[go: up one dir, main page]

JP5079195B2 - Gas diffusion electrode for fuel cell and manufacturing method thereof - Google Patents

Gas diffusion electrode for fuel cell and manufacturing method thereof Download PDF

Info

Publication number
JP5079195B2
JP5079195B2 JP2001298019A JP2001298019A JP5079195B2 JP 5079195 B2 JP5079195 B2 JP 5079195B2 JP 2001298019 A JP2001298019 A JP 2001298019A JP 2001298019 A JP2001298019 A JP 2001298019A JP 5079195 B2 JP5079195 B2 JP 5079195B2
Authority
JP
Japan
Prior art keywords
water
porous substrate
gas diffusion
diffusion electrode
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001298019A
Other languages
Japanese (ja)
Other versions
JP2003109604A5 (en
JP2003109604A (en
Inventor
昭彦 吉田
栄一 安本
修 酒井
誠 内田
純司 森田
靖 菅原
安男 武部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001298019A priority Critical patent/JP5079195B2/en
Publication of JP2003109604A publication Critical patent/JP2003109604A/en
Publication of JP2003109604A5 publication Critical patent/JP2003109604A5/ja
Application granted granted Critical
Publication of JP5079195B2 publication Critical patent/JP5079195B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料として水素、メタノール、エタノール、ジメチルエーテルなどを用い、酸化剤として空気や酸素を用いる高分子電解質型燃料電池のガス拡散電極およびその製造法に関する。
【0002】
【従来の技術】
高分子電解質型燃料電池のガス拡散電極は、一般に高分子電解質膜を挟持する触媒層と、触媒層と接する多孔質基材とから構成されており、多孔質基材は、主に次の三つの機能を持つ。
第一は、ガス拡散電極の外面に位置するガス流路から、触媒層内の触媒へ均一に燃料ガスもしくは酸化剤ガスを供給するために、これらのガスを拡散する機能である。第二は、触媒層内で電極反応により生成した水を、速やかにガス流路に排出する機能である。第三は、電極反応に伴って授受される電子を伝導させる機能である。従って、多孔質基材は、高いガス透過性と、水蒸気透過性と、電子導電性とを有する必要がある。
【0003】
水蒸気透過性を高める観点からは、フッ素樹脂に代表される撥水性高分子を多孔質基材に分散させて、水の滞留(フラッディング)を抑制する検討がなされている。
例えば、特開平6−203851号公報、特開平7−130373号公報、特開平8−106915号公報または特開平9−259893号公報は、ポリテトラフルオロエチレン(以下、PTFEと略す。)またはテトラフルオロエチレンとヘキサフルオロプロピレンとの共重合体(以下、FEPと略す。)の分散液にカーボンペーパーやカーボンクロスを含浸・乾燥する方法を開示している。
また、特開平7−220734号公報、特開平4−67571号公報、特開平3−208260号公報、特開平3−208261号公報、特開平3−208262号公報または特開平6−44984号公報は、PTFEを添加した炭素微粉末からなる層を形成した多孔質基材を開示している。
【0004】
しかし、カーボンペーパーやカーボンクロスを無作意に撥水性高分子の分散液に含浸・乾燥する方法では、撥水性高分子が、三次元構造を持つ多孔質基材の繊維配列に従って分布してしまうため、撥水材の分布を制御することは困難である。また、多孔質基材の空隙の分布に反比例して、空隙の大きい部位には撥水材が集まらず、空隙の小さい部位には撥水材が集まり易い傾向がある。さらに、上記含浸方式では、多孔質基材の表面に撥水材が多く付き過ぎて、基材内部に水が閉じ込められ、フラッディングを引き起こす。その結果、燃料電池の放電特性や信頼性も低下してしまう。
【0005】
また、水蒸気透過性を高めるために撥水性高分子を多孔質基材に添加し、基材内における撥水性高分子の分布を制御しない場合、ガス透過性や電子導電性が低下するという問題がある。そこで、多孔質基材を単一の基材から構成するのではなく、カーボン繊維からなる層と、炭素粉末および撥水性高分子からなる層とを組み合わせて、相反する機能を両立させる取り組みなどがなされているが、充分な結果は得られていない。
【0006】
【発明が解決しようとする課題】
ガス拡散電極の水蒸気透過性を向上させるとともに、ガス透過性を確保するには、ガス拡散電極内の撥水材の分布を適切に制御することが不可欠であると考えられる。本発明は、この課題を解決し、フラッディングを抑制し、水蒸気透過性とガス透過性とを確保し、放電性能および信頼性の高い燃料電池を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、触媒を担持した炭素粉末および高分子電解質からなる触媒層と、炭素材料からなり前記触媒層と接する多孔質基材と、前記多孔質基材に付与された撥水材とからなるガス拡散電極であって、前記多孔質基材内における前記撥水材の量が、前記触媒層と接する側から他方の側に向かって連続的に減少していることを特徴とする燃料電池用ガス拡散電極に関する。
【0008】
なわち、燃料電池を組み立てた際に、高分子電解質膜側からセパレータ側に向かって多孔質基材の撥水性が減少する。
前記触媒層は、撥水材を含んでいる。前記触媒層が、厚さWmmであって1cm2あたりXgの撥水材を含み、前記多孔質基材が、厚さZmmであって1cm2あたりYgの撥水材を含むとき、(X/W)>(Y/Z)を満たす。
【0009】
本発明は、また、(1)撥水性高分子の分散液または撥水性高分子の溶液を、炭素材料からなる厚さZmmの多孔質基材の一方の面に、1cm2あたりYgの前記撥水性高分子を前記多孔質基材が含むように塗工する工程1、および(2)その面に、触媒を担持した炭素粉末および高分子電解質からなり、かつ1cm2あたりXgの撥水材を含む厚さWmmの触媒層を、(X/W)>(Y/Z)を満たすように形成する工程2、を有する燃料電池用ガス拡散電極の製造法に関する。
工程1に先立って、前記多孔質基材を40〜180℃に加熱する工程を行うことが好ましい。
【0010】
【発明の実施の形態】
本発明の燃料電池用ガス拡散電極は、触媒を担持した炭素粉末および高分子電解質からなる触媒層と、炭素材料からなり触媒層と接する多孔質基材と、多孔質基材に付与された撥水材とから構成される。燃料電池においては、ガス拡散電極の触媒層側が高分子電解質膜と接触し、多孔質基材側がセパレータと接触する。多孔質基材は、燃料ガスと酸化剤ガスを拡散させる役割を有するガス拡散電極基材を構成する。
【0011】
図1に、上記ガス拡散電極を含む燃料電池の基本構造を示す。高分子電解質膜11は、触媒層12およびガス拡散電極基材13からなるガス拡散電極14で挟持されている。高分子電解質膜11とガス拡散電極14との接合体はMEA(膜−電極接合体)15と呼ばれる。MEA15は、燃料ガスまたは酸化剤ガスの流路16を有するセパレータ17で挟持されている。
【0012】
上記基本構造では、燃料ガスは、アノード側のセパレータが有する燃料ガス流路からガス拡散電極基材に供給され、電極基材を拡散しながら通過して、触媒層へ至る。また、酸化剤ガスは、カソード側のセパレータが有する酸化剤ガス流路から電極基材へ供給され、電極基材を拡散しながら通過して、触媒層へ至る。
【0013】
電極反応は、触媒層12に含まれる触媒の表面で起こる。アノード側の触媒層では、H2→2H++2e-の反応が起こる。カソード側の触媒層では、1/2O2+2H++2e-→H2Oの反応が起こる。反応全体としては、H2+1/2O2→H2O+Qとなる。この反応で起電力が得られ、発電が可能となるが、同時にカソード側の触媒層では、水が生成する。また、反応の際にアノード側の触媒層で生じたH+は、高分子電解質膜内を移動して、カソード側の触媒層へ至る。この際、1個のH+イオンが5〜20個のH2O分子を同伴して移動する。
【0014】
高分子電解質膜は、充分量の水で膨潤した状態において、初めて高い水素イオン導電性を発揮する。しかし、高分子電解質膜中を移動するH+イオンに同伴して多量の水がカソードへ移動するため、水を常に高分子電解質膜に供給する必要がある。この水は、ガス流路からガス拡散電極基材に水蒸気として供給され、カソードおよびアノードを通って高分子電解質膜に供給される。また、カソード側の触媒層内で生成した水のうち、高分子電解質膜が必要としない余剰水分は、ガス拡散電極基材を通って、ガス流路から外部へ排出される。
【0015】
上述のように、ガス拡散電極では水の出入りが多いことから、ガス拡散電極内の撥水性を制御することが重要となる。特に、信頼性確保の観点からは、余剰水分を速やかに外部へ排出できるように撥水性を設計する必要がある。
【0016】
多孔質基材内における撥水材の量は、触媒層と接する側から他方の側に向かって連続的に減少している。このように撥水材の分布に傾斜を持たせることにより、高分子電解質膜側からセパレータ側に向かうガスの拡散経路および水の移動経路が形成される。その結果、水詰まりがなく、放電性能に優れ、信頼性の高い燃料電池を提供することが可能になる。
【0017】
多孔質基材内における撥水材の量、触媒層と接する側から他方の側に向かって減少する場合、水の排出方向に沿って撥水性が減少することになるため、水の移動方向がより確実に制御され、多孔質基材内の水詰まりを抑制する大きな効果が得られる。
【0018】
多孔質基材と接する触媒層には、多孔質基材に対する撥水材の添加割合よりも高い割合で、撥水材を付与する。すなわち、前記触媒層が、厚さWmmであって1cm2あたりXmgの撥水材を含み、前記多孔質基材が、厚さZmmであって1cm2あたりYmgの撥水材を含むとき、(X/W)>(Y/Z)を満たす。また、0.008≦X(mg)≦1.3であり、0.24≦Y(mg)≦10であることが好ましい。
【0019】
このように水を生成する触媒層に高い撥水性を付与することにより、余剰水分は、より撥水性の低いガス拡散電極基材または高分子電解質膜へ速やかに移動する。そして、電極基材内では、ガス流路に向かって撥水性が低下するように撥水材が分布しているため、ガス流路まで速やかに水が移動する。このように、余剰水分は撥水性の制御により速やかに外部へ排出され、ガス拡散電極内で水詰まりによるフラッディングが起こるのを抑制することができる。また、ガス透過性が低下することもなくなるため、放電特性および信頼性の高い燃料電池を得ることできる。
【0020】
本発明のガス拡散電極は、(1)撥水性高分子の分散液または撥水性高分子の溶液を、炭素材料からなる厚さZmmの多孔質基材の一方の面に、1cm2あたりYgの前記撥水性高分子を前記多孔質基材が含むように塗工する工程1、および(2)その面に、触媒を担持した炭素粉末および高分子電解質からなり、かつ1cm2あたりXgの撥水材を含む厚さWmmの触媒層を、(X/W)>(Y/Z)を満たすように形成する工程2を行うことにより、製造することができる。
分散液または溶液(以下、撥水液という。)を、ほぼ水平に配された多孔質基材の一方の面のみに塗工することにより、容易に多孔質基材面に垂直な方向において撥水材の分布を連続的に変化させることができる。
【0021】
撥水性高分子には、フッ素樹脂、シリコーン樹脂などを用いることが好ましい。フッ素樹脂には、PTFE、FEP、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン−エチレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライドなどを用いることができる。また、シリコーン樹脂には、ポリジメチルシロキサン、ポリメチルヒドロシロキサン、ポリフェニルヒドロシロキサンなどを用いることができる。
多孔質基材には、カーボンペーパー、カーボンクロス、カーボン不織布などを用いることができる。
【0022】
工程1に先立って、多孔質基材を加熱する工程を行うことにより、撥水材の多孔質基材内への浸透状態を制御することが可能となる。多孔質基材の温度が高いほど、多孔質基材上に撥水液が接触した際の溶媒または分散媒の乾燥・蒸発速度が速くなるため、多孔質基材内に染み込む撥水性高分子量を少なくすることができる。また、撥水液の高分子濃度が高くなると、溶媒または分散媒の量が少なくなるため、多孔質基材上に撥水液が接触した際の溶媒または分散媒の乾燥・蒸発時間が短くなり、多孔質基材内に染み込む撥水性高分子量を少なくできる。撥水材の多孔質基材内への浸透状態を最も好適な状態に制御するには、多孔質基材を40〜180℃、好ましくは60〜80℃に加熱することが有効である。
【0023】
撥水液の塗工には、例えばスプレー法を採用することが好ましい。その際、塗工に用いる撥水液の撥水性高分子濃度、およびスプレーノズルからの液の吐出量、霧化圧力等により、撥水材の多孔質基材への浸透状態を制御することにより、多孔質基材内における撥水材の分布を制御することができる。また、撥水材の多孔質基材への浸透状態は、多孔質基材とスプレーノズルとの距離、塗工時の雰囲気温度と湿度、撥水液の温度などにも、依存する。
【0024】
スプレーノズルから噴霧する撥水液の吐出量を少なくし、霧化圧力を高くした場合、分散媒や溶媒がほとんど蒸発した状態で撥水性高分子が多孔質基材へ接触するため、多孔質基材のより内部まで浸透する撥水性高分子の量は少なくなる。逆に、スプレーノズルから噴霧する撥水液の吐出量を多く、霧化圧力を小さくした場合、湿潤状態の撥水性高分子が多孔質基材へ接触するため、多孔質基材のより内部まで浸透する撥水性高分子の量は多くなる。
【0025】
撥水液の塗工には、撥水液や多孔質基材の濃度等の制御が容易であり、操作が簡便なスプレー法が有効と思われるが、その他のどのような工法でも同様の制御は可能であり、本発明に適用することができる。例えば、ドクターブレード法、スクリーン印刷法、コータ塗工法においては、撥水液の濃度を60〜80重量%に制御することにより、撥水材の多孔質基材内への浸透状態を最も好適な状態に制御することができる。
なお、一度の塗工で要望量の撥水材を多孔質基材に添加する必要はなく、複数回の塗工を行ってもよい。
【0026】
【実施例】
参考例1》
ダイキン工業製FEP分散液(商品名:ND−1)を、ND−1と水との重量比が1:10となるように水で希釈した。多孔質基材としては、東レ株式会社製カーボンペーパー(商品名:TGP−H−120、厚さ0.36mm)を用いた。
このカーボンペーパーをホットプレート上に載置し、片面から60℃に加熱した。次いで、カーボンペーパーの他方の面に、スプレーノズルから希釈されたFEPの分散液を塗工した。この際、スプレーノズルからの分散液の吐出量は30cc/分とし、霧化圧力は1.5kg/cm2とした。また、スプレーノズルからカーボンペーパーまでの距離を200mmとし、雰囲気温度は20℃、湿度は30%に調節した。
【0027】
希釈されたFEPの分散液を塗工した直後に、FEP塗工面が下向きになるようにカーボンペーパーを裏返し、そのまま60℃雰囲気で2時間乾燥させた。その後、約380℃で15分間カーボンペーパーを焼成した。焼成後のカーボンペーパー内のFEP量はFEP塗工面近傍で最も多く、反対面に向かって徐々に減少していた。ここでカーボンペーパーに付与されたFEP量は、カーボンペーパーの1cm2あたり、1.3mgであった。
【0028】
次に、高分子電解質膜の両面に触媒層を形成した。高分子電解質膜には、米国デュポン社製Nafion112膜を用いた。また、触媒は、ライオン株式会社製の炭素微粉末であるケッチェンブラックEC上に、白金を担持させて調製した。ここでは、ケッチェンブラックECの50重量部に対して白金50重量部を担持させた。得られた触媒100重量部に対して、米国デュポン社製の高分子電解質の分散液(Nafion溶液)500重量部を混合し、触媒組成物を調製した。この触媒組成物を用いて、Nafion112膜の両面に厚さ0.02mmの触媒層を形成した。そして、160℃で熱溶着して触媒層とNafion112膜とを接合し、MEAを作製した。なお、Nafionとは、パーフルオロカーボンスルホン酸の商品名である。
【0029】
このMEAに、上記の通りFEPを付与したカーボンペーパーを、そのFEP塗工面が触媒層と接するように接合し、水素―空気型燃料電池の単電池Aを作製した。
【0030】
《実施例
触媒100重量部に対してNafion溶液を500重量部加えた他、さらにPTFEを20重量部混合したこと以外、参考例1と同様にして、水素―空気型燃料電池の単電池Bを作製した。ここで触媒層に付与されたPTFE量は、触媒層の1cm2あたり、0.1mgであった。
【0031】
《比較例1》
実施例と同様のMEAを作製した。このMEAに、参考例1と同様にしてFEPを付与したカーボンペーパーを、そのFEP塗工面と反対の面が触媒層と接するように接合し、水素―空気型燃料電池の単電池Cを作製した。
【0032】
《比較例2》
ダイキン工業製FEP分散液(商品名:ND−1)を、ND−1と水との重量比が1:10となるように水で希釈した。この希釈されたFEPの分散液に東レ株式会社製のカーボンペーパー(商品名TGP−H−120、厚さ0.36mm)を1分間浸漬した後引き上げ、カーボンペーパーを水平にして約60℃で2時間乾燥させ、その後約380℃で15分間カーボンペーパーを焼成した。焼成後のカーボンペーパー内の撥水材は、カーボンペーパー内で均一に分布していた。また、ここでカーボンペーパーに付与されたFEP量は、カーボンペーパーの1cm2あたり、1.3mgであった。
【0033】
一方、参考例1と同様のMEAを作製した。このMEAに、浸漬によりFEPを付与したカーボンペーパーを接合し、水素―空気型燃料電池の単電池Dを作製した。
【0034】
以上のとおり作製した参考例1、実施例1および比較例1、2の単電池A、BおよびC、Dの燃料極に純水素ガスを、空気極に空気をそれぞれ供給して、単電池の放電試験を行った。その際、電池温度を75℃、燃料ガス利用率を70%、空気利用率Uoを40%とした。ガス加湿は、70℃のバブラーにそれぞれ燃料ガスと空気を通すことにより行った。
【0035】
図2に、単電池の電池電圧と電流密度との関係を示した。電流密度800mA/cm2における単電池A、B、CおよびDの電池電圧は、それぞれ635mV、645mV、480mVおよび530mVであった。図2からわかるとおり、電流密度が高くなればなるほど、放電特性に差が生じた。この結果は、電流密度が高くなると、電池からの生成水はそれに比例して多くなるため、電極内の撥水材の分布の影響が大きくなるためと考えられた。すなわち、高分子電解質膜近傍の撥水材量が最も多く、余剰水分排出経路に沿って撥水材量が漸減している単電池Bでは、水の部分的滞留やフラッディングを引き起こすことなく、また、ガス拡散性を低下させることなく、良好な放電性能を発揮したものと考えられる。
【0036】
逆に、ガス拡散電極内部における撥水性が、水分の排出方向に沿って減少していない単電池C、Dでは、ガス拡散電極内でフラッディングが起こり、ガス透過性が阻害されたため、電池性能が劣っていると考えられた。単電池Cでは、触媒層とガス拡散電極基材との間、および電極基材内の触媒層側でフラッディングが起こり、単電池Dでは、電極基材内全体でフラッディングが起こったものと考えられる。
【0037】
次に、参考例1、実施例1の単電池A、Bおよび比較例1、2の単電池C、Dの燃料極に純水素ガスを、空気極に空気をそれぞれ供給して、単電池の耐久試験を行った。その際、電池温度を75℃、燃料ガス利用率を70%、空気利用率Uoを40%とした。また、電流密度を0.3A/cm2とし、ガス加湿は、70℃のバブラーにそれぞれ燃料ガスと空気を通すことにより行った。
【0038】
図3に、単電池の電池電圧と運転時間との関係を関係を示した。図3の結果からわかる通り、高分子電解質膜近傍の撥水材量が多く、余剰水分排出経路に沿って撥水材量が漸減している単電池A、Bでは、水の部分的滞留やフラッディングを引き起こすことがないため、高い耐久性が得られた。
【0039】
逆に、ガス拡散電極内部における撥水性が、水分の排出方向に沿って減少していない単電池C、Dでは、ガス拡散電極内でフラッディングが起こり、ガス透過性が阻害されたため、耐久性は低くなった。
【0040】
燃料電池は、通常、複数の単電池を直列または並列に接続して用いられる。したがって、単電池のフラッディングは、燃料電池スタックの性能に大きく影響する。特に、単電池が直列に接続された場合には、最も特性の低い単電池の限界電流値が、燃料電池スタック全体の限界電流値となってしまうため、最も低い単電池の性能が燃料電池スタック全体の性能に大きく影響する。従って、本発明の燃料電池用ガス拡散電極は、燃料電池スタック全体の放電性能を向上させるものと言える。
【0041】
なお、上記実施例においては、燃料として純水素を用い、酸化剤ガスとして空気を用いたが、純水素の代わりに炭酸ガス、窒素、一酸化炭素などの不純物を含む改質水素などを用いても、同様の結果が得られると考えられる。また、水素の代わりにメタノール、エタノール、ジメチルエーテルなどの液体燃料を用いても、同様の結果が得られると考えられる。液体燃料は、予め蒸発させて蒸気にしてから燃料極に供給してもよい。
【0042】
また、上記実施例では、撥水材としてFEPまたはPTFEを用いたが、他のフッ素樹脂やシリコーン樹脂を用いても、同様の結果が得られると考えられる。さらに、上記実施例では、多孔質基材としてカーボンペーパーを用いたが、カーボンクロス、カーボン不織布などを用いても、同様の結果が得られると考えられる。
【0043】
さらに、上記実施例では、上記構成の触媒層や高分子電解質膜を用いたが、これらに限定されるものではなく、種々の触媒層を用いた場合にも、同様の結果が得られると考えられる。また、本発明のガス拡散電極と固体高分子型電解質との接合体は、酸素、オゾン、水素などのガス発生機やガス精製機、ならびに酸素センサ、アルコールセンサなどの各種ガスセンサにも応用することができる。
【0044】
【発明の効果】
本発明によれば、ガス拡散電極内における撥水材の分布を制御し、最適化することにより、余剰水分を速やかにガス拡散電極内から外部に排出するとともに、触媒層内の触媒に均一に燃料ガスおよび酸化剤ガスを供給することが可能となる。従って、ガス拡散電極内におけるフラッディングを抑制し、ガス拡散性および水蒸気透過性を良好に保つことが可能となる。さらに、触媒層の撥水性よりもガス拡散電極の撥水性を小さくすることにより、ガス拡散電極内でのフラッディングを抑制する効果を、さらに向上させることができる。また、本発明のガス拡散電極を用いれば、放電性能および耐久性に優れた燃料電池を提供することが可能となる。
【図面の簡単な説明】
【図1】 本発明の燃料電池用ガス拡散電極の断面概略図である。
【図2】 参考例1、実施例1および比較例1、2の単電池A、BおよびC、Dの電池電圧と電流密度との関係を示す図である。
【図3】 参考例1、実施例1および比較例1、2の単電池A、BおよびC、Dの電池電圧と運転時間との関係を示す図である。
【符号の説明】
11 高分子電解質膜
12 触媒層
13 ガス拡散電極基材
14 ガス拡散電極
15 MEA
16 ガス流路
17 セパレータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas diffusion electrode of a polymer electrolyte fuel cell using hydrogen, methanol, ethanol, dimethyl ether or the like as a fuel and air or oxygen as an oxidant, and a method for producing the same.
[0002]
[Prior art]
A gas diffusion electrode of a polymer electrolyte fuel cell is generally composed of a catalyst layer sandwiching a polymer electrolyte membrane and a porous substrate in contact with the catalyst layer. With one function.
The first is a function of diffusing these gases in order to uniformly supply fuel gas or oxidant gas from the gas flow channel located on the outer surface of the gas diffusion electrode to the catalyst in the catalyst layer. The second is a function of quickly discharging water generated by the electrode reaction in the catalyst layer to the gas flow path. The third function is to conduct electrons exchanged with the electrode reaction. Therefore, the porous substrate needs to have high gas permeability, water vapor permeability, and electronic conductivity.
[0003]
From the viewpoint of improving water vapor permeability, studies have been made to suppress water retention (flooding) by dispersing a water-repellent polymer typified by a fluororesin in a porous substrate.
For example, JP-A-6-203851, JP-A-7-130373, JP-A-8-106915, or JP-A-9-259893 discloses polytetrafluoroethylene (hereinafter abbreviated as PTFE) or tetrafluoro. A method of impregnating and drying carbon paper or carbon cloth in a dispersion of a copolymer of ethylene and hexafluoropropylene (hereinafter abbreviated as FEP) is disclosed.
JP-A-7-220734, JP-A-4-67571, JP-A-3-208260, JP-A-3-208261, JP-A-3-208262, or JP-A-6-44984 Discloses a porous substrate on which a layer made of fine carbon powder to which PTFE is added is formed.
[0004]
However, the method of randomly impregnating and drying carbon paper or carbon cloth in a water-repellent polymer dispersion causes the water-repellent polymer to be distributed according to the fiber arrangement of the porous substrate having a three-dimensional structure. Therefore, it is difficult to control the distribution of the water repellent material. Further, in inverse proportion to the distribution of the voids in the porous substrate, the water repellent material does not collect at the large void portions, and the water repellent material tends to collect at the small void portions. Further, in the above impregnation method, too much water repellent material is attached to the surface of the porous base material, water is trapped inside the base material, and flooding is caused. As a result, the discharge characteristics and reliability of the fuel cell also deteriorate.
[0005]
In addition, when water-repellent polymer is added to the porous substrate to increase water vapor permeability and the distribution of the water-repellent polymer in the substrate is not controlled, there is a problem that gas permeability and electronic conductivity are lowered. is there. Therefore, instead of configuring the porous base material from a single base material, there is an effort to combine carbon fiber layers with carbon powder and water-repellent polymer layers to achieve conflicting functions. Although it has been done, sufficient results have not been obtained.
[0006]
[Problems to be solved by the invention]
In order to improve the water vapor permeability of the gas diffusion electrode and ensure the gas permeability, it is considered essential to appropriately control the distribution of the water repellent material in the gas diffusion electrode. The present invention solves this problem, suppresses flooding, ensures water vapor permeability and gas permeability, and provides a fuel cell with high discharge performance and reliability.
[0007]
[Means for Solving the Problems]
The present invention comprises a catalyst layer comprising a carbon powder carrying a catalyst and a polymer electrolyte, a porous substrate made of a carbon material and in contact with the catalyst layer, and a water repellent material applied to the porous substrate. A gas diffusion electrode, wherein the amount of the water repellent material in the porous substrate is continuously reduced from the side in contact with the catalyst layer toward the other side. The present invention relates to a gas diffusion electrode.
[0008]
Ie, when the assembled fuel cell, you decrease the water repellency of the porous substrate from the polymer electrolyte membrane side to the separator side.
The catalyst layer that contains a water repellent. When the catalyst layer has a thickness of Wmm and contains Xg of water repellent material per cm 2 , and the porous substrate contains a thickness of Zmm and Yg of water repellent material per cm 2 (X / W)> to meet the (Y / Z).
[0009]
The present invention also provides (1) a dispersion of a water-repellent polymer or a solution of a water-repellent polymer on one surface of a Zmm-thick porous substrate made of a carbon material, with Yg of the above-mentioned repellent per 1 cm 2. Step 1 for applying the aqueous polymer so that the porous substrate contains it, and (2) On the surface thereof, a carbon repellent carrying a catalyst and a polymer electrolyte, and Xg of water repellent material per 1 cm 2. The present invention relates to a method for producing a gas diffusion electrode for a fuel cell, comprising a step 2 of forming a catalyst layer having a thickness of Wmm so as to satisfy (X / W)> (Y / Z) .
Prior to step 1, it is preferable to perform a step of heating the porous substrate to 40 to 180 ° C.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The gas diffusion electrode for a fuel cell of the present invention comprises a catalyst layer comprising a carbon powder carrying a catalyst and a polymer electrolyte, a porous substrate made of a carbon material and in contact with the catalyst layer, and a repellent applied to the porous substrate. Consists of water material. In the fuel cell, the catalyst layer side of the gas diffusion electrode is in contact with the polymer electrolyte membrane, and the porous substrate side is in contact with the separator. The porous substrate constitutes a gas diffusion electrode substrate having a role of diffusing fuel gas and oxidant gas.
[0011]
FIG. 1 shows a basic structure of a fuel cell including the gas diffusion electrode. The polymer electrolyte membrane 11 is sandwiched between gas diffusion electrodes 14 including a catalyst layer 12 and a gas diffusion electrode base material 13. A joined body of the polymer electrolyte membrane 11 and the gas diffusion electrode 14 is called an MEA (membrane-electrode assembly) 15. The MEA 15 is sandwiched by a separator 17 having a fuel gas or oxidant gas flow path 16.
[0012]
In the above basic structure, the fuel gas is supplied to the gas diffusion electrode base material from the fuel gas flow path of the anode separator, passes through the electrode base material while diffusing, and reaches the catalyst layer. The oxidant gas is supplied to the electrode base material from the oxidant gas flow path of the cathode-side separator, passes through the electrode base material while diffusing, and reaches the catalyst layer.
[0013]
The electrode reaction occurs on the surface of the catalyst contained in the catalyst layer 12. In the catalyst layer on the anode side, a reaction of H 2 → 2H + + 2e occurs. In the catalyst layer on the cathode side, a reaction of 1 / 2O 2 + 2H + + 2e → H 2 O occurs. The overall reaction is H 2 + 1 / 2O 2 → H 2 O + Q. An electromotive force is obtained by this reaction, and power generation is possible. At the same time, water is generated in the catalyst layer on the cathode side. Further, H + generated in the catalyst layer on the anode side during the reaction moves in the polymer electrolyte membrane and reaches the catalyst layer on the cathode side. At this time, one H + ion moves along with 5 to 20 H 2 O molecules.
[0014]
The polymer electrolyte membrane exhibits high hydrogen ion conductivity for the first time in a state swollen with a sufficient amount of water. However, since a large amount of water moves with the H + ions moving in the polymer electrolyte membrane to the cathode, it is necessary to always supply water to the polymer electrolyte membrane. This water is supplied as water vapor from the gas flow path to the gas diffusion electrode substrate, and then supplied to the polymer electrolyte membrane through the cathode and the anode. In addition, of the water generated in the catalyst layer on the cathode side, surplus moisture that is not required by the polymer electrolyte membrane is discharged to the outside through the gas diffusion electrode substrate.
[0015]
As described above, since the gas diffusion electrode has a large amount of water in and out, it is important to control the water repellency in the gas diffusion electrode. In particular, from the viewpoint of ensuring reliability, it is necessary to design water repellency so that excess water can be quickly discharged to the outside.
[0016]
The amount of the water repellent material in the porous substrate continuously decreases from the side in contact with the catalyst layer toward the other side. By providing the water repellent material with an inclination in this way, a gas diffusion path and a water movement path from the polymer electrolyte membrane side to the separator side are formed. As a result, it is possible to provide a highly reliable fuel cell that is free from water clogging and has excellent discharge performance.
[0017]
The amount of the water repellent materials in the porous base in the material, to reduce the side in contact with the catalyst layer toward the other side, because the water repellency will be reduced along the discharge direction of the water, the movement direction of the water Is more reliably controlled, and a great effect of suppressing water clogging in the porous substrate can be obtained.
[0018]
The catalyst layer in contact with the porous substrate, at a higher rate than the addition ratio of the water repellent material to the porous substrate, to grant water repellent. That is, when the catalyst layer has a thickness of Wmm and contains X mg of a water repellent material per 1 cm 2 , and the porous substrate has a thickness of Z mm and contains 1 mg of water repellent material per 1 cm 2 ( X / W)> to meet the (Y / Z). Further, 0.008 ≦ X (mg) ≦ 1.3, and 0.24 ≦ Y (mg) ≦ 10 is preferable.
[0019]
By imparting high water repellency to the catalyst layer that generates water in this way, excess water quickly moves to a gas diffusion electrode substrate or polymer electrolyte membrane having lower water repellency. In the electrode base material, the water repellent material is distributed so that the water repellency decreases toward the gas flow path, so that the water quickly moves to the gas flow path. Thus, excess water is quickly discharged to the outside by controlling water repellency, and flooding due to water clogging in the gas diffusion electrode can be suppressed. Further, since the gas permeability is not lowered, a fuel cell having high discharge characteristics and high reliability can be obtained.
[0020]
In the gas diffusion electrode of the present invention, (1) a water-repellent polymer dispersion or a water-repellent polymer solution is applied to one surface of a Zmm-thick porous substrate made of a carbon material at a rate of Yg / cm 2 . Step 1 for coating the water-repellent polymer so that the porous substrate contains it, and (2) water-repellent Xg / cm 2 consisting of carbon powder supporting the catalyst and polymer electrolyte on its surface. It can manufacture by performing the process 2 which forms the catalyst layer of thickness Wmm containing a material so that (X / W)> (Y / Z) may be satisfy | filled.
By applying a dispersion or solution (hereinafter referred to as a water repellent liquid) only to one surface of a porous substrate arranged almost horizontally, it is easily repelled in a direction perpendicular to the surface of the porous substrate. The distribution of the water material can be continuously changed.
[0021]
As the water repellent polymer, it is preferable to use a fluorine resin, a silicone resin, or the like. As the fluororesin, PTFE, FEP, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-ethylene copolymer, polychlorotrifluoroethylene, polyvinylidene fluoride, or the like can be used. As the silicone resin, polydimethylsiloxane, polymethylhydrosiloxane, polyphenylhydrosiloxane, or the like can be used.
Carbon paper, carbon cloth, carbon nonwoven fabric, etc. can be used for the porous substrate.
[0022]
Prior to step 1, by performing the step of heating the porous substrate, it is possible to control the state of penetration of the water repellent material into the porous substrate. The higher the temperature of the porous substrate, the faster the drying / evaporation rate of the solvent or dispersion medium when the water-repellent liquid comes into contact with the porous substrate. Can be reduced. In addition, as the polymer concentration of the water repellent liquid increases, the amount of the solvent or dispersion medium decreases, so the drying / evaporation time of the solvent or dispersion medium when the water repellent liquid contacts the porous substrate is shortened. The amount of water-repellent polymer that permeates into the porous substrate can be reduced. In order to control the penetration state of the water repellent material into the porous base material to the most suitable state, it is effective to heat the porous base material to 40 to 180 ° C, preferably 60 to 80 ° C.
[0023]
For application of the water repellent liquid, for example, a spray method is preferably employed. At that time, by controlling the permeation state of the water repellent material into the porous substrate by the water repellent polymer concentration of the water repellent liquid used for coating, the discharge amount of the liquid from the spray nozzle, the atomization pressure, etc. The distribution of the water repellent material in the porous substrate can be controlled. Further, the permeation state of the water repellent material into the porous substrate also depends on the distance between the porous substrate and the spray nozzle, the atmospheric temperature and humidity during coating, the temperature of the water repellent liquid, and the like.
[0024]
When the discharge amount of the water repellent liquid sprayed from the spray nozzle is reduced and the atomization pressure is increased, the water repellent polymer comes into contact with the porous substrate with the dispersion medium and solvent almost evaporated. The amount of water repellent polymer that penetrates into the interior of the material is reduced. Conversely, when the amount of water-repellent liquid sprayed from the spray nozzle is increased and the atomization pressure is reduced, the wet water-repellent polymer comes into contact with the porous substrate. The amount of the water repellent polymer that permeates increases.
[0025]
For the application of water repellent liquid, it is easy to control the concentration of the water repellent liquid and the porous substrate, and the spray method with simple operation seems to be effective, but the same control is possible with any other method. Is possible and can be applied to the present invention. For example, in the doctor blade method, the screen printing method, and the coater coating method, the penetration state of the water repellent material into the porous substrate is most suitable by controlling the concentration of the water repellent liquid to 60 to 80% by weight. The state can be controlled.
Note that it is not necessary to add a desired amount of the water-repellent material to the porous substrate in a single coating, and a plurality of coatings may be performed.
[0026]
【Example】
<< Reference Example 1 >>
A Daikin Industries FEP dispersion (trade name: ND-1) was diluted with water so that the weight ratio of ND-1 to water was 1:10. As the porous substrate, carbon paper (trade name: TGP-H-120, thickness 0.36 mm) manufactured by Toray Industries, Inc. was used.
This carbon paper was placed on a hot plate and heated to 60 ° C. from one side. Then, the FEP dispersion diluted from the spray nozzle was applied to the other surface of the carbon paper. At this time, the discharge rate of the dispersion liquid from the spray nozzle was 30 cc / min, and the atomization pressure was 1.5 kg / cm 2 . The distance from the spray nozzle to the carbon paper was 200 mm, the ambient temperature was adjusted to 20 ° C., and the humidity was adjusted to 30%.
[0027]
Immediately after the diluted dispersion of FEP was applied, the carbon paper was turned over so that the FEP coated surface faced down and dried in an atmosphere of 60 ° C. for 2 hours. Thereafter, the carbon paper was baked at about 380 ° C. for 15 minutes. The amount of FEP in the carbon paper after firing was the largest in the vicinity of the FEP coated surface, and gradually decreased toward the opposite surface. Here, the amount of FEP imparted to the carbon paper was 1.3 mg per 1 cm 2 of the carbon paper.
[0028]
Next, catalyst layers were formed on both sides of the polymer electrolyte membrane. A Nafion 112 membrane manufactured by DuPont USA was used as the polymer electrolyte membrane. The catalyst was prepared by supporting platinum on Ketjen Black EC, a carbon fine powder manufactured by Lion Corporation. Here, 50 parts by weight of platinum was supported on 50 parts by weight of ketjen black EC. A catalyst composition was prepared by mixing 500 parts by weight of a polymer electrolyte dispersion (Nafion solution) manufactured by DuPont, USA with 100 parts by weight of the obtained catalyst. Using this catalyst composition, a catalyst layer having a thickness of 0.02 mm was formed on both sides of the Nafion 112 membrane. And it heat-welded at 160 degreeC, the catalyst layer and the Nafion112 film | membrane were joined, and MEA was produced. Nafion is a trade name of perfluorocarbon sulfonic acid.
[0029]
Carbon paper to which FEP was imparted as described above was joined to this MEA so that the FEP coated surface was in contact with the catalyst layer, thereby producing a unit cell A of a hydrogen-air type fuel cell.
[0030]
Example 1
A unit cell B of a hydrogen-air type fuel cell was produced in the same manner as in Reference Example 1 except that 500 parts by weight of the Nafion solution was added to 100 parts by weight of the catalyst and 20 parts by weight of PTFE was further mixed. Here, the amount of PTFE applied to the catalyst layer was 0.1 mg per 1 cm 2 of the catalyst layer.
[0031]
<< Comparative Example 1 >>
An MEA similar to that of Example 1 was produced. Carbon paper to which FEP was imparted in the same manner as in Reference Example 1 was joined to this MEA so that the surface opposite to the FEP-coated surface was in contact with the catalyst layer, thereby producing a unit cell C of a hydrogen-air type fuel cell. .
[0032]
<< Comparative Example 2 >>
A Daikin Industries FEP dispersion (trade name: ND-1) was diluted with water so that the weight ratio of ND-1 to water was 1:10. A carbon paper (trade name: TGP-H-120, product thickness: 0.36 mm) manufactured by Toray Industries, Inc. was immersed in this diluted FEP dispersion for 1 minute and then pulled up. After drying for a period of time, the carbon paper was fired at about 380 ° C. for 15 minutes. The water repellent material in the carbon paper after firing was uniformly distributed in the carbon paper. Moreover, the amount of FEP imparted to the carbon paper here was 1.3 mg per 1 cm 2 of the carbon paper.
[0033]
On the other hand, the same MEA as in Reference Example 1 was produced. Carbon paper to which FEP was applied by dipping was joined to this MEA to produce a unit cell D of a hydrogen-air type fuel cell.
[0034]
Reference Example 1 prepared as described above, the unit cells A of Comparative Examples 1 and 2 and Contact Example 1, B and C, the pure hydrogen gas to the fuel electrode and D, by supplying air respectively to the air electrode, the unit cell The discharge test was conducted. At that time, the battery temperature was 75 ° C., the fuel gas utilization rate was 70%, and the air utilization rate Uo was 40%. Gas humidification was performed by passing fuel gas and air through a bubbler at 70 ° C., respectively.
[0035]
FIG. 2 shows the relationship between the battery voltage and the current density of the unit cell. The cell voltages of the cells A, B, C, and D at a current density of 800 mA / cm 2 were 635 mV, 645 mV, 480 mV, and 530 mV, respectively. As can be seen from FIG. 2, the higher the current density, the greater the difference in discharge characteristics. This result was thought to be due to the fact that as the current density increased, the amount of water produced from the battery increased in proportion to this, and the influence of the distribution of the water repellent material in the electrode increased. That is, in the unit cell B in which the amount of the water repellent material in the vicinity of the polymer electrolyte membrane is the largest and the amount of the water repellent material gradually decreases along the excess water discharge path, the water does not cause partial stagnation or flooding. It is considered that good discharge performance was exhibited without reducing gas diffusivity.
[0036]
On the contrary, in the single cells C and D in which the water repellency in the gas diffusion electrode does not decrease along the water discharge direction, flooding occurred in the gas diffusion electrode, and the gas permeability was hindered. It was considered inferior. In the cell C, flooding occurred between the catalyst layer and the gas diffusion electrode substrate and on the catalyst layer side in the electrode substrate, and in the cell D, it was considered that flooding occurred in the entire electrode substrate. .
[0037]
Next, pure hydrogen gas was supplied to the fuel electrode of each of the single cells A and B of Reference Example 1 and Example 1, and the single cells C and D of Comparative Examples 1 and 2, and air was supplied to the air electrode. A durability test was conducted. At that time, the battery temperature was 75 ° C., the fuel gas utilization rate was 70%, and the air utilization rate Uo was 40%. The current density was 0.3 A / cm 2 and gas humidification was performed by passing fuel gas and air through a 70 ° C. bubbler.
[0038]
FIG. 3 shows the relationship between the battery voltage of the single cell and the operation time. As can be seen from the results of FIG. 3, in the cells A and B in which the amount of water repellent material in the vicinity of the polymer electrolyte membrane is large and the amount of water repellent material gradually decreases along the excess water discharge path, Since it does not cause flooding, high durability was obtained.
[0039]
On the contrary, in the unit cells C and D in which the water repellency inside the gas diffusion electrode does not decrease along the direction of moisture discharge, flooding occurred in the gas diffusion electrode and gas permeability was hindered. It became low.
[0040]
A fuel cell is usually used by connecting a plurality of single cells in series or in parallel. Therefore, the flooding of the single cell greatly affects the performance of the fuel cell stack. In particular, when single cells are connected in series, the limit current value of the unit cell with the lowest characteristics becomes the limit current value of the entire fuel cell stack, so the performance of the lowest unit cell is the fuel cell stack. It greatly affects the overall performance. Therefore, it can be said that the gas diffusion electrode for a fuel cell of the present invention improves the discharge performance of the entire fuel cell stack.
[0041]
In the above embodiment, pure hydrogen is used as the fuel, and air is used as the oxidant gas. However, instead of pure hydrogen, reformed hydrogen containing impurities such as carbon dioxide, nitrogen, carbon monoxide, or the like is used. It is considered that a similar result can be obtained. Further, it is considered that the same result can be obtained even when liquid fuel such as methanol, ethanol, dimethyl ether or the like is used instead of hydrogen. The liquid fuel may be vaporized in advance and then supplied to the fuel electrode.
[0042]
Moreover, in the said Example, although FEP or PTFE was used as a water repellent material, it is thought that the same result is obtained even if it uses another fluororesin or silicone resin. Furthermore, in the said Example, although carbon paper was used as a porous base material, it is thought that the same result is obtained even if it uses carbon cloth, a carbon nonwoven fabric, etc.
[0043]
Further, in the above examples, the catalyst layer and the polymer electrolyte membrane having the above-described configuration are used. However, the present invention is not limited to these, and it is considered that the same result can be obtained when various catalyst layers are used. It is done. In addition, the joined body of the gas diffusion electrode and solid polymer electrolyte of the present invention can be applied to gas generators such as oxygen, ozone and hydrogen, gas purifiers, and various gas sensors such as oxygen sensors and alcohol sensors. Can do.
[0044]
【Effect of the invention】
According to the present invention, by controlling and optimizing the distribution of the water-repellent material in the gas diffusion electrode, excess water is quickly discharged from the gas diffusion electrode to the outside, and the catalyst in the catalyst layer is uniformly distributed. It becomes possible to supply fuel gas and oxidant gas. Therefore, flooding in the gas diffusion electrode can be suppressed, and gas diffusibility and water vapor permeability can be kept good. Furthermore, the effect of suppressing flooding in the gas diffusion electrode can be further improved by making the water diffusion of the gas diffusion electrode smaller than that of the catalyst layer. Moreover, if the gas diffusion electrode of the present invention is used, a fuel cell excellent in discharge performance and durability can be provided.
[Brief description of the drawings]
1 is a schematic cross-sectional view of a gas diffusion electrode for a fuel cell according to the present invention.
[Figure 2] Reference Example 1 is a diagram showing the relationship between the unit cell A, B and C, the battery voltage of the D and the current density of Comparative Examples 1 and 2 and contact the first embodiment.
[3] Reference Example 1 is a diagram showing the relationship of the cell A of Comparative Examples 1 and 2 and Contact Example 1, B and C, the battery voltage of the D and operating time.
[Explanation of symbols]
11 Polymer Electrolyte Membrane 12 Catalyst Layer 13 Gas Diffusion Electrode Base Material 14 Gas Diffusion Electrode 15 MEA
16 Gas flow path 17 Separator

Claims (3)

触媒を担持した炭素粉末および高分子電解質からなる触媒層と、炭素材料からなり前記触媒層と接する多孔質基材と、前記多孔質基材に付与された撥水材とからなるガス拡散電極であって、
前記多孔質基材内における前記撥水材の量が、前記触媒層と接する側から他方の側に向かって連続的に減少しており、
前記触媒層が、厚さWmmであって1cm2あたりXgの撥水材を含み、
前記多孔質基材が、厚さZmmであって1cm2あたりYgの撥水材を含むとき、
(X/W)>(Y/Z)を満たす、ことを特徴とする燃料電池用ガス拡散電極。
A gas diffusion electrode comprising a catalyst layer comprising a carbon powder carrying a catalyst and a polymer electrolyte, a porous substrate made of a carbon material and in contact with the catalyst layer, and a water repellent material applied to the porous substrate. There,
The amount of the water repellent material in the porous substrate continuously decreases from the side in contact with the catalyst layer toward the other side;
The catalyst layer includes a water repellent material having a thickness of Wmm and Xg per cm 2 ;
When the porous substrate has a thickness of Zmm and contains Yg of water repellent material per cm 2 ,
A gas diffusion electrode for fuel cells, wherein (X / W)> (Y / Z) is satisfied.
(1)撥水性高分子の分散液または撥水性高分子の溶液を、炭素材料からなる厚さZmmの多孔質基材の一方の面に、1cm2あたりYgの前記撥水性高分子を前記多孔質基材が含むように塗工する工程1、および(2)その面に、触媒を担持した炭素粉末および高分子電解質からなり、かつ1cm2あたりXgの撥水材を含む厚さWmmの触媒層を、(X/W)>(Y/Z)を満たすように形成する工程2、を有する燃料電池用ガス拡散電極の製造法。(1) A water-repellent polymer dispersion or a water-repellent polymer solution is applied to one side of a Zmm-thick porous substrate made of a carbon material with Yg of the water-repellent polymer per cm 2 as the porous material. Step 1 for coating so as to include a porous base material, and (2) a catalyst having a thickness of Wmm, comprising carbon powder supporting the catalyst and a polymer electrolyte on its surface and containing Xg of a water repellent material per cm 2 A process for producing a gas diffusion electrode for a fuel cell, comprising a step 2 of forming a layer so as to satisfy (X / W)> (Y / Z) . 工程1に先立って、前記多孔質基材を40〜180℃に加熱する工程を有する請求項2記載の燃料電池用ガス拡散電極の製造法。  The method for producing a gas diffusion electrode for a fuel cell according to claim 2, further comprising a step of heating the porous substrate to 40 to 180 ° C prior to step 1.
JP2001298019A 2001-09-27 2001-09-27 Gas diffusion electrode for fuel cell and manufacturing method thereof Expired - Fee Related JP5079195B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001298019A JP5079195B2 (en) 2001-09-27 2001-09-27 Gas diffusion electrode for fuel cell and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001298019A JP5079195B2 (en) 2001-09-27 2001-09-27 Gas diffusion electrode for fuel cell and manufacturing method thereof

Publications (3)

Publication Number Publication Date
JP2003109604A JP2003109604A (en) 2003-04-11
JP2003109604A5 JP2003109604A5 (en) 2008-11-20
JP5079195B2 true JP5079195B2 (en) 2012-11-21

Family

ID=19118988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001298019A Expired - Fee Related JP5079195B2 (en) 2001-09-27 2001-09-27 Gas diffusion electrode for fuel cell and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5079195B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10680250B2 (en) 2015-04-24 2020-06-09 Toray Industries, Inc. Gas-diffusion electrode substrate and method of manufacturing same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4691914B2 (en) * 2004-06-21 2011-06-01 日産自動車株式会社 Gas diffusion electrode and solid polymer electrolyte fuel cell
JP2006012476A (en) * 2004-06-23 2006-01-12 Nissan Motor Co Ltd Membrane-electrode assembly for fuel cell
JP2006236817A (en) * 2005-02-25 2006-09-07 Nissan Motor Co Ltd Fuel cell
US7722979B2 (en) * 2005-10-14 2010-05-25 Gm Global Technology Operations, Inc. Fuel cells with hydrophobic diffusion medium
JP2007122938A (en) * 2005-10-26 2007-05-17 Gs Yuasa Corporation:Kk Membrane/electrode joint body for fuel cell, its manufacturing method, and fuel cell provided therewith
JP5066911B2 (en) * 2006-12-13 2012-11-07 トヨタ自動車株式会社 FUEL CELL AND METHOD FOR PRODUCING THE FUEL CELL
JP5151217B2 (en) 2007-04-03 2013-02-27 株式会社日立製作所 Fuel cell
JP5534906B2 (en) 2010-03-31 2014-07-02 Jx日鉱日石エネルギー株式会社 Membrane electrode assembly and fuel cell
JP5339538B2 (en) * 2010-04-30 2013-11-13 大阪瓦斯株式会社 Gas sensor
JP5612529B2 (en) 2011-03-31 2014-10-22 Jx日鉱日石エネルギー株式会社 Gas diffusion layer, fuel cell electrode, membrane electrode assembly, and fuel cell
JP6178041B2 (en) * 2012-01-13 2017-08-09 トヨタ自動車株式会社 Method for producing diffusion layer for fuel cell
JP5862485B2 (en) 2012-07-02 2016-02-16 トヨタ自動車株式会社 Method for forming gas diffusion layer for fuel cell
CA2962735C (en) * 2014-10-17 2022-07-19 Toray Industries, Inc. Carbon sheet comprising carbon fiber and a binder for gas diffusion electrode substrate and fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3331703B2 (en) * 1993-11-09 2002-10-07 株式会社豊田中央研究所 Fuel cell
JP3444530B2 (en) * 1998-10-13 2003-09-08 松下電器産業株式会社 Fuel cell
JP2001057217A (en) * 1999-06-07 2001-02-27 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell
JP2001085019A (en) * 1999-09-17 2001-03-30 Asahi Glass Co Ltd High polymer solid fuel cell and manufacture of electrode therefor
JP2001126738A (en) * 1999-10-26 2001-05-11 Japan Storage Battery Co Ltd Method for preparing electrode for fuel cell and direct methanol fuel cell using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10680250B2 (en) 2015-04-24 2020-06-09 Toray Industries, Inc. Gas-diffusion electrode substrate and method of manufacturing same

Also Published As

Publication number Publication date
JP2003109604A (en) 2003-04-11

Similar Documents

Publication Publication Date Title
JP4326179B2 (en) Polymer electrolyte fuel cell
KR100513183B1 (en) Fuel cell
JP4144686B2 (en) Method for producing polymer electrolyte fuel cell
JP5118372B2 (en) Direct methanol fuel cell
WO2005124903A1 (en) Gas diffusion electrode and solid-state high-molecular electrolyte type fuel cell
JP5079195B2 (en) Gas diffusion electrode for fuel cell and manufacturing method thereof
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JPH0652871A (en) Solid highpolymer fuel cell
KR100515741B1 (en) Polymer electrolyte type fuel cell
US7857935B2 (en) Process for producing membrane-electrode assembly for polymer electrolyte fuel cells
JP2001006708A (en) Solid high polymer fuel cell
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
WO2007080763A1 (en) Solid polymer fuel cell
JP2002343369A (en) Manufacturing method of electrode for fuel cell, and fuel cell
JP3813406B2 (en) Fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JP2001057217A (en) Polymer electrolyte type fuel cell
JP4338491B2 (en) Method for producing gas diffusion layer for polymer electrolyte fuel cell
JP5354982B2 (en) Direct oxidation fuel cell
JP5339261B2 (en) Fuel cell
US7147957B1 (en) Electrode for fuel cell and manufacturing method therefor
JP3999960B2 (en) Method for producing electrode for fuel cell
JP4686992B2 (en) Solid polymer fuel cell and power generation method thereof
JP2005228755A (en) Polymer electrolyte fuel cell
JP2001093544A (en) Electrode of fuel cell, method for manufacturing and fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110704

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees