[go: up one dir, main page]

JP5045177B2 - Mounting method of electronic parts - Google Patents

Mounting method of electronic parts Download PDF

Info

Publication number
JP5045177B2
JP5045177B2 JP2007078053A JP2007078053A JP5045177B2 JP 5045177 B2 JP5045177 B2 JP 5045177B2 JP 2007078053 A JP2007078053 A JP 2007078053A JP 2007078053 A JP2007078053 A JP 2007078053A JP 5045177 B2 JP5045177 B2 JP 5045177B2
Authority
JP
Japan
Prior art keywords
path
acf
electronic component
driver chip
thermocompression bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007078053A
Other languages
Japanese (ja)
Other versions
JP2008243867A (en
Inventor
由幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2007078053A priority Critical patent/JP5045177B2/en
Publication of JP2008243867A publication Critical patent/JP2008243867A/en
Application granted granted Critical
Publication of JP5045177B2 publication Critical patent/JP5045177B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of mounting an electronic component by which an ACF is used electrically to connect an electronic part to a circuit board surely and in high reliability and the electronic part can be also mounted easily thereto. <P>SOLUTION: The ACF tape 2 is conveyed in horizontal direction while a changing station is supported by a pair of supporting rollers 13a and 13b. A heat crimping tool with a driver chip 8 sucked on the end face of a suction head 411 is lowered to the ACF tape 2, hitting the conduction junction surface 81 of the driver chip 8 to the ACF layer 22 of the ACF tape for heating within a range between 45&deg;C and 55&deg;C and pressing within 40-60 kgf/cm<SP>2</SP>for about 4 to 6 seconds, thereby changing an ACF to the conduction junction surface 81 so as to punch out an ACF with almost the same area thereon. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

この発明は、異方性導電接着剤を用いた電子部品の搭載方法に関する。   The present invention relates to a method for mounting an electronic component using an anisotropic conductive adhesive.

従来、ICチップ等の半導体素子を電子回路基板に搭載する際の導通接合材料として、作業性に優れた異方性導電接着フィルム(以下、ACF:Anisotropic Conductive Filmという)が用いられている。このACFは、バインダーとしての熱硬化性樹脂中に平均粒径が5μm程度の導電性粒子を分散混合し、フィルム状に成形したものである。   Conventionally, an anisotropic conductive adhesive film (hereinafter referred to as ACF: Anisotropic Conductive Film) excellent in workability has been used as a conductive bonding material when a semiconductor element such as an IC chip is mounted on an electronic circuit board. This ACF is obtained by dispersing and mixing conductive particles having an average particle diameter of about 5 μm in a thermosetting resin as a binder, and molding the film into a film.

このACFを用いて半導体素子を電子回路基板に搭載する際は、通常、特許文献1に示されるように、電子回路基板上に配置する際の位置ずれを見込んで、半導体素子の導通接合面よりも大面積のACFを前記電子回路基板の搭載位置に配置し、このACFの上から前記半導体素子を載置する方法が行われている。
特開平11−3910号公報
When mounting a semiconductor element on an electronic circuit board using this ACF, normally, as shown in Patent Document 1, in view of misalignment when arranged on the electronic circuit board, In other methods, the ACF having a large area is disposed at the mounting position of the electronic circuit board, and the semiconductor element is mounted on the ACF.
Japanese Patent Laid-Open No. 11-3910

この方法において、半導体素子をその導通接合面よりも大面積のACF上に載置し、その半導体素子を熱圧着ツールで押圧すると、導通接合面から食み出したACFが熱圧着ツールの押圧面に付着し、押圧面と半導体素子の表面との平行度を狂わせ、その結果、半導体素子の熱圧着接合に導通不良等の不具合が発生する。   In this method, when a semiconductor element is placed on an ACF having a larger area than the conductive bonding surface and the semiconductor element is pressed by a thermocompression bonding tool, the ACF protruding from the conductive bonding surface is pressed by the pressing surface of the thermocompression bonding tool. As a result, the parallelism between the pressing surface and the surface of the semiconductor element is disturbed, and as a result, defects such as poor conduction occur in the thermocompression bonding of the semiconductor element.

また、食み出したACFは、充分に加熱されていない為に未硬化状態であり、未硬化のACFは経時的に吸湿し易いため電子回路基板上の配線を腐食させる原因となる。   Further, the protruding ACF is in an uncured state because it is not sufficiently heated, and the uncured ACF is likely to absorb moisture over time, causing corrosion on the wiring on the electronic circuit board.

本発明の目的は、ACFを用いて、電子部品を回路基板に、確実に信頼性良く導通接続して搭載できる電子部品の搭載方法を提供することである。   An object of the present invention is to provide an electronic component mounting method capable of reliably and electrically connecting an electronic component to a circuit board using an ACF.

本発明の請求項1に記載の電子部品の搭載方法は、ベースフィルム上に熱硬化性樹脂中に導電性粒子を分散混合してなる異方性導電接着剤が被着された導通接合用テープを、第1の経路に沿って搬送する工程と、電子部品を、前記第1の経路と平行な第2の経路に沿って搬送する工程と、搭載対象デバイスを、前記第2の経路と平行且つ前記第2の経路を基準として前記第1の経路と相対向する側に設けられた第3の経路に沿って搬送する工程と、熱圧着装置により、前記第2の経路に沿って搬送された前記電子部品を所定の温度に加熱しつつその導通接合面を前記第1の経路に沿って搬送された前記導通接合用テープの前記異方性導電接着剤に所定の圧力で圧接させ、圧接したエリアの前記異方性導電接着剤を前記導通接合面に転移させる工程と、前記熱圧着装置により、前記異方性導電接着剤を前記導通接合面に転移させた電子部品を、前記第3の経路に沿って搬送された搭載対象デバイスの搭載位置に移動させて前記電子部品を前記搭載位置に載置する工程と、を有することを特徴とするものである。 The electronic component mounting method according to claim 1 of the present invention is a conductive bonding tape in which an anisotropic conductive adhesive formed by dispersing and mixing conductive particles in a thermosetting resin is coated on a base film. A step of transporting the electronic component along a first path, a step of transporting the electronic component along a second path parallel to the first path, and a device to be mounted in parallel with the second path. And it is conveyed along the second path by the step of conveying along the third path provided on the side opposite to the first path with the second path as a reference, and the thermocompression bonding apparatus. the electronic component was the pressure contact at a predetermined pressure to the anisotropic conductive adhesive of predetermined while heating to a temperature above its conduction bonding surface a first said conductive bonding tape which is transported along the path of, pressure was thereby was said anisotropic conductive adhesive areas are transferred to the conductive bonding surface And extent, by the thermocompression bonding device, said anisotropic conductive adhesive agent electronic component is transferred to the conductive bonding surface, it is moved to the mounting position of the third mounting target device that has been conveyed along the path of it is characterized in that chromatic and a step of placing the electronic component on the mounting position.

請求項2に記載の電子部品の搭載方法は、請求項1の電子部品の搭載方法において、異方性導電接着剤を前記導通接合面に転移させる工程の、前記電子部品を圧接させる圧力が40〜60kgf/cm2の範囲内に、前記温度が50〜60℃の範囲内に、それぞれ設定されることを特徴とするものである。
請求項3に記載の電子部品の搭載方法は、請求項1または2の電子部品の搭載方法において、前記熱圧着装置は、前記第1の経路とは直角方向に移動可能に設けられ、前記第1の経路から前記第3の経路まで往復移動可能であることを特徴とするものである。
The electronic component mounting method according to claim 2 is the electronic component mounting method according to claim 1, wherein the pressure for pressing the electronic component in the step of transferring the anisotropic conductive adhesive to the conductive joint surface is 40. The temperature is set within a range of ˜60 kgf / cm 2 , and the temperature is set within a range of 50 ° C. to 60 ° C., respectively.
The electronic component mounting method according to claim 3 is the electronic component mounting method according to claim 1 or 2, wherein the thermocompression bonding device is provided to be movable in a direction perpendicular to the first path, and It is possible to reciprocate from one route to the third route.

本発明の電子部品の搭載方法によれば、電子部品を回路基板に、確実、且つ信頼性良く容易に導通接合することができる。   According to the electronic component mounting method of the present invention, the electronic component can be easily and reliably conductively bonded to the circuit board with high reliability.

図1は液晶表示モジュール製造方法における本発明の一実施形態としてのドライバチップ載置工程を示す平面図で、図2(a)〜(c)はそれぞれその要部プロセスにおける動作を段階毎に示す各段階斜視図、図3(a)、(b)はそれぞれ上記要部プロセスにおける更に要部の動作を拡大して段階毎に示す各段階説明図、図4(a)〜(c)はそれぞれ上記載置工程における各作業ステーションを示す平面図である。   FIG. 1 is a plan view showing a driver chip mounting process as an embodiment of the present invention in a liquid crystal display module manufacturing method, and FIGS. 2 (a) to 2 (c) show operations in the main process for each stage. Each stage perspective view, FIGS. 3 (a) and 3 (b) are further explanatory diagrams showing each stage by further enlarging the operation of the principal part in the principal part process, and FIGS. 4 (a) to 4 (c) are respectively. It is a top view which shows each work station in the above-mentioned installation process.

図1において、1はACFテープ2を所定の経路に沿って走行させるテープ搬送装置である。このテープ搬送装置1は、繰出しリール11と巻取りリール12及び一対の支持ローラ13a、13b等を備え、図示しない駆動装置により巻取りリール12が駆動回転され、これに追従回転する繰出しリール11からACFテープ1が繰り出され、一対の支持ローラ13a、13bを経て巻取りリール12により巻き取られる。この場合、ACFテープ2が一定速度で走行するように、巻取りリール12の回転速度が駆動制御されている。なお、一対の支持ローラ13a、13bは、ACFテープ2を弛みなく常に一定の高さで水平に走行させるために設けられている。   In FIG. 1, reference numeral 1 denotes a tape transport device that causes an ACF tape 2 to travel along a predetermined path. The tape transport device 1 includes a supply reel 11, a take-up reel 12, a pair of support rollers 13a and 13b, and the like. The take-up reel 12 is driven and rotated by a drive device (not shown), and the supply reel 11 rotates following the rotation. The ACF tape 1 is fed out and taken up by the take-up reel 12 through a pair of support rollers 13a and 13b. In this case, the rotational speed of the take-up reel 12 is driven and controlled so that the ACF tape 2 travels at a constant speed. The pair of support rollers 13a and 13b are provided to allow the ACF tape 2 to run horizontally at a constant height without slack.

ACFテープ2は、図3(a)、(b)に示されるように、セパレータを兼ねるテフロン(登録商標)製のベースフィルム21の表面に、異方性導電接着剤の表面層(以下、ACF層という)22が被着されている。この異方性導電接着剤は、バインダーとしてのエポキシ樹脂中に平均粒径が5μm程度の金メッキ処理したアクリル樹脂フィラーを導電性粒子として分散混合したものである。   As shown in FIGS. 3A and 3B, the ACF tape 2 has a surface layer of anisotropic conductive adhesive (hereinafter referred to as ACF) on the surface of a Teflon (registered trademark) base film 21 that also serves as a separator. 22) is applied. This anisotropic conductive adhesive is obtained by dispersing and mixing, as conductive particles, an acrylic resin filler subjected to gold plating with an average particle size of about 5 μm in an epoxy resin as a binder.

一対の支持ローラ13a、13bの中間位置には、ACFの転移ステーションが設けられている。この転移ステーションにおいては、図2(a)に示されるように、支持台3が設置されている。図3(a)に示されるように、この支持台3の表面と、支持ローラ13a、13b間を一定の張力で支持され走行するACFテープ2との間には、テープの厚さtの約3倍程度の間隙Dが確保されている。   An ACF transfer station is provided at an intermediate position between the pair of support rollers 13a and 13b. In this transfer station, as shown in FIG. 2 (a), a support base 3 is installed. As shown in FIG. 3 (a), between the surface of the support base 3 and the ACF tape 2 which is supported and travels between the support rollers 13a and 13b with a constant tension, the tape thickness t is approximately equal. A gap D of about three times is secured.

本実施形態の熱圧着装置4は、熱圧着ツール41とこれを昇降移動させるアクチュエータ42、及び熱圧着ツール41をアクチュエータ42を介して保持する保持ブロック43とからなる。熱圧着ツール41は、吸着ヘッド411とツール本体412からなり、図示しない真空吸着機構とヒータが内蔵されている。   The thermocompression bonding apparatus 4 according to this embodiment includes a thermocompression bonding tool 41, an actuator 42 that moves the thermocompression bonding tool 41 up and down, and a holding block 43 that holds the thermocompression bonding tool 41 via the actuator 42. The thermocompression bonding tool 41 includes a suction head 411 and a tool main body 412, and includes a vacuum suction mechanism and a heater (not shown).

上述の熱圧着装置4は、図1に示されるように、ACFテープ2の走行経路とは直角方向に延在設置されたレール5上を往復移動可能に図示しないキャリッジ上に設置されている。また、この熱圧着装置4は、キャリッジに立設された軸44により回転自在に枢支されている。   As shown in FIG. 1, the above-described thermocompression bonding device 4 is installed on a carriage (not shown) so as to be able to reciprocate on a rail 5 extending in a direction perpendicular to the travel path of the ACF tape 2. The thermocompression bonding device 4 is pivotally supported by a shaft 44 standing on the carriage.

ACFテープ2の走行経路と平行に、液晶表示パネル6の搬送ベルト7が延在設置され、これらの間に、ドライバチップ8の搬送ベルト9が延在設置されている。これらの搬送ベルト7、9は、共に、ACFテープ2の走行方向と同じ方向に走行移動され、その動作は図示しない駆動制御装置によって所定の駆動プログラムに従い制御される。   A conveyor belt 7 of the liquid crystal display panel 6 is extended and installed in parallel with the travel path of the ACF tape 2, and a conveyor belt 9 of the driver chip 8 is extended and installed between them. Both of these conveyor belts 7 and 9 travel and move in the same direction as the traveling direction of the ACF tape 2, and their operations are controlled by a drive control device (not shown) according to a predetermined drive program.

液晶表示パネル6の搬送ベルト7は、前記レール5の転写ステーション側とは反対側の先端部とその下方で交差し、そのレール5の先端前方がドライバチップ8の載置ステーションとなる。ドライバチップ8を搭載するために前記載置ステーションに供給される液晶表示パネル6は、搬送ベルト7上の所定位置に等間隔で載置され、所定のインターバルで間欠搬送される。   The transport belt 7 of the liquid crystal display panel 6 intersects with the lower end portion of the rail 5 opposite to the transfer station side below, and the front end of the rail 5 is the mounting station for the driver chip 8. The liquid crystal display panel 6 supplied to the mounting station for mounting the driver chip 8 is placed at a predetermined position on the transport belt 7 at regular intervals and intermittently transported at predetermined intervals.

ドライバチップ8の搬送ベルト9は、前記レール5の下方を走行し、その交差部がドライバチップ8の吸着ステーションとなる。この吸着ステーションに供給されるドライバチップ8も、搬送ベルト9上の所定位置に等間隔で載置され、所定のインターバルで間欠搬送される。   The conveyor belt 9 of the driver chip 8 travels below the rail 5, and the intersection thereof becomes a suction station for the driver chip 8. The driver chips 8 supplied to the suction station are also placed at predetermined intervals on the conveyor belt 9 and are intermittently conveyed at predetermined intervals.

次に、上述のように構成されたドライバチップ載置工程において実施されるチップ載置方法について、説明する。   Next, a chip mounting method implemented in the driver chip mounting step configured as described above will be described.

まず、図4(a)に示すように、熱圧着装置4をその熱圧着ツール41の吸着ヘッド411先端面がチップ吸着ステーションの上方に位置した状態で停止させ、熱圧着ツール41を所定ストローク下降させて吸着ステーションで待機するドライバチップ8をヘッド先端面に吸着した後、熱圧着ツール41を元の位置に上昇させて停止させる。   First, as shown in FIG. 4A, the thermocompression bonding apparatus 4 is stopped in a state where the tip surface of the adsorption head 411 of the thermocompression bonding tool 41 is located above the chip adsorption station, and the thermocompression bonding tool 41 is lowered by a predetermined stroke. Then, after the driver chip 8 waiting at the suction station is sucked to the front end surface of the head, the thermocompression bonding tool 41 is raised to the original position and stopped.

次に、熱圧着装置4を反時計回り方向へ90度回転させた後、レール5上を転写ステーションに向けて走行させ、図2(a)に示されるように、吸着ヘッド411先端面を転写ステーションの上方に位置させて停止させる。   Next, after rotating the thermocompression bonding device 4 by 90 degrees counterclockwise, it travels on the rail 5 toward the transfer station, and the tip surface of the suction head 411 is transferred as shown in FIG. Stop at the top of the station.

この後、熱圧着ツール41を下降させ、図3(a)に示されるようにその吸着ヘッド411先端面に吸着されたドライバチップ8の導通接合面81をACFテープ2のACF層22に当接させ、更に、図3(b)に示されるようにACFテープ2のベースフィルム21裏面を支持台3に密着させる。そして、吸着ヘッド411先端面で重ね合わせたドライバチップ8とACFテープ2を支持台3に所定の圧力で約1〜2秒間押圧する。このときの押圧力は約40〜60kgf/cm2の範囲内が好ましく、その内でも、48〜52kgf/cm2の範囲内の圧力がより好ましい。 Thereafter, the thermocompression bonding tool 41 is lowered, and the conductive bonding surface 81 of the driver chip 8 adsorbed on the tip surface of the adsorption head 411 is brought into contact with the ACF layer 22 of the ACF tape 2 as shown in FIG. Further, the back surface of the base film 21 of the ACF tape 2 is brought into close contact with the support base 3 as shown in FIG. Then, the driver chip 8 and the ACF tape 2 superimposed on the front end surface of the suction head 411 are pressed against the support 3 at a predetermined pressure for about 1 to 2 seconds. Preferably the pressing force in the range of about 40~60kgf / cm 2 at this time, among them, a pressure within the range of 48~52kgf / cm 2 is more preferable.

また、ドライバチップ8は、吸着ヘッド411により吸着し転写ステーションに移動させるまでの間に、熱圧着装置4に内蔵されているヒータにより所定温度に加熱しておく。このドライバチップ8の加熱温度は、40〜60℃の範囲内が好ましく、その内でも45〜55℃の範囲内の温度がより好ましい。   Further, the driver chip 8 is heated to a predetermined temperature by a heater built in the thermocompression bonding apparatus 4 until it is sucked by the suction head 411 and moved to the transfer station. The heating temperature of the driver chip 8 is preferably within a range of 40 to 60 ° C, and more preferably within a range of 45 to 55 ° C.

上述の温度に加熱されたドライバチップ8がACF層22に上述した圧力で約1〜2秒間押圧されることにより、ドライバチップ8の導通接合面81に当接するエリアのACF層22がドライバチップ8と略同温度に加熱されて軟化し、ドライバチップ8の導通接合面81に付着するとともに、その導通接合面81のエッジ82が食い込んだ矩形の溝を形成する。これは、ACFテープ2のチップ押圧部が間隙Dだけ支持台3側へ押し下げられることにより、一対の支持ローラ13a、13b間に張架されているACFテープ2がエッジ82の当接部で折れ曲がり、エッジ82がACF層22により深く食い込むからである。   When the driver chip 8 heated to the above-described temperature is pressed against the ACF layer 22 by the pressure described above for about 1 to 2 seconds, the ACF layer 22 in the area contacting the conductive bonding surface 81 of the driver chip 8 is And is softened by being heated to substantially the same temperature as that, and adheres to the conductive bonding surface 81 of the driver chip 8 and forms a rectangular groove in which the edge 82 of the conductive bonding surface 81 bites. This is because the ACF tape 2 stretched between the pair of support rollers 13a and 13b is bent at the contact portion of the edge 82 when the chip pressing portion of the ACF tape 2 is pushed down toward the support base 3 by the gap D. This is because the edge 82 penetrates deeper into the ACF layer 22.

次に、熱圧着ツール41を、図2(b)及び図3(b)に示す押圧状態から、図2(c)で示すように下降前の元の位置に上昇させる。このとき、ドライバチップ8の導通接合面81が圧接するエリアのACF層22は適度に軟化して導通接合面81に付着し、更にそのチッブ圧接エリア部はエッジ81の食い込みにより形成された矩形溝が形成されており、且つ、ベースフィルム21は離型性に優れた(登録商標)テフロン(登録商標)製フィルムであるから、吸着ヘッド411とともにドライバチップ8が上昇することにより、その導通接合面81に付着している前記矩形溝により区分けされたエリアのACF層22が、他の部分と千切り離されるとともにベースフィルム21から剥離され、ドライバチップ8の導通接合面81に付着したまま上昇する。すなわち、ドライバチップ8の導通接合面81を圧接させたエリアのACF層22を、ACF片221としてベースフィルム21からチップ接合面81に転移させる。   Next, the thermocompression bonding tool 41 is raised from the pressed state shown in FIGS. 2 (b) and 3 (b) to the original position before being lowered as shown in FIG. 2 (c). At this time, the ACF layer 22 in the area where the conductive bonding surface 81 of the driver chip 8 is in pressure contact is moderately softened and adhered to the conductive bonding surface 81, and the chip pressure contact area portion is a rectangular groove formed by the biting of the edge 81. And the base film 21 is a film made of (registered trademark) Teflon (registered trademark) having excellent releasability. Therefore, when the driver chip 8 rises together with the suction head 411, the conductive bonding surface thereof The ACF layer 22 in the area divided by the rectangular groove attached to 81 is separated from the other parts and peeled off from the base film 21, and rises while being attached to the conductive bonding surface 81 of the driver chip 8. That is, the ACF layer 22 in the area where the conductive bonding surface 81 of the driver chip 8 is pressed is transferred from the base film 21 to the chip bonding surface 81 as the ACF piece 221.

次に、熱圧着装置4を、図2(c)に示すACF層22のドライバチップ8への転移完了状態から180度回転させた後、ACF層22を転移付着させたドライバチップ8を吸着したままレール5上を載置ステーション側へ走行移動させ、図4(c)に示す載置ステーション対応位置に停止させる。なお、この段階に至るまで、ドライバチップ8に対する加熱は継続されており、その温度は前述した45〜55℃の範囲内の好適温度に維持されている。   Next, the thermocompression bonding apparatus 4 is rotated 180 degrees from the state where the transfer of the ACF layer 22 to the driver chip 8 shown in FIG. 2C is completed, and then the driver chip 8 to which the ACF layer 22 is transferred and attached is adsorbed. The rail 5 is moved to the placement station side as it is, and stopped at the placement station corresponding position shown in FIG. Until this stage, the heating of the driver chip 8 is continued, and the temperature is maintained at a suitable temperature within the range of 45 to 55 ° C. described above.

この後、熱圧着ツール41を下降させ、載置ステーションに待機している液晶表示パネル6のチップ搭載位置にドライバチップ8を載置する。この際、一方のガラス基板61の他方のガラス基板62から突出させた部分に形成されている配線回路上の所定位置に正確にドライバチップ8が載置されるよう、図示しない画像認識機構に基づきアクチュエータ44を駆動して位置合わせを行いつつ熱圧着ツール41を下降させる。そして、ドライバチップ8に転移され略45〜55℃に加熱されているACF層22をガラス基板61の所定位置に接触させ、前記転移時と略同じ圧力で押圧した後、その吸着を解除して熱圧着ツール41を元の位置に上昇させる。これにより、ドライバチップ8が転移ACF層22を介して液晶表示パネル6の搭載位置に仮圧着状態で正確に載置される。   Thereafter, the thermocompression bonding tool 41 is lowered, and the driver chip 8 is placed at the chip mounting position of the liquid crystal display panel 6 waiting at the mounting station. At this time, based on an image recognition mechanism (not shown) so that the driver chip 8 is accurately placed at a predetermined position on the wiring circuit formed on the portion of the one glass substrate 61 protruding from the other glass substrate 62. The thermocompression bonding tool 41 is lowered while driving the actuator 44 to perform alignment. Then, the ACF layer 22 transferred to the driver chip 8 and heated to about 45 to 55 ° C. is brought into contact with a predetermined position of the glass substrate 61 and pressed with substantially the same pressure as that at the time of transfer, and then the adsorption is released. The thermocompression bonding tool 41 is raised to the original position. As a result, the driver chip 8 is accurately placed on the mounting position of the liquid crystal display panel 6 via the transition ACF layer 22 in a temporarily pressed state.

次に、ドライバチップ8の載置を終えた熱圧着装置4を、反時計回り方向に90度回転させてレール5上を走行させ、元のドライバチップ8の吸着ステーションに対応する位置で停止させる。この後、次順の液晶表示パネルへのドライバチップ載置作業を開始する。   Next, the thermocompression bonding apparatus 4 that has finished mounting the driver chip 8 is rotated 90 degrees counterclockwise, travels on the rail 5, and stops at a position corresponding to the suction station of the original driver chip 8. . Thereafter, the driver chip placement work on the next liquid crystal display panel is started.

なお、ドライバチップ8が載置された液晶表示パネル6は、間欠駆動される搬送ベルト7により下流側の図示しない熱圧着工程へ搬送し、そこで、再度正確に位置合わせした後、前記熱圧着ツール41とは別の熱圧着ツールによってACF層22をドライバチップ8を介し180〜190℃程度の高温に加熱しつつ550〜650kgf/cm2の圧力で5〜8秒間加圧して確実に硬化させ、ドライバチップ8の搭載が完了する。 The liquid crystal display panel 6 on which the driver chip 8 is mounted is transported to a downstream thermocompression bonding process (not shown) by a transport belt 7 that is intermittently driven. The ACF layer 22 is heated to a high temperature of about 180 to 190 ° C. via the driver chip 8 by a thermocompression tool different from 41, and is cured by pressing for 5 to 8 seconds at a pressure of 550 to 650 kgf / cm 2 , The mounting of the driver chip 8 is completed.

以上のように、本実施形態のドライバチップ載置工程においては、連続的に繰り出されるACFテープ2からドライバチップ8の導通接合面81へ型抜き方式でACF層22を転移させた後、そのドライバチップ8を液晶表示パネル6に載置(仮圧着)するから、熱圧着工程における本圧着時に転移させたACF片221を前述した高温且つ高圧の条件で熱圧着した際に、ドライバチップ8の導通接合面81から食み出すACFの量を最小限に抑えることができる。その結果、本圧着時において熱圧着ツールの押圧面に食み出したACFが付着しドライバチップ8全体を均一に押圧できずに導通不良が発生したり、食み出した未硬化状態のACFが吸湿することにより配線が腐食する等の不具合が解消される。   As described above, in the driver chip mounting process of the present embodiment, after the ACF layer 22 is transferred from the continuously fed ACF tape 2 to the conductive bonding surface 81 of the driver chip 8 by the die-cutting method, the driver Since the chip 8 is placed on the liquid crystal display panel 6 (temporary pressure bonding), when the ACF piece 221 transferred during the main pressure bonding in the heat pressure bonding process is heat pressure bonded under the above-described high temperature and high pressure conditions, the driver chip 8 is electrically connected. The amount of ACF that protrudes from the joint surface 81 can be minimized. As a result, the ACF that sticks out to the pressing surface of the thermocompression bonding tool during the main press bonding adheres, and the driver chip 8 cannot be pressed uniformly, resulting in poor conduction, or the uncured ACF that sticks out. Problems such as corrosion of wiring due to moisture absorption are eliminated.

また、熱圧着装置4をレール5上を往復移動させるだけで、ドライバチップ8の吸着、ACFの転移、及びACF付きドライバチップ8の液晶表示パネル6上への載置の3段階の実装作業を実施することができ、少ない工数でドライバチップ8を液晶表示パネルに適正に搭載することが可能となる。 In addition, by simply reciprocating the thermocompression bonding device 4 on the rail 5, three stages of mounting work including adsorption of the driver chip 8, transfer of the ACF, and placement of the driver chip 8 with ACF on the liquid crystal display panel 6 are performed. Therefore, the driver chip 8 can be appropriately mounted on the liquid crystal display panel 6 with less man-hours.

なお、本発明は、上記の実施形態に限定されるものではない。
例えば、上記実施形態においては、ドライバチップ8にACFを転移させた状態でそのまま熱圧着装置4を載置ステーション対応位置に移動させて液晶表示パネル6にドライバチップ8を載置したが、ACFを転移させた後、一旦そのドライバチップをパレットにストックし、そのパレットをドライバチップ搭載(本圧着)工程に移動して液晶表示パネルにドライバチップを別の熱圧着装置により本圧着搭載してもよい。
In addition, this invention is not limited to said embodiment.
For example, in the above embodiment, the ACF is transferred to the driver chip 8, and the thermocompression bonding device 4 is moved to the mounting station corresponding position and the driver chip 8 is mounted on the liquid crystal display panel 6. After the transfer, the driver chip is temporarily stocked on a pallet, and the pallet is moved to the driver chip mounting (main pressing) process, and the driver chip may be mounted on the liquid crystal display panel by another thermo-compression bonding apparatus. .

また、ドライバチップ8にACFを転移させた状態でそのまま熱圧着装置4を載置ステーション対応位置に移動させた際に、ドライバチップ8を載置した後に連続して同じ熱圧着装置でACFを硬化させる本圧着工程を実施してもよい。   Further, when the thermocompression bonding apparatus 4 is moved to the mounting station corresponding position with the ACF transferred to the driver chip 8, the ACF is continuously cured by the same thermocompression bonding apparatus after the driver chip 8 is mounted. You may implement the this crimping | compression-bonding process.

加えて、本発明の電子部品の搭載方法は、液晶表示パネルにドライバチップを搭載する工程に限らず、ACFを用いる工程であれば、他の電子部品の液晶表示パネル以外のデバイスへの搭載工程等に広く適用できることは勿論である。   In addition, the mounting method of the electronic component of the present invention is not limited to the step of mounting the driver chip on the liquid crystal display panel, and the mounting step of other electronic components on a device other than the liquid crystal display panel is a process using ACF. Needless to say, the present invention can be widely applied.

本発明の一実施形態である液晶表示パネルへのドライバチップの載置工程を示す平面図である。It is a top view which shows the mounting process of the driver chip to the liquid crystal display panel which is one Embodiment of this invention. (a)〜(c)は、それぞれ、前記載置工程におけるACF転移動作を段階的に示す各段階毎の部分拡大斜視図である。(A)-(c) is a partial expansion perspective view for every step which shows ACF transfer operation | movement in the said mounting process in steps, respectively. (a)、(b)は、それぞれ、前記ACF転移動作におけるACFの転移作用をより詳細に説明する各段階別説明図である。(A), (b) is explanatory drawing according to each step explaining the transfer effect | action of ACF in the said ACF transfer operation | movement in detail, respectively. (a)〜(c)は、前記載置工程における各作業ステーションを示した平面図である。(A)-(c) is the top view which showed each work station in the above-mentioned installation process.

符号の説明Explanation of symbols

1 テープ搬送装置
11 繰出しリール
12 巻取りリール
13a、13b 支持ローラ
2 ACFテープ
21 ベースフィルム
22 ACF層
3 支持台
4 熱圧着装置
41 熱圧着ツール
411 吸着ヘッド
42 アクチュエータ
43 保持ブロック
5 レール
6 液晶表示パネル
7 搬送ベルト(パネル用)
8 ドライバチップ
81 導通接合面
82 エッジ
9 搬送ベルト(チップ用)
DESCRIPTION OF SYMBOLS 1 Tape conveyance apparatus 11 Feeding reel 12 Take-up reels 13a and 13b Support roller 2 ACF tape 21 Base film 22 ACF layer 3 Support base 4 Thermocompression bonding apparatus 41 Thermocompression bonding tool 411 Adsorption head 42 Actuator 43 Holding block 5 Rail 6 Liquid crystal display panel 7 Conveyor belt (for panel)
8 Driver chip 81 Conductive joint surface 82 Edge 9 Conveying belt (for chip)

Claims (3)

ベースフィルム上に熱硬化性樹脂中に導電性粒子を分散混合してなる異方性導電接着剤が被着された導通接合用テープを、第1の経路に沿って搬送する工程と、
電子部品を、前記第1の経路と平行な第2の経路に沿って搬送する工程と、
搭載対象デバイスを、前記第2の経路と平行且つ前記第2の経路を基準として前記第1の経路と相対向する側に設けられた第3の経路に沿って搬送する工程と、
熱圧着装置により、前記第2の経路に沿って搬送された前記電子部品を所定の温度に加熱しつつその導通接合面を前記第1の経路に沿って搬送された前記導通接合用テープの前記異方性導電接着剤に所定の圧力で圧接させ、圧接したエリアの前記異方性導電接着剤を前記導通接合面に転移させる工程と、
前記熱圧着装置により、前記異方性導電接着剤を前記導通接合面に転移させた電子部品を、前記第3の経路に沿って搬送された搭載対象デバイスの搭載位置に移動させて前記電子部品を前記搭載位置に載置する工程と、
を有することを特徴とする電子部品の搭載方法。
A step of transporting along a first path a conductive bonding tape having an anisotropic conductive adhesive formed by dispersing and mixing conductive particles in a thermosetting resin on a base film;
Transporting electronic components along a second path parallel to the first path;
Transporting the mounting target device along a third path provided on a side parallel to the second path and facing the first path with the second path as a reference;
By thermocompression bonding device, the said second said conductive bonding tape the conductive bonding surfaces while the conveyed the electronic component is heated to a predetermined temperature along the path is conveyed along the first path a step is pressed against a predetermined pressure to the anisotropic conductive adhesive, to transfer the anisotropic conductive adhesive of the pressure contact with the area to the conductive bonding surface,
The electronic component in which the anisotropic conductive adhesive is transferred to the conductive bonding surface by the thermocompression bonding apparatus is moved to the mounting position of the mounting target device transported along the third path. Placing the device at the mounting position;
An electronic component mounting method characterized by comprising:
異方性導電接着剤を前記導通接合面に転移させる工程の、前記電子部品を圧接させる圧力は40〜60kgf/cm2の範囲内に、前記温度は50〜60℃の範囲内に、それぞれ設定されることを特徴とする請求項1に記載の電子部品の搭載方法。 In the step of transferring the anisotropic conductive adhesive to the conductive joint surface, the pressure for pressing the electronic component is set in the range of 40-60 kgf / cm 2 , and the temperature is set in the range of 50-60 ° C. The electronic component mounting method according to claim 1, wherein: 前記熱圧着装置は、前記第1の経路とは直角方向に移動可能に設けられ、前記第1の経路から前記第3の経路まで往復移動可能であることを特徴とする請求項1または2に記載の電子部品の搭載方法。The thermocompression bonding apparatus is provided so as to be movable in a direction perpendicular to the first path, and is reciprocally movable from the first path to the third path. The electronic component mounting method described.
JP2007078053A 2007-03-26 2007-03-26 Mounting method of electronic parts Expired - Fee Related JP5045177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007078053A JP5045177B2 (en) 2007-03-26 2007-03-26 Mounting method of electronic parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007078053A JP5045177B2 (en) 2007-03-26 2007-03-26 Mounting method of electronic parts

Publications (2)

Publication Number Publication Date
JP2008243867A JP2008243867A (en) 2008-10-09
JP5045177B2 true JP5045177B2 (en) 2012-10-10

Family

ID=39914892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007078053A Expired - Fee Related JP5045177B2 (en) 2007-03-26 2007-03-26 Mounting method of electronic parts

Country Status (1)

Country Link
JP (1) JP5045177B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101084967B1 (en) 2009-08-19 2011-11-23 주식회사 탑 엔지니어링 Tape supporting device of coating equipment and coating method using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0837208A (en) * 1994-07-25 1996-02-06 Toshiba Corp Method of mounting semiconductor element and its device
JP2925946B2 (en) * 1994-09-19 1999-07-28 沖電気工業株式会社 Method for mounting semiconductor device using anisotropic conductive film and apparatus therefor

Also Published As

Publication number Publication date
JP2008243867A (en) 2008-10-09

Similar Documents

Publication Publication Date Title
JP4370341B2 (en) ACF pasting device
JP5096835B2 (en) ACF pasting device and flat panel display manufacturing device
JP4453849B2 (en) ACF pasting method
JP4802003B2 (en) Electronic component mounting apparatus and mounting method
JP6528116B2 (en) ACF sticking method and ACF sticking device
JP4664235B2 (en) Component thermocompression bonding apparatus and thermocompression bonding method
JP5662855B2 (en) Printed circuit board manufacturing apparatus and manufacturing method
CN102194721A (en) Assembling device of FPD module
JP5045177B2 (en) Mounting method of electronic parts
JP2008135660A (en) Method of manufacturing display unit and connection device
TWI815370B (en) Electronic parts mounting device
JP3592924B2 (en) IC chip supply method, supply device, and strip-shaped tape-like support used therein
JP2016213287A (en) Bonding device
WO2013141388A1 (en) Device and method for mounting electronic component
JP4595459B2 (en) Adhesive adhesive transfer method
TWI383718B (en) An anisotropic conductive film (ACF) sticking device, a flat panel display (FPD) manufacturing apparatus, and a flat panel display
CN102263043B (en) Assembly device for FPD components
JP3997838B2 (en) Driver IC crimping apparatus and crimping method
JP2009010123A (en) Apparatus for mounting electronic component and method of manufacturing electronic component
JP2003303853A (en) Chip mounting method
TWI834137B (en) Electronic parts mounting device
JP7205896B2 (en) Sticking device and sticking method
JP2009010124A (en) Apparatus for mounting electronic component and method of manufacturing electronic component
JP5249184B2 (en) Flat panel display mounting apparatus and mounting method
JP4579670B2 (en) Parts crimping apparatus and crimping method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees