[go: up one dir, main page]

JP5064107B2 - Ribbon wire connection method for electronic component module or CIS thin film solar cell module - Google Patents

Ribbon wire connection method for electronic component module or CIS thin film solar cell module Download PDF

Info

Publication number
JP5064107B2
JP5064107B2 JP2007124590A JP2007124590A JP5064107B2 JP 5064107 B2 JP5064107 B2 JP 5064107B2 JP 2007124590 A JP2007124590 A JP 2007124590A JP 2007124590 A JP2007124590 A JP 2007124590A JP 5064107 B2 JP5064107 B2 JP 5064107B2
Authority
JP
Japan
Prior art keywords
ribbon wire
solar cell
cis
film solar
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007124590A
Other languages
Japanese (ja)
Other versions
JP2008282919A (en
Inventor
博史 西
博久 鈴木
勝巳 櫛屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Shell Sekiyu KK
Original Assignee
Showa Shell Sekiyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Shell Sekiyu KK filed Critical Showa Shell Sekiyu KK
Priority to JP2007124590A priority Critical patent/JP5064107B2/en
Publication of JP2008282919A publication Critical patent/JP2008282919A/en
Application granted granted Critical
Publication of JP5064107B2 publication Critical patent/JP5064107B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0103Zinc [Zn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01031Gallium [Ga]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、ガラス基板上に実装される電子部品モジュール又はCIS系薄膜太陽電池モジュールのリボンワイヤ(扁平出力導線)の接続方法に関する。   The present invention relates to a method for connecting a ribbon wire (flat output conductor) of an electronic component module or a CIS-based thin film solar cell module mounted on a glass substrate.

CIS系(CIS、CIGS、CIGSS等を含む総称)薄膜太陽電池モジュールは、ガラス基板上に、金属裏面電極層、その他のCIS系薄膜太陽電池モジュールの構成部材の順に形成された積層構造体であり、前記ガラス基板端部の金属裏面電極層からなる出力電極にリボンワイヤ(扁平出力導線)を接続する場合、通常銅の表面にSnを電気メッキ又は溶融メッキしたSnメッキ銅箔からなるリボンワイヤを使用して、超音波ハンダコテによりハンダ付けするが、前記金属裏面電極層の材質により、この電極層と前記Snメッキ銅箔からなるリボンワイヤを直接ハンダ付けできないことがある。   A CIS-based (generic name including CIS, CIGS, CIGSS, etc.) thin-film solar cell module is a laminated structure formed on a glass substrate in the order of a metal back electrode layer and other constituent members of the CIS-based thin-film solar cell module. When a ribbon wire (flat output conductor) is connected to the output electrode composed of the metal back electrode layer at the end of the glass substrate, a ribbon wire composed of Sn-plated copper foil obtained by electroplating or hot-plating Sn is usually applied to the surface of copper. It is used and soldered by an ultrasonic soldering iron, but depending on the material of the metal back electrode layer, the electrode layer and the ribbon wire made of the Sn plated copper foil may not be soldered directly.

薄膜太陽電池モジュールの電極とリード線の接続方法において、ガラス基板上の電極(透明導電膜)にハンダバンプを介してハンダディプリード線(銅箔にハンダを被覆)を超音波ハンダコテによりハンダ付けする方法があり、超音波ハンダコテは、温度300℃、超音波出力3W、ハンダ付け時間1Sであり、ハンダディプリード線のハンダの組成は、Snを主成分とし、Agを2.5〜7.7重量%、かつ、Cuを0.0〜4.0重量%含み、ハンダバンプのハンダの組成は、Snを主成分とし、Znを2.5〜4.0重量%、Sbを0.5〜3.0重量%、かつAlを0.02〜0.1重量%含む(例えば、特許文献1参照。)。前記接続方法は、ハンダディプリード線及び超音波ハンダコテを使用しているが、ガラス基板上の電極(透明導電膜)にハンダディプリード線を直接接続するものではなく、ハンダバンプを必要とし、ハンダバンプのハンダの組成も主成分がInではない。   In the thin film solar cell module electrode and lead wire connecting method, solder dip lead wire (copper foil is covered with solder) is soldered to the electrode (transparent conductive film) on the glass substrate via solder bumps by ultrasonic soldering iron. The ultrasonic soldering iron has a temperature of 300 ° C., an ultrasonic output of 3 W, and a soldering time of 1 S. The solder composition of the solder dip lead wire is mainly composed of Sn, and Ag is 2.5 to 7.7 weight. % And Cu is 0.0 to 4.0% by weight, and the solder composition of the solder bumps is mainly composed of Sn, 2.5 to 4.0% by weight of Zn, and 0.5 to 3.3% of Sb. 0% by weight and 0.02 to 0.1% by weight of Al (see, for example, Patent Document 1). The connection method uses a solder dip lead wire and an ultrasonic soldering iron, but does not directly connect the solder dip lead wire to the electrode (transparent conductive film) on the glass substrate, and requires a solder bump. The main component of the solder is not In.

集積型太陽電池モジュールのバスバーと引出し線の接続方法において、集積型太陽電池素子の表面にバスバーを形成し、このバスバーの上に銅の表面にInとSnとを含む合金、又はInとGaとSnとを含む合金からなる導電性接着部を形成した引出し線を載せ、更に、その上から太陽電池素子を覆う熱可塑性フィルムを覆い、150〜160℃の温度で加熱することにより、熱可塑性フィルムを架橋させると共に、前記引出し線をバスバーに導電性接着(圧着)する(例えば、特許文献2参照。)。前記接続方法は、加熱方法は超音波ハンダコテを使用するものではなく、また、ガラス基板上の電極(透明導電膜)に引出し線を(バスバーを介して接続するもので、)直接接続するものではないし、その引出し線の被覆部である導電性接着部はInを主成分とするもので、Snを主成分とするものではない。   In a method for connecting a bus bar and a lead wire of an integrated solar cell module, a bus bar is formed on the surface of the integrated solar cell element, and an alloy containing In and Sn on the surface of copper on the bus bar, or In and Ga, A thermoplastic film is formed by placing a lead wire on which a conductive adhesive portion made of an alloy containing Sn is formed, covering a thermoplastic film covering the solar cell element from above, and heating at a temperature of 150 to 160 ° C. The lead wire is conductively bonded (crimped) to the bus bar (see, for example, Patent Document 2). As for the connection method, the heating method does not use an ultrasonic soldering iron, and the lead wire is connected directly to the electrode (transparent conductive film) on the glass substrate (via the bus bar). In addition, the conductive adhesive portion which is the covering portion of the lead wire is mainly composed of In and not based on Sn.

薄膜太陽電池モジュールの裏面電極層とバスバーの接続方法において、ガラス基板(受光面側)上に設けられた薄膜太陽電池モジュールの裏面電極層(非受光面側)に導電性ペーストを塗布し、この上に金属箔の表面にSn−Pb合金又はSnを含みPbを含まない合金ハンダを被覆した金属箔からなるバスバーを配置し、パルスヒーターにより180〜230℃の温度で加熱することにより、裏面電極層とバスバーを接続する(例えば、特許文献3参照。)。前記接続方法は、加熱方法は超音波ハンダコテを使用するものではなく、ガラス基板上の電極(透明導電膜)に引出し線(バスバー)を接続するものではないし、また、導電性ペーストもInを主成分とするものではない。   In the method of connecting the back electrode layer of the thin film solar cell module and the bus bar, a conductive paste is applied to the back electrode layer (non-light receiving surface side) of the thin film solar cell module provided on the glass substrate (light receiving surface side). A back bar electrode is formed by placing a bus bar made of a metal foil coated with an Sn-Pb alloy or Sn-free alloy solder on the surface of the metal foil and heating it at a temperature of 180 to 230 ° C. with a pulse heater. The layer and the bus bar are connected (for example, refer to Patent Document 3). As for the connection method, the heating method does not use an ultrasonic soldering iron, and does not connect the lead wire (bus bar) to the electrode (transparent conductive film) on the glass substrate, and the conductive paste is mainly made of In. It is not an ingredient.

また、本出願人においては、ガラス基板1A上に積層形成されたCIS系薄膜太陽電池モジュール1のリボンワイヤの接続方法として、図に示すように、ガラス基板1Aの端部上の極薄の金属裏面電極層(出力電極)1Cに通常のハンダ、例えば、Sn40%、Pb60%ハンダを載せ、銅箔2AにSnメッキ2Bしたリボンワイヤ(扁平出力導線)2を載せ、このリボンワイヤ2の上に超音波ハンダコテ4を当て、極薄の金属裏面電極層1Cにリボンワイヤ2を接続する方法を採っていたが、接着強度不足及び熱膨張係数の違いよる金属裏面電極層1Cの剥離又は破損という問題があった。なお、この場合、CIS系薄膜太陽電池モジュール1は受光面側にカバーガラス(図示省略。)を設置し、CIS系薄膜太陽電池モジュール1は前記ガラス基板1Aとカバーガラスにより挟まれたサンドイッチ構造となるため、前記リボンワイヤ2と金属裏面電極層(出力電極)1Cとの接着力が多少小さくても問題とはならない。 Moreover, in this applicant, as shown in FIG. 7 , as a connection method of the ribbon wire of the CIS type thin film solar cell module 1 laminated on the glass substrate 1A, as shown in FIG. On the metal back electrode layer (output electrode) 1C, normal solder, for example, Sn 40%, Pb 60% solder is mounted, and a ribbon wire (flat output conductor) 2 plated with Sn 2B is mounted on the copper foil 2A. The method of connecting the ribbon wire 2 to the ultra-thin metal back electrode layer 1C by applying an ultrasonic soldering iron 4 to the surface is referred to as peeling or breakage of the metal back electrode layer 1C due to insufficient adhesive strength and a difference in thermal expansion coefficient. There was a problem. In this case, the CIS thin film solar cell module 1 has a cover glass (not shown) on the light receiving surface side, and the CIS thin film solar cell module 1 has a sandwich structure sandwiched between the glass substrate 1A and the cover glass. Therefore, there is no problem even if the adhesive force between the ribbon wire 2 and the metal back electrode layer (output electrode) 1C is somewhat small.

特開2006−319215号公報JP 2006-319215 A 特開2003−142703号公報JP 2003-142703 A 特開2002−314104号公報JP 2002-314104 A

本発明は前記問題点を解消するもので、本発明の目的は、CIS系薄膜太陽電池モジュールのガラス基板上の極薄のMo等からなる金属裏面電極とリボンワイヤの接続のように、ハンダ付けし難く、かつ機械的強度が低い(脆い)ガラス基板上の極薄の金属裏面電極層とSnメッキ銅箔リボンワイヤとの接続を、低コストで、簡単かつ確実(所定の接着強度を有する)に行うことである。   The present invention solves the above-mentioned problems, and the object of the present invention is to solder a metal back electrode made of ultrathin Mo or the like on a glass substrate of a CIS-based thin film solar cell module and a ribbon wire. Low-cost, simple and reliable connection with an ultra-thin metal back electrode layer on a glass substrate that is difficult to perform and has low mechanical strength (brittle) (having a predetermined adhesive strength) To do.

本発明は、CIS系薄膜太陽電池モジュールにおける、ハンダ付けし難く、かつ機械的強度が低い(脆い)ガラス基板上の極薄の金属裏面電極層とSnメッキ銅箔リボンワイヤとの接続を、高価なInハンダの使用量を削減して生産コストを低減し、前記接続を簡単かつ強固にすることが可能な接続方法を提供すると共に、前記接続工程で、電極膜又は導電膜を破損することなく、ガラス基板及び接続材料間の熱膨張係数の差による歪み又は破損を防止することである。   The present invention provides a connection between an ultrathin metal back electrode layer on a glass substrate that is difficult to solder and has low mechanical strength (brittleness) and a Sn-plated copper foil ribbon wire in a CIS thin film solar cell module. In addition to providing a connection method capable of reducing the production cost by reducing the amount of In solder used, making the connection easy and strong, and without damaging the electrode film or the conductive film in the connection step It is to prevent distortion or breakage due to the difference in thermal expansion coefficient between the glass substrate and the connecting material.

(1)本発明は、前記問題点を解消するもので、ガラス基板上に、金属裏面電極層、p型CIS系(CIS、CIGS、CIGSS等を含む総称。)光吸収層、n型高抵抗バッファ層、n型透明導電膜からなる窓層の順に積層されたCIS系薄膜太陽電池デバイスを複数個、特定の電圧となるようにパターニングにより電気的に直列に接続したCIS系薄膜太陽電池モジュールの出力電極である金属裏面電極層にリボンワイヤ(扁平出力導線)を接続するCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法に関するものである。 (1) The present invention solves the above-mentioned problems. On a glass substrate, a metal back electrode layer, a p-type CIS system (generic name including CIS, CIGS, CIGSS, etc.) light absorption layer, n-type high resistance A CIS thin film solar cell module in which a plurality of CIS thin film solar cell devices laminated in the order of a buffer layer and a window layer made of an n-type transparent conductive film are electrically connected in series by patterning so as to have a specific voltage. The present invention relates to a method for connecting a ribbon wire of a CIS-based thin film solar cell module in which a ribbon wire (flat output conducting wire) is connected to a metal back electrode layer that is an output electrode.

本発明は、前記CIS系薄膜太陽電池モジュールのリボンワイヤの接続方法であって、前記ガラス基板端部上の極薄の金属裏面電極層からなる出力電極に金属導体(例えば、銅)箔にSnメッキしたリボンワイヤを接続する際、前記出力電極上面(全面)にPb以外の融点の低いハンダを、予め、予備ハンダした後、前記出力電極に、前記リボンワイヤを載せ、リボンワイヤの上に超音波ハンダコテを当て、超音波ハンダコテにより前記予備ハンダを溶融させて前記出力電極に前記リボンワイヤをハンダ付けするCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法である。 The present invention is a method for connecting a ribbon wire of the CIS-based thin film solar cell module, wherein an output electrode comprising an ultrathin metal back electrode layer on an end portion of the glass substrate is provided with a metal conductor (for example, copper) foil and Sn. When connecting the plated ribbon wire, a solder having a low melting point other than Pb is preliminarily soldered on the upper surface (entire surface) of the output electrode, and then the ribbon wire is placed on the output electrode and superposed on the ribbon wire. This is a method for connecting a ribbon wire of a CIS-based thin film solar cell module, in which a sonic soldering iron is applied, the preliminary solder is melted by an ultrasonic soldering iron, and the ribbon wire is soldered to the output electrode .

そして、本発明は、前記予備ハンダの材質が、In又はInとAgの合金からなるものである。In the present invention, the preliminary solder is made of In or an alloy of In and Ag.

(2)本発明は、前記予備ハンダが、前記出力電極のハンダ付けする位置(箇所)及びそれを取り囲む領域にハンダ付けする前記(1)に記載のCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法である。(2) The present invention relates to the connection of the ribbon wire of the CIS-based thin-film solar cell module according to (1), wherein the spare solder is soldered to a soldering position (location) of the output electrode and a region surrounding the soldering position. Is the method.

)本発明は、前記超音波ハンダコテの周波数は、40〜80kHzで、超音波ハンダコテのコテ先温度は、350〜450℃である前記(1)又は(2)に記載CIS系薄膜太陽電池モジュールのリボンワイヤの接続方法である。 ( 3 ) In the present invention, the frequency of the ultrasonic soldering iron is 40 to 80 kHz, and the tip temperature of the ultrasonic soldering iron is 350 to 450 ° C. The CIS-based thin film solar according to (1) or (2) It is the connection method of the ribbon wire of a battery module.

)本発明は、前記超音波ハンダコテによりハンダ付けは、ハンダ付け対象部の寸法(距離)が長い場合、スポット状に一定間隔、5cm〜25cm間隔で分散して複数箇所ハンダ付けを行う前記(1)、(2)又は(3)に記載CIS系薄膜太陽電池モジュールのリボンワイヤの接続方法である。 ( 4 ) In the present invention, when the size (distance) of the soldering target portion is long, the soldering by the ultrasonic soldering iron is performed in a spot-like manner at a fixed interval, 5 cm to 25 cm, and soldering at a plurality of locations. (1) It is the connection method of the ribbon wire of the CIS type thin film solar cell module as described in (2) or (3).

本発明のリボンワイヤの接続方法により、ハンダ付けし難く、かつ機械的強度が低い(脆い)ガラス基板上の極薄のMo等の金属裏面電極層とSnメッキ銅箔リボンワイヤとの接続を、低コストで、簡単かつ確実(所定の接着強度を有する)に行うことができる。   By the method for connecting the ribbon wire of the present invention, the connection between the metal back electrode layer such as ultrathin Mo on the glass substrate which is difficult to solder and has low mechanical strength (brittle) and the Sn plated copper foil ribbon wire, It can be performed easily and reliably (having a predetermined adhesive strength) at low cost.

本発明のリボンワイヤの接続方法により、ハンダ付けし難く、かつ機械的強度が低い(脆い)ガラス基板上の極薄のMo等の金属裏面電極層とSnメッキ銅箔リボンワイヤとの接続を、高価なInハンダの使用量を削減して生産コストを低減し、簡単かつ強固にすると共に、前記接続工程で、金属裏面電極層を破損することなく、ガラス基板、極薄の金属裏面電極層及びリボンワイヤという接続材料間の熱膨張係数の差による歪み又は破損を防止することである。   By the method for connecting the ribbon wire of the present invention, the connection between the metal back electrode layer such as ultrathin Mo on the glass substrate which is difficult to solder and has low mechanical strength (brittle) and the Sn plated copper foil ribbon wire, Reducing the amount of expensive In solder used, reducing production costs, making it simple and robust, and without damaging the metal back electrode layer in the connection step, the glass substrate, the ultrathin metal back electrode layer and It is to prevent distortion or breakage due to a difference in thermal expansion coefficient between connecting materials called ribbon wires.

本発明は、CIS系(CIS、CIGS、CIGSS等を含む総称)薄膜太陽電池モジュール1の出力電極である極薄の金属裏面電極層にリボンワイヤ(扁平出力導線)を接続するCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法に関する。CIS系薄膜太陽電池モジュール1は、複数のCIS系薄膜太陽電池デバイス1’が導電パターンにより電気的に接続されたものであり、CIS系薄膜太陽電池デバイス1’は、図4に示すように、ガラス基板1A上に、アルカリバリア層1B(必要に応じて設けなくてもよい。)、金属裏面電極層(Moが最適。)1C、p型CIS系光吸収層1D、n型高抵抗バッファ層1E、n型透明導電膜窓層1Fの順に高品質薄膜層が順次積層されたサブストレート構造のpnヘテロ接合デバイスである。   The present invention is a CIS-based thin film solar cell in which a ribbon wire (flat output conductor) is connected to an ultrathin metal back electrode layer that is an output electrode of a CIS-based (generic name including CIS, CIGS, CIGSS, etc.) thin-film solar cell module 1. The present invention relates to a method for connecting a ribbon wire of a module. The CIS-based thin-film solar cell module 1 is obtained by electrically connecting a plurality of CIS-based thin-film solar cell devices 1 ′ by a conductive pattern. As shown in FIG. On the glass substrate 1A, an alkali barrier layer 1B (may be omitted if necessary), a metal back electrode layer (Mo is optimal) 1C, a p-type CIS light absorption layer 1D, an n-type high resistance buffer layer 1E, a pn heterojunction device having a substrate structure in which high-quality thin film layers are sequentially laminated in the order of an n-type transparent conductive film window layer 1F.

前記光吸収層1Dは、多元化合物半導体薄膜、特に、I-III-VI2 族カルコパイライト半導体、例えば、2セレン化銅インジウム(CuInSe2) 、2セレン化銅インジウム・ガリウム(CuInGaSe2) 、2セレン化銅ガリウム(CuGaSe2) 、2セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe)2 ) 、2イオウ化銅インジウム(CuInS2 ) 、2イオウ化銅ガリウム(CuGaS2)、2イオウ化銅インジウム・ガリウム(CuInGaS2)、薄膜の2セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe)2)を表面層として有する2セレン化銅インジウム・ガリウム(CuInGaSe2) のようなp型半導体からなる。なお、前記光吸収層1Dは前記のように、CIS、CIGS、CIGSS等からなり、このような光吸収層1Dを構成要件とする薄膜太陽電池モジュールを総称してCIS系薄膜太陽電池モジュールという。 The light absorption layer 1D is a multi-component compound semiconductor thin film, in particular, an I-III-VI group 2 chalcopyrite semiconductor, for example, copper indium selenide (CuInSe 2 ), copper indium selenide (CuInGaSe 2 ), 2 Copper gallium selenide (CuGaSe 2 ), 2 selenium, copper indium sulfide, gallium (Cu (InGa) (SSe) 2 ), copper indium disulfide (CuInS 2 ), copper gallium disulfide (CuGaS 2 ), 2 sulfur copper indium gallium (CuInGaS 2), as 2 selenium sulfur copper indium gallium thin film (Cu (InGa) (SSe) 2) 2 copper indium selenide gallium having a surface layer (CuInGaSe 2) Made of a p-type semiconductor. As described above, the light absorption layer 1D is made of CIS, CIGS, CIGSS, and the like. The thin film solar cell module having such a light absorption layer 1D as a constituent element is collectively referred to as a CIS-based thin film solar cell module.

本発明のCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法の詳細を以下に説明する。図1((a)、(b))及び図2に示すように、前記ガラス基板1Aの端部上の極薄のMo等の金属裏面電極層(出力電極)1Cに、金属導体(例えば、銅)箔にSnメッキしたリボンワイヤ(扁平出力導線)2を接続する際、前記金属裏面電極層1Cの上面(接着面全面)にPb以外の融点の低いハンダ(Inが最適である。)を、予め、予備ハンダ3した後、前記金属裏面電極層1Cに、前記リボンワイヤ2を載せ、このリボンワイヤ2の上に超音波ハンダコテ4を当て、超音波ハンダコテ4により前記予備ハンダ3を溶融させて金属裏面電極層1Cにリボンワイヤ2をハンダ付けする。この方法の場合、ガラス基板1A(厚さ1.8〜2.0mm)、リボンワイヤ2(厚さ約0.16mm)と比較して、金属裏面電極層1C(厚さ100〜2000nm)は極めて薄く、特に、材質がMoのように比較的脆い材質であっても、ガラス基板1A上の極薄の金属裏面電極層1CとSnメッキ銅箔リボンワイヤ2との接続を、低コストで、簡単かつ確実(所定の接着強度を有する)に行うことができると共に、ガラス基板、極薄の金属裏面電極層及びリボンワイヤという接続材料間の熱膨張係数の差による歪み又は破損を防止することができる。なお、前記図1(b)は図1(a)の矢印A方向から見た図であり、図2は図1(a)の矢印B方向から見た図である。   Details of the method for connecting the ribbon wire of the CIS-based thin film solar cell module of the present invention will be described below. As shown in FIG. 1 ((a), (b)) and FIG. 2, a metal conductor (for example, an ultrathin metal back electrode layer (output electrode) 1C such as Mo on the end of the glass substrate 1A is used. When connecting a Sn-plated ribbon wire (flat output conductor) 2 to a (copper) foil, solder having a low melting point other than Pb (In is optimal) is applied to the upper surface (the entire adhesive surface) of the metal back electrode layer 1C. After preliminarily soldering 3 in advance, the ribbon wire 2 is placed on the metal back electrode layer 1 </ b> C, an ultrasonic soldering iron 4 is applied onto the ribbon wire 2, and the preliminary soldering 3 is melted by the ultrasonic soldering iron 4. Then, the ribbon wire 2 is soldered to the metal back electrode layer 1C. In this method, the metal back electrode layer 1C (thickness 100 to 2000 nm) is extremely different from the glass substrate 1A (thickness 1.8 to 2.0 mm) and the ribbon wire 2 (thickness about 0.16 mm). Even if the material is thin, especially a relatively fragile material such as Mo, the connection between the ultrathin metal back electrode layer 1C on the glass substrate 1A and the Sn-plated copper foil ribbon wire 2 can be easily performed at low cost. In addition, it can be performed reliably (having a predetermined adhesive strength), and distortion or breakage due to the difference in thermal expansion coefficient between the glass substrate, the ultrathin metal back electrode layer, and the ribbon wire can be prevented. . 1 (b) is a view seen from the direction of arrow A in FIG. 1 (a), and FIG. 2 is a view seen from the direction of arrow B in FIG. 1 (a).

また、量産品のCIS系薄膜太陽電池モジュールはその接続部分の寸法が比較的長いので、(例えば、30cm〜1.2m程である。)ので、図3に示すように、前記金属裏面電極層1Cの上面のハンダ付け箇所(5cm〜25cm間隔で分散)に、Pb以外の融点の低いハンダ(Inが最適である。)を、予備ハンダ3した後、スポット状(その予備ハンダした箇所)に一定間隔、5cm〜25cm間隔で分散して複数箇所ハンダ付けを行う。その結果、高価なハンダ材料であるInの使用量が削減され、製造コストを減少することができる。なお、前記図3は、図1(a)の矢印B方向から見た図である。   Moreover, since the size of the connection part of the mass-produced CIS-based thin-film solar cell module is relatively long (for example, about 30 cm to 1.2 m), as shown in FIG. Solder with a low melting point other than Pb (In is optimal) is soldered to the soldering location on the upper surface of 1C (dispersed at intervals of 5 cm to 25 cm), and after preliminarily soldering 3, it is spot-shaped (the location where the preliminary soldering is performed) Soldering is performed at a plurality of locations at regular intervals and at intervals of 5 cm to 25 cm. As a result, the amount of In used as an expensive solder material is reduced, and the manufacturing cost can be reduced. Note that FIG. 3 is a view seen from the direction of arrow B in FIG.

前記超音波ハンダコテ4の周波数を、40〜80kHzで、超音波ハンダコテのコテ先温度を、350〜450℃にすることにより、予備ハンダ3であるIn又はInとAgの合金を、ガラス基板1A上に設けたMoからなる金属裏面電極層1Cにハンダ付けできる。コテ先温度が前記温度範囲であっても、コテ先が1箇所に留まっていないので、ガラス基板1A及びその他のCIS系薄膜太陽電池モジュールの構成部材に与える影響は少ない。新しいハンダをコテ先に供給してガラス基板1A上のMoからなる金属裏面電極層1Cとリボンワイヤ2を接着させるとその接着箇所はハンダ層の厚さがやや厚くなり、リボンワイヤ2と予備ハンダ3の接着強度が増加する。このような接着箇所を15cm〜25cm間隔で行うことにより、部分的に接着強度の大きい箇所ができる。その前後の位置では、リボンワイヤ2は金属裏面電極層1Cに接触している状態である。   By setting the frequency of the ultrasonic soldering iron 4 to 40 to 80 kHz and the tip temperature of the ultrasonic soldering iron to 350 to 450 ° C., the alloy of In or In and Ag as the preliminary soldering 3 is formed on the glass substrate 1A. Can be soldered to the metal back electrode layer 1C made of Mo. Even if the iron tip temperature is within the above temperature range, the iron tip does not remain in one place, so there is little influence on the glass substrate 1A and other constituent members of the CIS thin film solar cell module. When new solder is supplied to the iron tip and the metal back electrode layer 1C made of Mo on the glass substrate 1A is bonded to the ribbon wire 2, the thickness of the solder layer becomes slightly thicker at the bonded portion, and the ribbon wire 2 and spare solder are bonded. 3 increases the adhesive strength. By performing such an adhesion location at intervals of 15 cm to 25 cm, a location where the adhesive strength is partially high is formed. At the front and back positions, the ribbon wire 2 is in contact with the metal back electrode layer 1C.

前記一定間隔で分散して複数箇所ハンダ付けを行う接続方法におけるリボンワイヤ(扁平出力導線)2とMoからなる金属裏面電極層1Bとの接着強度試験の測定結果を図5に示す。ハンダ付けした箇所の接着強度は、0.6kg〜1.0kgの範囲であり、満足する接着強度であると考えられる。リボンワイヤ2と金属裏面電極層1Bとの接着強度は、リボンワイヤ2をガラス基板1A(上の金属裏面電極層1B)に対して直角(垂直)に引張り、その先にプルテスターを取り付けておくことにより、引張り強度(接着強度)として確認できる。前記測定結果において、高い数値を得た箇所は、超音波ハンダコテ4の使用により、ハンダが溶融し金属裏面電極層1Bと合金を形成し、これがガラス基板1Aと接着しているため大きな接着強度が得られると推測される。(ハンダが金属裏面電極層1Bを貫いてガラス基板の表面と接着している可能性がある。)   FIG. 5 shows the measurement results of the adhesive strength test between the ribbon wire (flat output conductor) 2 and the metal back electrode layer 1B made of Mo in the connection method in which the soldering is performed at a plurality of locations dispersed at a constant interval. The adhesive strength of the soldered portion is in the range of 0.6 kg to 1.0 kg, which is considered to be satisfactory adhesive strength. The adhesive strength between the ribbon wire 2 and the metal back electrode layer 1B is such that the ribbon wire 2 is pulled perpendicularly (perpendicular) to the glass substrate 1A (the upper metal back electrode layer 1B), and a pull tester is attached to the tip. This can be confirmed as tensile strength (adhesive strength). In the measurement results, a high numerical value is obtained by using the ultrasonic soldering iron 4 so that the solder is melted to form an alloy with the metal back electrode layer 1B, which is bonded to the glass substrate 1A, and thus has a large adhesive strength. Presumed to be obtained. (Solder may penetrate the metal back electrode layer 1B and adhere to the surface of the glass substrate.)

なお、前記測定結果においては、引っ張り強度の単位はkgであるが、これをkPaに換算すると、1kgは98kPa(リボンワイヤの幅2mm、ハンダ付け関与長さ5mmとして、その面積1×10-52 、1kgf=9.8N、)となり、前記測定結果の引っ張り強度0.6〜1kgは十分な引っ張り強度であると認識される。 In the measurement results, the unit of tensile strength is kg, but when converted to kPa, 1 kg is 98 kPa (the ribbon wire has a width of 2 mm and a soldering length of 5 mm, and its area is 1 × 10 −5. m 2 , 1 kgf = 9.8 N), and the tensile strength of 0.6 to 1 kg in the measurement result is recognized as a sufficient tensile strength.

因みに、前記一定間隔で分散して複数箇所ハンダ付けを行う接続方法におけるリボンワイヤ2とガラス基板1A(金属裏面電極層1Bを介さずに)との接着強度試験の測定結果、即ち、ガラス基板1A上のハンダ付け箇所に、図5の場合と同様に、In又はInとAgの合金からなる予備ハンダ3を載置又は溶かし、その上にSnメッキ銅箔リボンワイヤ2を載置し、ハンダ付け箇所のリボンワイヤ2の上から超音波ハンダコテ4を当ててガラス基板1Aにリボンワイヤ2を接着した場合の接着強度の測定結果、を図6に示す。In又はInとAgの合金からなる予備ハンダ3を行い、超音波ハンダコテ4によりハンダ付けすることにより、ハンダ付け箇所では、リボンワイヤ2とガラス基板1Aとの間で0.4〜0.6kgの引っ張り強度が得られ、前記図5に示した引っ張り強度(0.6〜1kg)と比較すると多少小さいがこれだけでも必要程度の引っ張り強度を有するものである。   Incidentally, the measurement result of the adhesive strength test between the ribbon wire 2 and the glass substrate 1A (without the metal back electrode layer 1B) in the connection method in which the soldering is performed at a plurality of positions dispersed at a constant interval, that is, the glass substrate 1A. As in the case of FIG. 5, the preliminary solder 3 made of In or an alloy of In and Ag is placed or melted on the upper soldering place, and the Sn-plated copper foil ribbon wire 2 is placed thereon and soldered. FIG. 6 shows the measurement results of the adhesive strength when the ultrasonic soldering iron 4 is applied from above the ribbon wire 2 and the ribbon wire 2 is bonded to the glass substrate 1A. Preliminary solder 3 made of In or an alloy of In and Ag is performed, and soldering is performed with an ultrasonic soldering iron 4, so that 0.4 to 0.6 kg is applied between the ribbon wire 2 and the glass substrate 1A. Tensile strength is obtained, which is slightly smaller than the tensile strength (0.6 to 1 kg) shown in FIG.

前記のように、ハンダ付け箇所にIn又はInとAgの合金からなる予備ハンダ3を行い、超音波ハンダコテ4により、リボンワイヤ2とMoからなる金属裏面電極層1Bをハンダ付けする本発明の接続方法におけるリボンワイヤ2と金属裏面電極層1Bとの間の接着力(図5参照。)は、ハンダ付け箇所にIn又はInとAgの合金からなる予備ハンダ3を行い、超音波ハンダコテ4により、リボンワイヤ2と金属裏面電極層1Bをハンダ付けした場合のリボンワイヤ2とガラス基板1Aとの間の接着力(図6参照。)と比較して、より大きい引っ張り強度が得られ、ガラス板間にサンドイッチ構造された太陽電池モジュールの場合は勿論、ガラスサンドイッチ構造でない太陽電池モジュールにおいても、耐久性及び電気性能を十分満足することができる。   As described above, the preliminary soldering 3 made of In or an alloy of In and Ag is performed at the soldering place, and the metal back electrode layer 1B made of the ribbon wire 2 and Mo is soldered by the ultrasonic soldering iron 4 according to the present invention. In the method, the adhesive force between the ribbon wire 2 and the metal back electrode layer 1B (see FIG. 5) is obtained by performing preliminary soldering 3 made of an alloy of In or In and Ag at a soldering position, and using an ultrasonic soldering iron 4 Compared with the adhesive force (see FIG. 6) between the ribbon wire 2 and the glass substrate 1A when the ribbon wire 2 and the metal back electrode layer 1B are soldered, a greater tensile strength is obtained, and the gap between the glass plates The solar cell module having a sandwich structure as well as the solar cell module not having a glass sandwich structure sufficiently satisfy the durability and electrical performance. It is possible.

(a)本発明のCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法を示す概略図(平面図)である。 (b)本発明のCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法において、予備ハンダを金属裏面電極層の上面に一様にハンダ付けした場合を示す概略図(正面図:図1(a)の矢印A方向から見た図)である。(A) It is the schematic (plan view) which shows the connection method of the ribbon wire of the CIS type thin film solar cell module of this invention. (B) Schematic (front view: FIG. 1 (a)) showing a case where spare solder is uniformly soldered to the upper surface of the metal back electrode layer in the ribbon wire connecting method of the CIS-based thin film solar cell module of the present invention. (The figure seen from the arrow A direction). 本発明のCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法を示す概略図(側面図:図1(a)の矢印B方向から見た図)である。It is the schematic (side view: the figure seen from the arrow B direction of Fig.1 (a)) which shows the connection method of the ribbon wire of the CIS type thin film solar cell module of this invention. 本発明のCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法において、予備ハンダを金属裏面電極層の上面の超音波ハンダ付けを行う箇所のみにハンダ付けした場合を示す概略図(正面図:図1(a)の矢印A方向から見た図)である。Schematic (front view: FIG. 1) which shows the case where the spare solder is soldered only to the part which ultrasonically solders on the upper surface of a metal back surface electrode layer in the connection method of the ribbon wire of the CIS type thin film solar cell module of this invention. It is the figure seen from the arrow A direction of (a). 本発明のCIS系薄膜太陽電池モジュールを構成するCIS系薄膜太陽電池デバイスの概略構成図(断面図)である。It is a schematic block diagram (sectional drawing) of the CIS type thin film solar cell device which comprises the CIS type thin film solar cell module of this invention. 本発明のCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法により接続されたリボンワイヤとガラス基板上に設置された金属裏面電極層との接着力の測定結果を示す図である。It is a figure which shows the measurement result of the adhesive force of the ribbon wire connected by the connection method of the ribbon wire of the CIS type thin film solar cell module of this invention, and the metal back surface electrode layer installed on the glass substrate. 本発明のCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法により接続されたリボンワイヤとガラス基板との接着力の測定結果を示す図である。It is a figure which shows the measurement result of the adhesive force of the ribbon wire connected by the connection method of the ribbon wire of the CIS type thin film solar cell module of this invention, and a glass substrate. 従来のCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法を示す概略図(側面図:図1(a)の矢印B方向から見た図)である。It is the schematic (side view: the figure seen from the arrow B direction of Fig.1 (a)) which shows the connection method of the ribbon wire of the conventional CIS type thin film solar cell module.

符号の説明Explanation of symbols

1 CIS系薄膜太陽電池モジュール
1’ CIS系薄膜太陽電池デバイス
1A ガラス基板
1B アルカリバリア層
1C 金属裏面電極層
1D p型CIS系光吸収層
1E n型高抵抗バッファ層
1F n型透明導電膜窓層
2 リボンワイヤ(Snメッキ銅箔)
2A 銅箔
2B Snメッキ層
3 予備ハンダ(In又はIn−Ag合金)
4 超音波ハンダコテ
DESCRIPTION OF SYMBOLS 1 CIS type thin film solar cell module 1 'CIS type thin film solar cell device 1A Glass substrate 1B Alkali barrier layer 1C Metal back electrode layer 1D p-type CIS type light absorption layer 1E n-type high resistance buffer layer 1F n-type transparent conductive film window layer 2 Ribbon wire (Sn plated copper foil)
2A Copper foil 2B Sn plating layer 3 Preliminary solder (In or In-Ag alloy)
4 Ultrasonic soldering iron

Claims (4)

ガラス基板上に、金属裏面電極層、p型CIS光吸収層、n型高抵抗バッファ層、n型透明導電膜からなる窓層の順に積層されたCIS系薄膜太陽電池デバイスを複数個、特定の電圧となるようにパターニングにより電気的に直列に接続したCIS系薄膜太陽電池モジュールの出力電極である金属裏面電極層にリボンワイヤ接続するCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法であって、前記ガラス基板端部上の極薄の金属裏面電極層からなる出力電極に金属導体にSnメッキしたリボンワイヤを接続する際、前記出力電極上面にPb以外の融点の低いハンダを、予め、予備ハンダした後、前記出力電極に、前記リボンワイヤを載せ、リボンワイヤの上に超音波ハンダコテを当て、超音波ハンダコテにより前記予備ハンダを溶融させて前記出力電極に前記リボンワイヤをハンダ付けし、前記予備ハンダの材質は、In又はInとAgの合金からなることを特徴とすCIS系薄膜太陽電池モジュールのリボンワイヤの接続方法。 On a glass substrate, a metal back electrode layer, p-type CIS light absorbing layer, n-type high-resistance buffer layer, a plurality of CIS based thin-film solar cell device are laminated in this order on the window layer made of n-type transparent conductive film, the specific This is a method of connecting a ribbon wire of a CIS-based thin-film solar cell module, in which a ribbon wire is connected to a metal back electrode layer that is an output electrode of a CIS-based thin-film solar cell module electrically connected in series by patterning so that a voltage of When a ribbon wire plated with Sn on a metal conductor foil is connected to an output electrode composed of an extremely thin metal back electrode layer on the glass substrate end, solder having a low melting point other than Pb is previously applied to the upper surface of the output electrode. After the preliminary soldering, the ribbon wire is placed on the output electrode, an ultrasonic soldering iron is applied on the ribbon wire, and the preliminary soldering is performed by the ultrasonic soldering iron. The soldered the ribbon wire to the output electrode is melted, the material of the preliminary solder, In or In and ribbon wire connection method of Ag CIS based thin-film solar cell module that characterized by comprising an alloy of . 前記予備ハンダは、前記出力電極のハンダ付けする位置びそれを取り囲む領域にハンダ付けすることを特徴とする請求項に記載方法。 The preliminary solder A method according to claim 1, characterized in that the soldered area surrounding the position Bisore of soldering of the output electrode. 前記超音波ハンダコテの周波数は、40〜80kHzで、超音波ハンダコテのコテ先温度は、350〜450℃であることを特徴とする請求項1又は2に記載方法。 The frequency of the ultrasonic soldering iron is a 40~80KHz, tip temperature of the ultrasonic soldering iron The method of claim 1 or 2, characterized in that it is 350 to 450 ° C.. 前記超音波ハンダコテによハンダ付けは、ハンダ付け対象部の寸法長い場合、スポット状に一定間隔、5cm〜25cm間隔で分散して複数箇所ハンダ付けを行うことを特徴とする請求項1、2又は3に記載方法。 The soldering that by the ultrasonic soldering iron, when the dimensions of the soldering target portion is long, claim 1, characterized in that a plurality of locations soldering distributed at regular intervals, 5Cm~25cm intervals in a spot shape, The method according to 2 or 3.
JP2007124590A 2007-05-09 2007-05-09 Ribbon wire connection method for electronic component module or CIS thin film solar cell module Expired - Fee Related JP5064107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007124590A JP5064107B2 (en) 2007-05-09 2007-05-09 Ribbon wire connection method for electronic component module or CIS thin film solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007124590A JP5064107B2 (en) 2007-05-09 2007-05-09 Ribbon wire connection method for electronic component module or CIS thin film solar cell module

Publications (2)

Publication Number Publication Date
JP2008282919A JP2008282919A (en) 2008-11-20
JP5064107B2 true JP5064107B2 (en) 2012-10-31

Family

ID=40143505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007124590A Expired - Fee Related JP5064107B2 (en) 2007-05-09 2007-05-09 Ribbon wire connection method for electronic component module or CIS thin film solar cell module

Country Status (1)

Country Link
JP (1) JP5064107B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211249A (en) * 2011-07-29 2011-10-20 Sanyo Electric Co Ltd Solar cell module
JP2013084726A (en) * 2011-10-07 2013-05-09 Npc Inc Solar cell bus bar wiring apparatus and wiring method
JP5895220B2 (en) 2012-05-15 2016-03-30 パナソニックIpマネジメント株式会社 Manufacturing method of semiconductor device
CN108838507A (en) * 2018-06-28 2018-11-20 北京铂阳顶荣光伏科技有限公司 A kind of welding method of busbar
JPWO2022138619A1 (en) * 2020-12-21 2022-06-30

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068704A (en) * 1999-08-25 2001-03-16 Kanegafuchi Chem Ind Co Ltd Manufacture of photoelectric conversion device
JP2001102610A (en) * 1999-09-29 2001-04-13 Kanegafuchi Chem Ind Co Ltd Lead wire with solder bump, lead wire-mounting device for solar cell, and method for manufacturing solar cell
JP2002263880A (en) * 2001-03-06 2002-09-17 Hitachi Cable Ltd Pb-free solder, and connection lead wires and electrical components using the same
JP4493238B2 (en) * 2001-06-06 2010-06-30 本田技研工業株式会社 Solar cell modularization method
JP2003142703A (en) * 2001-11-06 2003-05-16 Sony Corp Method for manufacturing integrated solar battery
JP4919614B2 (en) * 2005-04-01 2012-04-18 三菱電機株式会社 Solar cell device and method for manufacturing solar cell device
JP4984431B2 (en) * 2005-05-13 2012-07-25 株式会社カネカ Integrated thin film solar cell and manufacturing method thereof

Also Published As

Publication number Publication date
JP2008282919A (en) 2008-11-20

Similar Documents

Publication Publication Date Title
EP2774173B1 (en) Interdigitated foil interconnect for rear-contact solar cells
JP5159725B2 (en) Solar cell string and solar cell module using the same
JP5629010B2 (en) Improved photovoltaic cell assembly and method
JP3751539B2 (en) Thin film solar cell and manufacturing method thereof
EP2950352A2 (en) Photovoltaic cell interconnect
EP2485266B1 (en) Photoelectric conversion device and manufacturing method for same
US20110146747A1 (en) Solderless back contact solar cell module assembly process
EP2761674B1 (en) Photovoltaic cell interconnect
JP4974301B2 (en) Manufacturing method of solar cell module
JP5064107B2 (en) Ribbon wire connection method for electronic component module or CIS thin film solar cell module
KR20140062028A (en) Solar cell module and solar cell module manufacturing method
KR20140040758A (en) Solar cell module, method for manufacturing solar cell module, and tab wire for thin film solar cells
TWI575760B (en) Wiring material, solar cell module and solar cell module manufacturing method
US20110287568A1 (en) Method of manufacturing thin film solar cell
EP2789019B1 (en) A photovoltaic article comprising a photovoltaic cell with electrical connection elements
WO2022138619A1 (en) Electrode structure of solar cell and method for manufacturing same
WO2022138623A1 (en) Electrode structure for solar cell and manufacturing method therefor
EA046476B1 (en) METHOD FOR SWITCHING PHOTOVOLTAIC CONVERTERS
JP2013012670A (en) Photoelectric conversion module and manufacturing method of the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20081010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R150 Certificate of patent or registration of utility model

Ref document number: 5064107

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees