[go: up one dir, main page]

JP5066101B2 - モータ負荷を監視するシステム及び方法 - Google Patents

モータ負荷を監視するシステム及び方法 Download PDF

Info

Publication number
JP5066101B2
JP5066101B2 JP2008549530A JP2008549530A JP5066101B2 JP 5066101 B2 JP5066101 B2 JP 5066101B2 JP 2008549530 A JP2008549530 A JP 2008549530A JP 2008549530 A JP2008549530 A JP 2008549530A JP 5066101 B2 JP5066101 B2 JP 5066101B2
Authority
JP
Japan
Prior art keywords
motor
voltage
time
lead
time interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008549530A
Other languages
English (en)
Other versions
JP2009523001A (ja
Inventor
ビロドウ,マーク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JP2009523001A publication Critical patent/JP2009523001A/ja
Application granted granted Critical
Publication of JP5066101B2 publication Critical patent/JP5066101B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P7/00Arrangements for regulating or controlling the speed or torque of electric DC motors
    • H02P7/06Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current
    • H02P7/18Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power
    • H02P7/24Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices
    • H02P7/28Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices
    • H02P7/285Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only
    • H02P7/29Arrangements for regulating or controlling the speed or torque of electric DC motors for regulating or controlling an individual DC dynamo-electric motor by varying field or armature current by master control with auxiliary power using discharge tubes or semiconductor devices using semiconductor devices controlling armature supply only using pulse modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/0833Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors for electric motors with control arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/67Controlling or determining the motor temperature by back electromotive force [back-EMF] evaluation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S388/00Electricity: motor control systems
    • Y10S388/923Specific feedback condition or device
    • Y10S388/93Load or torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Direct Current Motors (AREA)
  • Protection Of Generators And Motors (AREA)

Description

本発明の実施の形態は直流(「DC」)モータに関する。より詳細には、本発明の実施の形態はDCモータの過負荷状態の検出に関する。
[関連出願の相互参照]
本出願は、2006年1月4日に出願された米国特許出願第11/324,818号の優先権を主張し、当該特許文献の内容はその全体が参照により本明細書に援用される。
DCモータの負荷が増大すると、モータの電流引き出し及び内部の放熱も増大する。同時に、モータ速度及びモータ速度で回転している内部ファン又は外部ファンによって提供される冷却空気の量は減少する。したがって、モータ温度は上昇する。温度はモータの性能と耐久性との両方に影響を与えるため、モータは入念に規定された負荷制限内で作動するように設計される。しかし使用されると、予期せぬ環境によってモータの負荷が設計値を超える場合があり、結果としてモータ温度が許容制限を超える場合がある。時にこの結果モータ故障が発生する。極端な場合には、モータ内で1つ又は複数の材料が発火する。
モータの過負荷が問題になる場合がある適用例は、自動車エンジン冷却への適用例である。多くの自動車がラジエータ、コンデンサ、又は他の熱交換器を通じて空気を動かすために電動ファンアセンブリを利用する。通常、DCモータが係るアセンブリに電力供給する。雪、氷、又は泥の存在によって、ファンを回転させるのに必要となるトルクが増大する可能性があるか、又は極端な場合には、ファンが全く回転しなくなる可能性がある。同様に、モータの軸受不良によって回転が遅くなるか又は妨げられる場合がある。これらの状況の結果、モータ故障が発生する可能性がある。時に、これらの状況の結果、ボンネット内で発火する可能性がある。したがって、結果的にモータ温度が極度に高くなる前に、過負荷状態を検出することが望ましい。
過負荷検出は通常、モータの使用中にモータ負荷を反復して監視することを含む。モータ負荷を監視する従来の方法は、モータによる電流引き出し、モータ温度、モータ速度、又はモータによって生成される逆起電力(「逆EMF」)を測定することを含む。
逆EMFを測定することは、断続的にモータを消磁すること、及び、接続解除された又は消磁されたモータリード線の電圧を、モータ内の電流が減衰してゼロになるのに十分な時間が経過した後に、しかしモータが大幅に減速する前に、測定することを含む。この電圧は逆EMFを示すものであり、モータ速度と共に上昇する。逆EMFが十分に低い場合には過負荷状態が示され、モータをシャットダウンすることができる。逆EMFが十分に高い場合には通常動作が示され、回路を再励磁することができる。
しかしながら、過負荷状態が存在するか否かを判断するために使用される現在の逆EMF測定方法の欠点は、測定に必要とされる時間である。モータが消磁された後、測定される電圧が逆EMFを示す漸近値に近づくために、或る時間が必要とされる。このことは、この測定が本質的にノイズを発生する測定であるという事実によって悪化する。接続解除されたモータリード線の電圧は、ランダムノイズと共に整流周波数で電圧リップルを有する。これらの部品は共に、ブラシ及び整流器の状態がモータの耐用期間にわたって変化するにつれて変化する。電圧測定に対するそれらの影響を取除くために、いくつかの整流周期に等しい時定数で信号をフィルタリングすることができる。これによって逆EMFを正確に測定するために必要となる時間が長くなると共に、モータが消磁される時間が長くなる。消磁される期間が十分に長い場合には、それらの期間は音響的に知覚可能となる可能性があると共に、モータシャフトと駆動される負荷との間の反発によって摩損が増大する可能性がある。したがって、モータを監視する改善された方法及び装置が必要とされている。
以下の概要は本発明の実施の形態の一例を説明する。本概要はかかる実施の形態の全てを説明するものではなく、いかなる形でも本発明を限定するものとして解釈されるべきではない。
一実施の形態において、DCモータの負荷を監視する方法は、モータを断続的に消磁すること、第1の電圧を監視すること、及び開始時刻と終了時刻との間の第1の時間間隔を測定することを含む。開始時刻はモータが消磁される時刻を含み、終了時刻は第1の電圧と基準電圧とが実質的に同様の値を有する時刻を含む。
別の実施の形態は、第1のモータリード線と第2のモータリード線とを有するDCモータを監視するように構成されるモータ負荷監視システムを提供する。第1のモータリード線及び第2のモータリード線は、電源装置又は電圧装置に結合するように構成される。当該システムは、電源装置と第1のモータリード線との間に結合するように構成されるスイッチと、第1のモータリード線と第2のモータリード線との間のフライバック電流経路と、スイッチに結合するように構成されるコントローラとを備える。還流ダイオード、スイッチ、又は他の装置は、モータが励磁されるときにフライバック電流経路を通じて電流が流れるのを妨げる。コントローラはスイッチを制御することによって断続的にモータを消磁すると共に監視される電圧を受信する。コントローラは開始時刻と終了時刻との間の第1の時間間隔を測定するように構成され、開始時刻はモータが消磁される時刻を含み、終了時刻は監視される電圧が基準電圧を追い越す時刻を含む。
別の実施の形態は、第1のモータリード線と第2のモータリード線とを有するモータを備える、自動車のエンジン冷却モータシステムを提供する。第1のモータリード線及び第2のモータリード線は、電源装置に結合するように構成される。当該システムは、電源装置と第1のモータリード線との間に結合するように構成されるスイッチと、第1のモータリード線と第2のモータリード線との間のフライバック電流経路と、スイッチに結合するように構成されるコントローラとを備える。コントローラはスイッチを制御することによって断続的にモータを消磁し、監視される電圧を受信し、開始時刻と終了時刻との間の第1の時間間隔を測定する。開始時刻はモータが消磁される時刻を含み、終了時刻は監視される電圧が基準電圧を追い越す時刻を含む。
本発明の実施形態の他の態様は、詳細な説明及び添付の図面を熟考することによって明らかになるであろう。
本発明の任意の実施形態を詳細に説明する前に、本発明はその出願において、以下の説明において示されるか又は以下の図面において説明される部品の構造及び構成の詳細に限定されないことは理解されるであろう。本発明は、他の実施形態及びさまざまな方法で実施又は実行されることが可能である。
図1は、モータ過負荷検出システム10の一実施形態を示す。モータ過負荷検出システム10は、(車両のバッテリのような)電源装置15と、モータ20と、スイッチング素子又はスイッチ30と、ダイオードを含むフライバック電流経路18又は類似の装置と、コントローラ17と、フィルタ19と、過負荷インジケータ35とを含む。モータは、たとえばラジエータ(図示せず)に空気を向けるために用いることができるファン22に接続される。コントローラは、監視される電圧25を入力として受け取る。システム10は、(自動車40のような(概略的に示す))自動車で特に有用であるが、モータ過負荷が懸念される他の用途に用いることができる。
コントローラ17は、スイッチ30及び過負荷インジケータ35に信号を送信する。コントローラ17は、図2を参照にしてより詳細に説明されるように、スイッチに電源装置によって供給される電流を遮断するようにシグナリングし、次いで、監視される電圧25を(一実施形態において電源装置15の電圧である)基準からの電圧と比較することによって、過負荷状態の存在を検出する。
過負荷状態が存在しない場合には、コントローラはスイッチに、閉じることによってモータを再励磁するようにシグナリングする。過負荷状態が存在する場合には、コントローラは適切な動作を行う。いくつかの実施形態では、コントローラは或る期間待機した後に、スイッチに、閉じることによってモータを再励磁するようにシグナリングする。他の実施形態では、コントローラはモータを再励磁しない。いくつかの実施形態では、コントローラは、過負荷インジケータ35に、音声表示、視覚表示、又は過負荷状態を示す他の表示を提供するようにシグナリングする。たとえば、過負荷インジケータ35は、フラッシュライト、警告音、エラーメッセージ、又はこれらの組合せとすることができる。他の過負荷インジケータ35も可能である。いくつかの実施形態では、これらの動作の組合せが実行される。
いくつかの実施形態では、コントローラ17は、規則的な間隔で、過負荷検出サイクル(すなわち、上述の電圧比較)を開始する。これらの間隔の長さは、モータ及びその適用に応じて変化することができる。一般的には、モータの熱容量は、過負荷状態に関連する損傷を少しの期間だけ遅らせるのに十分に大きい。したがって、かかる状態が存在する場合、その状態をその期間内に検出すると共にモータを消磁しなければならない。負荷監視頻度の選択に影響を与え得る要因は、モータの設計負荷、提供されるモータ冷却の量、モータの熱容量、及び周囲温度を含む場合がある。たとえば、高い周囲温度で動作する高負荷を有するモータは、適切な動作範囲内にモータが確実にとどまっているように、より頻繁な過負荷検出を必要とする場合がある。同様に、低い温度で動作する比較的低い負荷を有するモータは、時折の負荷検出又は監視のみを必要とする場合がある。
なお図1を参照して、コントローラ17を用いて、上述の過負荷検出サイクルを制御することができる。コントローラ17は、オペレーティングシステム(図示せず)の助けを借りてコンピュータ実行可能プログラム(すなわち、ソフトウェア)を実行するプロセッサとすることができる。他の実施形態では、コントローラ17は、本明細書で説明する機能がハードウェア部品によって実行されるように、ハードウェアを含むことができる。たとえば、コントローラ17は、当該技術分野において知られているような、特定用途用の集積回路(「ASIC」)、ファームウェア、専用の部品、等によって実施することができる。したがって、コントローラ17は、ハードウェア、ソフトウェア、又はその組合せで実施することができることが理解されよう。
図2は、過負荷状態を検出するために、コントローラ17によって実施することができるプロセス75を示す。モータは、まず、ステップ80において励磁される。いくつかの実施形態では、過負荷検出は、モータの通常の始動期間中に実行されない。この期間中、ファンのような、モータの加速及び駆動される部品は、モータへの負荷を設計負荷よりも一時的に増大させる。第1の負荷監視イベントを遅らせること(ステップ82)は、この一時的な負荷が過負荷状態として解釈されないことを確実にする。加速期間は、モータが概ね安定した速度に達することができるほど十分に長いが、過負荷状態が存在する場合に、モータが損傷を負うのにかかる時間よりは短くなくてはならない。いくつかの実施形態では、モータが励磁されている間、加速期間は過負荷検出サイクル間の間隔よりも短い。
待機又は加速期間が完了すると、スイッチ30を用いて、電源装置15によってモータに供給される電流を遮断する(ステップ85)。すなわち、モータは消磁される。いくつかの実施形態では、(図3に示すような)トランジスタをスイッチ30として用いる。スイッチ30を不活性化することによって、コントローラ17は基準電圧と監視される電圧25との間の比較の計時を開始する(ステップ90)。いくつかの実施形態では、図3の実施形態に示すように、計時機能及び電圧比較機能は、コントローラ17によって実行される。他の実施形態では、計時機能及び電圧比較機能は、他の電子ハードウェア部品によって実行される。たとえば、電圧比較機能は、当該技術分野で知られている、トランジスタベースの比較回路又は演算増幅器(「オペアンプ」)ベースの比較回路を用いて完了することができる。
電圧比較は継続し、比較時間は、監視される電圧25及び基準電圧がほぼ等しくなるまで蓄積される(ステップ95)。図4B及び図6Bに関してさらに詳細に説明するように、監視される電圧は、非スイッチ式モータリード線(non-switched motor lead)のわずか数分の1ボルトの電圧内に最初は維持される。モータを通過する電流が減衰してゼロになると、監視される電圧は、非スイッチ式モータリード線の電圧に交差し、最終的には逆起電力電圧に等しい量だけ非スイッチ式モータリード線の電圧とは異なる。逆EMF電圧は、モータが消磁された後、モータの連続する回転によって生成される。いくつかの実施形態では、基準電圧は非スイッチ式モータリード線の電圧と等しいものとされる。監視される電圧25と基準電圧とがほぼ等しいことが検出されると、時間蓄積は停止し、測定され、また、分類される(ステップ95)。時間カテゴリは、たとえば、軽負荷カテゴリ、標準カテゴリ、及び過負荷カテゴリを含むことができ、各時間カテゴリは、特定の時間範囲によって規定される。たとえば、モータ負荷は、監視される電圧25が基準電圧にほぼ等しい値まで下がるのに必要な時間が標準時間カテゴリ内に含まれる場合、正常に動作していると分類されることができる。
一実施形態では、分類された時間期間(time periods)は、既知のモータ特性を用いて最初に決定される。たとえば、モータが設計された電圧、速度、及びトルクで動作している場合、監視される電圧は、予想可能な時間内に基準電圧に交差する。モータが過負荷であると共により速いトルク及びより低い速度で作動している場合、この電圧は、さらに時間をかけてから基準電圧に交差する。過負荷状況であると考えられる最小の時間を表す基準時間を確立することができる。いくつかの実施形態では、異なるレベルの過負荷を規定することができ、それらを表すために異なる基準時間を確立することができる。モータが選択可能な電圧又は可変の電圧で動作する場合、基準時間は電圧に応じて異なる場合がある。同様に、周囲温度が基準時間に影響する場合がある。各状態に対応する基準時間は、各適用に蓄積されることができる。加えて、各カテゴリに対応する時間を、異なるモータ用に規定することができる。たとえば、200ワットのモータは400ワットのモータのものとは異なる標準時間期間及び過負荷時間期間を有する。いくつかの実施形態では、コントローラ17を用いて、各規定された基準時間を記憶することができる。たとえば、一実施形態では、コントローラ17は、各規定された動作状態(たとえば、通常、過負荷等)に対応する基準時間期間のルックアップテーブル(「LUT」)を含むことができる。
測定される時間期間が標準時間範囲内である場合(ステップ100)、スイッチ30は再励磁される(ステップ105)。次に、プロセスはステップ110に進み、所定の時間待機した後にスイッチ30を消磁する(ステップ85)ことによって、過負荷検出サイクルを再び開始する。この期間は、その状態が結果としてモータ及び(ファン、制御電子機器等のような)関連装置への不可逆な損傷又は永久の損傷を引き起こす前に、過負荷状態を検出するのに十分に短くなくてはならない。
測定される時間期間が通常動作状態のカテゴリ内にない場合、過負荷状態を識別することができる。いくつかの実施形態では、次に、信号が過負荷インジケータ35に送信される(ステップ115)。いくつかの実施形態では、過負荷状態が認識されると、モータは特定の時間消磁したままでいる(ステップ120)。この期間(period of time)によって、モータを冷却させることができると共に、この期間は、過負荷状態の原因を取り除くのに十分とすることができる。たとえば、いくつかの実施形態では、過負荷状態の原因は、冬期条件中の、自動車用のファンアセンブリ上への氷の付着である可能性があり、モータが消磁される時間は車両のエンジンの熱によって氷が溶けるのに十分とすることができる。冷却期間が終了した後、スイッチ30は導電状態に戻り(ステップ125)、モータは再励磁される。次いで、プロセスがモータが加速するのに十分な時間待機した(ステップ82)後、次の負荷監視サイクルが開始する。過負荷状態が続く場合にモータが十分に冷却され続けるように、いくつかの実施形態では、冷却期間は上述の加速期間の5倍より長くすることができる。
他の実施形態では、過負荷状態が認識されると、スイッチ30は非導電状態を維持し、モータは消磁されたままでいる。さらに他の実施形態では、過負荷カテゴリはいくつかのレベルを含むことができ、各レベルは異なる動作を必要とする異なる程度の過負荷重大度を示す。1つのカテゴリは冷却期間、その後のモータの再励磁を要求することができ、一方、他のカテゴリはモータに消磁されたままでいるように要求することができる。
いくつかの実施形態では、モータの速度を制御することができる。いくつかの実施形態では、これはパルス幅変調によって行うことができる。いくつかの実施形態では、過負荷検出に用いられるスイッチ30は、パルス幅変調、選択的ブラシ給電、又は他の速度制御目的にも用いられる。
図3は、モータ過負荷検出システム150の一実施形態の概略図である。モータ過負荷検出システム150は、モータ155と、電源装置15と、Nチャネル電界効果トランジスタ(「FET」)160と、還流(又はフライバック)ダイオード165と、フィルタ170と、コントローラ17と、過負荷インジケータ35とを含む。他の実施形態では、上述したように、モータ過負荷検出システム150は、図3で示す要素よりも多い要素又は少ない要素を有する場合がある。たとえば、モータ過負荷検出システム150は、コントローラ17の機能に類似した機能を実行する追加のハードウェア(たとえば、比較回路、タイミング回路、等)を含むことができる。したがって、かかる実施形態では、コントローラ17は検出システム150から省かれる場合がある。
いくつかの実施形態では、モータ155は4つの極を有するブラシ付きDCモータである。しかしながら、他のタイプのモータ(たとえば、ブラシレスDCモータ)及び他の数の極を有するモータを用いることができる。いくつかの実施形態では、図3に示す回路を用いて、モータを一方向のみに動かす。他の実施形態では、図3に示す回路は、モータを異なる回転方向に動かすことのできる「フルブリッジ」回路の一部である。
いくつかの実施形態では、図3に示すように、フライバック経路190内の電流は還流ダイオード165によって制御される。しかしながら、他の実施形態では、図3Bに示すように、フライバック電流経路190は他の装置によって制御される。たとえば、FET160がPWM速度制御に用いられる場合、フライバック電流経路190はスイッチ式FET192によって時折制御される。たとえば、FET160がオフに切り換えられる(すなわち、非導電状態にある)と、FET192はオンに切り換えられて、電流がフライバック電流経路190を通じて流れるようにする。このようなFET192は、ダイオード165と比べて損失を低減することができる。
コントローラ17は、FET160のゲート182に電圧を供給する。適切な電圧がゲート182に供給されると、FET160はオンに切り換えられ(すなわち、導電状態にあり)、グランドまで電流を流すと共にモータ155を励磁させる。モータ過負荷状態を検出するために、コントローラ17は、異なった、比較的低い電圧をFET160のゲート182に印加することによってFET160をオフに切り換え、ノードAにおける電圧又はノードBにおいてフィルタリングされた電圧を監視する。FET160がオフになる(すなわち、非導電状態に切り換わる)と、電源装置15からの電流は遮断される。しかしながら、ダイオード165によって電流はモータ155を通じて流れ続けることができる。モータが回転し続けるので逆EMF電圧が存在し続け、また、電流のフローに起因するモータの抵抗を通じて電圧降下が存在し続ける。しかしながら、モータ巻線における電流の変化率に比例するモータインダクタンスによって導出される電圧がこれらの電圧降下に対抗する。FET160がオフに切り換えられると、ノードAにおいて測定される電圧は、ダイオード165に関連する供給電圧及び順電圧降下の組合せ(すなわち、ほぼ供給電圧及び0.7ボルトの組合せ)にほぼ等しい値まで増える。この「ダイオードクランプ」電圧は、電流がダイオード165を通じて流れるのを停止するまで、測定することができる。電流が停止すると、ノードAにおける電流は、ほぼ、モータの逆EMFだけ供給電圧と異なるレベルまで低下する。
これらの実施形態では、スイッチ式FETのような異なる装置が図3に示すダイオードの目的を担い、クランプ電圧は、1ダイオードのほぼ0.7ボルトの順電圧降下とは異なる量だけの供給電圧と異なる。たとえば、スイッチ式FETは、数ミリオームの抵抗を有する場合があり、その結果、電圧降下は0.7ボルトを大幅に下回る。
いくつかの実施形態では、コントローラ17は、ノードAにおけるフィルタリングされていない電圧を監視する。このノードは、FET160がオフに切り換えられるときに、接続されていないモータリード線に対応する。しかしながら、ノードAにおける信号は多少雑音がある可能性がある。したがって、信号は測定される前に好ましくはフィルタリングされる。いくつかの実施形態では、フィルタは、図3にフィルタ170として示すものに類似している。フィルタリングされた信号は、ノードBにおけるフィルタ170の出力において測定することができる。
フィルタ170は、ノードBにおける電圧が監視される前にほぼ供給電圧で初期化される抵抗−キャパシタンス(「R−C」)フィルタである。モータが励磁されると、コントローラ17は電圧をトランジスタ172のベースに印加し、トランジスタ172は導電し、トランジスタ174のベースは接地される。これによって電流はトランジスタ174を通じて流れ、コンデンサ180は放電状態になる。モータ155が消磁されると、コントローラ17はトランジスタ172のベースを接地し、トランジスタ172は導電を停止する。トランジスタ174のベースにおける電圧は供給電圧まで増加し、トランジスタ174は導電を停止する。このとき、フィルタは単一R−Cフィルタとして作動し、総抵抗は抵抗器175及び抵抗器176の総量に等しい。この回路の時定数は好ましくは、モータのL/R誘導時定数よりも小さい。たとえば、「L」は、モータ155のインダクタンスを表し、「R」はモータ155及びフライバック回路の抵抗を表す。いくつかの実施形態では、時定数はモータのL/R時定数の十分の一よりも小さい。
図4A及び図4Bは、モータ過負荷検出回路150(図3)の例示的な電圧特性プロット(それぞれ、200及び205)を示す。図4Aは、特定の時間期間210にわたるFET160のゲートにおける電圧測定を示し、一方、図4Bは、同じ時間期間210にわたるノードAにおける電圧測定を示す。この時間期間210は、モータの単一の消磁の前後の時間に対応する。上述したように、第1の電圧215がFET160(たとえば、VON)のゲートに印加されると、FET160は導電し、モータ155は励磁される。したがって、図4Bに示すように、モータの電流はグランドに流れ、ノードAにおいて測定される電圧はわずか数分の1ボルトだけグランドと異なる(トレース200)(すなわち、ノードAにおける電圧はほぼゼロである)。ノードAにおいて測定される電圧とグランドとの間の差は、FETの抵抗に関連する比較的小さな電圧(VDROP)で、場合によっては数ミリオームである。
再び図4Aを参照すると、第2の電圧225(たとえば、VOFF)は、時間TSWITCHにおいてFET160のゲートに印加される。このとき、FET160はオフになり、効果的にモータ155を消磁する。第2の電圧225がFET160のゲートに印加される時間TSWITCHにおいて、ノードAにおいて測定される電圧はダイオードクランプ電圧230まで増加し、上述したように、これは、図4Bに示すような供給電圧(V)及びダイオードの順電圧降下(VFDD)の組み合わせにほぼ等しい。
モータが消磁された後ダイオードを流れる電流は最終的には減衰してゼロになる。ダイオード165を通じて流れる電流がそれ以上ないとき、ノードAにおいて測定される電圧はダイオードクランプ電圧値230から降下を開始する。したがって、電圧がダイオードクランプ電圧値230から降下を開始するのに必要とされる時間は、モータ負荷に応じて変化する。たとえば、比較的大きいモータ負荷は、大きな電流がモータ155内に存在することを本質的に必要とする。したがって、モータの電流がより長い期間ダイオード165を通じて流れるため、電圧がダイオードクランプ電圧230から離れるためにより長い時間が必要とされる。同様に、比較的小さい負荷は、電圧がダイオードクランプ電圧230から離れるためにより短い時間期間を必要とする。したがって、より長い時間期間は過負荷状態を示すことができる。
図4Bは、標準時間期間、基準時間期間、及び過負荷時間期間に対応する(TNORMAL)235、(TREF)240、及び(TOVERROAD)245を含む3つの時間期間を示す。時間期間235〜245は、ノードAにおいて測定される電圧がダイオードクランプ電圧230から降下を開始し、図示されるケースでは供給電圧レベル(V)である基準電圧に届くのに必要とされる時間を表す(矢印246によって示される)。破線250は標準的な負荷パラメータ内で動作するモータを示し、このパラメータは監視される電圧230が供給電圧レベル(V)まで降下するのに第1の時間期間又は標準時間期間(TNORMAL)235を必要とする。過負荷であるモータは他方で、実線255で示すように監視される電圧230が供給電圧レベル(V)まで降下するのに比較的長い期間(TOVERROAD)245を必要とする。基準時間期間(TREF)240は、たとえば、モータが過負荷状態であるか否かを判断する制限基準に対応することができる。
図4Bに記載される実施形態における基準電圧は、供給電圧Vである。供給電圧は、スイッチングされていないモータリード線の電圧である。他の実施形態では、基準電圧はスイッチングされていないモータリード線の電圧とは異なる。たとえば、比較回路が単一のトランジスタから構成される場合、図4Bの監視される電圧は供給電圧からダイオード電圧降下を減算した値に等しい基準電圧と比較され得る。
監視される電圧230は、供給電圧Vから逆EMF値248を減算した値に等しいレベルに最終的に横ばい状態になる。従来技術の過負荷検出方法は、この逆EMF電圧248を測定すること、及びこの測定からモータの速度及び負荷を推量することから成る。しかしながら、監視される電圧が逆EMFを示すレベルに届くのに必要とされる時間は、一般的に、本方法を用いてモータ負荷を求めるのに必要とされる時間よりも大幅に長い。本方法を用いて、モータが通常の負荷状態の下で消磁される時間の長さは、TNORMALである。逆EMF測定は、TREFに電圧が逆EMFに関連する漸近値を得るのに必要とされる付加的な時間の長さを加算した値に等しい時間の長さを必要とする。理想的な電圧トレースを有していても、この時間はTNORMALを超える。しかしながら、開回路のブラシ付きDCモータの電圧トレースは、図4Bに示す理想的なトレースとは異なってかなり雑音のある信号である。これらの状態の下での逆EMFの測定は、本発明によって必要とされる基準電圧の交差の計時よりも本質的に不正確である。この制限はモータの通信周波数の逆数よりも数倍長い時定数を有する監視される電圧をフィルタリングすることによってのみ解消することができる。この時定数は一般にフィルタ170の時定数よりも大幅に長い。このフィルタリングは逆EMF測定を作成するのに必要とされる時間をさらに追加する。
図4Bに示す電圧トレースはノードAにおいて監視される電圧に対応する。フィルタ170が用いられる場合、ノードBにおいて監視される電圧は、TSWITCHに先行する時間の間、図4Bの電圧とは異なり、TSWITCHにおいて供給電圧Vから小さいトランジスタ電圧降下を減算した値に等しくなる。TSWITCHの後、図4Bに示す電圧に近くなる。
図4A及び図4Bに示す電圧トレースは単一の消磁イベントに対応し、FET160のゲート電圧の動き、及び、モータが再励磁されないイベントにおいて監視される電圧230を示す。図4Bに示す実線255は、この状態のモータはほとんどの実施形態で再励磁されないため、過負荷状態のモータのための実際の電圧トレースに対応する。モータの速度が変化するため逆EMF電圧の最終的な変化は図4Bには示さない。モータが減速して、最終的に停止すると、逆EMF値248はゼロに降下し、実線トレースは徐々に供給電圧Vに近付く。
図4C及び図4Dは、図4A及び図4Bに示す消磁イベント、及び再励磁イベントの両方を含む、通常の負荷状態の下でのモータのためのゲート電圧及び監視される電圧230のトレースを示す。コントローラ17は、監視される電圧230が図4Bにおいて破曲線によって示すような基準時間TREFよりも短い時間TNORMAL内で、(この例では供給電圧Vに等しい)基準電圧に交差することを検出すると、モータが通常の負荷状態にあると判断し、したがってモータを再励磁する。これを行うためにコントローラ17は、電圧VONをFET160のゲートに印加し、FETは導電状態に戻る。監視される電圧230はFETの抵抗に対応して小さい値VDROPに再び降下する。モータの消磁、ノードAにおける電圧の監視、この電圧及び基準電圧の交差の計時、並びにモータの再励磁から成るこのイベントのシーケンスは、モータが通常の負荷状態にあると判断される限り、規則的な間隔で繰り返される。
図3、図4A及び図4Bに示す実施形態において、FET160を用いてモータ155の低圧リード線をスイッチングする。図5、図6A、及び図6Bに示す実施形態においてFET160は高電位側リード線をスイッチングする。
図5は、モータ155と、電源装置15と、P型チャネルFET280と、還流(又は「フライバック」)ダイオード165と、フィルタ283と、コントローラ17と、過負荷インジケータ35とを含むモータ過負荷検出システム275を表す概略図である。
図5に示すように、コントローラ17は電圧をFET280のゲート283に供給する。適切な電圧がゲート282に供給されると、FET280は導電又はオンに切り換えられ(すなわち、導電状態にあり)、それによって電流が電源装置15からモータ155の高圧リード線まで流れるようにする。モータ過負荷状態を検出するために、コントローラ17はFET280のゲート282における電圧を増加させてノードAにおける電圧又はノードBにおけるフィルタリングされた電圧のいずれかを監視する。FET280がオフになり(すなわち、非導電状態にあり)、それによって電源装置15からの電流を遮断する。しかしながら、ダイオード165は電流がモータ155を通じて流れ続けるようにする。モータが回転し続けるので逆EMF電圧が存在し続け、また、電流の流れに起因するモータの抵抗を通じて電圧降下が存在し続ける。しかしながら、モータ巻線における電流の変化率に比例するモータインダクタンスによって導出される電圧がこれらの電圧降下に対抗する。FET280がオフに切り換えられると、ノードAにおいて測定される電圧は、0ボルトのグランド電圧からダイオード165に関連する順電圧降下を減算した値にほぼ等しい値(すなわち、ほぼ−0.7ボルト)まで下がる。この「ダイオードクランプ」電圧は、電流がダイオード165を通じて流れるのを停止するまで、測定することができる。電流が停止すると、ノードAにおける電圧は、ほぼモータの逆EMFであるレベルまで上昇する。
いくつかの実施形態では、コントローラ17はノードAにおいてフィルタリングされていない電圧を監視する。このノードはFET280がオフに切り換えられると解除されるモータリード線に対応する。しかしながら、ノードAにおける信号は多少雑音のある可能性がある。したがって、信号は好ましくは測定前にフィルタリングされる。いくつかの実施形態では、フィルタは図5のフィルタ283に示すものに類似している。フィルタリングされた信号はノードBおけるフィルタの出力において測定される場合がある。
フィルタ283(図5)は、ノードBおける電圧が監視される前に、ほぼグランド電圧で初期化されるR−Cフィルタである。モータが励磁されると、コントローラ17は電圧をトランジスタ284のベースに印加する。これによって、電流はトランジスタ284を通じて流れ、コンデンサ287は放電状態になる。モータが消磁されると、コントローラ17はトランジスタ284のベースを接地させ、トランジスタ284は導電を停止する。このとき、フィルタ283は単一R−Cフィルタとして作動し、全抵抗は抵抗器285及び抵抗器286の合計に等しい。この回路の時定数は好ましくは、モータ155のL/R誘導時定数よりも小さい。いくつかの実施形態では、時定数はモータ155のL/R誘導時定数の10分の1よりも小さい。
図6A及び図6Bは、モータ過負荷検出回路275(図5)の例示的な電圧特性プロット(それぞれ、300及び305)を示す。図6Aは、特定の時間期間310にわたるFET280のゲートにおける電圧測定を示し、一方、図6Bは、同じ時間期間310にわたるノードAにおける電圧測定を示す。この時間期間310は、モータの単一の消磁の前後の時間に対応する。第1の電圧315がFET280(たとえば、VON)のゲートに印加されると、FET280は導電し、モータ155は励磁される。したがって、図6Bに示すように、モータの電流はグランドに流れ、ノードAにおいて測定される電圧はわずか数分の1ボルトだけグランドと異なる(トレース320)。ノードAにおいて測定される電圧と供給電圧との間の差は、FET280の抵抗に関連する比較的小さな電圧(VDROP)で、場合によっては数ミリオームである。
再び図6Aを参照すると、第2の電圧325(たとえば、VOFF)は、時間TSWITCHにおいてFET280のゲートに印加される。このとき、FET280はオフになり、効果的にモータ155を消磁する。第2の電圧325がFET280のゲートに印加される時間TSWITCHにおいて、ノードAにおいて測定される電圧(すなわち、監視される電圧)はダイオードクランプ電圧330まで下がり、上述したように、これは、図6Bに示すようなダイオードの順電圧降下(VFDD)を減算した値にほぼ等しい。
モータ155が消磁された後、ダイオードを通じて流れる電流は最終的には減衰してゼロになる。ダイオード165を通じて流れる電流がそれ以上ないとき、ノードAにおいて測定される電圧はダイオードクランプ電圧値330から上昇を開始する。したがって、電圧がダイオードクランプ電圧値330から上昇を開始するのに必要とされる時間は、モータ負荷に応じて変化する。たとえば、比較的大きいモータ負荷は、大きな電流がモータ155内に存在することを本質的に必要とする。したがって、モータの電流がより長い期間ダイオード165を通じて流れるため、電圧がダイオードクランプ電圧330から離れるためにより長い時間が必要とされる。同様に、比較的小さい負荷は、電圧がダイオードクランプ電圧330から離れるためにより短い時間期間を必要とする。したがって、より長い時間期間は過負荷状態を示すことができる。
図6Bは、標準時間期間、基準時間期間、及び過負荷時間期間に対応する(TNORMAL)335、(TREF)340、及び(TOVERROAD)345を含む3つの時間期間を示す。時間期間335〜345は、ノードAにおいて測定される電圧がダイオードクランプ電圧330から上昇を開始し、図示されるケースではグランド又はゼロボルトである基準電圧に届くために必要とされる時間を表す(矢印246によって示される)。破線350は標準的な負荷パラメータ内で動作する1つのモータの例を提供し、このパラメータは監視される電圧330がゼロボルトまで上昇するのに第1の時間期間又は標準時間期間(TNORMAL)335を必要とする。過負荷であるモータは他方で、実線355で示すように監視される電圧330がゼロボルトまで上昇するのに比較的長い期間(TOVERROAD)345を必要とする。基準時間期間(TREF)340は、たとえば、モータが過負荷状態であるか否かを判断する制限基準に対応することができる。
図6Bに示す電圧トレースはノードAにおいて監視される電圧に対応する。フィルタ283が用いられる場合、ノードBにおいて監視される電圧は、TSWITCHに先行する時間の間、図6Bの電圧とは異なる。TSWITCHにおいてグランド電圧に小さいトランジスタ電圧降下を加算した値に等しくなる。TSWITCHの後、図6Bに示す電圧に近くなる。
図6A及び図6Bに示す電圧トレースは単一の消磁イベントに対応し、FET280のゲート電圧の動き、及び、モータが再励磁されないイベントにおける監視される電圧230を示す。図6Bに示す実線355は、この状態のモータはほとんどの実施形態で再励磁されないので、過負荷状態のモータのための実際の電圧トレースに対応する。モータの速度が変化するため逆EMF電圧の最終的な変化は図6Bには示さない。モータが減速して、最終的に停止すると、逆EMF値348はゼロに降下し、実線トレースは徐々にグランド電圧又は0ボルトに近付く。
図6C及び図6Dは、図6A及び図6Bに示す消磁イベント、及び再励磁イベントの両方を含む、通常の負荷状態の下でのモータのための(FET280の)ゲート電圧及び監視される電圧330のトレースを示す。コントローラ17は、監視される電圧330が図6Bにおいて実曲線350によって示すような基準時間TREFよりも短い時間TNORMAL内で、(この例ではグランド又は0ボルトに等しい)基準電圧に交差することを検出すると、モータが通常の負荷状態にあると判断し、したがってモータを再励磁する。これを行うためにコントローラ17は、電圧VONをFET280のゲートに印加し、FET280は導電状態に戻る。監視される電圧は供給電圧VからFET280の抵抗に対応する小さい値VDROPを減算した値に再び上昇する。モータの消磁、ノードAにおける電圧の監視、この電圧及び基準電圧の交差の計時、並びにモータの再励磁から成るこのイベントのシーケンスは、モータ155が通常の負荷状態にあると判断される限り、規則的な間隔で繰り返される。
図4A、図4C,図6A、及び図6Cにおいて示すようなスイッチング特性は、FET160及びFET280の構成に応じて変化することができる。したがって、異なる量の電圧を、第1の電圧215、315、及び第2の電圧225、325のために用いることができる。たとえば、帯電ポンプを供給電圧よりもゲート電圧を増加させるために用いる場合、N型FETを高電位側スイッチとして用いることができる。図4Aに示すように、FET160をオンに切り換えるゲート電圧215は、FETをオフに切り換える電圧225を超える。
図7は、モータ155のトルクと図4Bの規定された時間期間235〜245との間の関係を表すトルク曲線400を示す。別の実施形態では、トルク曲線400に類似の別のトルク曲線(図示せず)が構成されて、モータ155のトルクと図6Bの規定された時間期間335〜345との間の関係を表す。トルク曲線400は一般的に非線形である。図4Bに示すように標準時間期間(TNORMAL)235及び過負荷時間期間(TOVERROAD)245は、それぞれ設計モータトルク405及び過負荷モータトルク410に対応する。いくつかの実施形態では、設計トルク405はネームプレートトルク値、又はより単純には、通常動作状態の下でモータ155が生成するトルクである。過負荷トルク410は、代替的には、モータ155の故障を引き起こす可能性のあるトルクの量を表す。たとえば、モータ155が或る期間、過負荷トルク410を生成する場合、モータ155の温度は上昇し、モータ155の部品への損傷を引き起こす。損傷が大きい場合、モータ155は故障する。基準時間(TREF)240は制限モータトルク407に対応する。この値より小さいトルク値は、設計トルク405よりも大きいがモータ155への損傷はない。
さまざまな実施形態が特許請求の範囲において示される。
冷却ファン及び例示的なモータ過負荷検出システムを有する自動車を示す図である。 モータ過負荷状態を検出するために使用することができる例示的なプロセスを示す図である。 モータの低電圧側に配置される電界効果トランジスタを備える例示的なモータ過負荷検出システムを示す図である。 別の例示的なモータ過負荷検出システムを示す図である。 単一の消磁イベント中における、図3に示す電界効果トランジスタのゲートにおける電圧の時間推移のプロットを示す図である。 単一の消磁イベント中における、図3に示す監視ポイント「A」における電圧の時間推移のプロットを示す図である。 標準負荷の場合のモータの消磁及び再励磁中における、図3に示す電界効果トランジスタのゲートにおける電圧の時間推移のプロットを示す図である。 標準負荷の場合のモータの消磁及び再励磁中における、図3に示す監視ポイント「A」における電圧の時間推移のプロットを示す図である。 モータの高電圧側に配置される電界効果トランジスタを備える別の例示的なモータ過負荷検出システムを示す図である。 単一の消磁イベント中における、図5に示す電界効果トランジスタのゲートにおける電圧の時間推移のプロットを示す図である。 単一の消磁イベント中における、図5に示す監視ポイント「A」における電圧の時間推移のプロットを示す図である。 標準負荷の場合のモータの消磁及び再励磁中における、図5に示す電界効果トランジスタのゲートにおける電圧の時間推移のプロットを示す図である。 標準負荷の場合のモータの消磁及び再励磁中における、図5に示す監視ポイント「A」における電圧の時間推移のプロットを示す図である。 モータトルクに対する、監視される電圧が基準電圧に交差する時刻のプロットを示す図である。

Claims (35)

  1. 複数本のリード線を有するDCモータの負荷を監視する方法であって、
    前記モータを初期励磁すること、及び
    一連の動作を反復して実行すること
    を含み、該一連の動作のそれぞれは第1の時間間隔(interval of time)によって分離され、該一連の動作のそれぞれは、
    前記複数本のリード線のうちの1本を通じて電流を遮断することによって前記モータを消磁すること、
    第1の電圧を監視すること、及び
    開始時刻と終了時刻との間の第2の時間間隔を測定することであって、該開始時刻は前記モータが消磁される時刻を含み、該終了時刻は前記第1の電圧と基準電圧とが実質的に同様の値を有する時刻を含む、測定すること、
    を含む、方法。
  2. 前記第1の電圧と前記基準電圧とが実質的に同様の値を有する前記時刻は、電流が前記モータを通じて流れなくなる時刻を示す、請求項1に記載の方法。
  3. 前記動作は、
    前記第2の時間間隔を基準時間間隔と比較すること、及び
    前記モータが過負荷状態にあるか否かを前記第2の時間間隔に基づいて判断すること
    を含み、前記基準時間間隔より長い時間間隔は過負荷状態として解釈され、前記基準時間間隔より短い時間間隔は通常状態として解釈される、請求項1に記載の方法。
  4. 前記動作は、
    前記モータが通常状態にある場合には、該モータを再励磁すること、及び
    前記モータが過負荷状態にある場合には、該モータを消磁状態のままにしておくこと、
    をさらに含む、請求項3に記載の方法。
  5. 前記動作は、
    前記モータが通常状態にある場合には、該モータを再励磁すること、及び
    前記モータが過負荷状態にある場合には、該モータを第3の時間間隔の後に再励磁すること、
    をさらに含む、請求項3に記載の方法。
  6. 前記第1の時間間隔は、過負荷状態が前記モータを永久的に損傷するのにかかる時間より短いことをさらに特徴とする、請求項3に記載の方法。
  7. 第4の時間間隔は、前記モータの前記初期励磁と前記一連の動作の最初の発生との間の時間間隔であり、該第4の時間間隔は前記モータが実質的に該モータの安定した速度に向けて加速するのに十分であるが、過負荷状態が前記モータを永久的に損傷するのにかかる時間より短い、請求項3に記載の方法。
  8. 第4の時間間隔は、前記モータの前記初期励磁と前記一連の動作の最初の発生との間の時間間隔であり、該第4の時間間隔は前記モータが実質的に該モータの安定した速度に向けて加速するのに十分であるが、過負荷状態が前記モータを永久的に損傷するのにかかる時間より短く、前記第3の時間間隔は前記第4の時間間隔の少なくとも5倍である、請求項5に記載の方法。
  9. 前記第4の時間間隔は前記第1の時間間隔より短い、請求項7又は8に記載の方法。
  10. 前記第1の電圧は遮断されているモータリード線の電圧を示す、請求項2に記載の方法。
  11. 前記第1の電圧はフィルタの出力であり、該フィルタの入力は前記遮断されているモータリード線の電圧である、請求項10に記載の方法。
  12. 前記基準電圧は遮断されていないモータリード線の電圧にほぼ等しい、請求項10に記載の方法。
  13. 第1のモータリード線と第2のモータリード線とを有するDCモータを監視するように構成されるモータ負荷監視システムであって、該第1のモータリード線及び該第2のモータリード線は電源装置に結合するように構成され、該負荷監視システムは、
    前記電源装置と前記第1のモータリード線との間に結合するように構成されるスイッチと、
    前記第1のモータリード線と前記第2のモータリード線との間のフライバック電流経路と、
    監視される電圧を受信し、前記スイッチを制御することによって前記モータを断続的に消磁し、開始時刻と終了時刻との間の時間間隔を測定するために、前記スイッチに結合するように構成されるコントローラであって、前記開始時刻は前記モータが消磁される時刻を含み、前記終了時刻は前記監視される電圧と基準電圧とが実質的に同様の値を有する時刻を含む、コントローラと、
    を備える、負荷監視システム。
  14. 前記監視される電圧と前記基準電圧とが実質的に同様の値を有する前記時刻は、電流が前記フライバック経路を通じて流れなくなる時刻を示す、請求項13に記載の負荷監視システム。
  15. 前記監視される電圧は前記第1のモータリード線の電圧を示す、請求項13に記載の負荷監視システム。
  16. 前記第1のモータリード線に結合されるフィルタをさらに備え、前記監視される電圧は該フィルタの出力における電圧を含む、請求項13に記載の負荷監視システム。
  17. 前記基準電圧は前記第2のモータリード線の電圧にほぼ等しい、請求項15に記載の負荷監視システム。
  18. 前記モータは、ブラシが付いているか又は機械的に整流されるDCモータである、請求項13に記載の負荷監視システム。
  19. 前記第1のリード線は低電圧リード線である、請求項13に記載の負荷監視システム。
  20. 前記第1のリード線は高電圧リード線である、請求項13に記載の負荷監視システム。
  21. 前記スイッチはトランジスタである、請求項13に記載の負荷監視システム。
  22. 前記スイッチは速度制御にも利用される、請求項13に記載の負荷監視システム。
  23. 前記速度制御はパルス幅変調方式である、請求項22に記載の負荷監視システム。
  24. 前記フライバック電流経路はダイオードを含む、請求項13に記載の負荷監視システム。
  25. 前記フライバック電流経路はトランジスタを含む、請求項13に記載の負荷監視システム。
  26. 前記コントローラはプログラム可能な装置である、請求項13に記載の負荷監視システム。
  27. 自動車のエンジン冷却システムであって、
    第1のモータリード線と第2のモータリード線とを有するモータであって、該第1のモータリード線及び該第2のモータリード線は電源装置に結合するように構成される、モータと、
    前記電源装置と前記第1のモータリード線との間に結合するように構成されるスイッチと、
    前記第1のモータリード線と前記第2のモータリード線との間のフライバック電流経路と、
    監視される電圧を受信し、前記スイッチを制御することによって前記モータを断続的に消磁し、開始時刻と終了時刻との間の時間間隔を測定するために、前記スイッチに結合するように構成されるコントローラであって、前記開始時刻は前記モータが消磁される時刻を含み、前記終了時刻は前記監視される電圧と基準電圧とが実質的に同様の値を有する時刻を含む、コントローラと、
    を備える、システム。
  28. 前記監視される電圧は、前記第1のモータリード線の電圧を示す、請求項27に記載のシステム。
  29. 前記第1のモータリード線に結合されるフィルタをさらに備え、前記監視される電圧は該フィルタの出力における電圧を含む、請求項27に記載のシステム。
  30. 前記基準電圧は前記第2のモータリード線の電圧にほぼ等しい、請求項28に記載のシステム。
  31. 前記モータは、ブラシが付いているか又は機械的に整流されるDCモータである、請求項27に記載のシステム。
  32. 前記スイッチはトランジスタである、請求項27に記載のシステム。
  33. 前記スイッチは速度制御にも利用される、請求項27に記載のシステム。
  34. 前記速度制御はパルス幅変調方式である、請求項33に記載のシステム。
  35. 前記モータに接続されるファンをさらに備える、請求項27に記載のシステム。
JP2008549530A 2006-01-04 2007-01-03 モータ負荷を監視するシステム及び方法 Expired - Fee Related JP5066101B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/324,818 US7205737B1 (en) 2006-01-04 2006-01-04 Systems and methods of monitoring a motor load
US11/324,818 2006-01-04
PCT/US2007/000014 WO2007081676A2 (en) 2006-01-04 2007-01-03 Systems and methods of monitoring a motor load

Publications (2)

Publication Number Publication Date
JP2009523001A JP2009523001A (ja) 2009-06-11
JP5066101B2 true JP5066101B2 (ja) 2012-11-07

Family

ID=37914119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008549530A Expired - Fee Related JP5066101B2 (ja) 2006-01-04 2007-01-03 モータ負荷を監視するシステム及び方法

Country Status (8)

Country Link
US (1) US7205737B1 (ja)
EP (1) EP1974459B1 (ja)
JP (1) JP5066101B2 (ja)
KR (2) KR20110099349A (ja)
CN (1) CN101379691B (ja)
BR (1) BRPI0710992B1 (ja)
RU (1) RU2423767C2 (ja)
WO (1) WO2007081676A2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE477254T1 (de) 2004-12-20 2010-08-15 Genentech Inc Pyrrolidine als inhibitoren von iap
ATE424652T1 (de) * 2005-10-07 2009-03-15 Emotron Ab Lastüberwachung
DE102006006037B4 (de) * 2006-02-09 2013-08-08 Siemens Aktiengesellschaft Motor mit rotatorischem und linearem Antrieb mit integrierter Axialkraftmessung
JP4254885B2 (ja) * 2007-05-22 2009-04-15 ダイキン工業株式会社 ファン制御システム、及びそのファン制御システムを備えた空調機
US7616023B2 (en) * 2007-06-22 2009-11-10 Delphi Technologies, Inc. Method of detecting a malfunction of an encoder for a vehicle drive system
US8297524B2 (en) 2009-09-03 2012-10-30 Honeywell International Inc. Damper control system
US10634385B2 (en) 2009-09-03 2020-04-28 Ademco Inc. Heat balancing system
US8473229B2 (en) 2010-04-30 2013-06-25 Honeywell International Inc. Storage device energized actuator having diagnostics
EP2651030A4 (en) * 2010-12-10 2017-12-27 Mitsubishi Electric Corporation Rotating electrical machine
IT1404251B1 (it) * 2011-01-25 2013-11-15 Gate Srl Dispositivo di controllo per un motore elettrico in corrente continua di un ventilatore di raffreddamento per autoveicoli
US10084401B2 (en) * 2014-03-14 2018-09-25 Koninklijke Philips N.V. Electric shaver
US9383414B2 (en) * 2014-08-29 2016-07-05 Atieva, Inc Method of diagnosing a blocked heat exchanger
DE102017125956A1 (de) * 2017-11-07 2019-05-09 Miele & Cie. Kg Verfahren zum Betrieb eines elektrischen Antriebs, vorzugsweise eines Gebläses und/oder einer Bürste eines Staubsaugers oder eines Staubsaugroboters
US11855567B2 (en) 2020-12-18 2023-12-26 Black & Decker Inc. Impact tools and control modes
KR102672600B1 (ko) * 2021-12-03 2024-06-07 주식회사 현대케피코 상시 전원 공급 라인의 단선 감지 시스템 및 이를 이용한 상시 전원 공급 라인의 단선 감지 방법
EP4212725A1 (en) * 2022-01-14 2023-07-19 Eaton Intelligent Power Limited Hydraulic system control
KR102669339B1 (ko) * 2022-12-06 2024-05-27 다올이엔지 주식회사 Gis dc모터용 과부하 트립장치

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3585451A (en) 1969-12-24 1971-06-15 Borg Warner Solid state motor overload protection system
US3942111A (en) 1974-11-18 1976-03-02 Whirlpool Corporation Method and apparatus for testing electric motors
US4199798A (en) * 1978-03-13 1980-04-22 Eaton Corporation Phase balance monitoring system incorporating voltage and phase sequence monitoring
US4204425A (en) 1978-06-29 1980-05-27 Westinghouse Electric Corp. Method of testing induction motors
US4292574A (en) 1980-04-18 1981-09-29 Anatole J. Sipin Company Personal air sampler with electric motor driven by intermittent full-power pulses under control, between pulses, of motor's back electromotive force
JPS57113726A (en) 1980-12-29 1982-07-15 Matsushita Electric Ind Co Ltd Overcurrent breaking device for miniature dc motor
JPS5815478A (ja) 1981-07-21 1983-01-28 Brother Ind Ltd 直流モ−タの速度制御装置における電流制限装置
US4670698A (en) 1983-12-02 1987-06-02 Imec Corporation Adaptive induction motor controller
DE3643221A1 (de) 1986-12-18 1988-06-30 Braun Ag Gleichstromsteller
US4851743A (en) 1987-10-27 1989-07-25 Eaton Corporation DC motor speed controller having protection
DE4133302C2 (de) 1991-10-08 1994-08-25 Jungheinrich Ag Überlastschutz für die Leistungssteuerstufe eines Gleichstrommotors
US5652525A (en) 1992-03-16 1997-07-29 Lockheed Martin Tactical Systems, Inc. System and method for detecting D.C. motor circuit failures
US5811946A (en) 1992-03-16 1998-09-22 Lockheed Martin Corporation System and method for velocity control of a D.C. Motor
US5473497A (en) 1993-02-05 1995-12-05 Franklin Electric Co., Inc. Electronic motor load sensing device
KR0132521B1 (ko) 1994-11-29 1998-10-01 김광호 직류전동기 과전류 검출장치
CA2373625A1 (en) * 1999-05-14 2000-11-23 Avery Dennison Corporation Cable tie and cable tie installation tool
US6838847B2 (en) 2002-05-09 2005-01-04 Siemens Vdo Automotive Inc. Stall protection based on back EMF detection
CN2704967Y (zh) * 2004-03-18 2005-06-15 王循跃 一种直流电动机脉宽调速与电制动装置
CN2735653Y (zh) * 2004-08-27 2005-10-19 中国科学院长春光学精密机械与物理研究所 可变频直流电机脉宽调制器

Also Published As

Publication number Publication date
CN101379691B (zh) 2012-04-11
EP1974459B1 (en) 2012-08-01
US7205737B1 (en) 2007-04-17
KR101083174B1 (ko) 2011-11-11
BRPI0710992A2 (pt) 2011-05-24
RU2423767C2 (ru) 2011-07-10
CN101379691A (zh) 2009-03-04
JP2009523001A (ja) 2009-06-11
WO2007081676A3 (en) 2007-10-04
RU2008131957A (ru) 2010-02-10
EP1974459A2 (en) 2008-10-01
KR20080083696A (ko) 2008-09-18
KR20110099349A (ko) 2011-09-07
BRPI0710992B1 (pt) 2018-06-05
WO2007081676A2 (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP5066101B2 (ja) モータ負荷を監視するシステム及び方法
US7148642B2 (en) Controller arrangement with automatic power down
JP5888879B2 (ja) 駆動装置、及び停止位置検出方法
US5093891A (en) Brushless motor and an axial flow fan with the brushless motor
US9537433B2 (en) Motor drive device
US6838847B2 (en) Stall protection based on back EMF detection
JP2018082581A (ja) モータ駆動制御装置及びモータ駆動制御方法
US8716971B2 (en) Circuit and method for speed monitoring of an electric motor
CN101800504B (zh) 用于两相电机控制系统的外部扰动检测系统和方法
JP2008087754A (ja) 車両用ミラー装置
US8922149B2 (en) Method and device for detecting blocking or sluggishness of a DC motor
JP4395441B2 (ja) 電気駆動装置の過電流識別のための方法
US20090324205A1 (en) Pulse count control for brushed dc motor driven by pulse width modulation
JP5795881B2 (ja) 送風機の駆動装置及び駆動方法
US9859826B2 (en) Intelligent detection unit (iDU) to detect the position of a rotor controlled by pulse modulation
GB2247999A (en) Brushless DC motor monitor
JP3575895B2 (ja) モータの回転異常検出装置
JP2538977B2 (ja) モ―タの焼損防止装置を備えた駆動装置
JP2003525001A (ja) 電子コミュテーション式モータ
JPH08322281A (ja) 直流ブラシレスモータの保護装置
CN106208843B (zh) 电动机驱动电路、振动装置以及电子设备
JP2018504885A (ja) 電気式自動車用補助アセンブリおよび自動車用補助アセンブリの整流のための方法
JP2006246558A (ja) ブラシレスモータ駆動回路
JPH10117494A (ja) 電流制限装置付直流電動機の制御回路
JPH11136988A (ja) ブラシレスモータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120810

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees