JP5032605B2 - Lead-free high-performance gasoline, gasoline base material and method for producing gasoline base material - Google Patents
Lead-free high-performance gasoline, gasoline base material and method for producing gasoline base material Download PDFInfo
- Publication number
- JP5032605B2 JP5032605B2 JP2010019382A JP2010019382A JP5032605B2 JP 5032605 B2 JP5032605 B2 JP 5032605B2 JP 2010019382 A JP2010019382 A JP 2010019382A JP 2010019382 A JP2010019382 A JP 2010019382A JP 5032605 B2 JP5032605 B2 JP 5032605B2
- Authority
- JP
- Japan
- Prior art keywords
- gasoline
- base material
- catalytic cracking
- gasoline base
- fluid catalytic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003502 gasoline Substances 0.000 title claims description 153
- 239000000463 material Substances 0.000 title claims description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 36
- 238000004231 fluid catalytic cracking Methods 0.000 claims description 49
- 230000003197 catalytic effect Effects 0.000 claims description 19
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 18
- 238000005194 fractionation Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 15
- 229930195733 hydrocarbon Natural products 0.000 claims description 12
- 150000002430 hydrocarbons Chemical class 0.000 claims description 12
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims description 11
- 238000004821 distillation Methods 0.000 claims description 9
- 235000014676 Phragmites communis Nutrition 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 238000011160 research Methods 0.000 claims description 7
- 238000005406 washing Methods 0.000 claims description 7
- 238000004508 fractional distillation Methods 0.000 claims description 6
- 235000011121 sodium hydroxide Nutrition 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 239000011593 sulfur Substances 0.000 claims description 4
- 239000001273 butane Substances 0.000 claims 4
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims 4
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims 4
- 238000001833 catalytic reforming Methods 0.000 description 26
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 21
- 238000006243 chemical reaction Methods 0.000 description 19
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 18
- 239000007789 gas Substances 0.000 description 11
- 239000000446 fuel Substances 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 238000009835 boiling Methods 0.000 description 7
- 239000003054 catalyst Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 5
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 3
- 229910002091 carbon monoxide Inorganic materials 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000002407 reforming Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- KUKYMMYXCCTMTF-UHFFFAOYSA-N CCCCC.[S] Chemical compound CCCCC.[S] KUKYMMYXCCTMTF-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 239000000809 air pollutant Substances 0.000 description 1
- 231100001243 air pollutant Toxicity 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
Images
Landscapes
- Liquid Carbonaceous Fuels (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、無鉛高性能ガソリン、ガソリン基材及びその製造方法に関し、特には蒸気圧の低い無鉛高性能ガソリン、該無鉛高性能ガソリンの基材として最適なガソリン基材及び該ガソリン基材の製造方法に関する。 The present invention relates to an unleaded high-performance gasoline, a gasoline base material, and a method for producing the same. Regarding the method.
自動車排ガス中には大気汚染物質が含まれており、大気環境改善のために、その低減化が求められている。具体的には、エンジン排ガス中の窒素酸化物(NOx)、一酸化炭素(CO)、炭化水素(HC)及び燃料の蒸発ガスなどがあり、ガソリン中の硫黄分が多いと、排出ガス処理触媒に悪影響を及ぼし、排出ガス中のNOx、CO、HCの濃度が高くなる可能性がある。また、燃料の蒸発ガスは光化学スモッグの原因となるオゾン生成に影響を及ぼすと考えられている。この燃料の蒸発ガスは自動車の燃料タンクを含む燃料系統から蒸発して大気中に放出されている。このため、硫黄分が少なく、かつ蒸発ガスの少ないガソリンが求められている。 Automobile exhaust gas contains air pollutants, and the reduction is required to improve the air environment. Specifically, there are nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons (HC), and fuel evaporative gas in the engine exhaust gas. May adversely affect the NOx, CO, and HC concentrations in the exhaust gas. In addition, it is thought that the fuel evaporative gas affects the ozone generation that causes photochemical smog. The fuel evaporative gas is evaporated from a fuel system including a fuel tank of an automobile and released into the atmosphere. For this reason, gasoline with low sulfur content and low evaporation gas is required.
一般に、燃料からの蒸発ガスを低減することによってオゾン生成を低減するには、燃料の蒸気圧を低くし、オゾン生成性が高い成分である軽質炭化水素を除くことが考えられる。しかしながら、燃料の軽質分を少なくすると、自動車の始動性や暖気過程の加速性等の運転性能に悪影響が出るため、蒸気圧が低く、かつ自動車の運転性能に十分に優れたガソリンはないのが現状である。 In general, in order to reduce ozone generation by reducing evaporated gas from fuel, it is conceivable to lower the vapor pressure of the fuel and remove light hydrocarbons, which are components with high ozone productivity. However, reducing the lightness of the fuel will adversely affect the driving performance of the vehicle, such as the startability of the vehicle and the acceleration of the warm-up process, so there is no gasoline with low vapor pressure and sufficiently good driving performance. Currently.
特許文献1には、特定の性状のガソリンに高い潤滑性能を有する化合物を含有させることにより、従来の性能に加え、更に燃費および出力特性が改良されたガソリン組成物が開示されているが、性能的に未だ改良の余地があった。 Patent Document 1 discloses a gasoline composition in which fuel efficiency and output characteristics are further improved in addition to conventional performance by adding a compound having high lubricating performance to gasoline having a specific property. There was still room for improvement.
本発明は、上記観点からなされたもので、硫黄分が少なく、また蒸気圧が低く、かつ自動車の運転性能に優れた無鉛高性能ガソリン、ガソリンの製造に最適なガソリン基材及び該ガソリン基材の製造方法を提供することを目的とするものである。 The present invention has been made from the above viewpoint, and is a lead-free high-performance gasoline having a low sulfur content, a low vapor pressure, and excellent driving performance of an automobile, a gasoline base material optimal for the production of gasoline, and the gasoline base material An object of the present invention is to provide a manufacturing method.
本発明者らは、上記目的を達成すべく種々の研究を重ねた結果、
(1)70℃までの留出量が26〜40容量%であり、かつ、リード蒸気圧が60kPa以下であるリサーチ法オクタン価が96以上の無鉛高性能ガソリン、
(2)接触改質ガソリン基材30〜60容量%、流動接触分解ガソリン基材20〜40容量%及びアルキレートガソリン基材0〜30容量%を含有し、70℃までの留出量が26〜40容量%であり、かつ、リード蒸気圧が60kPa以下であるリサーチ法オクタン価が96以上の無鉛高性能ガソリン、
(3)脱硫重質ナフサを接触改質して得られる70℃までの留出量が14容量%以上である接触改質ガソリン基材及び該ガソリン基材を使用したリード蒸気圧が60kPa以下であるリサーチ法オクタン価が96以上の無鉛高性能ガソリン、
(4)脱硫重質ナフサを接触改質し、その後脱ベンゼン処理を行なった接触改質ガソリン基材であって、脱硫重質ナフサの初留点が75〜80℃である接触改質ガソリン基材及び該ガソリン基材を使用したリード蒸気圧が60kPa以下であるリサーチ法オクタン価が96以上の無鉛高性能ガソリン、
(5)脱硫重質ナフサを接触改質して得た接触改質ガソリン基材を第一の分留塔で軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Bに分留し、次いで該重質接触改質ガソリン基材Bを第二分留塔で中質接触改質ガソリン基材Cと重質接触改質ガソリン基材Dに分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して得る接触改質ガソリン基材であって、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を0.5〜2.0容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%以下となるように分留した接触改質ガソリン基材及び該ガソリン基材を使用したリード蒸気圧が60kPa以下であるリサーチ法オクタン価が96以上の無鉛高性能ガソリン、
(6)流動接触分解ガソリンを脱ブタン塔にて脱ブタン処理を行った脱ブタン流動接触分解ガソリンをさらに分留塔で分留して得た軽質流動接触分解ガソリン基材であって、脱ブタン塔で脱ブタン流動接触分解ガソリン中に含まれる炭素数4の炭化水素濃度を2容量%以下となるように分留し、分留塔で軽質流動接触分解ガソリン基材の蒸留終点を85〜95℃となるように分留した軽質流動接触分解ガソリン基材及び該ガソリン基材を使用したリード蒸気圧が60kPa以下であるリサーチ法オクタン価が96以上の無鉛高性能ガソリン、
が上記目的を達成し得ることを見出し、本発明を完成したものである。
As a result of repeating various studies to achieve the above object, the present inventors have
(1) unleaded high-performance gasoline having a distillate amount up to 70 ° C. of 26 to 40% by volume and a reed vapor pressure of 60 kPa or less and a research octane number of 96 or more,
(2) 30 to 60% by volume of catalytic reformed gasoline base, 20 to 40% by volume of fluid catalytic cracking gasoline base and 0 to 30% by volume of alkylate gasoline base, with a distillate up to 70 ° C. of 26 Lead-free high-performance gasoline having a research octane number of 96 or higher, having a reed vapor pressure of 60 kPa or less, up to 40% by volume,
(3) A catalytically reformed gasoline base material having a distillate up to 70 ° C obtained by catalytic reforming of desulfurized heavy naphtha having a volume of 14% by volume or more, and a reed vapor pressure using the gasoline base material of 60 kPa or less. An unleaded high performance gasoline with a research octane number of 96 or more,
(4) A catalytically reformed gasoline base obtained by catalytically reforming desulfurized heavy naphtha and then debenzeneed, wherein the desulfurized heavy naphtha has an initial boiling point of 75 to 80 ° C. A lead-free high-performance gasoline having a reed vapor pressure of 60 kPa or less and an octane number of 96 or more using a gasoline and the gasoline base material,
(5) Catalytic reforming gasoline base material obtained by catalytic reforming of desulfurized heavy naphtha is fractionated into light catalytic reforming gasoline base material A and heavy catalytic reforming gasoline base material B in the first fractionator. Then, the heavy catalytic reformed gasoline base B is fractionated into a medium catalytic reformed gasoline base C and a heavy catalytic reformed gasoline base D in the second fractionation tower, and further, the light catalytic reformed gasoline base A catalytic reforming gasoline base material obtained by mixing a base material A and a heavy catalytic reforming gasoline base material D, wherein the benzene concentration of the light catalytic reforming gasoline base material A is 0.5 to Catalytic reforming gasoline base fractionated to 2.0% by volume and fractionated in the second fractionating column so that the toluene concentration of the medium catalytic reformed gasoline base material C is 0.5% by volume or less. Lead-free high-performance gaso, which has a reed vapor pressure of 60 kPa or less and an octane number of 96 or more using a gasoline base material and the gasoline base material Down,
(6) A light fluid catalytic cracking gasoline base material obtained by subjecting fluid catalytic cracking gasoline to debutane treatment in a debutane tower and further fractionating the debutane fluid catalytic cracking gasoline in a fractionation tower, In the tower, the concentration of hydrocarbons having 4 carbon atoms contained in the debutane fluid catalytic cracking gasoline is 2 vol% or less, and the distillation end point of the light fluid catalytic cracking gasoline base is 85 to 95 in the fractionation tower. A light fluid catalytic cracking gasoline base material fractionally distilled at a temperature of 0 ° C., and a lead vapor pressure using the gasoline base material of a lead vapor pressure of 60 kPa or less and an unleaded high-performance gasoline having a research octane number of 96 or more,
Has found that the above object can be achieved, and has completed the present invention.
本発明の無鉛高性能ガソリンは、蒸気圧が低く、かつ自動車の運転性能に優れ、また本発明のガソリン基材は該無鉛高性能ガソリンの製造に好適である。 The unleaded high performance gasoline of the present invention has a low vapor pressure and excellent driving performance of an automobile, and the gasoline base material of the present invention is suitable for producing the unleaded high performance gasoline.
本発明に係るガソリン組成物は、70℃までの留出量が26〜40容量%であり、かつ、リード蒸気圧が60kPa以下で、リサーチ法オクタン価が96以上の無鉛高性能ガソリンである。
70℃までの留出量とは、本発明に係る無鉛高性能ガソリンを室温から昇温していき、70℃に達するまでに留出する量をいう。本発明では、70℃までの留出量が26〜40容量%の範囲にある。26容量%未満であると始動性や暖気過程の運転性が低下することがあり、40容量%を超えると高温時の運転性が低下することがある。また、これらの観点からさらに70℃までの留出量が27〜32容量%の範囲にあることが好ましい。
The gasoline composition according to the present invention is a lead-free high-performance gasoline having a distillate up to 70 ° C. of 26 to 40% by volume, a reed vapor pressure of 60 kPa or less, and a research octane number of 96 or more.
The distillate amount up to 70 ° C. means the amount of distillate until the lead-free high-performance gasoline according to the present invention is heated from room temperature and reaches 70 ° C. In the present invention, the amount of distillation up to 70 ° C. is in the range of 26 to 40% by volume. If it is less than 26% by volume, startability and drivability in the warming process may be deteriorated, and if it exceeds 40% by volume, drivability at a high temperature may be deteriorated. Moreover, it is preferable from these viewpoints that the distillation amount to 70 degreeC exists in the range of 27 to 32 volume%.
本発明に係る無鉛高性能ガソリンは、JIS K 2258に準拠して測定したリード蒸気圧が60kPa以下である。リード蒸気圧が60kPa以下であると、オゾン生成に影響を及ぼす軽質の炭化水素の蒸発を抑制することができる。
また、本発明のガソリン組成物は環境汚染を防止するとの観点から、ベンゼンの含有量を1容量%以下、芳香族含有量を35容量%以下、硫黄分含有量を10ppm以下とすることが好ましい。
The lead-free high-performance gasoline according to the present invention has a reed vapor pressure measured in accordance with JIS K 2258 of 60 kPa or less. When the lead vapor pressure is 60 kPa or less, it is possible to suppress evaporation of light hydrocarbons that affect ozone generation.
In addition, from the viewpoint of preventing environmental pollution, the gasoline composition of the present invention preferably has a benzene content of 1% by volume or less, an aromatic content of 35% by volume or less, and a sulfur content of 10 ppm or less. .
本発明の無鉛高性能ガソリンを製造する方法としては種々あるが、接触改質ガソリン基材30〜60容量%、軽質流動接触分解ガソリン基材20〜40容量%及びアルキレートガソリン基材0〜30容量%を含有させることで製造することができる。
その際に、接触改質ガソリン基材の70℃までの留出分は14容量%以上であることが好ましい。該留分が14容量%未満であると、低温時での始動性、暖気過程の加速性が低く、自動車の運転性能に劣る場合があるからである。
接触改質ガソリン基材(以下「PG」という)とは、炭素数5〜9程度の主として直鎖状の炭化水素からなるナフサ留分、特には炭素数7〜9の脱硫重質ナフサを、接触改質することで得られる。ここで接触改質反応の反応条件としては、通常反応温度450〜540℃、反応圧力0.3〜5MPa、使用する触媒としては、Pt,Pt−Re等の金属をアルミナ、ゼオライト等の酸化物担体に担持したものがある。
また、このようにして脱硫重質ナフサを接触改質した後、脱ベンゼン処理を行った脱ベンゼン接触改質ガソリン基材がより好ましい。
There are various methods for producing the lead-free high-performance gasoline of the present invention. The catalytic reforming gasoline base is 30 to 60% by volume, the light fluid catalytic cracking gasoline base is 20 to 40% by volume, and the alkylate gasoline base is 0 to 30%. It can manufacture by containing the volume%.
In that case, it is preferable that the distillate to 70 degreeC of a catalytic reforming gasoline base material is 14 volume% or more. This is because if the fraction is less than 14% by volume, the startability at low temperatures and the acceleration of the warm-up process are low, and the driving performance of the automobile may be inferior.
The catalytic reforming gasoline base (hereinafter referred to as “PG”) is a naphtha fraction mainly composed of linear hydrocarbons having about 5 to 9 carbon atoms, particularly desulfurized heavy naphtha having 7 to 9 carbon atoms, Obtained by catalytic modification. Here, the reaction conditions for the catalytic reforming reaction are usually a reaction temperature of 450 to 540 ° C., a reaction pressure of 0.3 to 5 MPa, and the catalyst used is a metal such as Pt or Pt—Re such as an oxide such as alumina or zeolite. Some are supported on a carrier.
In addition, a debenzene-catalyzed reformed gasoline base material that is subjected to debenzene treatment after catalytically reforming desulfurized heavy naphtha in this manner is more preferable.
PG中の70℃までの留出分を14容量%以上とするには、種々の方法があるが、例えば接触改質反応の原料である重質ナフサの初留点を軽質化することで達成される。通常重質ナフサの初留点は80〜90℃程度であるが、本発明においては、75〜80℃の範囲とすることが好ましい。 There are various methods to increase the distillate content up to 70 ° C. in PG to 14% by volume or more. For example, it is achieved by reducing the initial boiling point of heavy naphtha, which is a raw material for catalytic reforming reaction Is done. Usually, the initial boiling point of heavy naphtha is about 80 to 90 ° C, but in the present invention, it is preferably in the range of 75 to 80 ° C.
また、別の方法としては、PGをさらに分留して、いくつかの留分に分け、これらの留分を組み合わせて、PG中の70℃までの留出分量をコントロールし、本発明に適したPGを製造することができる。
具体的には、脱硫重質ナフサを接触改質して得た接触改質ガソリン基材を第一の分留塔で軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Bに分留し、次いで該重質接触改質ガソリン基材Bを第二分留塔で中質接触改質ガソリン基材Cと重質接触改質ガソリン基材Dに分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して接触改質ガソリン基材を製造することが好ましい。ここで、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を0.5〜2.0容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%以下となるように分留することが好ましく、この条件でPGを製造することにより、本発明の効果を奏する接触改質ガソリン基材が効率よく得られる。
As another method, PG is further fractionated and divided into several fractions, and these fractions are combined to control the amount of distillate in PG up to 70 ° C, which is suitable for the present invention. PG can be produced.
Specifically, a catalytic reformed gasoline base material obtained by catalytic reforming of desulfurized heavy naphtha is converted into a light catalytic reformed gasoline base material A and a heavy catalytic reformed gasoline base material B in the first fractionator. Then, the heavy catalytic reformed gasoline base B is fractionated into a medium catalytic reformed gasoline base C and a heavy catalytic reformed gasoline base D in the second fractionator, and further light contact modified. It is preferable to mix a high quality gasoline base material A and a heavy contact reformed gasoline base material D to produce a catalytically modified gasoline base material. Here, fractionation is performed so that the benzene concentration of the light catalytic reforming gasoline base A is 0.5 to 2.0% by volume in the first fractionation tower, and the medium catalytic reforming gasoline in the second fractionation tower. It is preferable to carry out fractional distillation so that the toluene concentration of the substrate C is 0.5% by volume or less. By producing PG under these conditions, a catalytically modified gasoline substrate exhibiting the effects of the present invention can be obtained efficiently. It is done.
本発明にかかる無鉛高性能ガソリンは、前記PGを30〜60容量%含むことが好ましい。PGの含有量が30容量%未満では、オクタン価が低下する場合があり、60容量%を超えると、低温始動性が低下する場合がある。 The lead-free high-performance gasoline according to the present invention preferably contains 30 to 60% by volume of the PG. If the content of PG is less than 30% by volume, the octane number may decrease, and if it exceeds 60% by volume, the low-temperature startability may decrease.
本発明のガソリンは、軽質流動接触分解ガソリン基材(以下「LFG」という場合がある。)を20〜40容量%の範囲で配合することが好ましい。20〜40容量%配合することで、低温始動性、暖気性等の実用性能に優れるという利点が得られる。この観点から該基材の配合量は、25〜35容量%の範囲がより好ましい。
軽質流動接触分解ガソリン基材とは、一般には軽油留分及び/又は重質留分を流動接触分解(以下「(R)FCC」という)装置で分解したガソリン留分のうち軽質の部分をいう。
ここで、(R)FCC装置とは、常圧重質軽油、減圧軽油、常圧残油などの重質留分を流動する触媒と高温で接触させ、重質留分を分解して、ガソリン留分を得る装置をいう。ここで使用する触媒としては、通常(R)FCC触媒として使用されるものであれば限定されないが、特にSiO2−Al2O3やゼオライト等の固体酸触媒が好適である。反応条件としては、反応温度450〜550℃、反応圧力0.1〜0.5MPa、接触時間0.1〜2秒、触媒/油比5〜20kg/kgの範囲が好ましい。また、(R)FCC装置では、流動する触媒が反応塔から連続的に抜き出され、再生塔にて空気燃焼により再生される。
The gasoline of the present invention preferably contains a light fluid catalytic cracking gasoline base material (hereinafter sometimes referred to as “LFG”) in a range of 20 to 40% by volume. By blending 20 to 40% by volume, it is possible to obtain an advantage of excellent practical performance such as low temperature startability and warming property. In this respect, the amount of the base material is more preferably in the range of 25 to 35% by volume.
The light fluid catalytic cracking gasoline base is generally a light portion of a gasoline fraction obtained by cracking a light oil fraction and / or a heavy fraction with a fluid catalytic cracking (hereinafter referred to as “(R) FCC”) apparatus. .
Here, the (R) FCC device is a gasoline that brings heavy fractions such as atmospheric heavy gas oil, vacuum gas oil and atmospheric residue into contact with a flowing catalyst at a high temperature, decomposes the heavy fraction, and produces gasoline. An apparatus for obtaining a fraction. The catalyst used here is not limited as long as it is usually used as an (R) FCC catalyst, but a solid acid catalyst such as SiO 2 —Al 2 O 3 or zeolite is particularly suitable. The reaction conditions are preferably a reaction temperature of 450 to 550 ° C., a reaction pressure of 0.1 to 0.5 MPa, a contact time of 0.1 to 2 seconds, and a catalyst / oil ratio of 5 to 20 kg / kg. Further, in the (R) FCC apparatus, the flowing catalyst is continuously extracted from the reaction tower and regenerated by air combustion in the regeneration tower.
通常流動接触分解ガソリンは脱ブタン処理が行なわれるが、本発明においては、流動接触分解ガソリンを、脱ブタン塔で脱ブタン処理した脱ブタン流動接触分解ガソリンを、さらに分留塔で軽質流動接触分解ガソリンと重質流動接触分解ガソリンに分留することが好ましい。通常流動接触分解ガソリンに含まれるマーカプタン硫黄分を除去するために、苛性ソーダ洗浄処理が用いられるが、図1〜図3に示すように、脱ブタン流動接触分解ガソリンを分留塔で分留する前に苛性ソーダ洗浄処理する方法(図1)、分留塔で分留した軽質流動接触分解ガソリン基材(LFG)と重質流動接触分解ガソリン基材(HFG)をそれぞれ苛性ソーダ処理する方法(図2)、軽質流動接触分解ガソリン基材と重質流動接触分解ガソリン基材をそれぞれ処理する場合、分留塔をバイパスした脱ブタン流動接触分解ガソリンの一部を重質流動接触分解ガソリンと混合して、苛性ソーダ洗浄処理する方法(図3)等があるが、本発明においてはいずれのケースを用いてもよく、設備コスト、処理効率、要求製品性状等により、いずれかのケースが選択される。尚、初期投資コストを削減するとの観点からは図1に示す方法が好ましい。
本発明においては、軽質流動接触分解ガソリン基材を使用することが好ましく、特に、脱ブタン塔で、脱ブタン流動接触分解ガソリン中に含まれる炭素数4の炭化水素濃度を2容量%以下となるように分留し、分留塔で軽質流動接触分解ガソリン基材の蒸留終点を85〜95℃となるように分留して得た軽質流動接触分解ガソリン基材が好適に使用される。
Normally, fluid catalytic cracking gasoline is subjected to debutane treatment. In the present invention, fluid catalytic cracking gasoline is debutane fluidized catalytic cracked gasoline debutanized in a debutane tower, and light fluid catalytic cracking in a fractionation tower. It is preferable to fractionate into gasoline and heavy fluid catalytic cracking gasoline. Usually, caustic soda washing treatment is used to remove the marker pentane sulfur contained in fluid catalytic cracking gasoline, but as shown in FIGS. 1 to 3, before the debutane fluid catalytic cracking gasoline is fractionated in a fractionation tower. A method of performing a caustic soda washing treatment (FIG. 1), a method of performing a caustic soda treatment on a light fluid catalytic cracking gasoline base material (LFG) and a heavy fluid catalytic cracking gasoline base material (HFG) fractionated by a fractionation tower (FIG. 2). In the case of treating each of the light fluid catalytic cracking gasoline base and the heavy fluid catalytic cracking gasoline base, a part of the debutane fluid catalytic cracking gasoline bypassing the fractionation tower is mixed with the heavy fluid catalytic cracking gasoline, There is a method of cleaning with caustic soda (FIG. 3), but any case may be used in the present invention, depending on equipment costs, processing efficiency, required product properties, etc. The case is selected. From the viewpoint of reducing the initial investment cost, the method shown in FIG. 1 is preferable.
In the present invention, it is preferable to use a light fluid catalytic cracking gasoline base material. In particular, in the debutane tower, the concentration of hydrocarbons having 4 carbon atoms contained in the debutane fluid catalytic cracking gasoline is 2% by volume or less. Thus, a light fluid catalytic cracking gasoline base material obtained by fractional distillation in such a manner that the distillation end point of the light fluid catalytic cracking gasoline base material is 85 to 95 ° C. in a fractionation tower is preferably used.
また、本発明にかかる無鉛高性能ガソリンでは、30容量%以下の範囲内でアルキレートガソリン基材(以下「ALK」と記載する場合がある。)を配合することが好ましい。該留分が30容量%以上では製造コストの適正化の点から好ましくなく、また、低温始動性、暖気性等の実用性に優れるという観点からアルキレートガソリン基材の含有量は5〜25容量%の範囲がより好ましい。
ここで、アルキレートガソリン基材とはアルキル化反応によって得られるイソパラフィン留分に富む高オクタン価の基材をいう。
In the unleaded high-performance gasoline according to the present invention, it is preferable to blend an alkylate gasoline base (hereinafter sometimes referred to as “ALK”) within a range of 30% by volume or less. If the fraction is 30% by volume or more, it is not preferable from the viewpoint of optimizing production costs, and the content of the alkylate gasoline base is 5 to 25 volumes from the viewpoint of excellent practicality such as low-temperature startability and warming property. % Range is more preferred.
Here, the alkylate gasoline base material means a high octane base material rich in isoparaffin fraction obtained by alkylation reaction.
次に、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
(評価方法)夏場低温時(20℃)での加速性評価試験
排気量660cc、キャブレター仕様の自動車エンジンを用い、室温20℃にてエンジンをスタートさせ、アイドリングを10秒間保った後に、アクセル開度を日本の排出ガス試験の走行モードである「11モード」における最初のアクセル開度と同じとし、エンジン回転数3500rpmに到達するまでの時間(秒)で評価した。この時間が短いほど燃料の加速応答性が良好である。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
(Evaluation method) Acceleration evaluation test at summer low temperature (20 ° C) Using a car engine with a displacement of 660cc and carburetor specifications, start the engine at room temperature of 20 ° C, hold idling for 10 seconds, and then open the accelerator Was the same as the first accelerator opening in the "11 mode" which is the running mode of the exhaust gas test in Japan, and the time until reaching the engine speed of 3500 rpm (seconds) was evaluated. The shorter this time, the better the acceleration response of the fuel.
各種基材の製造方法
製造実施例1(PGの製造方法)
初留点75.5℃の脱硫重質ナフサを反応温度506℃、反応圧力0.75MPaの条件で改質し、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度が0.4容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%となるように分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して、第1表に示す性状を有するPG(1)を得た。
Manufacturing methods of various substrates Manufacturing Example 1 (PG manufacturing method)
Desulfurized heavy naphtha having an initial boiling point of 75.5 ° C. was reformed under the conditions of a reaction temperature of 506 ° C. and a reaction pressure of 0.75 MPa, and the benzene concentration in the light catalytic reforming gasoline base A was 0.1 in the first fractionation tower. Fractionated to 4% by volume, fractionated to a toluene concentration of 0.5% by volume in the medium catalytic reforming gasoline base C in the second fractionating column, and further light catalytic reformed gasoline base The material A and the heavy contact reformed gasoline base D were mixed to obtain PG (1) having the properties shown in Table 1.
製造実施例2(PGの製造方法)
初留点80℃の脱硫重質ナフサを反応温度508℃、反応圧力0.75MPaの条件で改質し、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を1.5容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%となるように分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して第1表に示す性状を有するPG(2)を得た。
Production Example 2 (Method for producing PG)
Desulfurized heavy naphtha with an initial boiling point of 80 ° C is reformed under the conditions of a reaction temperature of 508 ° C and a reaction pressure of 0.75 MPa, and the benzene concentration of the light catalytic reforming gasoline base A is 1.5 vol. % In the second fractionating tower, the toluene concentration of the medium catalytic reforming gasoline base C is 0.5 vol%, and further the light catalytic reforming gasoline base A And heavy contact reformed gasoline base D were mixed to obtain PG (2) having the properties shown in Table 1.
製造実施例3(PGの製造方法)
初留点75.5℃の脱硫重質ナフサを反応温度506℃、反応圧力0.75MPaの条件で改質し、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を1.5容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.5容量%となるように分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して第1表に示す性状を有するPG(3)を得た。
Production Example 3 (Method for producing PG)
Desulfurized heavy naphtha having an initial boiling point of 75.5 ° C. is reformed under conditions of a reaction temperature of 506 ° C. and a reaction pressure of 0.75 MPa, and the benzene concentration in the light catalytic reforming gasoline base A is 1. Fractionated to 5% by volume, fractionated to a concentration of 0.5% by volume of toluene in the medium catalytic reformed gasoline base C in the second fractionator, and further converted to light catalytic reformed gasoline base The material A and the heavy contact reformed gasoline base D were mixed to obtain PG (3) having the properties shown in Table 1.
製造実施例4(LFGの製造方法)
流動接触分解装置から得られる流動接触分解ガソリンを脱ブタン塔にて脱ブタン処理を行った。脱ブタン塔では脱ブタン流動接触分解ガソリン中に含まれる炭素数4の炭化水素濃度が1.9容量%となるように分留した。脱ブタン処理された流動接触分解ガソリン(脱ブタンFG)を分留塔で分留し、軽質流動接触分解ガソリンLFG(1)を得た。分留塔は軽質流動接触分解ガソリンの蒸留終点が90℃となるように制御した。
Production Example 4 (Method for producing LFG)
The fluid catalytic cracking gasoline obtained from the fluid catalytic cracking apparatus was subjected to debutane treatment in a debutane tower. In the debutane tower, fractionation was carried out so that the hydrocarbon concentration of 4 carbon atoms contained in the debutane fluid catalytic cracking gasoline was 1.9% by volume. The fluid catalytic cracking gasoline (debutane FG) subjected to debutane treatment was fractionated in a fractionation tower to obtain light fluid catalytic cracking gasoline LFG (1). The fractionation tower was controlled so that the distillation end point of light fluid catalytic cracking gasoline was 90 ° C.
製造比較例1(PGの製造方法)
初留点80℃の脱硫重質ナフサを反応温度507℃、反応圧力0.75MPaの条件で改質し、第一分留塔で軽質接触改質ガソリン基材Aのベンゼン濃度を0.4容量%となるように分留し、第二分留塔で中質接触改質ガソリン基材Cのトルエン濃度を0.4容量%となるように分留し、さらに軽質接触改質ガソリン基材Aと重質接触改質ガソリン基材Dを混合して第1表に示す性状を有するPG(4)を得た。
Production Comparative Example 1 (Method for producing PG)
Desulfurized heavy naphtha with an initial boiling point of 80 ° C is reformed under the conditions of a reaction temperature of 507 ° C and a reaction pressure of 0.75 MPa, and the benzene concentration in the light catalytic reforming gasoline base A is 0.4 vol. % In the second fractionating column, the toluene concentration of the medium catalytic reforming gasoline base C is 0.4 vol%, and further the light catalytic reforming gasoline base A And heavy contact reformed gasoline base D were mixed to obtain PG (4) having the properties shown in Table 1.
製造実施例5(アルキレートガソリン基材の製造方法)
(R)FCC装置から副生する炭素数4のオレフィン類とイソブタン濃度36容量%を含有する炭素数4のパラフィン類を硫酸の存在下で混合した。反応温度8℃、反応圧力0.4MPaの条件でアルキル化反応を行い、第1表に示す性状を有するALKを得た。
Production Example 5 (Method for producing alkylate gasoline base material)
(R) C4 olefins by-produced from the FCC unit and C4 paraffins containing 36% by volume of isobutane were mixed in the presence of sulfuric acid. An alkylation reaction was carried out under the conditions of a reaction temperature of 8 ° C. and a reaction pressure of 0.4 MPa to obtain ALK having the properties shown in Table 1.
製造比較例2(LFGの製造方法)
脱ブタン塔は脱ブタン流動接触分解ガソリン中に含まれる炭素数4の炭化水素濃度が4.7容量%となるように、分留塔は軽質流動接触分解ガソリンの蒸留終点が100℃となるように制御したこと以外は製造例4と同様にLFG(2)を製造した。
Production Comparative Example 2 (Method for producing LFG)
The debutane tower is such that the concentration of hydrocarbons having 4 carbon atoms contained in the debutane fluid catalytic cracking gasoline is 4.7% by volume, and the distillation tower is such that the distillation end point of the light fluid catalytic cracking gasoline is 100 ° C. LFG (2) was produced in the same manner as in Production Example 4 except that the above control was performed.
実施例1
製造実施例1に従って製造したPG(1)49.0容量%、製造実施例4に従って製造したLFG(1)32.0容量%及び製造実施例5に従って製造したALK19.0容量%を混合し、第2表に示す性状を有するガソリン組成物を製造した。夏場低温時(20℃)での加速性について評価した。評価結果を第2表に示す。
Example 1
PG (1) 49.0% by volume produced according to Production Example 1, 32.0% by volume LFG (1) produced according to Production Example 4, and ALK 19.0% by volume produced according to Production Example 5 were mixed, A gasoline composition having the properties shown in Table 2 was produced. Acceleration at low temperatures (20 ° C) in summer was evaluated. The evaluation results are shown in Table 2.
実施例2
製造実施例2に従って製造したPG(2)49.0容量%、製造実施例4に従って製造したLFG(1)30.0容量%及び製造実施例5に従って製造したALK21.0容量%を混合し、第2表に示す性状を有するガソリン組成物を製造した。評価結果を第2表に示す。
Example 2
PG (2) 49.0% by volume produced according to Production Example 2, 30.0% by volume LFG (1) produced according to Production Example 4, and 21.0% by volume ALK produced according to Production Example 5, A gasoline composition having the properties shown in Table 2 was produced. The evaluation results are shown in Table 2.
実施例3
製造実施例3に従って製造したPG(3)50.0容量%、製造実施例4に従って製造したLFG(1)30.0容量%及び製造実施例5に従って製造したALK20.0容量%を混合し、第2表に示す性状を有するガソリン組成物を製造した。評価結果を第2表に示す。
Example 3
PG (3) 50.0% by volume manufactured according to Preparation Example 3, LFG (1) 30.0% by volume manufactured according to Preparation Example 4 and ALK 20.0% by volume manufactured according to Preparation Example 5 are mixed, A gasoline composition having the properties shown in Table 2 was produced. The evaluation results are shown in Table 2.
比較例1
製造比較例1に従って製造したPG(4)48.0容量%、製造実施例5に従って製造したALK20.0容量%及び製造比較例2に従って製造したLFG(2)32.0容量%を混合し、第2表に示す性状を有するガソリン組成物を製造した。評価結果を第2表に示す。
Comparative Example 1
PG (4) 48.0% by volume produced according to Production Comparative Example 1, ALK 20.0% by volume produced according to Production Example 5, and 32.0% by volume LFG (2) produced according to Production Comparative Example 2 were mixed. A gasoline composition having the properties shown in Table 2 was produced. The evaluation results are shown in Table 2.
比較例2
製造比較例1に従って製造したPG(4)51.0容量%、製造実施例5に従って製造したALK21.0容量%及び製造比較例2に従って製造したLFG(2)28.0容量%を混合し、第2表に示す性状を有するガソリン組成物を製造した。評価結果を第2表に示す。
Comparative Example 2
PG (4) 51.0% by volume produced according to Production Comparative Example 1, ALK 21.0% by volume produced according to Production Example 5 and LFG (2) 28.0% by volume produced according to Production Comparative Example 2 were mixed, A gasoline composition having the properties shown in Table 2 was produced. The evaluation results are shown in Table 2.
本発明の無鉛高性能ガソリンは、蒸気圧が低く、かつ自動車の運転性能に優れ、また本発明のガソリン基材は該無鉛高性能ガソリンの製造に好適である。 The unleaded high performance gasoline of the present invention has a low vapor pressure and excellent driving performance of an automobile, and the gasoline base material of the present invention is suitable for producing the unleaded high performance gasoline.
1:脱ブタン塔
2:苛性ソーダ洗浄塔
3:再蒸留塔
4:バイパス
1: Debutane tower 2: Caustic soda washing tower 3: Redistillation tower 4: Bypass
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010019382A JP5032605B2 (en) | 2002-08-05 | 2010-01-29 | Lead-free high-performance gasoline, gasoline base material and method for producing gasoline base material |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002227915 | 2002-08-05 | ||
JP2002227915 | 2002-08-05 | ||
JP2010019382A JP5032605B2 (en) | 2002-08-05 | 2010-01-29 | Lead-free high-performance gasoline, gasoline base material and method for producing gasoline base material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003160508A Division JP2004124055A (en) | 2002-08-05 | 2003-06-05 | Lead-free high-performance gasoline, gasoline base and method for producing gasoline base |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010095733A JP2010095733A (en) | 2010-04-30 |
JP5032605B2 true JP5032605B2 (en) | 2012-09-26 |
Family
ID=42257618
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010019380A Expired - Fee Related JP5087095B2 (en) | 2002-08-05 | 2010-01-29 | Lead-free high-performance gasoline, gasoline base material and method for producing gasoline base material |
JP2010019382A Expired - Fee Related JP5032605B2 (en) | 2002-08-05 | 2010-01-29 | Lead-free high-performance gasoline, gasoline base material and method for producing gasoline base material |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010019380A Expired - Fee Related JP5087095B2 (en) | 2002-08-05 | 2010-01-29 | Lead-free high-performance gasoline, gasoline base material and method for producing gasoline base material |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5087095B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0393894A (en) * | 1989-09-06 | 1991-04-18 | Cosmo Sogo Kenkyusho:Kk | Unleaded high performance gasoline |
JP3782139B2 (en) * | 1995-10-16 | 2006-06-07 | 新日本石油株式会社 | Unleaded gasoline |
-
2010
- 2010-01-29 JP JP2010019380A patent/JP5087095B2/en not_active Expired - Fee Related
- 2010-01-29 JP JP2010019382A patent/JP5032605B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP5087095B2 (en) | 2012-11-28 |
JP2010095732A (en) | 2010-04-30 |
JP2010095733A (en) | 2010-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000515575A (en) | Synthetic diesel fuel with reduced particulate matter emissions | |
JP5142588B2 (en) | Method for producing gasoline composition | |
JP4115861B2 (en) | Fuel oil composition | |
JP5137335B2 (en) | Method for producing gasoline composition | |
JP2004124055A (en) | Lead-free high-performance gasoline, gasoline base and method for producing gasoline base | |
JP5032605B2 (en) | Lead-free high-performance gasoline, gasoline base material and method for producing gasoline base material | |
JP5350752B2 (en) | Gasoline composition | |
JP5346158B2 (en) | Gasoline base material and gasoline composition containing the same | |
JP2004124056A (en) | Unleaded gasoline and gasoline base material used for unleaded gasoline | |
JP5204133B2 (en) | Gasoline base material used for unleaded gasoline and unleaded gasoline | |
JP2006176744A (en) | Unleaded high octane number gasoline | |
JP4090082B2 (en) | Fuel oil for gasoline engines | |
JP4429880B2 (en) | Unleaded gasoline | |
JPH0995688A (en) | Gasoline | |
JP4429940B2 (en) | Unleaded gasoline | |
JP3797503B2 (en) | Fuel oil for gasoline engines | |
JP4156554B2 (en) | Gasoline composition | |
JP5368072B2 (en) | Fuel composition for gasoline engines | |
JP5346159B2 (en) | Gasoline base material and gasoline composition containing the same | |
JP4913444B2 (en) | Unleaded gasoline | |
JP4429881B2 (en) | Unleaded high octane gasoline | |
JP5537767B2 (en) | Gasoline base material and gasoline composition containing the same | |
JP4659380B2 (en) | Gasoline composition | |
JP4294519B2 (en) | Gasoline composition | |
JP3946276B2 (en) | Gasoline base material and unleaded gasoline using the base material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120619 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5032605 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150706 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |