入力電極10が各列毎に信号線13に接続され、前記出力電極11が前記信号電極4に接続されている。   The active element 6 includes a signal input electrode 10 and an output electrode 11, and a control electrode 7 that controls conduction between the input electrode 10 and the output electrode 11. The control electrode 7 is provided for each row. Are connected to the scanning line 12, the input electrode 10 is connected to the signal line 13 for each column, and the output electrode 11 is connected to the signal electrode 4.

前記能動素子6は、TFT(薄膜トランジスタ)であり、前記後基板2の基板面上に形成されたゲート電極(制御電極)7と、前記ゲート電極7を覆って後基板2の略全面に形成された透明なゲート絶縁膜8と、このゲート絶縁膜8の上に前記ゲート電極7と対向させて形成されたi型半導体膜9と、前記i型半導体膜9の両側部の上にn型半導体膜(図示せず)を介して設けられたドレイン電極(入力電極)10及びソース電極(出力電極)11とからなっている。   The active element 6 is a TFT (thin film transistor), and is formed on a substantially entire surface of the rear substrate 2 covering the gate electrode 7 and a gate electrode (control electrode) 7 formed on the substrate surface of the rear substrate 2. A transparent gate insulating film 8, an i-type semiconductor film 9 formed on the gate insulating film 8 so as to face the gate electrode 7, and an n-type semiconductor on both sides of the i-type semiconductor film 9. It consists of a drain electrode (input electrode) 10 and a source electrode (output electrode) 11 provided via a film (not shown).

前記走査線12は、前記後基板2の基板面上に、前記行方向に配列された複数の画素100からなる各画素行毎に、前記画素行の一側(図1において下側)に前記画素行と平行に形成され、各行のTFT6のゲート電極7に接続されており、前記信号線13は、前記ゲート絶縁膜8の上に、前記列方向に配列された複数の画素100からなる各画素列毎に、前記画素列の一側(図1において左側)に前記画素列と平行に形成され、各列のTFT6のドレイン電極10に接続されている。   The scanning line 12 is arranged on one side (lower side in FIG. 1) of the pixel row for each pixel row including a plurality of pixels 100 arranged in the row direction on the substrate surface of the rear substrate 2. The signal lines 13 are formed in parallel to the pixel rows and connected to the gate electrodes 7 of the TFTs 6 in each row, and the signal lines 13 are each composed of a plurality of pixels 100 arranged in the column direction on the gate insulating film 8. For each pixel column, the pixel column is formed on one side (left side in FIG. 1) in parallel with the pixel column and connected to the drain electrode 10 of the TFT 6 in each column.

なお、前記後基板2の縁部には、前記前基板1の外方に張出す端子配列部(図示せず)が形成されており、前記走査線12及び信号線13は、前記端子配列部に設けられた複数の走査線端子及び信号線端子に接続されている。   Note that a terminal array portion (not shown) extending outward from the front substrate 1 is formed at an edge of the rear substrate 2, and the scanning line 12 and the signal line 13 are connected to the terminal array portion. Are connected to a plurality of scanning line terminals and signal line terminals.

そして、前記コモン電極5は、前記ゲート絶縁膜8の上に形成され、前記複数の信号電極4は、前記コモン電極5及びTFT6を覆って前記後基板2の略全面に形成された透明な層間絶縁膜14の上に形成されている。すなわち、前記複数の信号電極4と前記コモン電極5は、前記層間絶縁膜14により絶縁されている。   The common electrode 5 is formed on the gate insulating film 8, and the plurality of signal electrodes 4 cover the common electrode 5 and the TFT 6 and are formed on a transparent interlayer formed on substantially the entire surface of the rear substrate 2. It is formed on the insulating film 14. That is, the plurality of signal electrodes 4 and the common electrode 5 are insulated by the interlayer insulating film 14.

前記複数の信号電極4はそれぞれ、画面の上下方向に沿う縦幅が、前記画面の左右方向に沿う横幅よりも大きい縦長の矩形形状領域に、その領域の予め定めた位置、例えば前記縦幅方向に沿う方向の中央位置から一方の側の部分が、一方の方向に沿う細長形状に形成され、他方の側の部分が、前記一方の方向に対して予め定めた角度で傾いた方向に沿う細長形状に形成された複数の細長電極部4bを有する透明な第1の導電膜(例えばITO膜)4aからなっている。   Each of the plurality of signal electrodes 4 has a vertically long rectangular shape region whose vertical width along the vertical direction of the screen is larger than the horizontal width along the horizontal direction of the screen, and a predetermined position of the region, for example, the vertical width direction. A portion on one side from a central position along the direction is formed in an elongated shape along one direction, and the portion on the other side is elongated along a direction inclined at a predetermined angle with respect to the one direction. It consists of a transparent first conductive film (for example, ITO film) 4a having a plurality of elongated electrode portions 4b formed in a shape.

この第1の導電膜4aの複数の細長電極部4bの前記縦幅方向の中央位置から一方の側、例えば図1において下側の部分は、前記画面の上下方向、つまり画面の縦軸yに対して、左右いずれか一方回りの方向、例えば観察側から見て右回り方向に5°〜15°の角度θで傾いた方向に沿う細長形状に形成されており、他方の側の部分、つまり図1において上側の部分は、前記画面の縦軸yに対して、前記下側の部分の傾き方向とは反対方向、つまり観察側から見て左回り方向に30°〜40°の角度θで傾いた方向に沿う細長形状に形成されている(図6及び図7参照)。 One side of the plurality of elongated electrode portions 4b of the first conductive film 4a from the central position in the vertical width direction, for example, the lower portion in FIG. 1, is in the vertical direction of the screen, that is, the vertical axis y of the screen. against it, left or right whereas around direction, for example, is formed in an elongated shape along the inclined direction clockwise direction in 5 ° to 15 ° angle theta 1 as viewed from the observation side, part of the other side, That is, the upper portion in FIG. 1 is an angle θ of 30 ° to 40 ° in the direction opposite to the tilt direction of the lower portion with respect to the vertical axis y of the screen, that is, in the counterclockwise direction when viewed from the observation side. 2 is formed in an elongated shape along the direction inclined by 2 (see FIGS. 6 and 7).

なお、これらの細長電極部4bのうち、前記下側の部分が前記矩形形状領域の幅内において前記縦幅方向の中央位置まで延びている各細長電極部4bは、前記下側の部分から上側の部分にわたって連続した形状に形成され、他の細長電極部4bは、前記下側の部分と上側の部分とが前記領域の幅方向の側縁において切離された形状に形成されている。   Of these elongated electrode portions 4b, each of the elongated electrode portions 4b in which the lower portion extends to the center position in the longitudinal width direction within the width of the rectangular region is located above the lower portion. The other elongated electrode portion 4b is formed in a shape in which the lower portion and the upper portion are separated at the side edge in the width direction of the region.

そして、前記複数の細長電極部4bの下側の部分は、前記第1の導電膜4aの下縁に形成されたつなぎ部4dにより共通接続されており、また、前記複数の細長電極部4bのうち、前記下側の部分と上側の部分とが切離された各細長電極部4bの上側の部分は、前記第1の導電膜4aの上縁に形成されたつなぎ部4eにより共通接続され、そのつなぎ部4eを介して、前記下側の部分から上側の部分にわたって連続した細長電極部4bのうちの1つまたは複数の細長電極部4b(図1では1つの細長電極部4b)の上側の部分の上端部に接続されている。   The lower portions of the plurality of elongated electrode portions 4b are commonly connected by a connecting portion 4d formed at the lower edge of the first conductive film 4a, and the plurality of elongated electrode portions 4b Among these, the upper portion of each elongated electrode portion 4b from which the lower portion and the upper portion are separated is commonly connected by a connecting portion 4e formed at the upper edge of the first conductive film 4a. One or more elongated electrode portions 4b (one elongated electrode portion 4b in FIG. 1) of the elongated electrode portions 4b continuous from the lower portion to the upper portion via the connecting portion 4e. It is connected to the upper end of the part.

すなわち、前記下側の部分から上側の部分にわたって連続した各細長電極部4bも、前記下側の部分と上側の部分とが切離された各細長電極部4bも、前記第1の導電膜4aの下縁のつなぎ部4dに、直接または前記第1の導電膜4aの上縁のつなぎ部4e及び前記連続した細長電極部4bを介して接続されている。   That is, each of the elongated electrode portions 4b continuous from the lower portion to the upper portion, and each of the elongated electrode portions 4b in which the lower portion and the upper portion are separated from each other, are both the first conductive film 4a. Is connected to the lower edge connecting portion 4d directly or via the upper edge connecting portion 4e of the first conductive film 4a and the continuous elongated electrode portion 4b.

また、前記複数の細長電極部4bの下側部分の幅Wと隣合う下側部分の間隔Dとの比D/Wと、前記複数の細長電極部4bの上側部分の幅Wと隣合う上側部分の間隔Dとの比D/Wは、それぞれ、1/3〜3/1、好ましくは1/1に設定されている。 Further, the ratio D 1 / W 1 between the width W 1 of the lower portion of the plurality of elongated electrode portions 4b and the distance D 1 between the adjacent lower portions, and the width W of the upper portion of the plurality of elongated electrode portions 4b. 2 and the ratio D 2 / W 2 between the distance D 2 of the upper portion adjacent each, 1 / 3-3 / 1, preferably set to 1/1.

そして、前記第1の導電膜4aの下縁のつなぎ部4dの一端側は、前記TFT6のソース電極11上に前記層間絶縁膜14を介して重なっており、前記層間絶縁膜14に設けられた図示しないコンタクト孔において前記ソース電極11に接続されている。   Then, one end side of the connecting portion 4d at the lower edge of the first conductive film 4a overlaps the source electrode 11 of the TFT 6 via the interlayer insulating film 14, and is provided on the interlayer insulating film 14. The contact hole (not shown) is connected to the source electrode 11.

また、前記ゲート絶縁膜8の上に形成された前記コモン電極5は、前記各画素行毎にその全長にわたって設けられ、各行の複数の信号電極4にそれぞれ対応する領域を、画素100の略全域に対応する縦長矩形形状に形成された第2の導電膜(例えばITO膜)5aからなっている。   In addition, the common electrode 5 formed on the gate insulating film 8 is provided over the entire length of each pixel row, and regions corresponding to the plurality of signal electrodes 4 in each row are substantially the entire region of the pixel 100. Is formed of a second conductive film (for example, ITO film) 5a formed in a vertically long rectangular shape.

なお、この実施例では、前記第2の導電膜5aを、図1のように、前記第1の導電膜4aからなる各信号電極4にそれぞれ対応する領域を、縦長矩形形状の電極部5bにパターニングし、これらの電極部5b,5bをその一端側(走査線12が設けられた側とは反対側)において接続部5cにより接続した形状に形成しているが、この第2の導電膜5aは、前記画素行の全長にわたって前記信号電極4の縦幅(画面の上下方向の幅)に対応する幅に形成してもよい。   In this embodiment, as shown in FIG. 1, the second conductive film 5a has regions corresponding to the respective signal electrodes 4 made of the first conductive film 4a, which are formed as vertically long rectangular electrode portions 5b. These electrode portions 5b and 5b are formed in a shape connected by a connecting portion 5c on one end side (the side opposite to the side on which the scanning line 12 is provided), but this second conductive film 5a is patterned. May be formed to have a width corresponding to the vertical width of the signal electrode 4 (the vertical width of the screen) over the entire length of the pixel row.

前記第2の導電膜5aは、前記複数の信号線13の上を横切って形成されており、この前記第2の導電膜5aと前記信号線13との交差部は、前記信号線13を覆って設けられた図示しない絶縁膜により絶縁されている。   The second conductive film 5 a is formed across the plurality of signal lines 13, and the intersection of the second conductive film 5 a and the signal line 13 covers the signal line 13. It is insulated by an insulating film (not shown) provided.

また、前記各画素行にそれぞれ対応する複数の第2の導電膜5aは、前記複数の信号電極4の配列領域の一端側の外側において共通接続されており(図示せず)、その共通接続部は、前記後基板2の前記端子配列部に設けられたコモン電極端子に接続されている。   The plurality of second conductive films 5a corresponding to the respective pixel rows are commonly connected (not shown) outside one end side of the array region of the plurality of signal electrodes 4, and the common connection portion Are connected to a common electrode terminal provided in the terminal array portion of the rear substrate 2.

そして、前記第1の導電膜4aからなる信号電極4と、前記第2の導電膜5aからなるコモン電極5とにより、前記信号電極4の各細長電極部4bの中央位置から下側の部分及び上側の部分の縁部4cと、前記コモン電極5の前記各細長電極部4bの縁部4cに隣接する部分(隣合う細長電極部4b,4bの間に対応する部分)との間に、前記後基板2の基板面と実質的に平行で、且つ画面の上下方向に沿う縦幅方向の中央位置から下側と上側とで向きが予め定めた角度で交差する2つの方向の横電界E,Eを生成し、これらの横電界E,Eによって前記液晶分子3aの分子長軸の向きを制御する実質的に縦長矩形形状の画素100が形成されている。 Then, the signal electrode 4 made of the first conductive film 4a and the common electrode 5 made of the second conductive film 5a, and the lower part from the center position of each elongated electrode part 4b of the signal electrode 4 and Between the edge portion 4c of the upper portion and the portion adjacent to the edge portion 4c of each elongated electrode portion 4b of the common electrode 5 (the portion corresponding to between the adjacent elongated electrode portions 4b, 4b), A lateral electric field E 1 in two directions that are substantially parallel to the substrate surface of the rear substrate 2 and intersect at a predetermined angle between the lower side and the upper side from the center position in the vertical width direction along the vertical direction of the screen. , E 2, and the horizontal electric field E 1 , E 2 forms a substantially vertically long rectangular pixel 100 that controls the orientation of the molecular long axis of the liquid crystal molecules 3a.

なお、前記横電界E,Eのうち、前記信号電極4の各細長電極部4bの中央位置から下側の部分の縁部4cと前記コモン電極5との間には、前記細長電極部4bの下側部分の長さ方向に対して実質的に直交する方向の横電界Eが生成し、前記信号電極4の各細長電極部4bの中央位置から上側の部分の縁部4cと前記コモン電極5との間には、前記細長電極部4bの上側部分の長さ方向に対して実質的に直交する方向の横電界Eが生成する。 Of the lateral electric fields E 1 and E 2 , the elongated electrode portion is disposed between the common electrode 5 and the edge 4 c of the lower portion from the center position of each elongated electrode portion 4 b of the signal electrode 4. 4b the transverse electric field E 1 direction substantially perpendicular generates with respect to the longitudinal direction of the lower part of the the edge 4c of the upper portion from the center of the elongated electrode portions 4b of the signal electrode 4 between the common electrode 5, a horizontal electric field E 2 direction substantially perpendicular to the length direction of the upper portion of the elongated electrode portions 4b are formed.

この実施例では、前記信号電極4の各細長電極部4bの下側の部分を、画面の縦軸yに対して、観察側から見て右回り方向に5°〜15°の角度で傾いた方向に沿う細長形状に形成し、上側の部分を、前記画面の縦軸yに対して、前記観察側から見て左回り方向に30°〜40°の角度θで傾いた方向に沿う細長形状に形成しているため、前記信号電極4の各細長電極部4bの中央位置から下側の部分の縁部4cと前記コモン電極5との間に生成する横電界Eは、前記画面の縦軸yに対して、観察側から見て左回り方向に75°〜85°傾いた方向の電界、前記信号電極4の各細長電極部4bの中央位置から上側の部分の縁部4cと前記コモン電極5との間に生成する横電界Eは、前記画面の縦軸yに対して、観察側から見て右回り方向に50°〜60°傾いた方向の電界である。 In this embodiment, the lower part of each elongated electrode portion 4b of the signal electrode 4 is inclined at an angle of 5 ° to 15 ° in the clockwise direction when viewed from the observation side with respect to the vertical axis y of the screen. formed in an elongated shape along the direction, the upper portion, with respect to the longitudinal axis y of the screen, along the direction inclined by 30 ° to 40 ° angle theta 2 counterclockwise direction as viewed from the observation side elongated The horizontal electric field E 1 generated between the edge 4c of the lower part from the central position of each elongated electrode portion 4b of the signal electrode 4 and the common electrode 5 is formed on the screen. The electric field in a direction inclined by 75 ° to 85 ° counterclockwise when viewed from the observation side with respect to the vertical axis y, the edge 4c of the upper portion from the center position of each elongated electrode portion 4b of the signal electrode 4 and the above-mentioned lateral electric field E 2 is generated between the common electrode 5, with respect to the longitudinal axis y of the screen clockwise direction when viewed from the observation side It is a field of 50 ° to 60 ° inclined direction.

一方、前記前基板1の内面には、前記複数の画素100の間の領域及び前記複数のTFT6に対応する遮光膜15が形成されており、その上に、前記複数の画素100にそれぞれ対応する赤、緑、青の3色のカラーフィルタ16R,16G,16Bが設けられている。   On the other hand, light shielding films 15 corresponding to the regions between the plurality of pixels 100 and the plurality of TFTs 6 are formed on the inner surface of the front substrate 1 and correspond to the plurality of pixels 100 respectively. Three color filters 16R, 16G, and 16B of red, green, and blue are provided.

そして、前記一対の基板1,2の内面にはそれぞれ、前記前基板1に設けられたカラーフィルタ16R,16G,16B及び前記後基板2に設けられたコモン電極5を覆って、前記液晶層3の液晶分子を、前記基板1,2面と実質的に平行な方向に分子長軸を向けて配向させる配向性を有するポリイミド膜等の水平配向膜17,18が形成されている。   The inner surfaces of the pair of substrates 1 and 2 cover the color filters 16R, 16G, and 16B provided on the front substrate 1 and the common electrode 5 provided on the rear substrate 2, respectively, so as to cover the liquid crystal layer 3. Horizontal alignment films 17 and 18 such as a polyimide film having an orientation for aligning the liquid crystal molecules with the molecular major axis in a direction substantially parallel to the surfaces of the substrates 1 and 2 are formed.

さらに、この液晶表示素子は、前記後基板2の内面に、前記複数の画素100内の前記2つの方向の横電界E,Eの生成領域のうちの一方、例えば、前記信号電極4の各細長電極部4bの中央位置から上側の横電界生成領域にそれぞれ対応させて設けられ、前記観察側から入射した光を反射して前記観察側へ出射する反射表示部100aと、前記観察側とは反対側から入射した光を透過させて前記観察側へ出射する前記反射表示部100a以外の透過表示部100bとを前記複数の画素100毎に形成するための反射膜19を備えている。この反射膜19は、前記後基板2の基板面上に、銀またはアルミニウム合金膜等の高い光反射率を有する金属膜により形成され、前記ゲート絶縁膜8により覆われている。 Further, the liquid crystal display element is provided on the inner surface of the rear substrate 2 with one of the generation regions of the transverse electric fields E 1 and E 2 in the two directions in the plurality of pixels 100, for example, the signal electrode 4. A reflective display unit 100a provided to correspond to the upper lateral electric field generation region from the center position of each elongated electrode unit 4b, reflecting the light incident from the observation side and emitting it to the observation side; and Includes a reflective film 19 for forming, for each of the plurality of pixels 100, a transmissive display unit 100b other than the reflective display unit 100a that transmits light incident from the opposite side and emits the light to the observation side. The reflection film 19 is formed on the substrate surface of the rear substrate 2 with a metal film having a high light reflectance such as silver or an aluminum alloy film, and is covered with the gate insulating film 8.

また、前記一対の基板1,2の少なくともいずれか一方の内面、例えば前記前基板1の内面には、前記複数の画素100の前記反射表示部100aにそれぞれ対応させて、前記反射表示部100aの液晶層厚dを、前記反射表示部100aの液晶の屈折率異方性Δnと液晶層厚d との積Δndが、前記透過表示部100bの液晶の屈折率異方性Δnと液晶層厚d との積Δndに比べて透過光の1/4波長に相当する値だけ小さくなるように調整するための液晶層厚調整層20が設けられている。 Further, the inner surface of at least one of the pair of substrates 1 and 2, for example, the inner surface of the front substrate 1, is associated with the reflective display unit 100 a of the plurality of pixels 100, respectively. the liquid crystal layer thickness d 1, the product [Delta] nd 1 between the refractive index anisotropy Δn and liquid crystal layer thickness d 1 of the liquid crystal of the reflective display portion 100a is, the transmissive display section 100b the liquid crystal refractive index anisotropy Δn and the liquid crystal of the liquid crystal layer thickness-adjusting layer 20 for adjusting such that only the value corresponding to a quarter wavelength of the transmitted light smaller than the product [Delta] nd 2 the layer thickness d 2 is provided.

この液晶層厚調整層20は、前記前基板1の内面に設けられた前記カラーフィルタ16R,16G,16B上に形成された透明な絶縁層からなっており、前記前基板1の内面の配向膜17は、前記液晶層厚調整層20を覆って形成されている。   The liquid crystal layer thickness adjusting layer 20 is made of a transparent insulating layer formed on the color filters 16R, 16G, and 16B provided on the inner surface of the front substrate 1, and is an alignment film on the inner surface of the front substrate 1. 17 is formed to cover the liquid crystal layer thickness adjusting layer 20.

なお、前記一対の基板1,2間の間隙は、前記複数の画素100の透過表示部100bにおける液晶の屈折率異方性Δnと液晶層厚dとの積Δndが、透過光に1/2波長の位相差を与える値(約275nm)になるように設定されており、したがって、前記複数の画素100の反射表示部100aのΔndは、透過光に1/4波長の位相差を与える値(約137nm)に設定されている。 The gap between the pair of substrates 1 and 2 is such that the product Δnd 2 of the liquid crystal refractive index anisotropy Δn and the liquid crystal layer thickness d 2 in the transmissive display portion 100 b of the plurality of pixels 100 is 1 for transmitted light. Is set to a value that gives a phase difference of / 2 wavelengths (about 275 nm). Therefore, Δnd 1 of the reflective display unit 100a of the plurality of pixels 100 has a phase difference of ¼ wavelength in the transmitted light. The value to be given (about 137 nm) is set.

そして、前記一対の基板1,2の内面にそれぞれ設けられた一対の配向膜17,18には、前記複数の画素100の反射表示部100aに対応する部分にそれぞれ、前記液晶分子3aを、前記反射表示部100aに生成する前記横電界Eの向きに対して予め定めた配向状態に配向させるためのラビングによる配向処理が施され、前記複数の画素100の透過表示部100bに対応する部分にそれぞれ、前記液晶分子3aを、前記透過表示部100bに生成する前記横電界Eの向きに対して予め定めた配向状態に配向させるためのラビングによる配向処理が施されている。 Then, the pair of alignment films 17 and 18 provided on the inner surfaces of the pair of substrates 1 and 2, respectively, the liquid crystal molecules 3a on the portions corresponding to the reflective display portions 100a of the plurality of pixels 100, respectively. the alignment treatment by rubbing to align in a predetermined alignment state with respect to the transverse electric field E 2 in the direction is applied, the portion corresponding to the transmissive display section 100b of the plurality of pixels 100 to generate the reflective display unit 100a respectively, wherein the liquid crystal molecules 3a, the alignment treatment by rubbing to align in a predetermined alignment state with respect to the lateral electric field E 1 in the direction that produces the transmissive display section 100b is applied.

図5において、矢印1a,1bは、前基板1の内面に設けられた配向膜(以下、前側配向膜という)17の反射表示部100aに対応する部分と透過表示部100bに対応する部分の配向処理方向、矢印2a,2bは、後基板2の内面に設けられた配向膜(以下、後側配向膜という)18の反射表示部100aに対応する部分と透過表示部100bに対応する部分の配向処理方向を示している。   In FIG. 5, arrows 1a and 1b indicate the orientation of the portion corresponding to the reflective display portion 100a and the portion corresponding to the transmissive display portion 100b of the alignment film (hereinafter referred to as the front side alignment film) 17 provided on the inner surface of the front substrate 1. The processing direction, arrows 2a and 2b indicate the orientation of the portion corresponding to the reflective display portion 100a and the portion corresponding to the transmissive display portion 100b of the alignment film (hereinafter referred to as the rear alignment film) 18 provided on the inner surface of the rear substrate 2. The processing direction is shown.

図5のように、前側配向膜17の透過表示部100bに対応する部分は、画面の横軸xに対して実質的に90°の角度で交差する方向、つまり画面の縦軸yと実質的に平行な方向に配向処理され、後側配向膜18の前記透過表示部100bに対応する部分は、前記前側配向膜17の透過表示部100bに対応する部分の配向処理方向1bと実質的に平行で且つ逆向き方向に配向処理されており、したがって、前記透過表示部100bの液晶分子3aは、図6のように、前記画面の縦軸yと実質的に平行な方向に分子長軸を揃え、その方向に僅かにプレチルトした状態で、前記基板1,2面と実質的に平行に配向している。   As shown in FIG. 5, the portion of the front alignment film 17 corresponding to the transmissive display portion 100b substantially intersects the horizontal axis x of the screen at an angle of substantially 90 °, that is, the vertical axis y of the screen. The portion of the rear alignment film 18 corresponding to the transmissive display portion 100b is substantially parallel to the alignment treatment direction 1b of the portion of the front alignment film 17 corresponding to the transmissive display portion 100b. Therefore, the liquid crystal molecules 3a of the transmissive display unit 100b are aligned in the direction substantially parallel to the vertical axis y of the screen as shown in FIG. The substrate is oriented substantially parallel to the surfaces of the substrates 1 and 2 with a slight pretilt in that direction.

また、前記前側配向膜17の反射表示部100aに対応する部分は、前記画面の横軸xに対して、観察側から見て右回り方向に実質的に45°の角度で交差する方向に配向処理され、前記後側配向膜18の前記反射表示部100aに対応する部分は、前記前側配向膜17の反射表示部100aに対応する部分の配向処理方向1aと実質的に平行で且つ逆向き方向に配向処理されており、したがって、前記反射表示部100aの液晶分子3aは、図6のように、前記画面の横軸xに対して、観察側から見て右回り方向に実質的に45°の角度で交差する方向に分子長軸を揃え、その方向に僅かにプレチルトした状態で、前記基板1,2面と実質的に平行に配向している。   Further, the portion of the front alignment film 17 corresponding to the reflective display portion 100a is aligned in a direction that intersects the horizontal axis x of the screen substantially at an angle of 45 ° in the clockwise direction when viewed from the observation side. The processed portion of the rear alignment film 18 corresponding to the reflective display portion 100a is substantially parallel to and opposite to the alignment processing direction 1a of the portion of the front alignment film 17 corresponding to the reflective display portion 100a. Accordingly, the liquid crystal molecules 3a of the reflective display unit 100a are substantially 45 ° clockwise as viewed from the observation side with respect to the horizontal axis x of the screen as shown in FIG. The molecular major axes are aligned in a direction intersecting at an angle of and the substrate is oriented substantially parallel to the surfaces of the substrates 1 and 2 with a slight pretilt in that direction.

すなわち、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向は、前記信号電極4とコモン電極5との間の前記透過表示部100bに対応する側に生成する横電界Eの向きに対して、実質的に75°〜85°の角度で交差する方向に向いており、前記一対の配向膜17,18の前記反射表示部100aに対応する部分の配向処理により規定される前記反射表示部100aの液晶分子3aの分子長軸方向は、前記信号電極4とコモン電極5との間の前記反射表示部100aに対応する側に生成する横電界Eの向きに対して、実質的に75°〜85°の角度で交差する方向に向いている。 That is, the molecular major axis direction of the liquid crystal molecules 3a of the transmissive display portion 100b defined by the alignment processing of the portion corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18 is the same as the signal electrode 4 and the common electrode. relative to the horizontal electric field E 1 to generate the side corresponding to the transmissive display portion 100b orientation between the 5, are oriented in a direction intersecting at an angle of substantially 75 ° to 85 °, the pair of alignment The molecular major axis direction of the liquid crystal molecules 3a of the reflective display portion 100a defined by the alignment process of the portions corresponding to the reflective display portion 100a of the films 17 and 18 is the same between the signal electrode 4 and the common electrode 5. relative to the transverse electric field E 2 in the direction that produces a side corresponding to the reflective display unit 100a, facing in a direction intersecting at an angle of substantially 75 ° to 85 °.

また、図5において、矢印21a,22aは、前記一対の基板1,2の外面にそれぞれ配置された一対の偏光板21,22の吸収軸を示しており、前側偏光板21は、その吸収軸21aを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向に対して、実質的に平行または直交する方向に向けて配置され、後側偏光板22は、その吸収軸22aを、前記前側偏光板21の吸収軸21aに対して実質的に直交させて配置されている。   In FIG. 5, arrows 21a and 22a indicate the absorption axes of the pair of polarizing plates 21 and 22 disposed on the outer surfaces of the pair of substrates 1 and 2, respectively. 21a is substantially parallel to the molecular major axis direction of the liquid crystal molecules 3a of the transmissive display portion 100b defined by the alignment treatment of the portion of the pair of alignment films 17 and 18 corresponding to the transmissive display portion 100b. Alternatively, the rear polarizing plate 22 is arranged in a direction orthogonal to the absorption axis 22 a of the rear polarizing plate 22 so as to be substantially orthogonal to the absorption axis 21 a of the front polarizing plate 21.

なお、この実施例では、前記前側偏光板21の吸収軸21aを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向と実質的に平行にしている。   In this embodiment, the liquid crystal of the transmissive display unit 100b is defined by aligning the absorption axis 21a of the front polarizing plate 21 with the alignment process of the pair of alignment films 17 and 18 corresponding to the transmissive display unit 100b. It is substantially parallel to the molecular long axis direction of the molecule 3a.

そして、前記前基板1とその外面に配置された前側偏光板21との間には、前記前基板1の全面にわたって、外部からの静電気を遮断するための一枚膜状の透明な静電気遮断導電膜23が設けられている。   Between the front substrate 1 and the front polarizing plate 21 disposed on the outer surface thereof, a single film-like transparent static electricity shielding conductive material for shielding static electricity from the outside over the entire surface of the front substrate 1 A film 23 is provided.

この液晶表示素子は、一対の基板1,2間の間隙に封入された液晶層3の液晶分子3aを、前記一対の基板1,2の互いに対向する内面にそれぞれ設けられた一対の配向膜17,18により、前記基板1,2面と実質的に平行な方向に分子長軸を向けて配向させ、前記一対の基板1,2の内面のうちのいずれか一方、例えば観察側とは反対側の後基板2の内面に、電圧の印加により前記基板1,2面と実質的に平行な横電界E,Eを生成し、この横電界E,Eによって前記液晶分子3aの分子長軸の向きが制御される複数の画素100をマトリックス状に配列させて形成するための複数の信号電極4及び複数のコモン電極5を設け、前記一対の基板1,2の外面にそれぞれ偏光板21,22を配置しているため、前記液晶分子3aの配向方位を前記基板1,2面と実質的に平行な面内において制御して画像を表示することができる。 In this liquid crystal display element, the liquid crystal molecules 3a of the liquid crystal layer 3 sealed in the gap between the pair of substrates 1 and 2 are provided with a pair of alignment films 17 provided on the mutually facing inner surfaces of the pair of substrates 1 and 2, respectively. , 18 with the molecular long axis oriented in a direction substantially parallel to the surfaces of the substrates 1 and 2, and one of the inner surfaces of the pair of substrates 1 and 2, for example, the side opposite to the observation side Lateral electric fields E 1 and E 2 that are substantially parallel to the surfaces of the substrates 1 and 2 are generated on the inner surface of the rear substrate 2 by applying a voltage, and the molecules of the liquid crystal molecules 3 a are generated by the lateral electric fields E 1 and E 2 . A plurality of signal electrodes 4 and a plurality of common electrodes 5 for forming a plurality of pixels 100 whose major axes are controlled to be arranged in a matrix are provided, and polarizing plates are respectively provided on the outer surfaces of the pair of substrates 1 and 2. 21 and 22 are arranged, so that the liquid crystal molecules 3 Images can be displayed to the orientation direction is controlled in the substrate 1 surface and substantially parallel to the plane.

そして、この液晶表示素子は、観察側とは反対側の後基板2の内面に、前記複数の画素100にそれぞれ対応させて、観察側(前基板1の外面側)から入射した光を反射して前記観察側へ出射する反射表示部100aと、前記観察側とは反対側(後基板2の外面側)から入射した光を透過させて前記観察側へ出射する前記反射表示部100a以外の透過表示部100bとを前記複数の画素100毎に形成するための反射膜19を設けているため、観察側から入射した光を反射し、その光の前記観察側への出射を制御して画像を表示する反射表示と、観察側とは反対側から入射した光の前記観察側への出射を制御して画像を表示する透過表示とを行なうことができる。   The liquid crystal display element reflects light incident from the observation side (the outer surface side of the front substrate 1) on the inner surface of the rear substrate 2 on the side opposite to the observation side, corresponding to the plurality of pixels 100. The reflective display unit 100a that emits light to the observation side and the light other than the reflective display unit 100a that transmits light incident from the opposite side (the outer surface side of the rear substrate 2) to the observation side and emits the light to the observation side. Since the reflection film 19 for forming the display unit 100b for each of the plurality of pixels 100 is provided, the light incident from the observation side is reflected and the emission of the light to the observation side is controlled to display an image. Reflective display to be displayed and transmission display to display an image by controlling the emission of light incident from the opposite side to the observation side to the observation side can be performed.

しかも、この液晶表示素子は、互いに対応する信号電極4とコモン電極5との間にそれぞれ、予め定めた位置から一方の側と他方の側とで向きが予め定めた角度ずれた2つの方向の横電界E,Eを生成するようにし、前記複数の画素100内の前記2つの方向の横電界E,Eの生成領域のうちの一方、例えば横電界Eの生成領域にそれぞれ対応させて前記反射膜19を設け、さらに、前記一対の基板1,2の内面にそれぞれ設けられた一対の配向膜17,18の前記複数の画素100の前記反射表示部100aに対応する部分にそれぞれ、前記液晶分子3aを、前記反射表示部100aに生成する前記横電界Eの向きに対して予め定めた配向状態に配向させるための配向処理を施し、前記複数の画素100の前記透過表示部100bに対応する部分にそれぞれ、前記液晶分子3aを、前記透過表示部100bに生成する前記横電界Eの向きに対して予め定めた配向状態に配向させるための配向処理を施しているため、前記複数の画素100の反射表示部100aによる反射表示と、前記複数の画素100の透過表示部100bによる透過表示とを、明暗を反転させること無く行なうことができる。 In addition, the liquid crystal display element has two directions in which the orientations of the one side and the other side are deviated from each other by a predetermined angle between the signal electrode 4 and the common electrode 5 corresponding to each other. The horizontal electric fields E 1 and E 2 are generated, and one of the generation areas of the horizontal electric fields E 1 and E 2 in the two directions in the plurality of pixels 100, for example, the horizontal electric field E 2 is generated. Correspondingly, the reflective film 19 is provided, and a pair of alignment films 17 and 18 provided on the inner surfaces of the pair of substrates 1 and 2, respectively, on a portion corresponding to the reflective display portion 100 a of the plurality of pixels 100. respectively, wherein the liquid crystal molecules 3a, subjected to an alignment process for aligning in a predetermined alignment state with respect to the lateral electric field E 2 in the direction that generates the reflection display unit 100a, the transmission display of the plurality of pixels 100 Each portion corresponding to 100b, the liquid crystal molecules 3a, since the subjected to an alignment process for aligning in a predetermined alignment state with respect to the lateral electric field E 1 in the direction of generating the transmissive display section 100b, The reflective display by the reflective display unit 100a of the plurality of pixels 100 and the transmissive display by the transmissive display unit 100b of the plurality of pixels 100 can be performed without reversing the brightness.

すなわち、この液晶表示素子は、外部環境の光である外光を利用する反射表示と、前記液晶表示素子の観察側とは反対側に配置される図示しない面光源からの照明光を利用する透過表示とを行なうものであり、いずれの表示を行なうときも、各画素100の信号電極4に、前記信号線13及びTFT6を介して、前記信号電極4とコモン電極5との間に、前記液晶分子3aの分子長軸の向きを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前記反射表示部100aに対応する部分の配向処理方向1a,2aに対して実質的に0°〜45°の範囲の角度で制御する横電界E,Eを生成する電圧値の表示データ信号を印加することにより表示駆動される。 That is, the liquid crystal display element uses a reflective display that uses external light, which is light from the external environment, and a transmission that uses illumination light from a surface light source (not shown) disposed on the opposite side of the liquid crystal display element from the observation side. In any display, the liquid crystal is connected to the signal electrode 4 of each pixel 100 between the signal electrode 4 and the common electrode 5 via the signal line 13 and the TFT 6. The orientation of the molecular major axis of the molecule 3a is set so that the alignment processing directions 1b and 2b of the portion corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18 and the alignment processing direction 1a of the portion corresponding to the reflective display portion 100a. , 2a is driven by applying a display data signal having a voltage value for generating the transverse electric fields E 1 and E 2 controlled at an angle substantially in the range of 0 ° to 45 °.

なお、前記横電界E,Eのうち、各画素100の透過表示部100bに対応する側、つまり前記信号電極4の各細長電極部4bの中央位置から下側の部分と前記コモン電極5との間に生成する横電界Eは、前記細長電極部4bの下側部分の長さ方向に対して実質的に直交する方向の電界、前記各画素100の反射表示部100aに対応する側、つまり前記細長電極部4bの中央位置から上側の部分と前記コモン電極5との間に生成する横電界Eは、前記細長電極部4bの上側部分の長さ方向に対して実質的に直交する方向の電界である。 Of the lateral electric fields E 1 and E 2 , the side corresponding to the transmissive display portion 100 b of each pixel 100, that is, the lower portion from the center position of each elongated electrode portion 4 b of the signal electrode 4 and the common electrode 5. The horizontal electric field E 1 generated between the pixel electrode 100 and the pixel electrode 100 b is substantially perpendicular to the length direction of the lower portion of the elongated electrode portion 4 b, and the side corresponding to the reflective display portion 100 a of each pixel 100. That is, the transverse electric field E 2 generated between the upper portion from the center position of the elongated electrode portion 4b and the common electrode 5 is substantially orthogonal to the length direction of the upper portion of the elongated electrode portion 4b. The electric field in the direction of

そして、この実施例では、上述したように、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向を、前記透過表示部100bに対応する側に生成する横電界Eの向きに対して実質的に75°〜85°の角度で交差させ、前記一対の配向膜17,18の前記反射表示部100aに対応する部分の配向処理により規定される前記反射表示部100aの液晶分子3aの分子長軸方向を、前記反射表示部100aに対応する側に生成する横電界Eの向きに対して実質的に75°〜85°の角度で交差させているため、前記液晶分子3aは、前記横電界E,Eの生成により、前記画素100の透過表示部100bの略全域において、前記透過表示部100b側に生成した横電界Eに対する分子長軸の角度が小さい方向に一様に向きを変え、前記画素100の反射表示部100aの略全域において、前記透過表示部100b側に生成した横電界Eに対する分子長軸の角度が小さい方向に一様に向きを変える。 In this embodiment, as described above, the molecular major axis of the liquid crystal molecules 3a of the transmissive display portion 100b defined by the alignment treatment of the portion of the pair of alignment films 17 and 18 corresponding to the transmissive display portion 100b. The direction is crossed at an angle of substantially 75 ° to 85 ° with respect to the direction of the horizontal electric field E 1 generated on the side corresponding to the transmissive display portion 100b, and the reflective display of the pair of alignment films 17 and 18 is performed. the molecular long axis directions of liquid crystal molecules 3a of the reflective display portion 100a which is defined by the orientation process the portion corresponding to the parts 100a, relative to the transverse electric field E 2 in the direction that produces a side corresponding to the reflective display unit 100a Since the liquid crystal molecules 3a intersect each other substantially at an angle of 75 ° to 85 °, the liquid crystal molecules 3a generate the translucent display portion 100b of the pixel 100 in substantially the entire region by the generation of the lateral electric fields E 1 and E 2. Uniformly changing the orientation angle of the molecular long axis is in the direction small with respect to the lateral electric field E 1 that is generated over the display section 100b side, in substantially the entire area of the reflective display part 100a of the pixel 100, generates the transmissive display portion 100b side angle of the molecular long axis to the lateral electric field E 1 that changes the uniform orientation direction small.

図7に示した横電界生成時の液晶分子3aの分子長軸の向きは、前記信号電極4とコモン電極5との間に、液晶分子3aを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前記反射表示部100aに対応する部分の配向処理方向1a,2aに対して実質的に45°の方向に分子長軸を揃えて配向させる強さの横電界E,Eを生成させたときの方向であり、この実施例では、前記一対の配向膜17,18の透過表示部100bに対応する部分の配向処理方向1b,2bを、画面の縦軸yと実質的に平行にし、前記一対の配向膜17,18の反射表示部100aに対応する部分の配向処理方向1a,2aを、前記画面の横軸xに対して実質的に45°の角度で交差させているため、各画素100の透過表示部100bの液晶分子3aは、前記強さの横電界Eの生成により、前記画面の縦軸yに対して実質的に45°の角度で交差する方向に分子長軸を揃えて配向し、反射表示部100aの液晶分子3aは、前記強さの横電界Eの生成により、前記画面の縦軸yに対して実質的に90°の角度で交差する方向に分子長軸を揃えて配向する。 The orientation of the molecular major axis of the liquid crystal molecules 3a during the generation of the transverse electric field shown in FIG. 7 is such that the liquid crystal molecules 3a pass through the pair of alignment films 17 and 18 between the signal electrode 4 and the common electrode 5. The alignment process directions 1b and 2b of the part corresponding to the display unit 100b and the alignment process directions 1a and 2a of the part corresponding to the reflective display unit 100a are aligned with the molecular major axis aligned substantially at 45 °. This is the direction when the horizontal electric fields E 1 and E 2 with high strength are generated. In this embodiment, the alignment processing directions 1 b and 2 b of the portions corresponding to the transmissive display portion 100 b of the pair of alignment films 17 and 18 are set. The alignment processing directions 1a and 2a of the pair of alignment films 17 and 18 corresponding to the reflective display portion 100a are substantially parallel to the vertical axis y of the screen and substantially the horizontal axis x of the screen. Each crossing at an angle of 45 °. Liquid crystal molecules 3a in the transmissive display portion 100b of the unit 100, the generation of the lateral electric field E 1 of the strength, the molecular long axis in a direction intersecting at an angle of substantially 45 ° to the longitudinal axis y of the screen oriented alignment, the liquid crystal molecules 3a in the reflective display portion 100a is the generation of lateral electric field E 2 of the strength, the molecular length in the direction intersecting at an angle of substantially 90 ° to the longitudinal axis y of the screen Orient with the axes aligned.

まず、前記各画素100の透過表示部100bによる透過表示について説明すると、この透過表示においては、前記図示しない面光源から前記液晶表示素子に向けて照射された照明光が、後側偏光板22によってその吸収軸22aと直交する直線偏光になり、その光のうち、各画素100の透過表示部100bに向かう光が前記液晶層3に入射する。なお、前記各画素100の反射表示部100aに入射した光は、前記反射膜19により反射され、前記後側偏光板22を再び透過して観察側とは反対側(面光源側)へ出射する。   First, transmissive display by the transmissive display unit 100b of each pixel 100 will be described. In this transmissive display, the illumination light irradiated from the surface light source (not shown) toward the liquid crystal display element is transmitted by the rear polarizing plate 22. The light becomes linearly polarized light orthogonal to the absorption axis 22 a, and of the light, the light traveling toward the transmissive display unit 100 b of each pixel 100 enters the liquid crystal layer 3. The light incident on the reflective display portion 100a of each pixel 100 is reflected by the reflective film 19, passes through the rear polarizing plate 22 again, and exits to the opposite side (surface light source side). .

そして、前側偏光板21は、その吸収軸21aを、前記一対の配向膜17,18の透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向と実質的に平行にして配置され、後側偏光板22は、その吸収軸22aを、前記前側偏光板21の吸収軸21aに対して実質的に直交させて配置されているため、前記信号電極4とコモン電極5との間に電圧を印加しない無電界時、つまり液晶分子3aが、図6のように前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前記反射表示部100aに対応する部分の配向処理方向1a,2aに分子長軸を揃えて配向したときは、前記後側偏光板22によってその吸収軸22aと直交する直線偏光にされて前記画素100の透過表示部100bに入射した光が、前記液晶層3を偏光状態を変えることなく透過し、その偏光面と平行な方向に吸収軸21aを向けて配置された前記前側偏光板21により吸収される。   The front polarizing plate 21 has a molecular length of the liquid crystal molecules 3a of the transmissive display portion 100b, the absorption axis 21a of which is defined by the alignment treatment of the portion corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18. Since the rear polarizing plate 22 is arranged substantially parallel to the axial direction, the absorption axis 22a of the rear polarizing plate 22 is arranged so as to be substantially orthogonal to the absorption axis 21a of the front polarizing plate 21, When no voltage is applied between the signal electrode 4 and the common electrode 5, that is, the liquid crystal molecules 3a are aligned at portions corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18, as shown in FIG. A straight line perpendicular to the absorption axis 22a by the rear polarizing plate 22 when the alignment is performed with the molecular long axes aligned in the processing directions 1b, 2b and the alignment processing directions 1a, 2a corresponding to the reflective display portion 100a. The light that has been converted to light and incident on the transmissive display portion 100b of the pixel 100 is transmitted through the liquid crystal layer 3 without changing the polarization state, and is arranged with the absorption axis 21a directed in a direction parallel to the polarization plane. Absorbed by the front polarizing plate 21.

また、前記信号電極4とコモン電極5との間に、液晶分子3aを、図7のように前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前記反射表示部100aに対応する部分の配向処理方向1a,2aに対して45°の方向に分子長軸を揃えて配向させる強さの横電界E,Eを生成させたときは、前記透過表示部100bの液晶分子3aの分子長軸の向きが、前記後側偏光板22により直線偏光となって前記画素100の透過表示部100bに入射した光の偏光面に対して実質的に45°の方向に向いている。 Further, between the signal electrode 4 and the common electrode 5, the liquid crystal molecules 3 a are aligned in the alignment processing directions 1 b and 2 b corresponding to the transmissive display portion 100 b of the pair of alignment films 17 and 18 as shown in FIG. 7. When the horizontal electric fields E 1 and E 2 having the strength to align the molecular major axes in the direction of 45 ° with respect to the alignment processing directions 1a and 2a of the portions corresponding to the reflective display unit 100a are generated, The direction of the molecular major axis of the liquid crystal molecules 3a of the transmissive display portion 100b is substantially linear with respect to the polarization plane of light incident on the transmissive display portion 100b of the pixel 100 as linearly polarized light by the rear polarizing plate 22. It is oriented in the direction of 45 °.

そのため、この横電界生成時は、前記後側偏光板22によってその吸収軸22aと直交する直線偏光になった光が、Δndを透過光に1/2波長の位相差を与える値に設定された前記透過表示部100bの液晶層3を透過する間に実質的に90°旋光されて前記前側偏光板21の吸収軸21aと直交する直線偏光になり、前記前側偏光板21を透過して観察側に出射する。 Therefore, when this lateral electric field is generated, the light that has been linearly polarized by the rear polarizing plate 22 and orthogonal to the absorption axis 22a is set to a value that gives Δnd 2 a half-wave phase difference to the transmitted light. In addition, the light is substantially rotated by 90 ° while being transmitted through the liquid crystal layer 3 of the transmissive display unit 100b to become linearly polarized light orthogonal to the absorption axis 21a of the front polarizing plate 21, and transmitted through the front polarizing plate 21 for observation. To the side.

すなわち、前記透過表示部100bの無電界時の表示は暗表示、横電界生成時の表示は明表示である。   That is, the display of the transmissive display unit 100b when there is no electric field is a dark display, and the display when a horizontal electric field is generated is a bright display.

次に、前記各画素100の反射表示部100aによる反射表示について説明すると、この反射表示においては、前記液晶表示素子に観察側から入射した外光が、前側偏光板21によって直線偏光になり、その光のうち、各画素100の反射表示部100aに入射した光が、液晶層3を透過して後基板2の内面に設けられた反射膜19により反射され、前記液晶層3を再び透過して前記前側偏光板21に入射する。なお、前記各画素100の透過表示部100bに入射した光は、前記液晶層3を透過して観察側とは反対側へ出射する。   Next, reflective display by the reflective display unit 100a of each pixel 100 will be described. In this reflective display, external light incident on the liquid crystal display element from the observation side is converted into linearly polarized light by the front polarizing plate 21. Of the light, the light incident on the reflective display portion 100 a of each pixel 100 is transmitted through the liquid crystal layer 3, reflected by the reflective film 19 provided on the inner surface of the rear substrate 2, and transmitted through the liquid crystal layer 3 again. The light enters the front polarizing plate 21. The light incident on the transmissive display portion 100b of each pixel 100 is transmitted through the liquid crystal layer 3 and emitted to the side opposite to the observation side.

そして、前記一対の配向膜17,18の反射表示部100aに対応する部分の配向処理により規定される前記反射表示部100aの液晶分子3aの分子長軸方向は、前記前側偏光板21の吸収軸21aの向き(一対の配向膜17,18の透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向と実質的に平行な向き)に対して実質的に45°の角度で交差しているため、前記信号電極4とコモン電極5との間に電圧を印加しない無電界時、つまり液晶分子3aが、図6のように前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前記反射表示部100aに対応する部分の配向処理方向1a,2aに分子長軸を揃えて配向したときは、前記前側偏光板21によってその吸収軸21aと直交する直線偏光にされて前記画素100の反射表示部100aに入射した光が、前記反射表示部100aの液晶層3を透過して前記反射膜19により反射され、前記液晶層3を再び透過する間、つまりΔndを透過光に1/4波長の位相差を与える値に設定された前記反射表示部100aの液晶層3を往復して透過する間に、入射した直線偏光に対して90゜旋光し、前記前側偏光板21の吸収軸21aに対して平行な直線偏光になり、前記前側偏光板21によって吸収される。 The molecular major axis direction of the liquid crystal molecules 3a of the reflective display portion 100a defined by the alignment treatment of the portion corresponding to the reflective display portion 100a of the pair of alignment films 17 and 18 is the absorption axis of the front polarizing plate 21. In the direction of 21a (direction substantially parallel to the molecular major axis direction of the liquid crystal molecules 3a of the transmissive display portion 100b defined by the alignment treatment of the portion corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18). Since the crossing is substantially at an angle of 45 °, the liquid crystal molecules 3a are not connected to the pair of the pair of electrodes as shown in FIG. 6 when no voltage is applied between the signal electrode 4 and the common electrode 5. When the alignment processing directions 1b and 2b of the portions corresponding to the transmissive display portion 100b of the alignment films 17 and 18 and the alignment processing directions 1a and 2a of the portions corresponding to the reflective display portion 100a are aligned with their molecular long axes aligned. The light that has been made linearly polarized light orthogonal to the absorption axis 21a by the front polarizing plate 21 and entered the reflective display portion 100a of the pixel 100 passes through the liquid crystal layer 3 of the reflective display portion 100a and passes through the reflective film. 19, while being transmitted again through the liquid crystal layer 3, that is, Δnd 1 is transmitted back and forth through the liquid crystal layer 3 of the reflective display unit 100 a set to a value that gives the transmitted light a ¼ wavelength phase difference. In the meantime, it is rotated by 90 ° with respect to the incident linearly polarized light, becomes linearly polarized light parallel to the absorption axis 21 a of the front polarizing plate 21, and is absorbed by the front polarizing plate 21.

また、前記信号電極4とコモン電極5との間に、液晶分子3aを、図7のように前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前記反射表示部100aに対応する部分の配向処理方向1a,2aに対して45°の方向に分子長軸を揃えて配向させる強さの横電界E,Eを生成させたときは、前記反射表示部100aの液晶分子3aの分子長軸の向きが、前記前側偏光板21により直線偏光されて前記画素100の反射表示部100aに入射した光の偏光面に対して実質的に直交する。 Further, between the signal electrode 4 and the common electrode 5, the liquid crystal molecules 3 a are aligned in the alignment processing directions 1 b and 2 b corresponding to the transmissive display portion 100 b of the pair of alignment films 17 and 18 as shown in FIG. 7. When the horizontal electric fields E 1 and E 2 having the strength to align the molecular major axes in the direction of 45 ° with respect to the alignment processing directions 1a and 2a of the portions corresponding to the reflective display unit 100a are generated, The orientation of the molecular major axis of the liquid crystal molecules 3a of the reflective display unit 100a is substantially orthogonal to the polarization plane of the light that has been linearly polarized by the front polarizing plate 21 and entered the reflective display unit 100a of the pixel 100. To do.

そのため、この横電界生成時は、前記前側偏光板21によってその吸収軸21aと直交する直線偏光にされた光が、前記画素100の反射表示部100aの液晶層3を偏光状態を変えることなく往復して前記前側偏光板21に入射し、この前側偏光板21を透過して観察側に出射する。   Therefore, at the time of generating the horizontal electric field, the light that has been linearly polarized by the front polarizing plate 21 and orthogonal to the absorption axis 21a reciprocates the liquid crystal layer 3 of the reflective display unit 100a of the pixel 100 without changing the polarization state. Then, the light enters the front polarizing plate 21, passes through the front polarizing plate 21, and exits to the observation side.

すなわち、前記反射表示部100aの無電界時の表示は暗表示、横電界生成時の表示は明表示である。   That is, the display of the reflective display unit 100a when there is no electric field is a dark display, and the display when the horizontal electric field is generated is a bright display.

このように、この液晶表示素子の各画素100の反射表示部100aの表示と透過表示部100bの表示は、いずれも無電界暗表示(ノーマリーブラック表示)であり、したがって、外光を利用する反射表示と、液晶表示素子の観察側とは反対側に配置された面光源からの照明光を利用する透過表示とを、表示の明暗を反転させること無く行なうとともに、外光の照度が不足するときに前記面光源を補助光源として利用し、反射表示と透過表示とを併用する表示を行なうことができる。   As described above, the display on the reflective display unit 100a and the display on the transmissive display unit 100b of each pixel 100 of the liquid crystal display element are both non-electric field dark display (normally black display), and thus use external light. Reflective display and transmissive display using illumination light from a surface light source arranged on the side opposite to the viewing side of the liquid crystal display element are performed without reversing the brightness of the display and the illuminance of outside light is insufficient. Sometimes, the surface light source can be used as an auxiliary light source to perform display using both reflective display and transmissive display.

なお、この実施例では、前記前側偏光板21の吸収軸21aを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向と実質的に平行にしているが、前記前側偏光板21の吸収軸21aを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向に対して実質的に直交させ、後側偏光板22の吸収軸22aを、前記前側偏光板21の吸収軸21aに対して実質的に直交させてもよく、その場合も、各画素100の反射表示部100aの表示と透過表示部100bの表示は、いずれも無電界暗表示になる。   In this embodiment, the liquid crystal of the transmissive display unit 100b is defined by aligning the absorption axis 21a of the front polarizing plate 21 with the alignment process of the pair of alignment films 17 and 18 corresponding to the transmissive display unit 100b. Although it is substantially parallel to the molecular long axis direction of the molecule 3a, the absorption axis 21a of the front polarizing plate 21 is aligned by a portion corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18. The absorption axis 22a of the rear polarizing plate 22 is substantially perpendicular to the absorption axis 21a of the front polarizing plate 21 by being substantially orthogonal to the molecular long axis direction of the liquid crystal molecules 3a of the transmissive display portion 100b. In this case, the display on the reflective display portion 100a and the display on the transmissive display portion 100b of each pixel 100 are both displayed in a dark-free display.

また、この液晶表示素子は、前記信号電極4とコモン電極5のうちの一方の電極、例えば信号電極4を、予め定めた位置から一方の側の部分(画素100の反射表示部100aに対応する部分)が、一方の方向に沿う細長形状に形成され、他方の側の部分(画素100の透過表示部100bに対応する部分)が、前記一方の方向(反射表示部100aに対応する部分の長さ方向)に対して予め定めた角度で傾いた方向に沿う細長形状に形成された複数の細長電極部を有する第1の導電膜4aにより形成し、他方の電極、つまりコモン電極5を、各画素行の複数の信号電極4にそれぞれ対応する形状に形成された第2の導電膜5aにより形成しているため、前記信号電極4とコモン電極5との間に、前記基板1,2面と実質的に平行で、且つ予め定めた位置から一方の側と他方の側とで向きが予め定めた角度ずれた2つの方向の横電界E,Eを生成することができる。 Further, in this liquid crystal display element, one of the signal electrode 4 and the common electrode 5, for example, the signal electrode 4 corresponds to a portion on one side from a predetermined position (corresponding to the reflective display portion 100a of the pixel 100). Portion) is formed in an elongated shape along one direction, and the other side portion (the portion corresponding to the transmissive display portion 100b of the pixel 100) is the length of the one direction (the portion corresponding to the reflective display portion 100a). Are formed by a first conductive film 4a having a plurality of elongated electrode portions formed in a slender shape along a direction inclined at a predetermined angle with respect to the vertical direction). Since the second conductive film 5a is formed in a shape corresponding to each of the plurality of signal electrodes 4 in the pixel row, the surfaces of the substrates 1 and 2 are interposed between the signal electrode 4 and the common electrode 5. Substantially parallel and pre- Can be oriented in a predetermined position with one side and the other side to generate a predetermined angular deviation two directions of the lateral electric field E 1, E 2.

なお、この実施例では、前記第2の導電膜5aの電極部5bを、前記画素100の略全域に対応する形状に形成しているが、この第2の導電膜5aの電極部5bは、前記第1の導電膜4aの複数の細長電極部4bの間にそれぞれ対応する形状に形成してもよい。   In this embodiment, the electrode portion 5b of the second conductive film 5a is formed in a shape corresponding to substantially the entire area of the pixel 100, but the electrode portion 5b of the second conductive film 5a is A corresponding shape may be formed between the plurality of elongated electrode portions 4b of the first conductive film 4a.

すなわち、前記コモン電極5は、前記信号電極4の少なくとも複数の細長電極部4b,4bの間に対応していればよく、このようにすることにより、前記信号電極4とコモン電極5との間に前記2つの方向の横電界E,Eを生成することができる。 That is, the common electrode 5 only needs to correspond between at least the plurality of elongated electrode portions 4b, 4b of the signal electrode 4, and by doing so, between the signal electrode 4 and the common electrode 5 the two can generate a horizontal electric field E 1, E 2 directions.

そして、この液晶表示素子においては、前記一対の基板1,2の内面にそれぞれ設けられた一対の配向膜17,18の前記複数の画素100の透過表示部100bに対応する部分に、液晶分子3aを、予め定めた一方の方向に分子長軸を揃えて配向させるための配向処理を施し、前記複数の画素100の反射表示部100aに対応する部分に、前記液晶分子3aを、前記一方の方向に対して実質的に45°傾いた方向に分子長軸を揃えて配向させるための配向処理を施し、前記一対の基板1,2のいずれか一方、例えば前基板1の内面に、前記複数の画素100の反射表示部100aにそれぞれ対応させて、前記反射表示部100aの液晶層厚dを、前記反射表示部100aのΔndが、前記複数の画素100の透過表示部100bのΔndに比べて透過光の1/4波長に相当する値だけ小さくなるように調整するための液晶層厚調整層20を設けているため、前記反射表示と前記透過表示とを、明暗を反転させること無く、且つ高いコントラストで行なうことができる。 In this liquid crystal display element, the liquid crystal molecules 3a are formed on portions of the pair of alignment films 17 and 18 provided on the inner surfaces of the pair of substrates 1 and 2, respectively, corresponding to the transmissive display portions 100b of the plurality of pixels 100. Is subjected to an alignment process for aligning the molecular long axes in one predetermined direction, and the liquid crystal molecules 3a are applied to the portions corresponding to the reflective display portions 100a of the plurality of pixels 100 in the one direction. An alignment treatment for aligning molecular long axes in a direction substantially inclined by 45 ° with respect to the substrate is performed, and one of the pair of substrates 1 and 2, for example, the inner surface of the front substrate 1, respectively corresponding to the reflective display part 100a of the pixel 100, the liquid crystal layer thickness d 1 of the reflective display portion 100a, the is [delta] nd 1 of the reflective display portion 100a, delta of the transmissive display portion 100b of the plurality of pixels 100 Since there is provided a liquid crystal layer thickness-adjusting layer 20 for adjusting such that only the value corresponding to a quarter wavelength of the transmitted light smaller than the d 2, and the transmissive display and the reflective display, reverse the bright and dark Can be performed with high contrast.

さらに、この液晶表示素子は、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向を、前記信号電極4とコモン電極5との間の前記透過表示部100bに対応する側に生成する横電界Eの向きに対して、実質的に75°〜85°の角度で交差させ、前記一対の配向膜17,18の前記反射表示部100aに対応する部分の配向処理により規定される前記反射表示部100aの液晶分子3aの分子長軸方向を、前記信号電極4とコモン電極5との間の前記反射表示部100aに対応する側に生成する横電界Eの向きに対して、実質的に75°〜85°の角度で交差させているため、前記反射表示部100a及び透過表示部100bの液晶分子3aの分子長軸の向きを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前記反射表示部100aに対応する部分の配向処理方向1a,2aに対して実質的に0°〜45°の角度で広範囲に制御し、前記反射表示と透過表示の両方の表示画像の輝度階調数を多くすることができる。 Further, the liquid crystal display element has the molecular major axis direction of the liquid crystal molecules 3a of the transmissive display unit 100b defined by the alignment process of the portion corresponding to the transmissive display unit 100b of the pair of alignment films 17 and 18, relative to the horizontal electric field E 1 to generate the side corresponding to the transmissive display portion 100b orientation between the signal electrode 4 and the common electrode 5, substantially crossed at an angle of 75 ° to 85 °, of the pair The molecular major axis direction of the liquid crystal molecules 3a of the reflective display section 100a defined by the alignment processing of the portions corresponding to the reflective display section 100a of the alignment films 17 and 18 is defined between the signal electrode 4 and the common electrode 5. relative to the transverse electric field E 2 in the direction that produces a side corresponding to the reflective display section 100a, since the substantially crossed at an angle of 75 ° to 85 °, the reflective display part 100a and the transmissive display section 100b liquid crystal The orientation of the molecular major axis of the molecule 3a is set so that the alignment processing directions 1b and 2b of the portion corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18 and the alignment processing direction 1a of the portion corresponding to the reflective display portion 100a. , 2a can be controlled over a wide range at an angle of substantially 0 ° to 45 °, and the number of luminance gradations of both the reflection display and the transmission display can be increased.

また、この液晶表示素子は、前記前側偏光板21を、その吸収軸21aを前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向に対して実質的に平行または直交する方向に向けて配置し、後側偏光板22を、その吸収軸22aを前記前側偏光板21の吸収軸21aに対して実質的に直交させて配置しているため、前記反射表示と透過表示の両方のコントラストを高くするとともに、前記透過表示の視野を広くすることができる。   In addition, the liquid crystal display element includes the front polarizing plate 21 and the transmission display portion 100b in which the absorption axis 21a is defined by an alignment process corresponding to the transmission display portion 100b of the pair of alignment films 17 and 18. The liquid crystal molecules 3a are arranged in a direction substantially parallel to or perpendicular to the molecular long axis direction of the liquid crystal molecules 3a, and the rear polarizing plate 22 is arranged with its absorption axis 22a with respect to the absorption axis 21a of the front polarizing plate 21. Since they are arranged substantially orthogonally, the contrast of both the reflective display and the transmissive display can be increased, and the field of view of the transmissive display can be widened.

(第2の実施形態)
図8〜図10はこの発明の第2の実施例を示しており、図8は液晶表示素子の一対の基板の内面にそれぞれ設けられた一対の配向膜の配向処理方向と一対の偏光板の吸収軸の向きを観察側から見た図、図9は液晶表示素子の1つの画素における無電界時の液晶分子の分子長軸の向きを観察側から見た図、図10は前記液晶表示素子の1つの画素における横電界生成時の液晶分子の分子長軸の向きを観察側から見た図である。
(Second Embodiment)
FIGS. 8 to 10 show a second embodiment of the present invention. FIG. 8 shows the alignment treatment direction of a pair of alignment films and a pair of polarizing plates provided on the inner surfaces of a pair of substrates of a liquid crystal display element, respectively. FIG. 9 is a view of the direction of the absorption axis as viewed from the observation side, FIG. 9 is a view of the direction of the molecular long axis of the liquid crystal molecules when no electric field is applied to one pixel of the liquid crystal display element, and FIG. It is the figure which looked at the direction of the molecular long axis of the liquid crystal molecule at the time of the generation | occurrence | production of a horizontal electric field in one pixel from the observation side.

なお、この実施例の液晶表示素子は、上述した第1の実施例の液晶表示素子に対して、複数の画素100の反射表示部100aの液晶分子3aの配向状態と、前記反射表示部100aのΔnd の値とを異ならせたものであり、他の構成は、第1の実施例の液晶表示素子と同じである。 The liquid crystal display element of this embodiment is different from the liquid crystal display element of the first embodiment described above in the alignment state of the liquid crystal molecules 3a of the reflective display section 100a of the plurality of pixels 100 and the reflective display section 100a. The value of Δnd 1 is different, and the other configuration is the same as the liquid crystal display element of the first embodiment.

この実施例の液晶表示素子は、一対の基板1,2の内面にそれぞれ設けられた一対の配向膜17,18の複数の画素100の透過表示部100bに対応する部分に、液晶分子3aを、予め定めた一方の方向に分子長軸を揃えて配向させるための配向処理を施し、前記複数の画素100の反射表示部100aに対応する部分に、前記液晶分子3aを、前記一対の基板1,2間において、前基板1の近傍の液晶分子3aの分子長軸が前記一方の方向と実質的に平行で、且つ後基板2の近傍の液晶分子3aの分子長軸の向きが前記前基板1の近傍の液晶分子3aの分子長軸の向きに対して予め定めた角度捩れたツイスト状態に配向させるための配向処理を施し、前記一対の基板1,2の少なくともいずれか一方、例えば前基板1の内面に、前記複数の画素100の反射表示部100aにそれぞれ対応させて設けられた液晶層厚調整層20により、前記反射表示部100aの液晶層厚dを、前記反射表示部100aのΔndが、前記反射表示部100aの液晶分子3aが前記ツイスト状態に配向したときに、前記反射表示部100aを透過する光に対して、前記透過表示部100bのΔndに比べて実質的に1/4波長に相当する値だけ小さい位相差を与える値になるように調整したものである。 In the liquid crystal display element of this embodiment, the liquid crystal molecules 3a are applied to the portions corresponding to the transmissive display portions 100b of the plurality of pixels 100 of the pair of alignment films 17 and 18 provided on the inner surfaces of the pair of substrates 1 and 2, respectively. An alignment process for aligning the molecular long axes in one predetermined direction is performed, and the liquid crystal molecules 3a are placed on the portions corresponding to the reflective display portions 100a of the plurality of pixels 100 with the pair of substrates 1, 2, the molecular major axis of the liquid crystal molecules 3 a in the vicinity of the front substrate 1 is substantially parallel to the one direction, and the orientation of the molecular major axis of the liquid crystal molecules 3 a in the vicinity of the rear substrate 2 is the front substrate 1. An alignment process for aligning the liquid crystal molecules 3a in the vicinity of the liquid crystal molecules 3a in a twisted state twisted at a predetermined angle with respect to the direction of the molecular major axis is performed, and at least one of the pair of substrates 1 and 2, for example, the front substrate 1 On the inner surface of the plurality The liquid crystal layer thickness-adjusting layer 20 provided respectively corresponding to the reflective display part 100a of the pixel 100, the liquid crystal layer thickness d 1 of the reflective display unit 100a, [Delta] nd 1 of the reflective display portion 100a is, the reflective display unit When the liquid crystal molecules 3a of 100a are aligned in the twisted state, a value substantially corresponding to a quarter wavelength compared to Δnd 2 of the transmissive display unit 100b with respect to light transmitted through the reflective display unit 100a The value is adjusted so as to give a small phase difference.

図8において、矢印1a,1bは、前基板1の内面に設けられた前側配向膜17の反射表示部100aに対応する部分と透過表示部100bに対応する部分の配向処理方向、矢印2a,2bは、後基板2の内面に設けられた後側配向膜18の反射表示部100aに対応する部分と透過表示部100bに対応する部分の配向処理方向を示している。   In FIG. 8, arrows 1 a and 1 b indicate orientation processing directions of a portion corresponding to the reflective display portion 100 a and a portion corresponding to the transmissive display portion 100 b of the front alignment film 17 provided on the inner surface of the front substrate 1, and arrows 2 a and 2 b. These show alignment processing directions of a portion corresponding to the reflective display portion 100a and a portion corresponding to the transmissive display portion 100b of the rear alignment film 18 provided on the inner surface of the rear substrate 2.

図8のように、前側配向膜17の透過表示部100bに対応する部分は、画面の横軸xに対して実質的に90°ずれた方向、つまり画面の縦軸yと実質的に平行な方向に配向処理され、後側配向膜18の前記透過表示部100bに対応する部分は、前記前側配向膜17の透過表示部100bに対応する部分の配向処理方向1bと実質的に平行で且つ逆向き方向に配向処理されており、したがって、前記透過表示部100bの液晶分子3aは、図9のように、前記画面の縦軸yと実質的に平行な方向に分子長軸を揃え、その方向に僅かにプレチルトした状態で、前記基板1,2面と実質的に平行に配向している。   As shown in FIG. 8, the portion of the front alignment film 17 corresponding to the transmissive display portion 100b is substantially 90 ° away from the horizontal axis x of the screen, that is, substantially parallel to the vertical axis y of the screen. The portion of the rear alignment film 18 corresponding to the transmissive display portion 100b is substantially parallel to and opposite to the alignment treatment direction 1b of the portion of the front alignment film 17 corresponding to the transmissive display portion 100b. Accordingly, the liquid crystal molecules 3a of the transmissive display unit 100b are aligned in the direction substantially parallel to the vertical axis y of the screen as shown in FIG. The substrate is oriented substantially parallel to the surfaces of the substrates 1 and 2 with a slight pretilt.

また、前記前側配向膜17の反射表示部100aに対応する部分は、前記前側配向膜17の前記透過表示部100bに対応する部分の配向処理方向1bと実質的に平行で且つ逆向き方向(画面の横軸xに対して実質的に90°の角度で交差する方向)に配向処理され、前記後側配向膜18の前記反射表示部100aに対応する部分は、前記画面の横軸xに対して一方の方向、例えば観察側から見て左回り方向に実質的に26°の角度で交差する方向に配向処理されており、したがって、前記反射表示部100aの液晶分子3aは、図9のように、前記一対の基板1,2間において、前記基板1,2面に対して僅かにプレチルトした状態で、前基板1の近傍の液晶分子3aの分子長軸が前記透過表示部100bの液晶分子3aの配向方向と実質的に平行で、且つ、後基板2の近傍の液晶分子3aの分子長軸の向きが、前記前基板1の近傍の液晶分子3aの分子長軸の向きに対して、観察側から見て左回り方向に実質的に64°捩れたツイスト状態に配向している。 Further, the portion of the front alignment film 17 corresponding to the reflective display portion 100a is substantially parallel to the alignment processing direction 1b of the portion of the front alignment film 17 corresponding to the transmissive display portion 100b and in the opposite direction (screen). Of the rear side alignment film 18 corresponding to the reflective display portion 100a with respect to the horizontal axis x of the screen. 9, for example, the liquid crystal molecules 3a of the reflective display portion 100a are aligned as shown in FIG. In addition, between the pair of substrates 1 and 2, the molecular long axis of the liquid crystal molecules 3 a in the vicinity of the front substrate 1 is slightly tilted with respect to the surfaces of the substrates 1 and 2, and the liquid crystal molecules of the transmissive display unit 100 b 3a orientation direction and substantial And the direction of the molecular long axis of the liquid crystal molecules 3a in the vicinity of the rear substrate 2 is counterclockwise as viewed from the observation side with respect to the direction of the molecular long axes of the liquid crystal molecules 3a in the vicinity of the front substrate 1 It is oriented in a twisted state substantially twisted by 64 ° in the direction .

なお、この液晶表示素子の後基板2の内面に設けられた複数の信号電極4及びコモン電極5は、第1の実施例と同じ形状に形成された第1及び第2の導電膜4a,5aからなっており、したがって、前記信号電極4とコモン電極5との間の透過表示部100bに対応する部分に生成する横電界Eは、画面の縦軸yに対して、観察側から見て左回り方向に75°〜85°傾いた方向の電界、反射表示部100aに対応する部分に生成する横電界Eは、前記画面の縦軸yに対して、観察側から見て右回り方向に50°〜60°傾いた方向の電界である。 The plurality of signal electrodes 4 and the common electrode 5 provided on the inner surface of the rear substrate 2 of the liquid crystal display element are the first and second conductive films 4a and 5a formed in the same shape as in the first embodiment. and consist, therefore, the lateral electric field E 1 to generate the corresponding portions in the transmissive display portion 100b between the signal electrode 4 and the common electrode 5, with respect to the longitudinal axis y of the screen, as viewed from the observation side An electric field inclined in a counterclockwise direction of 75 ° to 85 °, and a horizontal electric field E 2 generated in a portion corresponding to the reflective display unit 100a are clockwise when viewed from the observation side with respect to the vertical axis y of the screen. The electric field is in the direction inclined by 50 ° to 60 °.

そのため、この実施例の液晶表示素子における前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向は、前記信号電極4とコモン電極5との間の前記透過表示部100bに対応する側に生成する横電界Eの向きに対して、実質的に75°〜85°の角度で交差しており、前記一対の配向膜17,18の前記反射表示部100aに対応する部分の配向処理により規定される前記反射表示部100aの液晶分子3aの分子長軸方向は、前基板1の近傍において、前記信号電極とコモン電極との間の前記反射表示部100aに対応する側に生成する横電界Eの向きに対して実質的に50°〜60°の角度で交差し、後基板2の近傍において、前記横電界Eの向きに対して実質的に24°〜34°の角度で交差している。 Therefore, the molecular major axis direction of the liquid crystal molecules 3a of the transmissive display portion 100b defined by the alignment treatment of the portion corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18 in the liquid crystal display element of this embodiment is , relative to the horizontal electric field E 1 to generate the side corresponding to the transmissive display portion 100b orientation between the signal electrode 4 and the common electrode 5, and intersect at an angle of substantially 75 ° to 85 ° The molecular major axis direction of the liquid crystal molecules 3a of the reflective display unit 100a defined by the alignment process of the part corresponding to the reflective display unit 100a of the pair of alignment films 17 and 18 is in the vicinity of the front substrate 1, In the vicinity of the rear substrate 2, it intersects the direction of the transverse electric field E 2 generated on the side corresponding to the reflective display portion 100 a between the signal electrode and the common electrode at an angle of substantially 50 ° to 60 °. ,in front Intersect at an angle of substantially 24 ° to 34C ° relative to the orientation of Kiyoko field E 2.

また、図8において、矢印21a,22aは、前記一対の基板1,2の外面にそれぞれ配置された一対の偏光板21,22の吸収軸を示しており、前記一対の偏光板21,22は、第1の実施例と同様に、前側偏光板21の吸収軸21aを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向に対して、実質的に平行または直交(図8では平行)する方向に向け、後側偏光板22の吸収軸22aを、前記前側偏光板21の吸収軸21aに対して実質的に直交させて配置されている。   In FIG. 8, arrows 21a and 22a indicate the absorption axes of the pair of polarizing plates 21 and 22 disposed on the outer surfaces of the pair of substrates 1 and 2, respectively. As in the first embodiment, the transmission axis 100a of the front polarizing plate 21 is defined by the alignment processing of the portion of the pair of alignment films 17 and 18 corresponding to the transmission display area 100b. The absorption axis 22a of the rear polarizing plate 22 is directed to the absorption axis 21a of the front polarizing plate 21 in a direction substantially parallel or orthogonal (parallel in FIG. 8) to the molecular major axis direction of the liquid crystal molecules 3a. Are arranged substantially orthogonal to each other.

さらに、前記透過表示部100bのΔndは、第1の実施例と同様に、透過光に1/2波長の位相差を与える値(約275nm)になるように設定されている。 Further, Δnd 2 of the transmissive display portion 100b is set to be a value (about 275 nm) that gives a phase difference of ½ wavelength to the transmitted light, as in the first embodiment.

そして、この実施例では、前基板1の内面に複数の画素100の反射表示部100aにそれぞれ対応させて設けられた液晶層厚調整層20は、前記反射表示部100aのΔndが実質的に21/2λ/4(約194nm)になる厚さに形成し、前記反射表示部100aの液晶分子3aが前記実質的に64°の捩れ角でツイスト配向したときに、前記反射表示部100aを透過する光に対して実質的に1/4波長の位相差を与えるようにしている。 In this embodiment, the liquid crystal layer thickness adjusting layer 20 provided on the inner surface of the front substrate 1 so as to correspond to the reflective display portions 100a of the plurality of pixels 100 substantially has Δnd 1 of the reflective display portion 100a. When the liquid crystal molecules 3a of the reflective display unit 100a are twist-aligned with the twist angle of substantially 64 °, the reflective display unit 100a is formed to a thickness of 2 1/2 λ / 4 (about 194 nm). The phase difference of ¼ wavelength is given to the light passing through the light.

この液晶表示素子は、外光を利用する反射表示と、前記液晶表示素子の観察側とは反対側に配置される図示しない面光源からの照明光を利用する透過表示とを行なうものであり、いずれの表示を行なうときも、各画素100の信号電極4に、前記信号線13及びTFT6を介して、前記信号電極4とコモン電極5との間に、前記液晶分子3aの分子長軸の向きを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前側配向膜17の前記反射表示部100aに対応する部分の配向処理方向1aに対して実質的に0°〜45°の範囲の角度で制御する横電界E,Eを生成する電圧値の表示データ信号を印加することにより表示駆動される。 This liquid crystal display element performs reflective display using external light and transmissive display using illumination light from a surface light source (not shown) arranged on the opposite side to the observation side of the liquid crystal display element. In any display, the direction of the molecular major axis of the liquid crystal molecules 3a is connected to the signal electrode 4 of each pixel 100 between the signal electrode 4 and the common electrode 5 via the signal line 13 and the TFT 6. Of the pair of alignment films 17 and 18 with respect to the alignment processing direction 1b and 2b of the portion corresponding to the transmissive display portion 100b and the alignment processing direction 1a of the portion of the front alignment film 17 corresponding to the reflective display portion 100a. The display is driven by applying a display data signal having a voltage value that generates the transverse electric fields E 1 and E 2 controlled at an angle substantially in the range of 0 ° to 45 °.

図10に示した横電界生成時の液晶分子3aの分子長軸の向きは、前記信号電極4とコモン電極5との間に、液晶分子3aを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前側配向膜17の前記反射表示部100aに対応する部分の配向処理方向1aに対して実質的に45°の方向に分子長軸を揃えて配向させる強さの横電界E,Eを生成させたときの方向であり、この実施例では、前記一対の配向膜17,18の透過表示部100bに対応する部分の配向処理方向1b,2bと、前記前側配向膜17の反射表示部100aに対応する部分の配向処理方向1aとをそれぞれ画面の縦軸yと実質的に平行にしているため、各画素100の透過表示部100bの液晶分子3aは、前記強さの横電界Eの生成により、前記画面の縦軸yに対して実質的に45°の角度で交差する方向に分子長軸を揃えて配向し、反射表示部100aの液晶分子3aは、前記強さの横電界Eの生成により、前記画面の縦軸yに対して実質的に90°の角度で交差する方向に分子長軸を揃えて配向する。 The orientation of the molecular long axis of the liquid crystal molecules 3a when generating the horizontal electric field shown in FIG. 10 is such that the liquid crystal molecules 3a are transmitted between the signal electrodes 4 and the common electrode 5 through the pair of alignment films 17 and 18. The molecular major axes are aligned in a direction substantially 45 ° with respect to the alignment processing directions 1b and 2b of the portion corresponding to the display portion 100b and the alignment processing direction 1a of the portion corresponding to the reflective display portion 100a of the front alignment film 17. This is the direction when the horizontal electric fields E 1 and E 2 having the strength to be aligned are generated. In this embodiment, the alignment processing direction 1b of the portion corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18 is used. , 2b and the alignment processing direction 1a of the portion corresponding to the reflective display portion 100a of the front alignment film 17 are substantially parallel to the vertical axis y of the screen, respectively. Liquid crystal molecules 3a The generation of the lateral electric field E 1 of strength, oriented aligned molecular long axis in a direction intersecting at an angle of substantially 45 ° to the longitudinal axis y of the screen, the liquid crystal molecules 3a in the reflective display portion 100a is By generating the horizontal electric field E 2 having the strength, the molecular major axis is aligned in a direction substantially intersecting with the vertical axis y of the screen at an angle of 90 °.

この液晶表示素子の各画素100の透過表示部100bによる透過表示は、第1の実施例と同じであり、前記透過表示部100bの無電界時の表示は暗表示、横電界生成時の表示は明表示である。   The transmissive display by the transmissive display unit 100b of each pixel 100 of this liquid crystal display element is the same as that of the first embodiment. The display of the transmissive display unit 100b when there is no electric field is a dark display and the display when a horizontal electric field is generated. The display is bright.

次に、前記各画素100の反射表示部100aによる反射表示について説明すると、この実施例では、前記信号電極4とコモン電極5との間に電圧を印加しない無電界時に、前記反射表示部100aの液晶分子3aが、図9のように一対の基板1,2間において実質的に64°の捩れ角でツイスト配向し、Δndの値が実質的に21/2・λ/4に設定された前記反射表示部100aの液晶層3が、透過光に対して実質的に1/4波長の位相差を与えるλ/4効果をもつ。 Next, the reflective display by the reflective display unit 100a of each pixel 100 will be described. In this embodiment, when no voltage is applied between the signal electrode 4 and the common electrode 5, the reflective display unit 100a As shown in FIG. 9, the liquid crystal molecules 3a are twist-aligned between the pair of substrates 1 and 2 with a twist angle of substantially 64 °, and the value of Δnd 1 is set to substantially 2 1/2 · λ / 4. In addition, the liquid crystal layer 3 of the reflective display unit 100a has a λ / 4 effect that gives a phase difference of substantially ¼ wavelength to transmitted light.

そのため、前記無電界時は、観察側から入射し、前記前側偏光板21によってその吸収軸21aと直交する直線偏光にされて前記画素100の反射表示部100aに入射した光が、前記反射表示部100aの液晶層3を往復して透過する間に、入射した直線偏光に対して90゜旋光し、前記前側偏光板21の吸収軸21aに対して平行な直線偏光になり、前記前側偏光板21によって吸収される。   Therefore, when there is no electric field, the light that is incident from the observation side and is linearly polarized by the front polarizing plate 21 and orthogonal to the absorption axis 21a is incident on the reflective display unit 100a of the pixel 100. While traveling back and forth through the liquid crystal layer 3 of 100a, it is rotated by 90 ° with respect to the incident linearly polarized light, and becomes linearly polarized light parallel to the absorption axis 21a of the front polarizing plate 21. Is absorbed by.

また、前記信号電極4とコモン電極5との間に、液晶分子3aを、図10のように前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前側配向膜17の前記反射表示部100aに対応する部分の配向処理方向1aに対して実質的に45°の方向に分子長軸を揃えて配向させる強さの横電界E,Eを生成させたときは、前記反射表示部100aの液晶分子3aの分子長軸の向きが、前記前側偏光板21により直線偏光されて前記画素100の反射表示部100aに入射した光の偏光面に対して実質的に直交する。 Further, between the signal electrode 4 and the common electrode 5, the liquid crystal molecules 3 a are aligned in the alignment processing directions 1 b and 2 b corresponding to the transmissive display portion 100 b of the pair of alignment films 17 and 18 as shown in FIG. 10. Further, the lateral electric fields E 1 and E 2 having a strength for aligning the molecular major axes in a direction substantially 45 ° with respect to the alignment processing direction 1a of the portion corresponding to the reflective display portion 100a of the front alignment film 17 are provided. When generated, the orientation of the molecular major axis of the liquid crystal molecules 3a of the reflective display unit 100a is changed to the polarization plane of the light that has been linearly polarized by the front polarizing plate 21 and incident on the reflective display unit 100a of the pixel 100. It is substantially orthogonal to.

そのため、この横電界生成時は、前記前側偏光板21によってその吸収軸21aと直交する直線偏光にされた光が、前記画素100の反射表示部100aの液晶層3を偏光状態を変えることなく往復して前記前側偏光板21に入射し、この前側偏光板21を透過して観察側に出射する。   Therefore, at the time of generating the horizontal electric field, the light that has been linearly polarized by the front polarizing plate 21 and orthogonal to the absorption axis 21a reciprocates the liquid crystal layer 3 of the reflective display unit 100a of the pixel 100 without changing the polarization state. Then, the light enters the front polarizing plate 21, passes through the front polarizing plate 21, and exits to the observation side.

すなわち、前記反射表示部100aの無電界時の表示は暗表示、横電界生成時の表示は明表示である。   That is, the display of the reflective display unit 100a when there is no electric field is a dark display, and the display when the horizontal electric field is generated is a bright display.

このように、この液晶表示素子の各画素100の反射表示部100aの表示と透過表示部100bの表示は、いずれも無電界暗表示(ノーマリーブラック表示)であり、したがって、外光を利用する反射表示と、液晶表示素子の観察側とは反対側に配置された面光源からの照明光を利用する透過表示とを、表示の明暗を反転させること無く行なうとともに、外光の照度が不足するときに前記面光源を補助光源として利用し、反射表示と透過表示とを併用する表示を行なうことができる。   As described above, the display on the reflective display unit 100a and the display on the transmissive display unit 100b of each pixel 100 of the liquid crystal display element are both non-electric field dark display (normally black display), and thus use external light. Reflective display and transmissive display using illumination light from a surface light source arranged on the side opposite to the viewing side of the liquid crystal display element are performed without reversing the brightness of the display and the illuminance of outside light is insufficient. Sometimes, the surface light source can be used as an auxiliary light source to perform display using both reflective display and transmissive display.

このように、この液晶表示素子は、一対の基板1,2の内面にそれぞれ設けられた一対の配向膜17,18の複数の画素100の透過表示部100bに対応する部分に、液晶分子3aを、予め定めた一方の方向に分子長軸を揃えて配向させるための配向処理を施し、前記複数の画素100の反射表示部100aに対応する部分に、前記液晶分子3aを、前記一対の基板1,2間において、前基板1の近傍の液晶分子3aの分子長軸が前記一方の方向と実質的に平行で、且つ後基板2の近傍の液晶分子3aの分子長軸の向きが前記前基板1の近傍の液晶分子3aの分子長軸の向きに対して予め定めた角度捩れたツイスト状態に配向させるための配向処理を施し、前記一対の基板1,2の少なくともいずれか一方、例えば前基板1の内面に、前記複数の画素100の反射表示部100aにそれぞれ対応させて、前記反射表示部100aの液晶層厚dを、前記反射表示部100aのΔndが、前記反射表示部100aの液晶分子3aが前記ツイスト状態に配向したときに、前記反射表示部100aを透過する光に対して、前記透過表示部100bのΔndに比べて実質的に1/4波長に相当する値だけ小さい位相差を与える値になるように調整するための液晶層厚調整層20を設けているため、前記反射表示と前記透過表示とを、明暗を反転させること無く行なうことができる。 Thus, in this liquid crystal display element, the liquid crystal molecules 3a are applied to the portions corresponding to the transmissive display portions 100b of the plurality of pixels 100 of the pair of alignment films 17 and 18 provided on the inner surfaces of the pair of substrates 1 and 2, respectively. Then, an alignment process for aligning the molecular long axes in one predetermined direction is performed, and the liquid crystal molecules 3a are applied to the portions of the plurality of pixels 100 corresponding to the reflective display portions 100a. , 2, the molecular major axis of the liquid crystal molecules 3 a in the vicinity of the front substrate 1 is substantially parallel to the one direction, and the orientation of the molecular major axis of the liquid crystal molecules 3 a in the vicinity of the rear substrate 2 is the front substrate. An alignment process for aligning the liquid crystal molecules 3a in the vicinity of 1 in a twisted state twisted at a predetermined angle with respect to the direction of the molecular long axis, and at least one of the pair of substrates 1 and 2, for example, the front substrate 1 on the inner surface of Each so as to correspond to the reflective display part 100a of the number of pixels 100, a liquid crystal layer thickness d 1 of the reflective display unit 100a, [Delta] nd 1 of the reflective display portion 100a is, liquid crystal molecules 3a of the reflective display portion 100a is the twist When the light is transmitted to the reflective display unit 100a, the phase difference is substantially smaller than the Δnd 2 of the transmissive display unit 100b by a value substantially corresponding to a quarter wavelength when oriented in a state. Since the liquid crystal layer thickness adjustment layer 20 for adjustment is provided, the reflective display and the transmissive display can be performed without reversing the brightness.

さらに、この液晶表示素子は、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向を、前記信号電極4とコモン電極5との間の前記透過表示部100bに対応する側に生成する横電界Eの向きに対して、実質的に75°〜85°の角度で交差させ、前記一対の配向膜17,18の前記反射表示部100aに対応する部分の配向処理により規定される前記反射表示部100aの液晶分子3aの分子長軸方向を、前基板1の近傍において、前記信号電極4とコモン電極5との間の前記反射表示部100aに対応する側に生成する横電界Eの向きに対して実質的に50°〜60°の角度で交差させているため、前記反射表示部100a及び透過表示部100bの液晶分子3aの分子長軸の向きを、前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理方向1b,2b及び前側配向膜17の前記反射表示部100aに対応する部分の配向処理方向1aに対して実質的に0°〜45°の角度で広範囲に制御し、前記反射表示と透過表示の両方の表示画像の輝度階調数を多くすることができる。 Further, the liquid crystal display element has the molecular major axis direction of the liquid crystal molecules 3a of the transmissive display unit 100b defined by the alignment process of the portion corresponding to the transmissive display unit 100b of the pair of alignment films 17 and 18, relative to the horizontal electric field E 1 to generate the side corresponding to the transmissive display portion 100b orientation between the signal electrode 4 and the common electrode 5, substantially crossed at an angle of 75 ° to 85 °, of the pair The molecular major axis direction of the liquid crystal molecules 3a of the reflective display section 100a defined by the alignment processing of the portions corresponding to the reflective display section 100a of the alignment films 17 and 18 is arranged in the vicinity of the front substrate 1 with the signal electrode 4 Since the crossing is made at an angle of substantially 50 ° to 60 ° with respect to the direction of the lateral electric field E 2 generated on the side corresponding to the reflective display portion 100a between the common electrode 5 and the reflective display portion 100a. And transparent The orientation of the molecular major axis of the liquid crystal molecules 3a of the overdisplay portion 100b is set so that the alignment processing directions 1b and 2b corresponding to the transmissive display portion 100b of the pair of alignment films 17 and 18 and the reflective display of the front alignment film 17 are displayed. The control is performed over a wide range at an angle of substantially 0 ° to 45 ° with respect to the orientation processing direction 1a of the portion corresponding to the portion 100a, and the number of luminance gradations of the display images of both the reflective display and the transmissive display is increased. Can do.

また、この液晶表示素子は、前記前側偏光板21を、その吸収軸21aを前記一対の配向膜17,18の前記透過表示部100bに対応する部分の配向処理により規定される前記透過表示部100bの液晶分子3aの分子長軸方向に対して実質的に平行または直交する方向に向けて配置し、後側偏光板22を、その吸収軸22aを前記前側偏光板21の吸収軸21aに対して実質的に直交させて配置しているため、前記反射表示と透過表示の両方のコントラストを高くするとともに、前記透過表示の視野を広くすることができる。   In addition, the liquid crystal display element includes the front polarizing plate 21 and the transmission display portion 100b in which the absorption axis 21a is defined by an alignment process corresponding to the transmission display portion 100b of the pair of alignment films 17 and 18. The liquid crystal molecules 3a are arranged in a direction substantially parallel to or perpendicular to the molecular long axis direction of the liquid crystal molecules 3a, and the rear polarizing plate 22 is arranged with its absorption axis 22a with respect to the absorption axis 21a of the front polarizing plate 21. Since they are arranged substantially orthogonally, the contrast of both the reflective display and the transmissive display can be increased, and the field of view of the transmissive display can be widened.

(他の実施形態)
なお、上述した実施例の液晶表示素子では、後基板2の内面の信号電極4よりも前記基板2側に、前記信号電極4と絶縁してコモン電極5を設けているが、TFT6に接続された信号電極を、画素領域に対応する形状の導電膜により形成し、その信号電極よりも液晶層側に、前記信号電極と絶縁して、第1の導電膜またはスリット付き導電膜からなるコモン電極を設けてもよい。
(Other embodiments)
In the liquid crystal display element of the above-described embodiment, the common electrode 5 is provided on the substrate 2 side of the inner surface of the rear substrate 2 on the substrate 2 side so as to be insulated from the signal electrode 4. The signal electrode is formed of a conductive film having a shape corresponding to the pixel region, and the first electrode conductive film or the common electrode made of a slit conductive film is insulated from the signal electrode closer to the liquid crystal layer than the signal electrode. May be provided.

さらに、上記実施例では、後基板2の内面に、複数の信号電極4とコモン電極5を設けているが、前記信号電極4とコモン電極5は、前基板1の内面に設けてもよく、また、前記反射膜19は、前記後基板2の外面(後基板2と後側偏光板22との間)に設けてもよい。   Further, in the above embodiment, the plurality of signal electrodes 4 and the common electrode 5 are provided on the inner surface of the rear substrate 2, but the signal electrode 4 and the common electrode 5 may be provided on the inner surface of the front substrate 1, The reflective film 19 may be provided on the outer surface of the rear substrate 2 (between the rear substrate 2 and the rear polarizing plate 22).

この発明の第1の実施例を示す液晶表示素子の一方の基板の一部分の平面図。1 is a plan view of a part of one substrate of a liquid crystal display device showing a first embodiment of the present invention; 前記液晶表示素子の図1のII−II線に沿う断面図。Sectional drawing which follows the II-II line | wire of FIG. 1 of the said liquid crystal display element. 前記液晶表示素子の図1のIII−III線に沿う断面図。Sectional drawing which follows the III-III line | wire of FIG. 1 of the said liquid crystal display element. 前記液晶表示素子の図1のIV−IV線に沿う断面図。Sectional drawing which follows the IV-IV line | wire of FIG. 1 of the said liquid crystal display element. 前記液晶表示素子の一対の基板の内面にそれぞれ設けられた一対の配向膜の配向処理方向と一対の偏光板の吸収軸の向きを観察側から見た図。The figure which looked at the orientation process direction of a pair of alignment film each provided in the inner surface of a pair of board | substrate of the said liquid crystal display element, and the direction of the absorption axis of a pair of polarizing plate from the observation side. 前記液晶表示素子の1つの画素における無電界時と横電界生成時の液晶分子の分子長軸の向きを観察側から見た図。The figure which looked at the direction of the molecular long axis of the liquid crystal molecule from the observation side at the time of no electric field and horizontal electric field generation in one pixel of the liquid crystal display element. 前記液晶表示素子の1つの画素における横電界生成時の液晶分子の分子長軸の向きを観察側から見た図。The figure which looked at the direction of the molecular long axis of the liquid crystal molecule at the time of the horizontal electric field production | generation in one pixel of the said liquid crystal display element from the observation side. この発明の第2の実施例を示す液晶表示素子の一対の基板の内面にそれぞれ設けられた一対の配向膜の配向処理方向と一対の偏光板の吸収軸の向きを観察側から見た図。The figure which looked at the orientation process direction of a pair of alignment film provided in the inner surface of a pair of board | substrate of the liquid crystal display element which respectively shows 2nd Example of this invention, and the direction of the absorption axis of a pair of polarizing plate from the observation side. 第2の実施例の液晶表示素子の1つの画素における無電界時の液晶分子の分子長軸の向きを観察側から見た図。The figure which looked at the direction of the molecular long axis of the liquid crystal molecule at the time of no electric field in one pixel of the liquid crystal display element of a 2nd Example from the observation side. 第2の実施例の液晶表示素子の1つの画素における横電界生成時の液晶分子の分子長軸の向きを観察側から見た図。The figure which looked at the direction of the molecular long axis of the liquid crystal molecule at the time of the horizontal electric field production | generation in one pixel of the liquid crystal display element of a 2nd Example from the observation side.

符号の説明Explanation of symbols

1…前基板(観察側基板)、2…後基板(反対側基板)、1a,1b,2a,2b…配向処理方向、3…液晶層、3a…液晶分子、4…信号電極、4a…第1の導電膜、4b…細長電極部、5…コモン電極、5a…第2の導電膜、5b…電極部、6…TFT(能動素子)、12…走査線、13…信号線、14…層間絶縁膜、15…遮光膜、16R,16G,16B…カラーフィルタ、17,18…配向膜、19…反射膜、20…液晶層厚調整層、21…前側(観察側)偏光板、21a…吸収軸、22…後側(反対側)偏光板、22a…吸収軸、23…静電気遮断導電膜、100…画素、100a…反射表示部、100b…透過表示部、E,E…横電界。 DESCRIPTION OF SYMBOLS 1 ... Front board | substrate (observation side board | substrate), 2 ... Back board | substrate (opposite side board | substrate), 1a, 1b, 2a, 2b ... Orientation process direction, 3 ... Liquid crystal layer, 3a ... Liquid crystal molecule, 4 ... Signal electrode, 4a ... 1st DESCRIPTION OF SYMBOLS 1 electrically conductive film, 4b ... elongate electrode part, 5 ... common electrode, 5a ... 2nd electrically conductive film, 5b ... electrode part, 6 ... TFT (active element), 12 ... scanning line, 13 ... signal line, 14 ... interlayer Insulating film, 15 ... light-shielding film, 16R, 16G, 16B ... color filter, 17,18 ... alignment film, 19 ... reflection film, 20 ... liquid crystal layer thickness adjusting layer, 21 ... front (observation side) polarizing plate, 21a ... absorption Axis, 22 ... rear side (opposite side) polarizing plate, 22a ... absorption axis, 23 ... electrostatic shielding conductive film, 100 ... pixel, 100a ... reflection display part, 100b ... transmission display part, E 1 , E 2 ... transverse electric field.

Claims (12)

予め定めた間隙を設けて対向配置された観察側及びその反対側の一対の基板と、
前記一対の基板間の間隙に封入された液晶層と、
前記一対の基板の互いに対向する内面のうちのいずれか一方に互いに絶縁して配置され、電圧の印加により、前記基板面平行で、且つ予め定めた位置から一方の側と他方の側とで向きが予め定めた角度ずれた2つの方向の横電界を生成し、これらの横電界によって前記液晶層の液晶分子の分子長軸の向きが制御される複数の画素を行方向及び列方向にマトリックス状に配列させて形成するための複数の信号電極及び複数のコモン電極と、
前記反対側の基板の内面または外面に、前記複数の画素内の前記2つの方向の横電界の生成領域のうちの一方にそれぞれ対応させて設けられ、前記観察側から入射した光を反射して前記観察側へ出射する反射表示部と、前記観察側とは反対側から入射した光を透過させて前記観察側へ出射する前記反射表示部以外の透過表示部とを前記複数の画素毎に形成するための反射膜と、
前記一対の基板の内面にそれぞれ設けられ、前記液晶分子を、前記基板面と平行な方向に分子長軸を向けて配向させるように、前記複数の画素の前記透過表示部に対応する部分にそれぞれ、前記液晶分子を前記列方向に分子長軸を揃えて配向させるための配向処理が施され、前記複数の画素の前記反射表示部に対応する部分にそれぞれ、前記液晶分子を前記列方向に対して観察側から見て左回り方向に45°傾いた方向に分子長軸を揃えて配向させるための配向処理が施された一対の配向膜と、
前記一対の基板の外面にそれぞれ配置された観察側及びその反対側の一対の偏光板と、を備え
前記信号電極は、前記透過表示部に対応する部分が、前記列方向に対して、観察側から見て右回り方向に5°〜15°の角度で傾いた方向に沿う細長形状に形成され、前記反射表示部に対応する部分は、観察側から見て左回り方向に30°〜40°の角度で傾いた方向に沿う細長形状に形成された、複数の細長電極部を有する第1の導電膜からなり、
前記コモン電極は、複数の前記信号電極にそれぞれ対向する領域において前記信号電極と平面視して重なりを持って形成された複数の対向部と、前記複数の対向部を接続する接続部と、を有して前記複数の画素の行毎に前記行の全長にわたって設けられた、第2の導電膜からなり、
前記観察側の偏光板は、前記観察側の偏光板の吸収軸を前記列方向に対して平行または直交する方向に向けて配置され、前記観察側とは反対側の偏光板は、前記観察側とは反対側の偏光板の吸収軸を前記観察側の偏光板の吸収軸に対して直交させて配置されている、
ことを特徴とする液晶表示素子。
A pair of substrates on the opposite side and the observation side disposed opposite each other with a predetermined gap;
A liquid crystal layer sealed in a gap between the pair of substrates;
Arranged on either one of the mutually facing inner surfaces of the pair of substrates, insulated from each other , parallel to the substrate surface by applying a voltage, and on one side and the other side from a predetermined position A horizontal electric field is generated in two directions whose directions are deviated by a predetermined angle, and a plurality of pixels in which the direction of the molecular major axis of the liquid crystal molecules of the liquid crystal layer is controlled by these horizontal electric fields are matrixed in the row direction and the column direction A plurality of signal electrodes and a plurality of common electrodes to be arranged in a shape;
Provided on the inner or outer surface of the substrate on the opposite side, corresponding to one of the horizontal electric field generation regions in the two directions in the plurality of pixels, and reflecting light incident from the observation side A reflective display unit that emits light to the observation side and a transmissive display unit other than the reflective display unit that transmits light incident from the opposite side to the observation side and emits the light to the observation side , for each of the plurality of pixels A reflective film for forming;
The liquid crystal molecules are provided on the inner surfaces of the pair of substrates, respectively, and the liquid crystal molecules are respectively aligned in portions corresponding to the transmissive display portions of the plurality of pixels so that the molecular long axes are oriented in a direction parallel to the substrate surfaces. , An alignment treatment for aligning the liquid crystal molecules in the column direction with the molecular long axis aligned is performed, and the liquid crystal molecules are respectively applied to the portions corresponding to the reflective display portions of the plurality of pixels with respect to the column direction. A pair of alignment films subjected to an alignment treatment for aligning the molecular major axes in a direction inclined 45 ° counterclockwise as viewed from the observation side ;
An observation side disposed on the outer surface of the pair of substrates and a pair of polarizing plates on the opposite side , and
The signal electrode is formed in an elongated shape along a direction in which a portion corresponding to the transmissive display portion is inclined at an angle of 5 ° to 15 ° in a clockwise direction when viewed from the observation side with respect to the column direction, The portion corresponding to the reflective display portion has a plurality of elongated electrode portions formed in an elongated shape along a direction inclined at an angle of 30 ° to 40 ° counterclockwise as viewed from the observation side. Consisting of a membrane,
The common electrode includes a plurality of facing portions formed so as to overlap with the signal electrodes in a region facing each of the plurality of signal electrodes, and a connection portion connecting the plurality of facing portions. And comprising a second conductive film provided over the entire length of each row of the plurality of pixels,
The polarizing plate on the observation side is arranged with the absorption axis of the polarizing plate on the observation side oriented in a direction parallel or orthogonal to the column direction, and the polarizing plate on the side opposite to the observation side is the observation side Is arranged so that the absorption axis of the polarizing plate on the opposite side is orthogonal to the absorption axis of the polarizing plate on the observation side,
The liquid crystal display element characterized by the above-mentioned.
前記複数の画素の前記透過表示部の液晶の屈折率異方性Δnと液晶層厚d との積Δnd は、透過光に1/2波長の位相差を与えるように設定されており、
前記一対の基板の少なくともいずれか一方の内面に、前記複数の画素の前記反射表示部にそれぞれ対応させて、前記反射表示部の液晶層厚を、前記反射表示部の液晶の屈折率異方性Δnと液晶層厚d との積Δnd が、前記透過表示部の前記積Δnd に比べて透過光の1/4波長に相当する値だけ小さくなるように調整するための液晶層厚調整層が設けられていることを特徴とする請求項1に記載の液晶表示素子。
The product Δnd 2 of the liquid crystal refractive index anisotropy Δn and the liquid crystal layer thickness d 2 of the transmissive display portion of the plurality of pixels is set to give a half-wave phase difference to the transmitted light,
The inner surface of at least one of the pair of substrates is made to correspond to the reflective display portion of the plurality of pixels, the liquid crystal layer thickness of the reflective display portion, and the refractive index anisotropy of the liquid crystal of the reflective display portion. Liquid crystal layer thickness adjustment for adjusting the product Δnd 1 of Δn and the liquid crystal layer thickness d 1 to be smaller than the product Δnd 2 of the transmissive display unit by a value corresponding to a quarter wavelength of transmitted light. The liquid crystal display element according to claim 1, further comprising a layer .
前記一対の配向膜の前記透過表示部に対応する部分の配向処理により規定される前記透過表示部の液晶分子の分子長軸方向は、前記信号電極と前記コモン電極との間の前記透過表示部に対応する側に生成する横電界の向きに対して、75°〜85°の角度で交差しており、前記一対の配向膜の前記反射表示部に対応する部分の配向処理により規定される前記反射表示部の液晶分子の分子長軸方向は、前記信号電極と前記コモン電極との間の前記反射表示部に対応する側に生成する横電界の向きに対して、75°〜85°の角度で交差していることを特徴とする請求項1に記載の液晶表示素子。 The molecular major axis direction of the liquid crystal molecules of the transmissive display portion defined by the alignment treatment of the portion corresponding to the transmissive display portion of the pair of alignment films is the transmissive display portion between the signal electrode and the common electrode. The direction of the horizontal electric field generated on the side corresponding to the crossing at an angle of 75 ° to 85 ° and defined by the alignment processing of the portion corresponding to the reflective display portion of the pair of alignment films The molecular major axis direction of the liquid crystal molecules of the reflective display portion is an angle of 75 ° to 85 ° with respect to the direction of the transverse electric field generated on the side corresponding to the reflective display portion between the signal electrode and the common electrode. The liquid crystal display element according to claim 1, wherein the liquid crystal display element intersects with each other . 前記透過表示部に対応する部分における前記一対の配向膜の配向処理方向は、互いに平行であり、且つ、逆向き方向であり、
前記反射表示部に対応する部分における前記一対の配向膜の配向処理方向は、互いに平行であり、且つ、逆向き方向であることを特徴とする請求項1に記載の液晶表示素子。
The alignment treatment directions of the pair of alignment films in the portion corresponding to the transmissive display portion are parallel to each other and reverse directions,
The liquid crystal display element according to claim 1 , wherein the alignment treatment directions of the pair of alignment films in a portion corresponding to the reflective display portion are parallel to each other and in opposite directions .
前記複数の細長電極部の前記透過表示部に対応する部分の幅W と隣り合う細長電極部との間隔D との比D /W と、前記複数の細長電極部の前記反射表示部に対応する部分の幅W と隣り合う細長電極部との間隔D との比D /W と、はそれぞれ、1以上3以下であることを特徴とする請求項1に記載の液晶表示素子。 The ratio D 1 / W 1 between the width W 1 of the portion corresponding to the transmissive display portion of the plurality of elongated electrode portions and the distance D 1 between the adjacent elongated electrode portions, and the reflective display of the plurality of elongated electrode portions the ratio D 2 / W 2 between the distance D 2 between the width W 2 between adjacent elongate electrode portions of the portion corresponding to the part, according to claim 1, characterized in that each is from 1 to 3 Liquid crystal display element. 前記比DThe ratio D 1 /W/ W 1 と前記比DAnd the ratio D 2 /W/ W 2 とはそれぞれ、1であることを特徴とする請求項5に記載の液晶表示素子。The liquid crystal display element according to claim 5, wherein each is 1. 前記コモン電極は、前記画素行の全長にわたって、前記信号電極の前記複数の画素の配列の前記列方向に沿った幅に対応する幅に形成されていることを特徴とする請求項1に記載の液晶表示素子。The said common electrode is formed in the width | variety corresponding to the width | variety along the said column direction of the arrangement | sequence of the said several pixel of the said signal electrode over the full length of the said pixel row. Liquid crystal display element. 前記行毎にその全長にわたって設けられた前記複数のコモン電極は、前記複数の画素の配列領域の一端側の外側において共通接続されていることを特徴とする請求項1に記載の液晶表示素子。2. The liquid crystal display element according to claim 1, wherein the plurality of common electrodes provided over the entire length of each row are commonly connected on the outer side of one end side of the array region of the plurality of pixels. 前記複数の細長電極部は、前記信号電極に形成されたつなぎ部により、画素毎に共通接続されていることを特徴とする請求項1に記載の液晶表示素子。The liquid crystal display element according to claim 1, wherein the plurality of elongated electrode portions are commonly connected to each pixel by a connecting portion formed in the signal electrode. 前記一対の基板の前記一方の基板に薄膜トランジスタを備え、前記薄膜トランジスタのソース電極は前記信号電極に接続され、前記コモン電極は絶縁膜を介して前記信号電極と絶縁され、前記信号電極は前記コモン電極よりも前記液晶層に近いことを特徴とする請求項1に記載の液晶表示素子。One substrate of the pair of substrates includes a thin film transistor, a source electrode of the thin film transistor is connected to the signal electrode, the common electrode is insulated from the signal electrode through an insulating film, and the signal electrode is the common electrode The liquid crystal display element according to claim 1, wherein the liquid crystal display element is closer to the liquid crystal layer. 前記反射膜は、前記反対側の基板の内面に、前記複数の画素の前記反射表示部毎に島状に形成されることを特徴とする請求項1に記載の液晶表示素子。2. The liquid crystal display element according to claim 1, wherein the reflective film is formed in an island shape on the inner surface of the opposite substrate for each of the reflective display portions of the plurality of pixels. 前記液晶層は正の誘電異方性を有するネマティック液晶層であることを特徴とする請求項1に記載の液晶表示素子。The liquid crystal display element according to claim 1, wherein the liquid crystal layer is a nematic liquid crystal layer having positive dielectric anisotropy.
JP2006263225A 2006-09-27 2006-09-27 Liquid crystal display element Active JP4923916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263225A JP4923916B2 (en) 2006-09-27 2006-09-27 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263225A JP4923916B2 (en) 2006-09-27 2006-09-27 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2008083388A JP2008083388A (en) 2008-04-10
JP4923916B2 true JP4923916B2 (en) 2012-04-25

Family

ID=39354331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263225A Active JP4923916B2 (en) 2006-09-27 2006-09-27 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP4923916B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348517B2 (en) 2019-12-11 2023-09-21 株式会社イトーキ door structure

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138481B2 (en) 2008-06-30 2013-02-06 三菱電機株式会社 Liquid crystal display

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4117148B2 (en) * 2002-05-24 2008-07-16 日本電気株式会社 Transflective liquid crystal display device
JP4223993B2 (en) * 2004-05-25 2009-02-12 株式会社 日立ディスプレイズ Liquid crystal display
JP4169035B2 (en) * 2005-07-15 2008-10-22 エプソンイメージングデバイス株式会社 Liquid crystal device and electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348517B2 (en) 2019-12-11 2023-09-21 株式会社イトーキ door structure

Also Published As

Publication number Publication date
JP2008083388A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
JP4203676B2 (en) Liquid crystal display element
JP4039444B2 (en) Liquid crystal display device and electronic device
US6636286B1 (en) Transflective liquid crystal display device having reflective and transparent pixel electrodes
US8830435B2 (en) Liquid crystal display device
US8743332B2 (en) Liquid crystal display device
JP2004361825A (en) Liquid crystal display device and electronic equipment
KR19980042256A (en) Liquid crystal display
CN112068340A (en) Display panel with switchable viewing angles, display device and driving method
JP2010139760A (en) Display device
US8780302B2 (en) Liquid crystal display device
US7876402B2 (en) Liquid crystal display device
JP2009288373A (en) Liquid crystal device and electronic apparatus
JP2007240726A (en) Liquid crystal display device and method for manufacturing the liquid crystal display device
JP4923916B2 (en) Liquid crystal display element
US8384866B2 (en) Liquid crystal display device comprising first and second organic alignment films having slow axes arranged to cross each other by aligning polymer chains
US20120188491A1 (en) Reflective display apparatus
JP5103806B2 (en) Liquid crystal display element
JP2008083395A (en) Liquid crystal display device
JP2008009155A (en) Liquid crystal display element
KR101654240B1 (en) In-plane switching mode trans-flective liquid crystal display device
JP4817667B2 (en) Liquid crystal display
JP5177861B2 (en) Liquid crystal display
KR101124396B1 (en) Transflective mode In-Plane switching type liquid crystal display device
KR20070072203A (en) Liquid crystal display device that can change the mode of narrow view angle and its manufacturing method
KR101107705B1 (en) Reflective liquid crystal display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4923916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250