JP5033553B2 - Emulsification stabilizer - Google Patents
Emulsification stabilizer Download PDFInfo
- Publication number
- JP5033553B2 JP5033553B2 JP2007240471A JP2007240471A JP5033553B2 JP 5033553 B2 JP5033553 B2 JP 5033553B2 JP 2007240471 A JP2007240471 A JP 2007240471A JP 2007240471 A JP2007240471 A JP 2007240471A JP 5033553 B2 JP5033553 B2 JP 5033553B2
- Authority
- JP
- Japan
- Prior art keywords
- starch
- oil
- prototype
- fat
- same
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Grain Derivatives (AREA)
- General Preparation And Processing Of Foods (AREA)
- Jellies, Jams, And Syrups (AREA)
- Cosmetics (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
本発明は、乳化安定剤に関し、特にデンプンから調製されており、油脂分の乳化及びその酸化抑制効果も併せ持つ乳化安定剤に関する。 The present invention relates to an emulsion stabilizer, and more particularly to an emulsion stabilizer that is prepared from starch and has both an emulsification of fats and oils and an oxidation-inhibiting effect thereof.
水と油とを好適に分散させて均一に混和することは乳化と呼ばれ、食品加工業を始め、機械工業、汚水処理等の広汎な分野において利用される。最も簡便な乳化方法は、攪拌である。しかし、時間経過と共に水同士、油同士で会合し分離してしまう。そのため、水と油とを攪拌する場合、適宜のプロペラ・反応容器、ホモジナイザー等を用いて物理的に微細な小滴を形成し、個々の粒子を分散させて油水間の相分離を防いでいる。 Mixing water and oil suitably and mixing them uniformly is called emulsification, and is used in a wide range of fields such as the food processing industry, machine industry, and sewage treatment. The simplest emulsification method is stirring. However, with time, water and oil meet and separate. Therefore, when water and oil are agitated, fine droplets are physically formed using an appropriate propeller / reaction vessel, homogenizer, etc., and individual particles are dispersed to prevent phase separation between the oil and water. .
さらに乳化の効率を高めるため、乳化剤として界面活性剤等の両親媒性物質が添加される。食品添加の用途にあっては、マヨネーズ、ドレッシング、マーガリン、バター等の含油脂製品、さらには、油脂製品を含む生地等にも用いられている。とりわけ、食品添加用途においては、種々のグリセリン脂肪酸エステル、ショ糖脂肪酸エステル等が利用される。加えて、安全志向からできる限り天然物を用いたいとする要望も多く、サポニン、レシチン、アラビアゴムも用いられる。しかしながら、天然物から得られる乳化剤は価格面で割高となりやすい。また、品質面、生産量において常時安定しているとは言い難く、価格変動の影響を常に受けてしまう。 In order to further increase the efficiency of emulsification, an amphiphilic substance such as a surfactant is added as an emulsifier. In food addition applications, it is also used in oil-containing fat products such as mayonnaise, dressing, margarine, butter, and also in doughs containing oil-and-fat products. In particular, various glycerin fatty acid esters, sucrose fatty acid esters and the like are used in food addition applications. In addition, there are many requests to use natural products as much as possible for safety reasons, and saponin, lecithin and gum arabic are also used. However, emulsifiers obtained from natural products tend to be expensive in terms of price. Moreover, it is difficult to say that the quality and production volume are always stable, and it is always affected by price fluctuations.
そこで、低価格であり、供給量の安定したデンプンを用いることが着目されている。糊化や液化を経たデンプンは、油脂分と混合時に油脂分との複合体を形成することが知られている。ところが、糊化や液化したデンプンでは経時と共に老化し、油水の複合体が破壊され、相分離を生じさせてしまう。加えて、糊化のみのデンプンにあっては、粘着性や付着性を発現するものの油脂分との混合時の物理的な妨げとなる。結果として、所望の乳化安定性能は得られていなかった。 Thus, attention has been focused on using starch that is low in price and has a stable supply amount. It is known that starch that has undergone gelatinization or liquefaction forms a complex of oil and fat with the oil and fat when mixed. However, gelatinized or liquefied starch ages with time, destroying the oil-water complex and causing phase separation. In addition, in the case of starch that is only gelatinized, although it exhibits stickiness and adhesion, it becomes a physical hindrance during mixing with fats and oils. As a result, the desired emulsion stabilization performance was not obtained.
このような問題点に対し、オクテニルコハク酸エステル化デンプン等の官能基を付加した化工デンプンを用い対処している(特許文献1参照)。その一方、無水1−オクテニルコハク酸のデンプンに対する使用量規制もあり、万全とはいえない。 Such problems are addressed by using modified starches to which functional groups such as octenyl succinate esterified starch are added (see Patent Document 1). On the other hand, there is also a restriction on the amount of 1-octenyl succinic anhydride used for starch, which is not perfect.
上記の事案に対し、レシチン等の乳化剤を補助する目的から液状化を軽度に留めたデンプン加水分解物を用いることにより、安定した乳化性能を得ていた(特許文献2参照)。特許文献2のデンプン加水分解物は、ブドウ糖当量(DE)7〜30の範囲にあるデキストリンである。ところが、適度なブドウ糖当量に分解したデキストリンのみを用いた場合では、所望の乳化性能を得ることはできない。すなわち、デキストリンは他の乳化剤を補助しているに過ぎなかった。 In order to assist the emulsifier such as lecithin for the above-mentioned case, stable emulsification performance was obtained by using a starch hydrolyzate in which liquefaction was kept lightly (see Patent Document 2). The starch hydrolyzate of patent document 2 is dextrin in the range of glucose equivalent (DE) 7-30. However, when only dextrin decomposed to an appropriate glucose equivalent is used, desired emulsification performance cannot be obtained. That is, dextrins only aided other emulsifiers.
その後も、デンプンの改質化について種々検討が行われている。例えば、デンプンのペースト状物に対する電離放射線(γ線)の照射がある(特許文献3参照)。デンプン粒子に湿熱処理と共に酵素を作用させて中空を形成し、ここに油分を担持させるデンプンの粒子がある(特許文献4参照)。酵素を作用させて中空を形成後に粉砕し、ここに油分を担持させるデンプンの粒子がある(特許文献5参照)。 Since then, various studies have been conducted on starch modification. For example, there is irradiation of ionizing radiation (γ rays) on starch paste (see Patent Document 3). There is a starch particle in which an enzyme is allowed to act on the starch particles together with a heat treatment to form a hollow, and oil is supported therein (see Patent Document 4). After forming a hollow by the action of an enzyme, there are starch particles which are pulverized and carry an oil (see Patent Document 5).
特許文献3のような電離放射線の照射の場合、得られたデンプン誘導体において架橋促進がみられるものの油分と水分の乳化を得ることはできない。また、特許文献4及び5のデンプン粒子の場合にあっては、個々の粒子構造が保持されている用途に限られる。このため、油分と水分の乳化状態を維持したまま広汎な食品添加を検討する場合に不向きである。 In the case of irradiation with ionizing radiation as in Patent Document 3, emulsification of oil and water cannot be obtained although crosslinking acceleration is observed in the obtained starch derivative. Moreover, in the case of the starch particle | grains of patent document 4 and 5, it is restricted to the use with which each particle structure is hold | maintained. For this reason, it is unsuitable when considering extensive food addition while maintaining the emulsified state of oil and water.
上記のとおり、油分と水分の安定化(すなわち油脂の乳化)を検討してきた。その一方、乳化に際しては個々の粒子が細かくなるため、油水間の接触表面積が増す。つまり、油脂は水分中に溶解している酸素による酸化の影響から不可避となる。通常、酸化防止目的からアスコルビン酸、カロテン、トコフェロール等のビタミン類、ジブチルヒドロキシトルエン、ブチルヒドロキシアニソール等が用いられる。さらに、乳化安定と酸化防止の両立を図る安定剤がある(特許文献6参照)。特許文献6の安定剤はマンニトール等の糖アルコールであり、これを油水に添加後、ホモジナイズし乳化している。しかし、糖アルコールは必ずしも十分な乳化性能を発揮できていない。従って、乳化と油脂の酸化防止を好適に兼具する素材は得られていなかった。
デンプンは低廉に入手可能であり、保存性に優れ、しかも安全面においては周知である。そこで、発明者らは、上記背景技術の知見を踏まえデンプンには改良の余地があることを確信して、引き続きデンプンに着目し鋭意研究を重ねた。すると、発明者らは、超音波照射を伴ったデンプン糊化物の適度な分散物が、油分・水分間における乳化作用に非常に優れていることを発見した。さらに、同分散物が油脂の酸化劣化の抑制に良好であることも発見した。 Starch is available at low cost, has excellent storage stability, and is well known in terms of safety. Therefore, the inventors have been convinced that there is room for improvement based on the knowledge of the background art described above, and have continued to intensively study focusing on starch. Then, the inventors discovered that an appropriate dispersion of starch gelatinized product accompanied by ultrasonic irradiation is very excellent in emulsifying action in oil and water. Furthermore, it has also been found that the dispersion is good for suppressing oxidative degradation of fats and oils.
本発明は前記の点に鑑みなされたものであり、食品としての安全性が確立され調達容易なデンプンを原料として、良好な乳化安定性を発揮すると共に広汎な添加目的に利用可能であり、さらに油脂分の酸化抑制効果も発揮しうるデンプン由来の乳化安定剤を提供する。 The present invention has been made in view of the above points, and is based on starch that has been established as a food safety and can be procured easily, exhibits good emulsification stability and can be used for a wide range of addition purposes. Provided is an emulsion stabilizer derived from starch that can also exert an effect of inhibiting oxidation of fats and oils.
すなわち、請求項1の発明は、油脂含有組成物のための乳化安定剤であって、原料デンプンを溶解糊化しこれに超音波を照射して数平均分子量(M n )を40×10 4 〜94×10 4 としたデンプン分散物からなることを特徴とする乳化安定剤に係る。 That is, the invention of claim 1 is an emulsification stabilizer for an oil-and-fat-containing composition, wherein raw material starch is dissolved and gelatinized, and this is irradiated with ultrasonic waves to give a number average molecular weight (M n ) of 40 × 10 4 to The present invention relates to an emulsion stabilizer comprising a starch dispersion of 94 × 10 4 .
請求項2の発明は、前記デンプン分散物が超音波照射した液状物を乾燥して得られた乾燥物である請求項1に記載の乳化安定剤に係る。 The invention according to claim 2 relates to the emulsion stabilizer according to claim 1, wherein the starch dispersion is a dried product obtained by drying a liquid material irradiated with ultrasonic waves.
請求項3の発明は、前記原料デンプンがワキシーコーンスターチを主原料とする請求項1又は2に記載の乳化安定剤に係る。 Invention of Claim 3 concerns on the emulsion stabilizer of Claim 1 or 2 in which the said raw material starch uses waxy corn starch as a main raw material.
請求項4の発明は、前記原料デンプンがコーンスターチを主原料とする請求項1又は2に記載の乳化安定剤に係る。 Invention of Claim 4 concerns on the emulsion stabilizer of Claim 1 or 2 in which the said raw material starch uses corn starch as a main raw material.
請求項1の発明に係る乳化安定剤によると、油脂含有組成物のための乳化安定剤であって、原料デンプンを溶解糊化しこれに超音波を照射して数平均分子量(M n )を40×10 4 〜94×10 4 としたデンプン分散物からなるため、調達容易なデンプンを原料としながらも、デキストリンよりも良好な乳化安定性を得ることができる。また、化工デンプンのように化学的処理も必要としない。さらには油脂分の酸化抑制効果も発揮することが可能な乳化安定剤を得ることができる。 According to the emulsion stabilizer according to the invention of claim 1, it is an emulsion stabilizer for an oil-and-fat-containing composition, wherein raw material starch is dissolved and gelatinized, and this is irradiated with ultrasonic waves to give a number average molecular weight (M n ) of 40. since consisting × 10 4 ~94 × 10 4 and starch dispersion, procurement easier starch while as a raw material, it is possible to obtain a good emulsion stability than dextrin. In addition, no chemical treatment is required unlike chemical starch. Furthermore, the emulsion stabilizer which can also exhibit the oxidation inhibitory effect of fats and oils can be obtained.
請求項2の発明に係る乳化安定剤によると、請求項1の発明において、前記デンプン分散物が超音波照射した液状物を乾燥して得られた乾燥物であるため、乳化安定剤としての防腐や保存、取り扱いやすさが向上する。 According to the emulsion stabilizer according to the invention of claim 2, in the invention of claim 1, since the starch dispersion is a dried product obtained by drying a liquid material irradiated with ultrasonic waves, preservative as an emulsion stabilizer And storage and handling are improved.
請求項3の発明に係る乳化安定剤によると、請求項1又は2の発明において、前記原料デンプンがワキシーコーンスターチを主原料とするため、糊化時の安定性に優れ、容易に安定した乳化作用を得ることができる。 According to the emulsion stabilizer according to the invention of claim 3, in the invention of claim 1 or 2, since the raw material starch uses waxy corn starch as the main raw material, it has excellent stability at the time of gelatinization and easily and stably emulsifies. Can be obtained.
請求項4の発明に係る乳化安定剤によると、請求項1又は2の発明において、前記原料デンプンがコーンスターチを主原料とするため、糊化時の安定性に優れ、容易に安定した乳化作用を得ることができることに加えて、安価に原料調達が可能である。 According to the emulsion stabilizer according to the invention of claim 4, in the invention of claim 1 or 2, since the raw material starch is corn starch as the main raw material, it has excellent stability at the time of gelatinization and has an easily stable emulsifying action. In addition to being obtainable, raw materials can be procured at low cost.
以下添付の図面に基づきこの発明の好適な実施形態を説明する。
図1は第1実施形態の乳化安定剤の概略工程図、図2は第2実施形態の乳化安定剤の概略工程図である。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a schematic process diagram of the emulsion stabilizer of the first embodiment, and FIG. 2 is a schematic process diagram of the emulsion stabilizer of the second embodiment.
本発明の乳化安定剤は、請求項1に規定されるように、油脂含有組成物に添加されて、当該組成物中の油脂分と水分との間の乳化を促進する安定剤である。併せて、油脂分が水分中に溶解する酸素により酸化劣化することも抑制する酸化抑制能力も有する安定剤である。 The emulsion stabilizer of the present invention is a stabilizer that is added to an oil-and-fat-containing composition and promotes emulsification between the oil-and-fat content and moisture in the composition as defined in claim 1. In addition, it is a stabilizer that also has an ability to inhibit oxidation of oils and fats and also suppresses oxidative degradation due to oxygen dissolved in water.
ここで油脂分とは、酪酸、カプリン酸、ラウリン酸、パルミチン酸、ステアリン酸、オレイン酸、リノール酸、α−リノレン酸、アラキドン酸、ドコサヘキサエン酸、エイコサペンタエン酸等の脂肪酸(飽和脂肪酸、不飽和脂肪酸)を示し、列記の脂肪酸を含んだトウモロコシ油、大豆油、菜種油、オリーブ油、ごま油、亜麻仁油、綿実油、紅花油、ひまわり油、しそ油、落花生油、やし油、魚油等の油類、ラード、ヘット、乳脂等の脂類である。この他、各種のトリアシルグリセロール、ジアシルグリセロール、モノアシルグリセロール類、ろう(ワックス)に加え、ホスファチジルコリン等のリン脂質、テルペン類、ステロール類も含めることができる。 The fats and oils are fatty acids such as butyric acid, capric acid, lauric acid, palmitic acid, stearic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid, docosahexaenoic acid, eicosapentaenoic acid, etc. Fatty acids), and oils such as corn oil, soybean oil, rapeseed oil, olive oil, sesame oil, linseed oil, cottonseed oil, safflower oil, sunflower oil, perilla oil, peanut oil, palm oil, fish oil, Fats such as lard, het, and milk fat. In addition, in addition to various triacylglycerols, diacylglycerols, monoacylglycerols, waxes, phospholipids such as phosphatidylcholine, terpenes, and sterols can also be included.
油脂含有組成物とは、列記の油脂分を含有する食品、飲料、化粧品、医薬品、食品添加物等が該当する。この油脂含有組成物には、「水分中に油脂分が存在(例えばドレッシング等)」または「油脂分中に水分が存在(例えばマーガリン等)」のいずれの組成形態も含む。これに加え、機械用の洗浄油、潤滑油、切削油、エンジンオイル等の各種工業油も該当する。 The oil-and-fat-containing composition corresponds to foods, beverages, cosmetics, pharmaceuticals, food additives and the like containing the listed fats and oils. The oil-and-fat-containing composition includes any composition form of “existence of oil and fat in moisture (for example, dressing and the like)” or “existence of moisture in oil and fat (for example, margarine and the like)”. In addition, various industrial oils such as machine cleaning oils, lubricating oils, cutting oils, engine oils, and the like are applicable.
図1の概略工程図を用い請求項1の発明である第1実施形態の乳化安定剤を説明する。乳化安定剤は安価であり調達容易なデンプンを出発原料とする。原料デンプンは、いったん水等の水分に分散後、加熱等により適度にデンプン結晶中に水分子が入り込んだ状態、すなわち糊化される(S11)。次に、糊化したデンプン溶液に対して超音波が照射され、物理的なエネルギーが加わりデンプン分子の低分子量化が促進する(S12)。こうして、超音波照射により適度に低分子量化したデンプン分子を水等に分散させている液状物(デンプン分散物)が第1実施形態の乳化安定剤(P1)である。 The emulsification stabilizer of 1st Embodiment which is invention of Claim 1 is demonstrated using the schematic process drawing of FIG. Emulsification stabilizers are inexpensive and easily procured from starch. The raw material starch is once dispersed in water such as water, and is then gelatinized in a state where water molecules have entered the starch crystals appropriately by heating or the like (S11). Next, the gelatinized starch solution is irradiated with ultrasonic waves, and physical energy is applied to promote the reduction of the molecular weight of starch molecules (S12). Thus, the liquid substance (starch dispersion) in which starch molecules moderately reduced in molecular weight by ultrasonic irradiation are dispersed in water or the like is the emulsion stabilizer (P1) of the first embodiment.
さらに、各工程の詳細を述べる。糊化(S11)において、デンプン糊化時の粘度は、デンプンの種類、添加水分量、乳化安定性能をはじめ、設備面等より好適に勘案される。たいてい、デンプンは0.2〜40Pa・sの粘度範囲内に調製される。特に、工程間の流動性等が考慮されるため、デンプンは0.2〜4Pa・sの粘度範囲内に調製されることが好ましい。 Further, details of each process will be described. In gelatinization (S11), the viscosity at the time of starch gelatinization is preferably taken into consideration from the viewpoint of equipment, including the type of starch, the amount of added water, and the emulsion stability. Mostly starches are prepared in the viscosity range of 0.2 to 40 Pa · s. In particular, since flowability between processes is taken into consideration, starch is preferably prepared within a viscosity range of 0.2 to 4 Pa · s.
原料デンプンを溶解する場合、作業効率の面から温水、熱水が用いられる。加えて、製品となる乳化安定剤の添加用途に合わせて、水以外に塩水、糖蜜水、調味料を溶解させた溶液、スープ(ブイヨン)、出汁、たれ、つゆ等にデンプンを溶解させて、呈味のデンプン糊化物とすることも可能である。この場合、添加対象となる食材の水分希釈が回避される。 When dissolving raw material starch, warm water and hot water are used from the viewpoint of work efficiency. In addition, according to the use of the emulsion stabilizer to be the product, in addition to water, dissolve starch in salt water, molasses water, a solution in which seasoning is dissolved, soup (bouillon), soup, sauce, sauce, etc. It is also possible to obtain a starch starch paste. In this case, moisture dilution of the food material to be added is avoided.
超音波照射(S12)において、照射する超音波は、20kHz〜1MHzの一般的な周波数であり、超音波発振器の出力も100〜2000Wの適宜である。極端に低い周波数の場合、超音波照射に伴う振動、衝撃等のエネルギーは低くなり、デンプンのゲル状化には寄与しない。著しく高い周波数の場合、過度にデンプンが液状化して低分子量化が進みすぎ、乳化の安定性が確保されないおそれがあり得る。なお、照射時間は周波数、出力、最終的な粘度等により総合的に規定される。 In the ultrasonic irradiation (S12), the ultrasonic wave to be irradiated has a general frequency of 20 kHz to 1 MHz, and the output of the ultrasonic oscillator is also appropriately 100 to 2000 W. In the case of an extremely low frequency, energy such as vibration and impact associated with ultrasonic irradiation is low and does not contribute to the gelation of starch. When the frequency is extremely high, starch may be excessively liquefied and the molecular weight may be lowered too much, and the stability of emulsification may not be ensured. The irradiation time is comprehensively defined by the frequency, output, final viscosity, and the like.
超音波照射に用いる処理槽、超音波振動子、超音波発振器等は、生産規模や処理能力等を勘案して適切に選択される。デンプン糊化物に対する超音波照射は、逐次回分式あるいは連続式のいずれであっても良い。 A treatment tank, an ultrasonic vibrator, an ultrasonic oscillator, and the like used for ultrasonic irradiation are appropriately selected in consideration of a production scale, a processing capability, and the like. The ultrasonic irradiation with respect to the starch gelatinized material may be either a sequential batch method or a continuous method.
続いて図2の概略工程図を用い請求項2の発明である第2実施形態の乳化安定剤を説明する。第1実施形態の場合と同様に、原料デンプンは、いったん水等の水分に分散後、加熱等により適度にデンプン結晶中に水分子が入り込んだ状態、すなわち糊化される(S21)。次に、糊化したデンプン溶液に対して超音波が照射され、物理的なエネルギーが加わりデンプン分子の低分子量化が促進する(S22)。超音波照射により低分子量化されたデンプン分子を水等に分散させている液状物(デンプン分散物)が乾燥され、乾燥物に加工される(S23)。この乾燥物が第2実施形態の乳化安定剤(P2)である。溶解・糊化(S21)、超音波照射(S22)は、第1実施形態の乳化安定剤(P1)にて詳述した装置、手法と同様であるため、その説明を省略する。 Next, the emulsification stabilizer of the second embodiment which is the invention of claim 2 will be described using the schematic process diagram of FIG. As in the case of the first embodiment, the raw starch is once dispersed in moisture such as water, and is then gelatinized by a state in which water molecules have appropriately entered starch crystals by heating or the like (S21). Next, the gelatinized starch solution is irradiated with ultrasonic waves, and physical energy is added to promote the reduction of the molecular weight of starch molecules (S22). A liquid material (starch dispersion) in which starch molecules whose molecular weight has been reduced by ultrasonic irradiation is dispersed in water or the like is dried and processed into a dried product (S23). This dried product is the emulsion stabilizer (P2) of the second embodiment. Since dissolution / gelatinization (S21) and ultrasonic irradiation (S22) are the same as the apparatus and method described in detail in the emulsification stabilizer (P1) of the first embodiment, description thereof is omitted.
乾燥(S23)においては、凍結乾燥、真空ドラムドライヤによる乾燥、噴霧乾燥(スプレードライ)等が用いられる。乾燥することにより、防腐や保存、取り扱いやすさ等の利便性が向上する。デンプン由来の乳化安定剤は、もとより呈味や風味維持が所望されていないため、量産性に優れた噴霧乾燥が用いられる。乾燥物の形状は、粉末状あるいはフレークのような不定形状等、限定されない。なお、油分・水分間への拡散性能の観点から、粉末状であることが好ましく、必要に応じて粒径の分級が行われる。 In the drying (S23), freeze drying, drying with a vacuum drum dryer, spray drying (spray drying), or the like is used. By drying, convenience such as antiseptic, storage, and ease of handling is improved. Since starch-derived emulsion stabilizers are not desired to maintain taste and flavor, spray drying with excellent mass productivity is used. The shape of the dried product is not limited, such as powder or an indefinite shape such as flakes. In addition, it is preferable that it is a powder form from a viewpoint of the spreading | diffusion performance to an oil component / water component, and a particle size classification is performed as needed.
第2実施形態の原料デンプンの糊化に際し、水以外の塩水や調味料液を用いるならば、呈味を有するデンプン分散物の乾燥品が得られる。このような乾燥物は、食品添加用途として、食材の味を薄めることがなくなり、食品全体としての味のバランスを保つ上で好ましい。ただし、調味料液にデンプン分子を分散させている場合、風味の減退を避けるため、真空ドラムドライヤ等を用いることが好ましい。 In the gelatinization of the raw material starch of the second embodiment, if salt water other than water or a seasoning liquid is used, a dried product of a starch dispersion having a taste can be obtained. Such a dried product is preferable for maintaining the balance of the taste of the whole food product because it does not diminish the taste of the food material for use as a food additive. However, when starch molecules are dispersed in the seasoning liquid, it is preferable to use a vacuum drum dryer or the like in order to avoid a decrease in flavor.
これまでに述べた乳化安定剤の原料となる原料デンプンは、トウモロコシ、コムギ、オオムギ、ライムギ、コメ、サツマイモ(甘藷デンプン)、ジャガイモ(馬鈴薯デンプン)、エンドウ、緑豆、タピオカ等に由来する。通常、アミロペクチン量が高いほど糊化後に沈澱や固化を生じにくい傾向にあると考えられるため、請求項3の発明に規定するように、この原料デンプンには、ワキシーコーンスターチを主原料として用いられる。ワキシーコーンスターチは、ほぼ全量アミロペクチンから構成される。これに加えて、後述の実施例にも示され、請求項4の発明に規定するように、原料デンプンには、コーンスターチを主原料として用いることができる。コーンスターチを用いた場合、ワキシーコーンスターチと比較して非常に良好な乳化安定性能を得ることができる(実施例参照)。さらに、安価に調達可能であるため製造原価を抑えることができる。 The raw material starch used as the raw material of the emulsion stabilizer described so far is derived from corn, wheat, barley, rye, rice, sweet potato (sweet starch), potato (potato starch), pea, mung bean, tapioca and the like. Usually, the higher the amount of amylopectin, the more likely it is that precipitation and solidification tend not to occur after gelatinization. Therefore, as specified in the invention of claim 3, waxy corn starch is used as the main raw material for this raw material starch . Waxy corn starch is composed almost entirely of amylopectin. In addition to this, corn starch can be used as the main raw material for the raw starch , as shown in the examples described later and as defined in the invention of claim 4. When corn starch is used, very good emulsification stability can be obtained as compared to waxy corn starch (see Examples). Furthermore, since it can be procured at a low cost, manufacturing costs can be reduced.
デンプン由来の乳化安定剤の製造において、作業の簡便さから通常1種類の原料デンプン(ワキシーコーンスターチ、あるいはコーンスターチのみ)を適度に制御しながら超音波照射することにより得られる。さらには、原料デンプンを別々に超音波照射して分散し、予め異なるデンプン分散物同士を事後的に所望の割合で混合して乳化安定剤を調製することもできる。むろん、原料デンプンの超音波照射に当たり、単一種類のデンプンを異なる照射量毎に調製して事後混合する方法や、複数種類のデンプンを異なる照射量毎に調製して事後混合する方法等、適宜に選択できる。この方法の利点は次のとおりである。例えば、原料デンプンを調達するに当たり、原料の収穫地、収穫時期、収穫年等の環境要因による品質の変動がありうる。そこで、事後的にデンプン分散物同士を混ぜ合わせることにより、極力品質を安定させることができる。 In the production of an emulsion stabilizer derived from starch, it is usually obtained by irradiating ultrasonically while appropriately controlling one kind of raw material starch (waxy corn starch or corn starch only) for ease of work. Furthermore, it is also possible to prepare the emulsion stabilizer by dispersing raw starches separately by ultrasonic irradiation and mixing different starch dispersions at a desired ratio afterwards. Of course, when irradiating raw material starch with ultrasound, a single type of starch is prepared for each different dose and post-mixed, or multiple types of starch are prepared for different doses and post-mixed, etc. Can be selected. The advantages of this method are as follows. For example, in the procurement of raw material starch, there may be fluctuations in quality due to environmental factors such as raw material harvesting place, harvest time, and harvest year. Therefore, the quality can be stabilized as much as possible by mixing the starch dispersions afterwards.
後述の実施例に開示するとおり原料デンプンを溶解糊化して超音波を照射したデンプン分散物によって、油脂分と水分との乳化作用は認められる。しかし、超音波照射を経たデンプン分散物による乳化に関する作用機構の詳細は現時点で不明である。発明者らは、当該作用機構として次の機構を推定している。一般的に糊化したデンプンにおいては、膨潤することによりデンプン結晶を構成する糖鎖間に水分子が侵入し、水分子が抱きかかえられたネットワーク状の高分子構造を形成している。そのため、デンプン糊に見られる特有の付着性や弾力性を発現している。糊化したデンプンに対し超音波が照射された場合、前記のネットワーク状の高分子構造が適度に破壊される。この結果、水との親和性を維持したまま液状化する。同時に、デンプンの高分子構造が適度に維持されていることから、疎水部分(親油性部分)も保存される。つまり、水分と油分の双方への親和性を併存させることができるものと考えることができる。 As disclosed in the examples below, the emulsifying action of fats and oils and moisture is recognized by the starch dispersion obtained by dissolving and gelatinizing the raw starch and irradiating with ultrasonic waves. However, the details of the mechanism of action relating to emulsification by the starch dispersion that has undergone ultrasonic irradiation are currently unknown. The inventors have estimated the following mechanism as the mechanism of action. In general, gelatinized starch swells to allow water molecules to enter between sugar chains constituting starch crystals, thereby forming a network-like polymer structure in which water molecules are held. Therefore, it exhibits the unique adhesion and elasticity found in starch paste. When the gelatinized starch is irradiated with ultrasonic waves, the network-like polymer structure is appropriately destroyed. As a result, it liquefies while maintaining affinity with water. At the same time, the hydrophobic part (lipophilic part) is also preserved because the polymer structure of starch is moderately maintained. That is, it can be considered that the affinity for both moisture and oil can coexist.
また、背景技術において開示したように、水分と油脂分とを攪拌して乳化させた場合、水分中に溶解している酸素やラジカル種によって油脂分は酸化され、劣化することが知られている。これは二重結合を含む不飽和脂肪酸ほど顕著である。特に、乳化に伴って油脂分は細粒化し、水分と油脂分との接触表面積は増大するため、油脂分の酸化の影響は決して無視できない。既述のとおり、本発明として開示する超音波照射を経たデンプンは、乳化安定剤としての機能を有する。その後、発明者らは、水分、油脂分、デンプン由来の乳化安定剤の経時変化を追跡する中において、超音波照射を経たデンプンは混入された油脂分の酸化劣化の抑制効果も発見した(後記実施例参照)。 Moreover, as disclosed in the background art, when water and fats and oils are stirred and emulsified, it is known that fats and oils are oxidized and deteriorated by oxygen and radical species dissolved in the water. . This is more pronounced for unsaturated fatty acids containing double bonds. In particular, the fat and oil content becomes finer with emulsification, and the contact surface area between the water and the fat and oil increases, so the influence of oxidation of the fat and oil cannot be ignored. As described above, the starch that has undergone ultrasonic irradiation disclosed as the present invention has a function as an emulsion stabilizer. After that, the inventors discovered that the starch that has undergone ultrasonic irradiation also has the effect of suppressing the oxidative deterioration of the mixed fat and oil while tracking changes over time in moisture, fat and oil, and starch-derived emulsion stabilizer (see below). See Examples).
一方、超音波処理自体が油脂分の乳化に多用されていることから、予めデンプンと油脂分とを混合して超音波処理を行い、乳化することも可能である。ただし、本発明におけるデンプンの酸化抑制効果は超音波処理後のデンプンに発現することが確認されている。このため、予めデンプンと油脂分を混合した超音波処理の場合には効果が薄く、逆に強力な超音波処理により油脂分の酸化劣化が生じやすい点に留意すべきである。従って、デンプンを単独、または劣化を生じにくい素材のみを混和して超音波処理を行った後に油脂分と混和を行うことが望ましい。 On the other hand, since the ultrasonic treatment itself is frequently used for emulsification of fats and oils, it is also possible to preliminarily mix starch and fats and carry out ultrasonic treatment to emulsify. However, it has been confirmed that the oxidation inhibition effect of starch in the present invention is expressed in starch after ultrasonic treatment. For this reason, it should be noted that in the case of ultrasonic treatment in which starch and fats and oils are mixed in advance, the effect is weak, and conversely, oxidative deterioration of fats and oils is likely to occur due to strong ultrasonic treatment. Therefore, it is desirable to mix with fats and oils after sonicating by mixing starch alone or a material that hardly causes deterioration.
本発明のデンプン由来の乳化安定剤に起因する油脂分の酸化劣化の抑制効果は、現状明らかとはされていない。この作用についても発明者らは次のとおり考える。前述の乳化の作用機構と同様に、糊化したデンプンに対する超音波照射により、デンプンの高分子構造が適度に維持され、疎水部分(親油性部分)も保存される。この場合の水分と油分の双方への親和性に伴い、油脂分の疎水部分がデンプンにより保護され、油脂分の疎水部分と水分との接触が低減されるものと考える。こうして、油脂分の疎水部分が被る酸化劣化がより抑制される。 The suppression effect of oxidative degradation of fats and oils resulting from the starch-derived emulsion stabilizer of the present invention has not been clarified at present. The inventors consider this action as follows. Similar to the above-described mechanism of emulsification, the polymer structure of starch is moderately maintained and the hydrophobic part (lipophilic part) is preserved by ultrasonic irradiation of gelatinized starch. In connection with the affinity for both moisture and oil in this case, the hydrophobic portion of the fat and oil is protected by starch, and the contact between the hydrophobic portion of the fat and oil and the moisture is reduced. In this way, the oxidative deterioration which the hydrophobic part of fats and oils suffers is further suppressed.
従って、本発明のデンプン由来の乳化安定剤にあっては、安定した乳化性能に加えて酸化抑制能力も兼ね備えるため、水分と油脂分とを乳化させた食品、飲料、医薬品、化粧品、食品添加物等に好適に用いられる。特に、従前のデンプン(化工デンプン)やデキストリン等のように他の乳化剤との併用としなくとも、単独での使用において十分な乳化安定性能を発現しうる。ゆえに、水分と油脂分のみからなる単純な組成物の場合であっても有効である。具体的に、食品、飲料の分野においては、マヨネーズ、ドレッシング、スープ、ルー、クリーム、マーガリン等に添加される他、これらから加工される食品にも当然に含まれる。医薬品、化粧品の分野においては、外用薬としての乳液、または、薬剤を担持したマイクロカプセルを製造する際にも有効である。この他、微生物を用いる工業用油の廃油処理分野においても乳化剤となるため有益である。自明ながら、デンプンは天然物であるため、環境負荷が極めて少なく、デンプンの乳化安定剤自体も栄養分となる利点もある。 Therefore, in the emulsion-derived emulsion stabilizer of the present invention, in addition to stable emulsification performance, it also has an oxidation-inhibiting ability. It is used suitably for etc. In particular, even if it is not used in combination with other emulsifiers such as conventional starch (modified starch) or dextrin, sufficient emulsification stability can be exhibited when used alone. Therefore, it is effective even in the case of a simple composition consisting only of moisture and fats and oils. Specifically, in the field of foods and beverages, in addition to being added to mayonnaise, dressing, soup, roux, cream, margarine and the like, it is naturally included in food processed from these. In the field of pharmaceuticals and cosmetics, it is also effective when producing emulsions as external preparations or microcapsules carrying a drug. In addition, since it becomes an emulsifier also in the field of industrial oil waste oil treatment using microorganisms, it is beneficial. Obviously, since starch is a natural product, the environmental load is extremely small, and the emulsion stabilizer of starch itself has the advantage of becoming a nutrient.
また、超音波照射を経たデンプン分散物由来の乳化安定剤によると、水分と油脂分とからなる油脂含有組成物をいったん乳化した後に、その中から水分を乾燥によって除去してデンプン分散物と油脂分との混合固形物を得ることもできる。おそらく、デンプンの高分子構造が適度に維持された結果、疎水部分(親油性部分)も保存され、油脂分の疎水部分がデンプンにより保護される。乾燥時には、デンプンによる保護を受けていない水分の蒸発が進み、油脂分のみがデンプンに取り残されたものと考えられる。 Also, according to the emulsion stabilizer derived from the starch dispersion that has been subjected to ultrasonic irradiation, after the oil-containing composition comprising water and fat and oil is once emulsified, the water is removed therefrom by drying and the starch dispersion and fat and oil are removed. Mixed solids with minutes can also be obtained. Perhaps as a result of the moderate maintenance of the high molecular structure of the starch, the hydrophobic part (lipophilic part) is also preserved, and the hydrophobic part of the fat is protected by starch. During drying, the evaporation of water not protected by starch proceeds, and it is considered that only the fat and oil are left behind in the starch.
これには油脂分を担持する賦形剤としての効果が期待される。また、液体で取り扱われていた油分を固化するため、油分の保存、計量、充填の性能が向上し、上記の食品、化粧品、医薬品等への用途も有望である。 This is expected to have an effect as an excipient carrying oil and fat. In addition, since the oil that has been handled as a liquid is solidified, the performance of storage, weighing, and filling of the oil is improved, and the use for the above-mentioned foods, cosmetics, pharmaceuticals, and the like is also promising.
[分析機器]
数平均分子量(Mn)の測定に当たり、HPLCによるゲル濾過クロマトグラフ法とした。同装置の示差屈折検出器は株式会社島津製作所製:RID−10A、ポンプは株式会社島津製作所製:LC−10ADvp、カラムオーブンは株式会社島津製作所製:CTO−10ASvp、カラムは東ソー株式会社製TSKgel α−M(7.8×300mm)とした。
[Analytical equipment]
In the measurement of the number average molecular weight (M n ), the gel filtration chromatograph method by HPLC was used. The differential refraction detector of the same device is manufactured by Shimadzu Corporation: RID-10A, the pump is manufactured by Shimadzu Corporation: LC-10ADvp, the column oven is manufactured by Shimadzu Corporation: CTO-10ASvp, and the column is TSKgel manufactured by Tosoh Corporation. α-M (7.8 × 300 mm) was used.
各試作例並びに比較例のいずれも、1重量%(w/v)の濃度に純水に希釈して溶解し、0.45μmのメンブレンフィルターを用いて濾過後、前記のHPLCに装填して計測した。キャリアには純水を用い、流速1.0mL/分、カラム温度80℃とした。分子量標準物質として昭和電工株式会社製:SHODEX STANDARD P−82(プルラン;重量平均分子量787000,194000,46700,5900)を用いた。 Each of the prototypes and comparative examples were dissolved in pure water at a concentration of 1% by weight (w / v), filtered through a 0.45 μm membrane filter, loaded into the HPLC and measured. did. Pure water was used as the carrier, the flow rate was 1.0 mL / min, and the column temperature was 80 ° C. Showa Denko Co., Ltd .: SHODEX STANDARD P-82 (Pullane; weight average molecular weight 787000, 194000, 46700, 5900) was used as a molecular weight standard substance.
[超音波の照射]
超音波分散機(株式会社ギンセン製:商品名「GSD1200CVP」)を用い、周波数20kHz、出力1200Wの条件下、約50℃の液温を維持しながら、糊化したデンプンに超音波照射した。超音波の照射時間を変えることにより、デンプンが受けるエネルギー量を制御した。
[Ultrasonic irradiation]
Using an ultrasonic disperser (manufactured by Ginsen Co., Ltd .: trade name “GSD1200CVP”), gelatinized starch was irradiated with ultrasonic waves while maintaining a liquid temperature of about 50 ° C. under conditions of a frequency of 20 kHz and an output of 1200 W. The amount of energy received by the starch was controlled by changing the ultrasonic irradiation time.
[粘度の計測]
超音波照射に伴うデンプン糊化物におけるデンプン分子の低分子量化の評価は、デンプン糊化物の粘度変化を指標とした。粘度は、日本薬局方の一般試験法における粘度測定法に準拠し、粘度分析装置(東機産業株式会社製:商品名「TVB−10M」)を用い粘度(Pa・s)を測定した。
[Measurement of viscosity]
Evaluation of starch molecular weight reduction in starch gelatinized product by ultrasonic irradiation was based on the viscosity change of starch gelatinized material. The viscosity was measured in accordance with a viscosity measurement method in a general test method of the Japanese Pharmacopoeia, and the viscosity (Pa · s) was measured using a viscosity analyzer (trade name “TVB-10M” manufactured by Toki Sangyo Co., Ltd.).
[デンプンの分散化:試作例1,2,3,4の調製]
原料デンプンとしてワキシーコーンスターチ(日本食品化工株式会社製:商品名「ワキシースターチ」)を用い、これに水を加え、ミニクッカー(ノリタケエンジニアリング株式会社製)により糊化した。次に、上記の超音波分散機を用いて同様の照射条件、温度の下で4種類の照射時間により超音波照射し、試作例1ないし4のデンプン分散物溶液を調製した。各試作例1ないし4はいずれも20重量%の濃度であり、粘度並びに数平均分子量Mnの測定結果は下記表1のとおりである。
[Dispersion of starch: Preparation of prototype examples 1, 2, 3, 4]
Waxy corn starch (manufactured by Nippon Shokuhin Kako Co., Ltd .: trade name “Waxy Starch”) was used as a raw material starch, water was added thereto, and gelatinized by a mini cooker (manufactured by Noritake Engineering Co., Ltd.). Next, using the above ultrasonic disperser, ultrasonic irradiation was performed under the same irradiation conditions and temperature for four types of irradiation times to prepare starch dispersion solutions of prototype examples 1 to 4. Each of the prototype examples 1 to 4 has a concentration of 20% by weight, and the measurement results of the viscosity and the number average molecular weight M n are as shown in Table 1 below.
[乳化安定性の評価]
上記調製により得られた試作例1ないし4のデンプン分散物の乳化安定性を調べるため、各試作例の溶液と食用油を混合した後、円筒形のガラス製容器(直径40mm、高さ120mm)に各試作例の溶液と食用油との混合物を100mLずつ移し、室温で3日間静置して油層、混和層、水層の分離の有無について概観を確認した。
[Evaluation of emulsion stability]
In order to investigate the emulsion stability of the starch dispersions of Prototype Examples 1 to 4 obtained by the above preparation, after mixing the solution of each Prototype Example and edible oil, a cylindrical glass container (diameter 40 mm, height 120 mm) 100 mL each of the mixture of the solution of each trial example and edible oil was transferred and allowed to stand at room temperature for 3 days, and an overview of the presence or absence of separation of the oil layer, the mixed layer, and the aqueous layer was confirmed.
試作例1ないし4のデンプン分散物の添加量に関し、いずれの試作例とも最終重量(400g)中に固形分重量換算として1重量%(固形分4g含有)、5重量%(固形分20g含有)、8重量%(固形分32g含有)、10重量%(固形分40g含有)を満たすように各試作例の溶液とも量を変えながら食用油200gとを混合し、適量の水を添加して最終重量400gに合わせて混合した後、室温で3日間静置し層分離の概観を確認した。 Regarding the added amount of the starch dispersion of Prototype Examples 1 to 4, in any of the trial examples, 1 wt% (containing 4 g of solid content) and 5 wt% (containing 20 g of solid content) in terms of solid content in the final weight (400 g) , Mixed with 200 g of cooking oil while changing the amount of each of the prototype solutions so as to satisfy 8 wt% (containing 32 g of solid content) and 10 wt% (containing 40 g of solid content), and finally adding an appropriate amount of water. After mixing according to the weight of 400 g, the mixture was allowed to stand at room temperature for 3 days to confirm the appearance of layer separation.
試作例1について試作例1−1:1重量%、試作例1−2:5重量%、試作例1−3:8重量%、試作例1−4:10重量%のとおり対応し、試作例2について試作例2−1:1重量%、試作例2−2:5重量%、試作例2−3:8重量%、試作例2−4:10重量%のとおり対応し、試作例3について試作例3−1:1重量%、試作例3−2:5重量%、試作例3−3:8重量%、試作例3−4:10重量%のとおり対応し、試作例4について試作例4−1:1重量%、試作例4−2:5重量%、試作例4−3:8重量%、試作例4−4:10重量%のとおり対応する。各試作例の重量%は固形分重量換算による数値である。 Prototype example 1-1: 1% by weight, prototype example 1-2: 5% by weight, prototype example 1-3: 8% by weight, prototype example 1-4: 10% by weight Prototype Example 2-1: 1% by weight, Prototype Example 2-2: 5% by weight, Prototype Example 2-3: 8% by weight, Prototype Example 2-4: 10% by weight Prototype Example 3-1: 1% by weight, Prototype Example 3-2: 5% by weight, Prototype Example 3-3: 8% by weight, Prototype Example 3-4: 10% by weight 4-1: 1% by weight, prototype example 4-2: 5% by weight, prototype example 4-3: 8% by weight, prototype example 4-4: 10% by weight, and so on. The weight% of each prototype is a numerical value in terms of solid content weight.
食用油はサラダ油(日清オイリオグループ株式会社製:商品名「日清サラダ油」)を使用した。混合に際してはホモジナイザー(特殊機化工業株式会社製:商品名「TK HOMOMIXER」),ローター(TYPE M)を使用し、12000回転、15分回転攪拌により十分に懸濁した。 The cooking oil used was salad oil (Nisshin Oillio Group Co., Ltd .: trade name “Nisshin Salad Oil”). In mixing, a homogenizer (manufactured by Tokushu Kika Kogyo Co., Ltd .: trade name “TK HOMOMIXER”) and a rotor (TYPE M) were used, and the mixture was sufficiently suspended by stirring at 12,000 rpm for 15 minutes.
超音波照射を経たデンプン分散物と比較するため、比較例にデキストリンと未処理のデンプンを用いた。 For comparison with starch dispersions subjected to ultrasonic irradiation, dextrin and untreated starch were used in the comparative examples.
・比較例1
ワキシーコーンスターチ原料デキストリン(フタムラスターチ株式会社製:商品名「FSD−301」)を用い、これを20重量%のデキストリン溶液とした(比較例1)。比較例1の数平均分子量は3100であった。比較例1のデキストリン溶液を用い、最終重量(400g)中に固形分重量換算として1重量%(固形分4g含有;比較例1−1)、5重量%(固形分20g含有;比較例1−2)、8重量%(固形分32g含有;比較例1−3)、10重量%(固形分40g含有;比較例1−4)を満たすように各試作例の溶液とも量を変えながら食用油200gとを混合し、適量の水を添加して最終重量400gに合わせて混合した後、室温で3日間静置し層分離の概観を確認した。
Comparative example 1
A waxy corn starch raw material dextrin (manufactured by Futamura Starch Co., Ltd .: trade name “FSD-301”) was used as a 20 wt% dextrin solution (Comparative Example 1). The number average molecular weight of Comparative Example 1 was 3100. Using the dextrin solution of Comparative Example 1, 1% by weight (containing 4 g of solid content; Comparative Example 1-1) in terms of solid content in the final weight (400 g), 5% by weight (containing 20 g of solid content; Comparative Example 1 2) 8% by weight (containing 32 g of solids; Comparative Example 1-3), 10% by weight (containing 40 g of solids; Comparative Example 1-4) After mixing with 200 g, adding an appropriate amount of water and mixing to a final weight of 400 g, the mixture was allowed to stand at room temperature for 3 days to confirm the appearance of layer separation.
・比較例2
試作例1ないし4と同様のワキシーコーンスターチ(日本食品化工株式会社製:ワキシースターチ)を用い、これに水を加え、前出のミニクッカー(ノリタケエンジニアリング株式会社製)により糊化し、同様に20重量%の濃度の糊化デンプン溶液とした(比較例2)。比較例2の数平均分子量及び粘度については粘性が高く測定不能であった。比較例2のデキストリン溶液を用い、最終重量(400g)中に固形分重量換算として1重量%(固形分4g含有;比較例2−1)、5重量%(固形分20g含有;比較例2−2)、8重量%(固形分32g含有;比較例2−3)、10重量%(固形分40g含有;比較例2−4)を満たすように各試作例の溶液とも量を変えながら食用油200gとを混合し、適量の水を添加して最終重量400gに合わせて混合した後、室温で3日間静置し層分離の概観を確認した。
Comparative example 2
Use the same waxy corn starch (manufactured by Nippon Shokuhin Kako Co., Ltd .: Waxy Starch) as in Prototype Examples 1 to 4, add water to this, and gelatinize with the above-mentioned mini cooker (manufactured by Noritake Engineering Co., Ltd.). % Gelatinized starch solution (Comparative Example 2). The number average molecular weight and viscosity of Comparative Example 2 were too high to be measured. Using the dextrin solution of Comparative Example 2, the final weight (400 g) in terms of solid content is 1 wt% (containing 4 g of solid content; Comparative Example 2-1), 5 wt% (containing 20 g of solid content; Comparative Example 2- 2) 8% by weight (containing 32 g of solids; Comparative Example 2-3), 10% by weight (containing 40 g of solids; Comparative Example 2-4) After mixing with 200 g, adding an appropriate amount of water and mixing to a final weight of 400 g, the mixture was allowed to stand at room temperature for 3 days to confirm the appearance of layer separation.
試作例1−1ないし試作例4−4と、比較例の結果は、下記表2である。乳化安定性の分離度は、「(静置後の分離した油層の体積)÷(静置開始時点のガラス製容器に存在する食用油の換算体積)×100」とする体積百分率により算出した。なお、全量分離とは、当初の添加した油の全量がほぼそのまま分離した状態である。例えば、静置後に分離した油分:50mL、当初添加油量:50mLとなる場合、全量分離であるため、分離度は100%となる。表中の評価の項目は、分離度を踏まえた総合判断に基づく。“○”は乳化安定性において問題なし。“△”は乳化安定性が一部劣る。“×”は乳化安定性が確認できず使用に適さない。 The results of prototype examples 1-1 to 4-4 and comparative examples are shown in Table 2 below. The degree of separation of the emulsion stability was calculated by a volume percentage of “(volume of the separated oil layer after standing) ÷ (converted volume of edible oil present in the glass container at the start of standing) × 100”. The total amount separation is a state in which the total amount of the initially added oil is separated almost as it is. For example, when the oil content separated after standing is 50 mL and the initial amount of added oil is 50 mL, since the total amount is separated, the degree of separation is 100%. The evaluation items in the table are based on comprehensive judgment based on the degree of separation. “O” indicates no problem in emulsion stability. “△” is partially inferior in emulsion stability. “X” is not suitable for use because the emulsion stability cannot be confirmed.
[乳化安定性の結果・考察]
いずれの試作例、比較例とも、同一濃度の油分・水分間における固形分存在量はほぼ同量である。表2から超音波照射を受けたデンプン分散物の乳化安定性能は明らかである。特に、重量の半分を油脂分が占めるような油脂分が多い状態であっても乳化安定性能が得られる。このことは、超音波照射を受けたデンプン分散物は広汎な分野に適応可能であることを示唆する。
[Results and discussion of emulsion stability]
In both prototypes and comparative examples, the solid content in the same concentration of oil and water is almost the same. From Table 2, the emulsion stability performance of starch dispersions subjected to ultrasonic irradiation is clear. In particular, even in a state where the fat and oil content is so large that half of the weight is occupied by the fat and oil, the emulsion stability can be obtained. This suggests that starch dispersions subjected to ultrasonic irradiation are adaptable to a wide range of fields.
超音波照射を受けたデンプン分散物の数平均分子量は約40×104〜100×104の範囲にある(試作例1ないし4)。特に、数平均分子量は40×10 4 〜94×10 4 の範囲である(試作例1ないし3)。これに対して、比較例のデキストリンは酵素により非常に軽度に加水分解されたDE1(デキストロース当量)の数平均分子量約3000である。また、比較例のデンプンは数平均分子量100×104を超過していることが予想される。試作例のデンプン分散物は、これらのいずれの分子量範囲と異なる。
The number average molecular weight of the starch dispersion subjected to ultrasonic irradiation is in the range of about 40 × 10 4 to 100 × 10 4 (prototype examples 1 to 4). In particular, the number average molecular weight is in the range of 40 × 10 4 to 94 × 10 4 (Prototype Examples 1 to 3). In contrast, the dextrin of the comparative example has a number average molecular weight of about 3000 of DE1 (dextrose equivalent) that is very lightly hydrolyzed by the enzyme. Further, the starch of the comparative example is expected to exceed the number average molecular weight of 100 × 10 4 . The starch dispersion of the prototype is different from any of these molecular weight ranges.
ワキシーコーンスターチを原料デンプンとして用いた場合の検証によると、油分・水分の安定した乳化状態を得るためには、数平均分子量は概ね数十万であることが好ましいものと考える。また、当該分子量によると、全体におけるデンプン分散物の濃度に関わらず効果を発揮している。そこで、発明者らは、超音波照射を経たデンプン分散物が安定した乳化状態とする要因を以下のとおり考える。 According to verification when waxy corn starch is used as a raw material starch, in order to obtain a stable emulsified state of oil and moisture, the number average molecular weight is preferably about several hundred thousand. Moreover, according to the said molecular weight, the effect is exhibited irrespective of the density | concentration of the starch dispersion in the whole. Therefore, the inventors consider the following factors that make the starch dispersion that has undergone ultrasonic irradiation a stable emulsified state.
背景技術に開示した特許第3638645号等のように、デンプンの粒子形状を維持しながら多孔化することにより吸油性は向上する。この作用は、デンプン粒子内部は親油性とされているためである。ところが、比較例2の糊化デンプンのとおり、親油性は、加熱糊化によりデンプンの粒状構造が崩壊した後では、著しく喪失する。つまり、デンプンの糊化に伴う高粘度化、付着性の上昇により、本来デンプン分子が有する親油性部分に油脂分は到達し難くなったことを要因と考える。 Oil absorption improves by making it porous, maintaining the particle | grain shape of starch like patent 3638645 etc. which were disclosed by background art. This action is due to the lipophilic nature of the starch particles. However, as in the gelatinized starch of Comparative Example 2, the lipophilicity is remarkably lost after the granular structure of starch is destroyed by heat gelatinization. In other words, it is considered that the fat and oil content hardly reaches the lipophilic part originally possessed by the starch molecule due to the increase in viscosity and the increase in adhesion accompanying the gelatinization of starch.
次に、比較例1のデキストリンのとおり、酵素的にデンプンを分解して液状化する場合、数平均分子量が数千前後の鎖長に分解してしまうため、親油性部分が保持されず親油性そのものが消失してしまうことが推定できる。一般に糊化したデンプンを酵素により液化させる方法にあっては、DE1のように極めて低い分解度に制御しても数平均分子量は約3000にまで低分子化してしまう。さらにDEを低減しようとすると、高粘度下のデンプンと酵素の十分な混和、反応の制御にかなりの技術的困難性が伴うことから、酵素処理の手法の実現性は低いものと予想できる。 Next, as in the dextrin of Comparative Example 1, when starch is enzymatically decomposed and liquefied, the number average molecular weight is decomposed to a chain length of about several thousand, so that the lipophilic part is not retained and the lipophilic property is maintained. It can be estimated that this disappears. In general, in a method in which gelatinized starch is liquefied by an enzyme, the number average molecular weight is reduced to about 3000 even if the degree of degradation is controlled to be extremely low as in DE1. Further attempts to reduce DE can be expected to have a low feasibility of the enzyme treatment method because of the considerable technical difficulty associated with sufficient mixing of starch and enzyme under high viscosity and control of the reaction.
これに対し、超音波照射を経たデンプン分散物の試作例1,試作例2のように数平均分子量を数十万とする適度に分解が進行した巨大分子の場合、一般に糊化デンプンに見られる高粘度化や付着性上昇の影響が低減される。そのため、油脂分は比較的容易に到達可能となり、総じて安定した複合体を形成することが想定できる。 On the other hand, in the case of macromolecules that have undergone moderate degradation with a number average molecular weight of several hundreds of thousands as in Prototype Example 1 and Prototype Example 2 of starch dispersions subjected to ultrasonic irradiation, they are generally found in gelatinized starch. The effect of increased viscosity and increased adhesion is reduced. Therefore, the oil and fat can be reached relatively easily, and it can be assumed that a generally stable complex is formed.
[乳化安定性の実証評価]
発明者らは、上記のとおり超音波照射を受けたデンプン分散物の乳化安定性に確信を得た後、さらに多様な油脂分と混合して乳化の効果の検証を行った。併せて、ワキシーコーンスターチ以外にもコーンスターチをはじめとする他の原料デンプンについても乳化安定性を前出の分離度により評価した。評価結果は、表3のとおりである。
[Evaluation of emulsion stability]
Inventors obtained the certainty about the emulsion stability of the starch dispersion which received ultrasonic irradiation as mentioned above, and mixed with various fats and oils, and verified the effect of emulsification. In addition, it was evaluated by the degree of separation out before the emulsion stability for other raw materials starch, including corn starch other than the waxy corn starch. The evaluation results are as shown in Table 3.
・試作例5
試作例1のワキシーコーンスターチを原料デンプンとして用い、これに水を加え、同ミニクッカーにより糊化した。前記の超音波分散機を用いて試作例1と同様の照射条件、温度の下で超音波照射し、温度50℃にて粘度0.266Pa・s、濃度20重量%のデンプン分散物溶液を調製した。このデンプン分散物溶液25gに大豆油(関東化学株式会社製)100g、水75gを添加し、前出と同様のホモジナイザー、ローターを使用し、12000回転、15分回転攪拌により十分に懸濁した。その後静置し、1日後、7日後の外観を分離度として観察した。下記の試作例16,試作例17においては、超音波照射の時間を適宜加減しながら、ほぼ試作例5の粘度付近に調整した。
・ Prototype 5
The waxy corn starch of Prototype Example 1 was used as a raw material starch, water was added thereto, and gelatinized by the same mini-cooker. Using the ultrasonic disperser, ultrasonic irradiation was performed under the same irradiation conditions and temperature as in Prototype Example 1 to prepare a starch dispersion solution having a viscosity of 0.266 Pa · s and a concentration of 20% by weight at a temperature of 50 ° C. did. To 25 g of this starch dispersion solution, 100 g of soybean oil (manufactured by Kanto Chemical Co., Inc.) and 75 g of water were added, and the mixture was sufficiently suspended by stirring at 12,000 rpm for 15 minutes using the same homogenizer and rotor as described above. Then, the mixture was allowed to stand, and the appearance after 1 day and 7 days was observed as the degree of separation. In the following Prototype Example 16 and Prototype Example 17, the viscosity was adjusted to approximately the viscosity of Prototype Example 5 while appropriately adjusting the ultrasonic irradiation time.
・試作例6
油脂分を試作例1で使用したサラダ油(日清オイリオグループ株式会社製:商品名「日清サラダ油」)とした以外、全て試作例5と同一の条件とした。
-Prototype example 6
All the conditions were the same as in Prototype Example 5 except that the fat and oil was the salad oil used in Prototype Example 1 (Nisshin Oilio Group, Inc .: trade name “Nisshin Salad Oil”).
・試作例7
油脂分をごま油(日清オイリオグループ株式会社製:商品名「香りひきたつごま油」)とした以外、全て試作例5と同一の条件とした。
・ Prototype Example 7
All conditions were the same as those in Prototype Example 5 except that the oil and fat content was sesame oil (Nisshin Oilio Group Co., Ltd .: trade name “Scented Hikitatsugo Sesame Oil”).
・試作例8
油脂分をマーガリン(雪印乳業株式会社製:商品名「雪印ネオソフト」)とした以外、全て試作例5と同一の条件とした。
・ Prototype Example 8
All conditions were the same as those in Prototype Example 5 except that the oil and fat content was margarine (manufactured by Snow Brand Milk Products Co., Ltd .: trade name “Snow Brand Neosoft”).
・試作例9
油脂分をバター(雪印乳業株式会社製:商品名「きれてる雪印北海道バター」)とした以外、全て試作例5と同一の条件とした。
・ Prototype Example 9
All the conditions were the same as in Prototype Example 5 except that the fat and oil content was butter (manufactured by Snow Brand Milk Products Co., Ltd .: trade name “Kireru Snow Brand Hokkaido Butter”).
・試作例10
油脂分をオリーブ油(株式会社J−オイルミルズ製:商品名「OLIVE OIL」)とした以外、全て試作例5と同一の条件とした。
・ Prototype example 10
All conditions were the same as those in Prototype Example 5 except that the oil and fat was olive oil (manufactured by J-Oil Mills, Inc .: trade name “OLIVE OIL”).
・試作例11
油脂分をヤシ油製化粧油(株式会社生活の木製:商品名「ハンドメイドギルドベースオイルCOCONUT OIL ココナッツオイル(化粧油)」)とした以外、全て試作例5と同一の条件とした。
・ Prototype 11
All the conditions were the same as in Prototype Example 5 except that the oil and fat was made from palm oil cosmetic oil (Living Wooden Co., Ltd .: trade name “handmade guild base oil COCONUT OIL coconut oil”).
・試作例12
油脂分をマカダミアナッツ油製化粧油(株式会社生活の木製:商品名「ハンドメイドギルドベースオイルMACADAMIA NUT マカダミアナッツオイル(化粧油)」)とした以外、全て試作例5と同一の条件とした。
・ Prototype Example 12
All the conditions were the same as in Prototype Example 5 except that the oil and fat content was made from macadamia nut oil cosmetic oil (Life Wood Co., Ltd .: trade name “handmade guild base oil MACADAMIA NUT macadamia nut oil (cosmetic oil)”).
・試作例13
油脂分を一般工業用潤滑油(コスモ石油ルブリカンツ株式会社製:商品名「コスモオルパス68」)とした以外、全て試作例5と同一の条件とした。
・ Prototype Example 13
All the conditions were the same as in Prototype Example 5 except that the oil and fat content was changed to general industrial lubricating oil (manufactured by Cosmo Oil Lubricants Co., Ltd .: trade name “Cosmo Olpath 68”).
・試作例14
油脂分を工業用コンプレッサー潤滑油(出光興産株式会社製:商品名「ダフニーニューロータリーコンプレッサーオイル」)とした以外、全て試作例5と同一の条件とした。
・ Prototype Example 14
All conditions were the same as those in Prototype Example 5 except that the oil and fat content was changed to an industrial compressor lubricating oil (manufactured by Idemitsu Kosan Co., Ltd .: trade name “Dafney New Rotary Compressor Oil”).
・試作例15
油脂分を工業用タービン潤滑油(出光興産株式会社製:商品名「ダフニータービンオイル」)とした以外、全て試作例5と同一の条件とした。
・ Prototype Example 15
All the conditions were the same as in Prototype Example 5 except that the oil and fat content was industrial turbine lubricating oil (manufactured by Idemitsu Kosan Co., Ltd .: trade name “Duffy Turbine Oil”).
・試作例16
原料デンプンをワキシーコーンスターチからコーンスターチ(フタムラスターチ株式会社製)に変更した以外、全て試作例5と同一の条件とした。
・ Prototype Example 16
All the conditions were the same as in Example 5 except that the raw starch was changed from waxy corn starch to corn starch (Futamura Starch Co., Ltd.).
・試作例17
原料デンプンをワキシーコーンスターチから馬鈴薯デンプン(東海澱粉株式会社製)に変更した以外、全て試作例5と同一の条件とした。
・ Prototype Example 17
All the conditions were the same as in Example 5 except that the raw starch was changed from waxy corn starch to potato starch (manufactured by Tokai Starch Co., Ltd.).
・試作例18
原料デンプンとしてコーンスターチ(フタムラスターチ株式会社製)を用い、これに水を加え、同ミニクッカーにより糊化した。前記の超音波分散機を用い、試作例1と同様の照射条件及び温度を適用し、超音波照射の時間を制御することにより、温度80℃にて粘度0.830Pa・s、濃度20重量%のデンプン分散物溶液を調製した。このデンプン分散物溶液25gに大豆油(試作例5と同じ)100g、水75gを添加し、前出と同様のホモジナイザー、ローターを使用し、12000回転、15分回転攪拌により十分に懸濁した。その後静置し、1日後、7日後の外観を分離度として観察した。なお、試作例18は試作例16の超音波照射条件を変更した例に相当する。
・ Prototype Example 18
Corn starch (manufactured by Futamura Starch Co., Ltd.) was used as the raw material starch, water was added thereto, and gelatinized with the same mini-cooker. Using the above ultrasonic disperser, applying the same irradiation conditions and temperature as in Prototype Example 1 and controlling the time of ultrasonic irradiation, a viscosity of 0.830 Pa · s and a concentration of 20% by weight at a temperature of 80 ° C. A starch dispersion solution was prepared. To 25 g of this starch dispersion solution, 100 g of soybean oil (same as in Prototype Example 5) and 75 g of water were added, and the suspension was sufficiently suspended by stirring at 12,000 rpm for 15 minutes using the same homogenizer and rotor as described above. Then, the mixture was allowed to stand, and the appearance after 1 day and 7 days was observed as the degree of separation. Prototype Example 18 corresponds to an example in which the ultrasonic irradiation conditions of Prototype Example 16 are changed.
・試作例19
油脂分を試作例6と同じサラダ油とした以外、全て試作例18と同一の条件とした。
・ Prototype Example 19
All the conditions were the same as in Prototype Example 18 except that the oil and fat content was the same salad oil as in Prototype Example 6.
・試作例20
油脂分を試作例7と同じごま油とした以外、全て試作例18と同一の条件とした。
・ Prototype Example 20
All the conditions were the same as in Prototype Example 18, except that the oil and fat content was the same sesame oil as in Prototype Example 7.
・試作例21
油脂分を試作例8と同じマーガリンとした以外、全て試作例18と同一の条件とした。
・ Prototype 21
All the conditions were the same as in Prototype Example 18 except that the oil and fat content was the same as margarine in Prototype Example 8.
・試作例22
油脂分を試作例9と同じバターとした以外、全て試作例18と同一の条件とした。
・ Prototype Example 22
All the conditions were the same as in Prototype Example 18 except that the fat and oil was the same butter as in Prototype Example 9.
・試作例23
油脂分を試作例10と同じオリーブ油とした以外、全て試作例18と同一の条件とした。
・ Prototype Example 23
All of the conditions were the same as in Prototype Example 18, except that the oil and fat was the same olive oil as in Prototype Example 10.
・試作例24
油脂分を試作例11と同じヤシ油製化粧油(ココナッツオイル)とした以外、全て試作例18と同一の条件とした。
・ Prototype Example 24
All the conditions were the same as in Test Example 18 except that the oil and fat content was the same coconut oil as coconut oil as in Test Example 11.
・試作例25
油脂分を試作例12と同じマカダミアナッツ油製化粧油とした以外、全て試作例18と同一の条件とした。
・ Prototype Example 25
All the conditions were the same as in Prototype Example 18 except that the oil and fat content was the same macadamia nut oil cosmetic oil as in Prototype Example 12.
・試作例26
油脂分を試作例13と同じ一般工業用潤滑油とした以外、全て試作例18と同一の条件とした。
・ Prototype Example 26
All the conditions were the same as in Prototype Example 18, except that the oil and fat content was the same as general industrial lubricating oil as in Prototype Example 13.
・試作例27
油脂分を試作例14と同じ工業用コンプレッサー潤滑油とした以外、全て試作例18と同一の条件とした。
・ Prototype 27
All the conditions were the same as in Prototype Example 18 except that the oil and fat content was the same industrial compressor lubricating oil as in Prototype Example 14.
・試作例28
油脂分を試作例15と同じ工業用タービン潤滑油とした以外、全て試作例18と同一の条件とした。
・ Prototype Example 28
All the conditions were the same as in Prototype Example 18 except that the oil and fat content was the same industrial turbine lubricating oil as in Prototype Example 15.
・比較例3
上記試作例16,18等に用いたコーンスターチに水を加え、同ミニクッカーにより糊化し、濃度20重量%の糊化デンプン溶液とした。この糊化デンプン溶液を用い、以降の処理を試作例18と同様にして懸濁後、静置して観察した。比較例3はコーンスターチにおける超音波照射の有無の対照例である。
Comparative example 3
Water was added to the corn starch used in the trial examples 16, 18 and the like, and gelatinized with the same mini cooker to obtain a gelatinized starch solution having a concentration of 20% by weight. Using this gelatinized starch solution, the subsequent treatment was suspended in the same manner as in Prototype Example 18 and then allowed to stand and observed. Comparative Example 3 is a control example of the presence or absence of ultrasonic irradiation in corn starch.
[実証評価の結果・考察]
表3に示すとおり、超音波照射を受けたデンプン分散物の脂肪酸等を主体とする油脂分の乳化に関する実証効果は確認できた。この差は比較例3との対比から明白である。油脂分毎の乳化安定性の差は、組成成分の相違、あるいは添加剤の影響を受けるものと考えられる。この結果より、食品用、医薬品、化粧品等の分野の乳化剤としては性能を確保しうる。また、工業用油の乳化についても有効であることが確認できた。
[Results and discussion of demonstration evaluation]
As shown in Table 3, the demonstration effect on emulsification of fats and oils mainly composed of fatty acids and the like of the starch dispersion subjected to ultrasonic irradiation was confirmed. This difference is clear from the comparison with Comparative Example 3. It is considered that the difference in emulsification stability for each fat or oil is affected by the difference in composition components or the influence of additives. From this result, performance can be secured as an emulsifier in the fields of food, medicine, cosmetics and the like. Moreover, it has confirmed that it was effective also about emulsification of industrial oil.
デンプンの種類毎に見られる乳化安定性の相違について、当初、アミロペクチンに存在する糖鎖が分岐した分子構造の保存性が影響していると考えられていた。そこで、ほぼアミロペクチンからなるワキシーコーンスターチを主体に検証を進めてきた。しかし、ワキシーコーンスターチよりもアミロペクチン含有量が少ない一般的なコーンスターチとの比較によると、超音波照射の条件いかんによっては乳化安定性の油脂分全般の改善が明らかとなった。とりわけ、工業用油の乳化安定性の向上が顕著である。発明者らは、アミロペクチンの分岐した分子構造の保存性に加え、アミロースのらせん状の直鎖構造も存在していることから、アミロース鎖による油脂分の捕捉も乳化に寄与しているものと推定する。原料デンプンの種類は、超音波照射の条件に加え、添加する食品、医薬品等の用途、乳化性能、価格をはじめとする要因に応じて適切に選択することができる。 Regarding the difference in emulsion stability observed for each type of starch, it was initially thought that the preservation of the molecular structure in which the sugar chains present in amylopectin were branched was affected. Therefore, we have been proceeding with verification mainly on waxy corn starch consisting almost of amylopectin. However, a comparison with common corn starch, which has a lower amylopectin content than waxy corn starch, revealed an improvement in the overall emulsion stability of fat and oil depending on the conditions of ultrasonic irradiation. In particular, the improvement in emulsification stability of industrial oils is remarkable. The inventors presume that in addition to the preservation of the branched molecular structure of amylopectin, there is also a helical linear structure of amylose, so that the capture of fat and oil by the amylose chain also contributes to emulsification. To do. The type of raw material starch can be appropriately selected according to factors such as the application of food, pharmaceuticals, etc., emulsification performance, and price in addition to the conditions of ultrasonic irradiation.
[油脂吸着性能の検証]
超音波照射を受けたデンプン分散物の新たな機能を調査すべく、油脂吸着性能を検証した。
[Verification of oil adsorption performance]
In order to investigate the new function of starch dispersions subjected to ultrasonic irradiation, the oil adsorption performance was verified.
・実験例1
試作例1において調製したワキシーコーンスターチ使用のデンプン分散物溶液40gにサラダ油(試作例6と同じ)40g、水160gを添加し、前出と同じのホモジナイザー、ローターを使用し、12000回転、15分回転攪拌により十分に懸濁した。その後この懸濁物をステンレス製のバットに広げ、100℃で加温して乾燥した。
・ Experimental example 1
40 g of salad oil (same as in Prototype Example 6) and 160 g of water are added to 40 g of the starch dispersion solution using waxy corn starch prepared in Prototype Example 1, and the same homogenizer and rotor as above are used. Sufficiently suspended by stirring. Thereafter, the suspension was spread on a stainless steel vat, heated at 100 ° C. and dried.
・実験例2
試作例18において調製したコーンスターチ使用のデンプン分散物溶液40gに実験例1と同量のサラダ油、水を添加し、同様の条件により懸濁、乾燥した。
・ Experimental example 2
The same amount of salad oil and water as in Experimental Example 1 were added to 40 g of the starch dispersion solution using corn starch prepared in Prototype Example 18, and suspended and dried under the same conditions.
・比較例4
比較例4では、実験例1のデンプン分散物溶液を前出の比較例1に用いたデキストリン溶液(濃度20重量%)に変更した以外は全て実験例1と共通の条件とした。
Comparative example 4
In Comparative Example 4, the same conditions as in Experimental Example 1 were used except that the starch dispersion solution in Experimental Example 1 was changed to the dextrin solution (concentration 20% by weight) used in Comparative Example 1 above.
・比較例5
比較例5では、実験例1のデンプン分散物溶液を前出の比較例2に用いた糊化デンプン溶液(濃度20重量%)に変更した以外は全て実験例1と共通の条件とした。
Comparative example 5
In Comparative Example 5, the same conditions as in Experimental Example 1 were used except that the starch dispersion solution in Experimental Example 1 was changed to the gelatinized starch solution (concentration 20% by weight) used in Comparative Example 2 above.
[油脂吸着性能の結果・考察]
実験例1、実験例2、比較例4、比較例5において、実験例1と実験例2より乾燥物を得た。しかし、比較例はいずれも油分が浸出し乾燥物を得られなかった。実験例、比較例とも、ほぼ同様の固形分量、油分量である。実験例1,2のみ、加熱に伴う油分の分離を防止し、乾燥物を生じさせている。つまり、超音波照射を受けたデンプン分散物(乾燥物)は、高温下においても油脂分を安定的に保持している。得られた結果において、デンプン種による相違(ワキシーコーンスターチとコーンスターチとの違い)は特になく、いずれも乾燥することができた。なお、当該デンプン分散物と油脂分の混合後の乾燥には、適宜の装置を用いることが可能である。例えば、スプレードライ等を用いることにより、均質な粉末物を得ることができる。
[Results and discussion of oil adsorption performance]
In Experimental Example 1, Experimental Example 2, Comparative Example 4, and Comparative Example 5, a dried product was obtained from Experimental Example 1 and Experimental Example 2. However, in all of the comparative examples, the oil content leached and a dried product could not be obtained. The experimental and comparative examples have substantially the same solid content and oil content. Only Experimental Examples 1 and 2 prevent oil from being separated by heating, and produce a dry product. That is, the starch dispersion (dried product) that has been subjected to ultrasonic irradiation stably retains oil and fat even at high temperatures. In the obtained results, there was no particular difference between starch species (difference between waxy corn starch and corn starch), and both could be dried. In addition, it is possible to use a suitable apparatus for the drying after mixing the said starch dispersion and fats and oils. For example, a homogeneous powder can be obtained by using spray drying or the like.
この結果から、超音波照射を受けたデンプン分散物は油脂分を担持する賦形剤としても十分に有効である。そこで、食品、医薬品、化粧品等の分野への応用性も高く、粉末油脂の製造、脂溶性薬剤やビタミン類の担持体の用途が検討できる。 From this result, the starch dispersion which received ultrasonic irradiation is fully effective as an excipient | filler which carries fats and oils. Therefore, it has high applicability in the fields of foods, pharmaceuticals, cosmetics, etc., and it is possible to study the production of powdered oils and fats, the use of fat-soluble drugs and vitamins carriers.
[酸化抑制効果の検証]
超音波照射を受けたデンプン分散物は油脂分との間に安定した複合体を形成していることを推定した発明者らは、当該安定性に起因した酸化抑制効果の存在も仮定した。そこで、酸化抑制効果も検証した。酸化抑制効果の評価に当たり、株式会社講談社発行「新版食品化学実験(2005年発行,第3版)74ページ」に記載の過酸化物価(POV)の測定方法に基づき、「過酸化物のmg当量/1kg油脂量」を算出し評価した。この結果は表4のとおりである。
[Verification of oxidation inhibition effect]
The inventors who presumed that the starch dispersion subjected to ultrasonic irradiation formed a stable complex with the oil and fat also assumed the existence of an oxidation-inhibiting effect due to the stability. Therefore, the oxidation suppression effect was also verified. Based on the peroxide value (POV) measurement method described in “New Food Chemistry Experiment (issued in 2005, 3rd edition, p. 74)” issued by Kodansha Co., Ltd. / Kg of oil / fat ”was calculated and evaluated. The results are shown in Table 4.
・実験例3
試作例1において調製したワキシーコーンスターチ使用のデンプン分散物溶液40gに大豆油(試作例5と同じ)200g、水160gを添加し、前出と同じのホモジナイザー、ローターを使用し、12000回転、15分回転攪拌により十分に懸濁した(固形分量2%)。その後、この懸濁物50gをネジ口スピッツ管(内容量:50mL)に注ぎ、封栓して室温に静置した。過酸化物価は、懸濁直後、5日経過後、28日経過後に測定した。
Experimental example 3
To 40 g of starch dispersion solution using waxy corn starch prepared in Prototype Example 1, 200 g of soybean oil (same as Prototype Example 5) and 160 g of water are added, and using the same homogenizer and rotor as described above, 12000 rpm, 15 minutes Suspended sufficiently by rotary stirring (solid content 2%). Thereafter, 50 g of this suspension was poured into a screw spitz tube (internal volume: 50 mL), sealed and allowed to stand at room temperature. The peroxide value was measured immediately after suspension, after 5 days and after 28 days.
・実験例4
試作例18において調製したコーンスターチ使用のデンプン分散物溶液40gに実験例3と同量の大豆油、水を添加し、同様の条件により懸濁後、同期間静置した。
Experimental example 4
The same amount of soybean oil and water as in Experimental Example 3 was added to 40 g of the starch dispersion solution using corn starch prepared in Prototype Example 18, suspended under the same conditions, and allowed to stand for the same period.
・比較例6
比較例6では、実験例3のデンプン分散物溶液を前出の比較例1に用いたデキストリン溶液(濃度20重量%)に変更し、このデキストリン溶液50gに大豆油(試作例5と同じ)200g、水150gを添加した(固形分量2.5%)。以降の攪拌、測定は全て実験例3と共通の条件とした。
Comparative Example 6
In Comparative Example 6, the starch dispersion solution of Experimental Example 3 was changed to the dextrin solution (concentration 20% by weight) used in Comparative Example 1 above, and 50 g of this dextrin solution was added with 200 g of soybean oil (same as in Prototype Example 5). 150 g of water was added (solid content 2.5%). All subsequent stirring and measurement were performed under the same conditions as in Experimental Example 3.
・比較例7
比較例7では、水200gに大豆油(試作例5と同じ)200gを添加した。以降の攪拌、測定は全て実験例3と共通の条件とした。
Comparative example 7
In Comparative Example 7, 200 g of soybean oil (same as in Prototype Example 5) was added to 200 g of water. All subsequent stirring and measurement were performed under the same conditions as in Experimental Example 3.
[酸化抑制効果の結果・考察]
実験例3及び実験例4は、いずれも比較例7との対比から酸化の進行を抑制していることがわかる。特に経過時間が長くなるほど顕著であり、しかも、低濃度においても効果がある。得られた結果において、デンプン種による相違(ワキシーコーンスターチとコーンスターチとの違い)はほとんど無く、両方とも同程度の効果を示した。比較例6のデキストリンにおいても酸化抑制効果は見られるものの、実験例3,4の効果には及ばない。
[Results and discussion of oxidation inhibition effect]
From Experimental Example 3 and Experimental Example 4, it can be seen that the progress of oxidation is suppressed from the comparison with Comparative Example 7. In particular, the longer the elapsed time, the more prominent, and the effect is also obtained at a low concentration. In the obtained results, there was almost no difference between starch species (difference between waxy corn starch and corn starch), and both showed the same effect. The dextrin of Comparative Example 6 also shows an oxidation inhibiting effect, but does not reach the effects of Experimental Examples 3 and 4.
この結果を踏まえ、発明者らは、超音波照射を受けたデンプン分散物は油脂分との間に複合体を形成することにより、油脂分の疎水部分を水中の溶存酸素、その他ラジカル種から保護していることを予想する。 Based on this result, the inventors have formed a complex between the starch dispersion that has been subjected to ultrasonic irradiation and the fat and oil, thereby protecting the hydrophobic portion of the fat and oil from dissolved oxygen in water and other radical species. I expect that
以上のとおり、実施例に開示した超音波照射を受けたデンプン分散物は、乳化安定性及び酸化抑制効果を併せ持つ知見を得た。ゆえに、超音波照射を受けたデンプン分散物は、食品等の油脂含有組成物の乳化安定と酸化抑制の両面を兼備する極めて有用な特性を有し、幅広い分野への応用が可能である。 As mentioned above, the starch dispersion which received the ultrasonic irradiation disclosed in the Example acquired the knowledge which has both the emulsion stability and the oxidation inhibitory effect. Therefore, the starch dispersion which received ultrasonic irradiation has the very useful characteristic which has both the emulsification stability and oxidation suppression of oil-and-fat containing compositions, such as a foodstuff, and can be applied to a wide field | area.
Claims (4)
原料デンプンを溶解糊化しこれに超音波を照射して数平均分子量(M n )を40×10 4 〜94×10 4 としたデンプン分散物からなることを特徴とする乳化安定剤。 An emulsion stabilizer for an oil-containing composition comprising:
An emulsion stabilizer characterized by comprising a starch dispersion in which raw starch is dissolved and gelatinized, and the number average molecular weight (M n ) is 40 × 10 4 to 94 × 10 4 by irradiating with ultrasonic waves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007240471A JP5033553B2 (en) | 2006-09-15 | 2007-09-18 | Emulsification stabilizer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006250658 | 2006-09-15 | ||
JP2006250658 | 2006-09-15 | ||
JP2007240471A JP5033553B2 (en) | 2006-09-15 | 2007-09-18 | Emulsification stabilizer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008093657A JP2008093657A (en) | 2008-04-24 |
JP5033553B2 true JP5033553B2 (en) | 2012-09-26 |
Family
ID=39377068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007240471A Active JP5033553B2 (en) | 2006-09-15 | 2007-09-18 | Emulsification stabilizer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5033553B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101978313B1 (en) * | 2018-05-14 | 2019-05-14 | 김태석 | Composition of red ginseng candy and manufacturing method of red ginseng candy using the same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4937732B2 (en) * | 2006-12-27 | 2012-05-23 | フタムラ化学株式会社 | Dye stabilizer |
JP5300254B2 (en) * | 2007-12-11 | 2013-09-25 | フタムラ化学株式会社 | Binder for food |
US9504274B2 (en) | 2009-01-27 | 2016-11-29 | Frito-Lay North America, Inc. | Methods of flavor encapsulation and matrix-assisted concentration of aqueous foods and products produced therefrom |
KR101169506B1 (en) * | 2009-08-17 | 2012-07-27 | 씨제이제일제당 (주) | Preparation method of fibrous starch with high emulsifying activity, and low-fat mayonnaise and magerine composition using thereof |
KR101441364B1 (en) * | 2010-06-23 | 2014-09-17 | 각고우호우진 가나가와 다이가쿠 | Process for producing emulsifier-producing material, process for producing emulsifier, emulsifier for orally administered composition, and orally administered composition |
JP5886006B2 (en) * | 2011-11-16 | 2016-03-16 | 株式会社Adeka | Emulsified oil composition for kneading bread |
JP6232228B2 (en) * | 2013-08-26 | 2017-11-15 | フタムラ化学株式会社 | Aroma adsorption and release agent |
CN113087931B (en) * | 2021-05-18 | 2022-08-02 | 四川农业大学 | A kind of method for preparing nano starch by ultrasonic high pressure homogenization |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5871900A (en) * | 1981-10-21 | 1983-04-28 | 味の素株式会社 | Production of processed starch |
JPH072763B2 (en) * | 1985-05-08 | 1995-01-18 | 日澱化學株式会社 | Method for producing modified starch |
JP2540204B2 (en) * | 1988-08-18 | 1996-10-02 | ナシヨナル・スターチ・アンド・ケミカル・コーポレイション | Chemically stable starch emulsifier with storage stability |
JPH05301903A (en) * | 1992-04-27 | 1993-11-16 | Sanmatsu Kogyo Kk | Emulsifiable decomposed starch, its production and food prepared by using the starch |
JP4288381B2 (en) * | 2005-02-25 | 2009-07-01 | フタムラ化学株式会社 | Method for producing liquid substance from gel-like substance and method for producing powdery substance |
-
2007
- 2007-09-18 JP JP2007240471A patent/JP5033553B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101978313B1 (en) * | 2018-05-14 | 2019-05-14 | 김태석 | Composition of red ginseng candy and manufacturing method of red ginseng candy using the same |
Also Published As
Publication number | Publication date |
---|---|
JP2008093657A (en) | 2008-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5033553B2 (en) | Emulsification stabilizer | |
KR20170083048A (en) | Powdered oil/fat, food/beverage including powdered oil/fat, and method for producing powdered oil/fat | |
AU2014363887B2 (en) | Emulsions stabilized by particles of an edible inorganic salt | |
JP6694726B2 (en) | O / D type emulsion composition, oil-in-water type emulsion composition, food and drink and food material | |
JP5854994B2 (en) | Acid oil-in-water emulsified food | |
PH12015501139B1 (en) | A method of preparing an edible oil-in-water emulsion and emulsion so obtained | |
WO2014178139A1 (en) | Composite emulsified seasoning | |
EP1637040B1 (en) | Acidic oil-in-water emulsion compositions | |
JP6337364B2 (en) | Dressing and manufacturing method thereof | |
JP3505398B2 (en) | Acidic O / W emulsion composition | |
JP5644212B2 (en) | Acid oil-in-water emulsified food | |
JP5644210B2 (en) | Acid oil-in-water emulsified food | |
US11147280B2 (en) | Emulsions | |
JP6656456B1 (en) | Acidic oil-in-water emulsified food | |
JP6511574B1 (en) | Acidic emulsified liquid seasoning | |
Young | Emulsifiers and stabilisers | |
JP4440842B2 (en) | Method for producing acidic oil-in-water emulsion composition | |
JP4800338B2 (en) | Acid liquid seasoning | |
JP4502894B2 (en) | Method for producing acidic oil-in-water emulsified food | |
JP2006191840A (en) | Method for producing acidic oil-in-water type emulsion | |
WO2012052253A1 (en) | Food product containing ethylcellulose | |
JP2004154056A (en) | Method for producing acidic oil-in-water emulsion | |
JP2022126080A (en) | Method for producing emulsified sauce | |
Bennion et al. | Emulsions and emulsifiers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080807 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080826 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080826 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111115 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111220 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120214 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120605 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120702 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5033553 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |