[go: up one dir, main page]

JP5007927B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP5007927B2
JP5007927B2 JP2006292418A JP2006292418A JP5007927B2 JP 5007927 B2 JP5007927 B2 JP 5007927B2 JP 2006292418 A JP2006292418 A JP 2006292418A JP 2006292418 A JP2006292418 A JP 2006292418A JP 5007927 B2 JP5007927 B2 JP 5007927B2
Authority
JP
Japan
Prior art keywords
fuel cell
low
efficiency operation
cell system
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006292418A
Other languages
English (en)
Other versions
JP2008108668A (ja
Inventor
晃太 真鍋
啓之 今西
朋也 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006292418A priority Critical patent/JP5007927B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to PCT/JP2007/070972 priority patent/WO2008050881A1/ja
Priority to CN2007800341057A priority patent/CN101517801B/zh
Priority to US12/279,917 priority patent/US8846258B2/en
Priority to RU2008134658/09A priority patent/RU2364990C1/ru
Priority to EP07830706A priority patent/EP2086042B1/en
Priority to KR1020097008310A priority patent/KR101095606B1/ko
Priority to AT07830706T priority patent/ATE541332T1/de
Priority to ES07830706T priority patent/ES2376776T3/es
Priority to CA2641201A priority patent/CA2641201C/en
Publication of JP2008108668A publication Critical patent/JP2008108668A/ja
Application granted granted Critical
Publication of JP5007927B2 publication Critical patent/JP5007927B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/31Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for starting of fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/34Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/30Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells
    • B60L58/32Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load
    • B60L58/33Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling fuel cells for controlling the temperature of fuel cells, e.g. by controlling the electric load by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04925Power, energy, capacity or load
    • H01M8/0494Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、低効率運転により燃料電池を迅速に昇温可能な燃料電池システムに関する。
燃料電池自動車などに搭載される固体高分子型の燃料電池は、アノードに供給された燃料ガス中の水素とカソードに供給された酸化ガス中の酸素との化学反応によって、電力を発生する。この種の燃料電池は、一般に70〜80℃が発電に最適な温度域とされており、使用環境によっては燃料電池が起動してからこの温度域に達するために長い時間がかかる場合がある。
このような事情に鑑み、特許文献1に記載の燃料電池システムでは、低効率運転を行うことで燃料電池を迅速に昇温しようとしている。ここで、低効率運転とは、通常運転に比して電力損失が大きな運転をいい、換言すれば、通常運転時よりも燃料電池の発電効率を下げて、通常運転よりも熱エネルギーを増大させる運転をいう。そして、この燃料電池システムでは、冷却液温度が0℃以下の場合には、常に低効率運転を行うことで、燃料電池の暖機時間の短縮を図っている。
特開2002−313388号公報
しかし、燃料電池システムが常に低効率運転を行うのでは、低効率運転の維持に伴う不具合が生じるおそれがあり、更なる改善が求められていた。
そこで、本発明は、このような不具合を回避でき、システム運転の安定性を高めることができる燃料電池システムを提供することをその目的としている。
上記目的を達成するべく、本発明の燃料電池システムは、通常運転に比して電力損失の大きな低効率運転を所定の低温時に行うことにより、通常運転に比して短時間で燃料電池を昇温するように構成された燃料電池システムにおいて、所定の低温時に所定条件が成立する場合に、低効率運転を禁止して通常運転を実行する制御装置を備えるものである。
こうすることで、低効率運転の維持に伴う不具合が想定される場合、すなわち所定条件が成立する場合に、低効率運転から通常運転に切り替えることができる。これにより、低効率運転の維持に伴う不具合を回避でき、システム運転の安定性を高めることができる。
本発明の好ましい一態様によれば、前記所定条件には、低効率運転による燃料電池の発電電力を消費できないときが含まれる。
このような場合には、低効率運転を維持することができないからである。低効率運転を通常運転に切り替えて、燃料電池の発電量を低下させることで、システム運転を安定して行うことができる。
本発明の別の好ましい一態様によれば、燃料電池システムは、燃料電池の発電電力を蓄電するように構成された蓄電装置を備えていてもよい。そして、前記所定条件には、低効率運転による燃料電池の発電電力を蓄電装置に蓄電できないとき、及び、蓄電装置の蓄電量が所定量よりも多いとき、の少なくとも一つが含まれることが好ましい。
このような場合にも、低効率運転を維持した場合に、燃料電池の発電電力の行き場がなくなるからである。
また、本発明の好ましい一態様によれば、前記所定条件には、燃料電池にフラッディングが発生したときが含まれる。
例えば、燃料電池への反応ガスの供給量を低減して低効率運転を行った場合、燃料電池の発電反応により生成される水の排出が促進されない。このため、燃料電池にフラッディングが発生して、電圧が低下するおそれがある。上記本発明の構成によれば、フラッディングが発生した場合に低効率運転を通常運転に切り替えるので、生成水の排出を促進でき、電圧の低下を抑制できる。
好ましくは、制御装置は、燃料電池の発電停止要求を受け付けた場合には、低効率運転を禁止して燃料電池の発電を停止する。
こうすることで、例えば、燃料電池の間欠運転の要求、IG−OFF、又はシステム異常時による発電停止要求があった場合に、燃料電池の発電を停止できる。
好ましくは、制御装置は、燃料電池の起動時に低効率運転を実行するように制御する。
一般に、低効率運転を行うと、燃料電池のアノード側から水素ガスが排出されるだけでなく、カソード側からも水素(主にポンピング水素)が排出されることがある。水素を含む酸化オフガスをそのまま大気中へと排出することは環境上好ましくない。
そこで、本発明の好ましい一態様によれば、燃料電池システムは、燃料電池に供給される酸化ガスが流れる供給路と、燃料電池から排出される酸化オフガスが流れる排出路と、酸化ガスが燃料電池をバイパスして流れるように供給路と排出路とを接続するバイパス路と、バイパス路を開閉するバイパス弁と、を備える。そして好ましくは、制御装置は、低効率運転の際にバイパス弁を開く一方、通常運転の際にバイパス弁を閉じる。
こうすることで、低効率運転の際に、バイパスされた酸化ガスで酸化オフガス中の水素を希釈できるので、酸化オフガスを排出路から大気中へと適切に排出できる。一方で、通常運転の際には、酸化ガスを燃料電池をバイパスさせなくて済むので、燃料電池への酸化ガスの供給を適切になし得る。
以上説明したように、本発明の燃料電池システムによれば、低効率運転の維持に伴う不具合を回避でき、システム運転の安定性を高めることができる。
以下、添付図面を参照して、本発明の好適な実施形態に係る燃料電池システムについて説明する。先ず、本発明の燃料電池システムの概要について説明し、その上で、低効率運転を禁止して通常運転に切り替える場合の条件について説明する。
図1は、燃料電池システム1の構成図である。
燃料電池システム1は、燃料電池自動車(FCHV)、電気自動車、ハイブリッド自動車などの車両に搭載することができるが、もちろん車両のみならず各種移動体(例えば、船舶や飛行機、ロボットなど)や定置型電源にも適用可能である。
燃料電池システム1は、燃料電池2と、酸化ガスとしての空気を燃料電池2に供給する酸化ガス配管系3と、燃料ガスとしての水素ガスを燃料電池2に供給する燃料ガス配管系4と、燃料電池2に冷媒を供給して燃料電池2を冷却する冷媒配管系5と、システム1の電力を充放電する電力系6と、システム全体を統括制御する制御装置7と、を備える。
燃料電池2は、例えば固体高分子電解質型で構成され、多数の単セルを積層したスタック構造を備える。単セルは、イオン交換膜からなる電解質の一方の面に空気極(カソード)を有し、他方の面に燃料極(アノード)を有し、さらに空気極及び燃料極を両側から挟みこむように一対のセパレータを有する。一方のセパレータの酸化ガス流路2aに酸化ガスが供給され、他方のセパレータの燃料ガス流路2bに燃料ガスが供給される。供給された燃料ガス及び酸化ガスの電気化学反応により、燃料電池2は電力を発生する。燃料電池2での電気化学反応は発熱反応であり、固体高分子電解質型の燃料電池2の温度は、およそ60〜80℃となる。
酸化ガス配管系3は、燃料電池2に供給される酸化ガスが流れる供給路11と、燃料電池2から排出された酸化オフガスが流れる排出路12と、酸化ガスが燃料電池2をバイパスして流れるバイパス路17と、を有する。供給路11は、酸化ガス流路2aを介して排出路12に連通する。酸化オフガスには、燃料電池2の空気極側で生成されるポンピング水素などが含まれる(詳細は後述)。また、酸化オフガスは、燃料電池2の電池反応により生成された水分を含むため高湿潤状態となっている。
供給路11には、エアクリーナ13を介して外気を取り込むコンプレッサ14(供給機)と、コンプレッサ14により燃料電池2に圧送される酸化ガスを加湿する加湿器15と、が設けられる。加湿器15は、供給路11を流れる低湿潤状態の酸化ガスと、排出路12を流れる高湿潤状態の酸化オフガスとの間で水分交換を行い、燃料電池2に供給される酸化ガスを適度に加湿する。
燃料電池2に供給される酸化ガスの背圧は、カソード出口付近の排出路12に配設された背圧調整弁16によって調圧される。背圧調整弁16の近傍には、排出路12内の圧力を検出する圧力センサP1が設けられる。酸化オフガスは、背圧調整弁16及び加湿器15を経て最終的に排ガスとしてシステム外の大気中に排気される。
バイパス路17は、供給路11と排出路12とを接続する。バイパス路17と供給路11との供給側接続部Bは、コンプレッサ14と加湿器15との間に位置する。また、バイパス路17と排出路12との排出側接続部Cは、加湿器15の下流側に位置する。バイパス路17には、モータ又はソレノイドなどで駆動する開閉弁(シャット弁)であるバイパス弁18が設けられる。バイパス弁18は、制御装置7に接続されており、バイパス路17を開閉する。なお、以下の説明では、バイパス弁18の開弁により、バイパス弁18を通ってバイパス路17の下流へとバイパスされる酸化ガスを「バイパスエア」と称呼する。
燃料ガス配管系4は、水素供給源21と、水素供給源21から燃料電池2に供給される水素ガスが流れる供給路22と、燃料電池2から排出された水素オフガス(燃料オフガス)を供給路22の合流点Aに戻すための循環路23と、循環路23内の水素オフガスを供給路22に圧送するポンプ24と、循環路23に分岐接続されたパージ路25と、を有する。元弁26を開くことで水素供給源21から供給路22に流出した水素ガスは、調圧弁27その他の減圧弁、及び遮断弁28を経て、燃料電池2に供給される。パージ路25には、水素オフガスを水素希釈器(図示省略)に排出するためのパージ弁33が設けられる。
冷媒配管系5は、燃料電池2内の冷却流路2cに連通する冷媒流路41と、冷媒流路41に設けられた冷却ポンプ42と、燃料電池2から排出される冷媒を冷却するラジエータ43と、ラジエータ43をバイパスするバイパス流路44と、ラジエータ43及びバイパス流路44への冷却水の通流を設定する切替え弁45と、を有する。冷媒流路41は、燃料電池2の冷媒入口の近傍に設けられた温度センサ46と、燃料電池2の冷媒出口の近傍に設けられた温度センサ47と、を有する。温度センサ47が検出する冷媒温度は、燃料電池2の内部温度(以下、燃料電池2の温度という。)を反映する。冷却ポンプ42は、モータ駆動により、冷媒流路41内の冷媒を燃料電池2に循環供給する。
電力系6は、高圧DC/DCコンバータ61、バッテリ62、トラクションインバータ63、トラクションモータ64、及び各種の補機インバータ65,66,67を備えている。高圧DC/DCコンバータ61は、直流の電圧変換器であり、バッテリ62から入力された直流電圧を調整してトラクションインバータ63側に出力する機能と、燃料電池2又はトラクションモータ64から入力された直流電圧を調整してバッテリ62に出力する機能と、を有する。高圧DC/DCコンバータ61のこれらの機能により、バッテリ62の充放電が実現される。また、高圧DC/DCコンバータ61により、燃料電池2の出力電圧が制御される。バッテリ62の蓄電量は、SOCセンサ68により検出される。
トラクションインバータ63は、直流電流を三相交流に変換し、トラクションモータ64に供給する。トラクションモータ64(動力発生装置)は、例えば三相交流モータである。トラクションモータ64は、燃料電池システム1が搭載される例えば車両100の主動力源を構成し、車両100の車輪101L,101Rに連結される。補機インバータ65、66、67は、それぞれ、コンプレッサ14、ポンプ24、冷却ポンプ42のモータの駆動を制御する。
制御装置7は、内部にCPU,ROM,RAMを備えたマイクロコンピュータとして構成される。CPUは、制御プラグラムに従って所望の演算を実行して、通常運転の制御及び後述する低効率運転の制御など、種々の処理や制御を行う。ROMは、CPUで処理する制御プログラムや制御データを記憶する。RAMは、主として制御処理のための各種作業領域として使用される。
制御装置7は、各種の圧力センサ(P1)や温度センサ(46,47)、燃料電池システム1が置かれる環境の外気温を検出する外気温センサ51、SOCセンサ68、並びに、車両100のアクセル開度を検出するアクセル開度センサなどの各種センサからの検出信号を入力し、各構成要素(供給機14、背圧調製弁16及びバイパス弁18など)に制御信号を出力する。また、制御装置7は、低温始動時など燃料電池2を暖機する必要がある場合には、ROMに格納されている各種マップを利用して発電効率の低い運転を行う。さらに、制御装置7は、所定条件の場合には低効率運転を禁止する。
図2は、燃料電池2の出力電流(以下、「FC電流」という。)と出力電圧(以下、「FC電圧」という。)との関係を示す図である。図2は、燃料電池システム1が比較的発電効率の高い運転(以下、「通常運転」という。)を行った場合を実線で示し、燃料電池システム1が比較的発電効率の低い運転(以下、「低効率運転」という。)を行った場合を点線で示している。
燃料電池システム1を通常運転する場合には、電力損失を抑えて高い発電効率が得られるように、エアストイキ比を1.0以上(理論値)に設定した状態で燃料電池2を運転する(図2の実線部分参照)。ここで、エアストイキ比とは酸素余剰率をいい、水素と過不足なく反応するのに必要な酸素に対して供給される酸素がどれだけ余剰であるかを示す。
これに対し、燃料電池2を暖機する場合には、電力損失を大きくして燃料電池2の温度を上昇させるべく、エアストイキ比を1.0未満(理論値)に設定した状態で燃料電池2を運転する(図2の点線部分参照)。エアストイキ比を低く設定して低効率運転を行うと、水素と酸素との反応によって取り出せるエネルギーのうち、電力損失分(すなわち熱損失分)が積極的に増大される。このため、低効率運転を行うと、通常運転に比して短時間で燃料電池2を昇温でき、その暖機時間を短縮できる。しかし一方で、低効率運転を行うと、燃料電池2の空気極にはポンピング水素が発生する。
図3は、ポンピング水素の発生メカニズムを説明するための図であり、(A)は通常運転時の電池反応を示し、(B)は低効率運転時の電池反応を示している。
燃料電池2の各単セル80は、電解質膜81と、この電解質膜81を挟持するアノード及びカソードを備える。水素(H2)を含む燃料ガスはアノードに供給され、酸素(O2)を含む酸化ガスはカソードに供給される。アノードへ燃料ガスが供給されると、下記式(1)の反応が進行して、水素が水素イオンと電子に乖離する。アノードで生成された水素イオンは電解質膜81を透過してカソードへ移動する一方、電子はアノードから外部回路を通ってカソードへ移動する。
アノード: H2 →2H+ + 2e- ・・・(1)
ここで、図3(A)に示す通常運転の場合、すなわちカソードへの酸化ガスの供給が十分な場合には(エアストイキ比≧1.0)、下記式(2)が進行して酸素、水素イオン及び電子から水が生成される。
カソード: 2H+ + 2e- + (1/2)O2 → H2O ・・・(2)
一方、図3(B)に示す低効率運転の場合、すなわちカソードへの酸化ガスの供給が不足している場合には(エアストイキ比<1.0)、不足する酸化ガス量に応じて下記式(3)が進行し、水素イオンと電子が再結合して水素が生成される。生成された水素は、酸化オフガスとともにカソードから排出されることになる。なお、乖離した水素イオンと電子が再結合することによってカソードで生成される水素、すなわちカソードにおいて生成されるアノードガスをポンピング水素と呼ぶ。
カソード: 2H+ + 2e- → H2 ・・・(3)
このように、カソードへの酸化ガスの供給が不足した状態では、酸化オフガスにポンピング水素が含まれる。そこで、燃料電池システム1が低効率運転を行う際には、制御装置7はバイパス弁18を開弁制御し、コンプレッサ13により供給される酸化ガスの一部をバイパス路17に分流させるようにしている。この分流されたバイパスエアによって酸化オフガス中の水素濃度を希釈して、水素濃度が安全な範囲にまで低減された酸化オフガスを排出路12から外部に排気するようにしている。
ここで、低効率運転は、主として燃料電池2を暖機することを目的として、燃料電池システム1の起動時に行われるものであり、特に低温起動時にのみ行われるものである。例えば、燃料電池システム1の起動時に外気温センサ51により検出された外気温が、所定の低温(例えば0℃以下)であったときに、燃料電池システム1の低効率運転が行われ、その後、燃料電池2の暖機が完了したところで、燃料電池システム1は、低効率運転から通常運転に移行する。バイパス弁18は、低効率運転を行う燃料電池システム1の起動時に開弁し、低効率運転後の通常運転では、閉弁する。
図4は、本実施形態の燃料電池システム1の始動時の処理フローを示すフローチャートである。
図4に示すように、例えば車両100の運転手によるイグニッションスイッチのON操作等によって、燃料電池システム1の運転開始が指令されると、制御装置7は、燃料電池2の急速暖機が必要であるか否かを判断する(ステップS1)。
ここで、急速暖機が必要であるかどうかは、外気温センサ51の検出温度に基づいて行う。この検出温度が所定の低温(例えば0℃以下)を超えるときには、急速暖機が必要でないと判断され(ステップS1;No)、通常運転のモードに移行する(ステップS4)。一方で、検出温度が所定の低温(例えば0℃以下)以下であるときには、急速暖機が必要であると判断して(ステップS1;Yes)、次のステップS2に移行する。
ステップS2では、急速暖機の禁止フラグがONになっているかどうかが判断される。急速暖機の禁止フラグがOFFである場合とは、急速暖機を禁止しなくとも、その後の低効率運転で不具合を生じないと考えられる場合である。この場合には(S2;No)、急速暖機の要求どおり、低効率運転が開始される(S3)。これにより、燃料電池2の起動時に、燃料電池2が迅速に昇温される。一方で、急速暖機の禁止フラグがONである場合(ステップS2;Yes)には、低効率運転を禁止して通常運転が実行されるようになる(S4)。
ここで、急速暖機の禁止フラグがONになる所定条件は、低効率運転が実行されると、システム運転上の不具合が生じる可能性が高い場合である。このような所定条件としては、(1)低効率運転による燃料電池2の発電電力を消費できないとき、(2)低効率運転による燃料電池2の発電電力をバッテリ62に蓄電できないとき、(3)バッテリ62の蓄電量が所定量よりも多いとき、(4)燃料電池2にフラッディングが発生したとき、及び(5)燃料電池2の発電停止の要求があったとき、が挙げられる。これら条件(1)〜(5)の少なくとも一つが成立するときには、低効率運転が禁止される。以下、各条件について説明する。
先ず、条件(1)が成立するときに低効率運転を禁止するのは、低効率運転による燃料電池2の発電電力の行き場がなくなるからである。より詳細には、低効率運転を維持するためには、燃料電池2の発電を継続させる必要がある。しかし、この発電電力が燃料電池システム1の補機やトラクションモータ64で消費しきれない場合には、発電電力の一部の行き場がなる。その結果、低効率運転を維持することができなくなる。したがって、条件(1)が成立する場合には、低効率運転を禁止し、通常運転を実行して、燃料電池2の発電量を低下させるとよい。
条件(2)及び(3)は、条件(1)の具体例であるともいえる。
例えば、バッテリ62の異常や故障により、低効率運転で発電された燃料電池2の電力がバッテリ62に充電できない場合がある。また、バッテリ62の蓄電量が所定量を超える場合には、燃料電池2の発電電力はバッテリ62に充電できないか、あるいは充電できたとしても僅かであり、低効率運転を継続するとバッテリ62がフル充電の状態となって、これ以上充電できなくなるおそれもある。このように、バッテリ62の充電許可パワーが低下している場合には、低効率運転による燃料電池2の発電を維持できない。したがって、条件(2)及び(3)が成立する場合にも、低効率運転を禁止し、通常運転を実行して、燃料電池2の発電量を低下させるとよい。
次に、条件(4)について説明する。
燃料電池2の発電反応により、燃料電池2のカソード側では水が生成される。この水は、通常、酸化ガスの流れによって吹き飛ばされ、燃料電池2外へと排出される。しかし、低効率運転では、酸化ガスの供給量を制限した状態で燃料電池2の発電反応が進行する。このため、生成水の排出が促進されない状況にある。その結果、セル電圧の低下をもたらすフラッディング(湿潤過多)が、特にカソード側で発生するおそれがある。そこで、フラッディングが発生した場合に、つまり条件(4)が成立するときには、低効率運転を禁止し、通常運転を実行する。こうすることで、フラッディングを解消でき、セル電圧の低下を抑制できる。
ここで、フラッディングが発生したか否かは、各種の方法で判断できる。例えば、低効率運転の継続時間、燃料電池2の温度、及び燃料電池2の発電電流値により判断できる。あるいは、燃料電池2内の水分量を例えば交流インピーダンス法により測定し、その水分量が閾値を超える場合にはフラッディングが発生していると判断できる。また、前回のシステム運転の停止時からの燃料電池2の残水量を推定したり、あるいは、燃料電池2のセル電圧を測定したりすることで、フラッディングの発生の有無を判断することもできる。
次に、条件(5)について説明する。
例えば、運転者によるイグニッションスイッチのOFF操作(以下、「IG−OFF」という。)によって、燃料電池システム1の運転停止が指令されると、燃料電池2の発電停止が要求される。また、燃料電池システム1の異常時(ダイアグ等の発生)にも、燃料電池2の発電停止が要求される。さらに、水素漏れ検知に伴う間欠運転の要求があった場合にも、燃料電池2の発電停止が要求される。
なお、水素漏れ検知は、水素のシステム1外への漏れを検出する水素センサ(図示省略)によってなされる。また、間欠運転とは、例えばアイドリング時、低速走行時、又は回生制動時等のように低負荷運転時に燃料電池2の発電を一時休止する一方で、バッテリ62からトラクションモータ64へ電力供給を行い、燃料電池2には開放端電圧を維持し得る程度の水素ガス及び酸化ガスの供給を間欠的に行う運転モードをいう。
上記したIG−OFF、燃料電池システム1の異常、及び間欠運転の要求は、燃料電池システム1の始動時のみならず、始動後の低効率運転の最中にもなされる。IG−OFF又は燃料電池システム1の異常による燃料電池2の発電停止要求が受け付けられた場合には、低効率運転を禁止すると共に、燃料電池システム1の運転を停止し、燃料電池2の発電を停止する。一方で、間欠運転の要求による燃料電池2の発電停止要求が受け付けられた場合には、低効率運転を禁止した上で、通常運転を経由して間欠運転を実行する。
以上説明したように、本実施形態の燃料電池システム1によれば、上記のような所定条件(1)〜(5)の少なくとも一つが成立する場合に、低効率運転が禁止される。したがって、低効率運転の維持に伴う不具合が想定される場合に、低効率運転の維持に伴う不具合を回避できる。また、所定条件(1)〜(4)の少なくとも一つが成立する場合、又は、間欠運転の要求(参考:条件(5))があった場合には、低効率運転から通常運転に切り替えることができ、システム運転の安定性を高めることができる。
実施形態に係る燃料電池システムの構成図である。 実施形態に係るFC電流とFC電圧との関係を示すグラフである。 実施形態に係るポンピング水素の発生メカニズムを説明するための図であり、(A)は通常運転時の電池反応を示し、(B)は低効率運転時の電池反応を示す。 実施形態に係る燃料電池システムの始動時の処理フローを示すフローチャートである。
符号の説明
1:燃料電池システム、2:燃料電池、7:制御装置、11:供給路、12:排出路、17:バイパス路、18:バイパス弁、62:バッテリ(蓄電装置)

Claims (7)

  1. 通常運転に比して電力損失の大きな低効率運転を所定の低温時に行うことにより、前記通常運転に比して短時間で燃料電池を昇温するように構成された燃料電池システムにおいて、
    前記所定の低温時に所定条件が成立する場合に、前記低効率運転を禁止して前記通常運転を実行する制御装置を備える、燃料電池システム。
  2. 前記所定条件には、前記低効率運転による前記燃料電池の発電電力を消費できないときが含まれる、請求項1に記載の燃料電池システム。
  3. 前記燃料電池の発電電力を蓄電するように構成された蓄電装置を備えており、
    前記所定条件には、前記低効率運転による前記燃料電池の発電電力を前記蓄電装置に蓄電できないとき、及び、前記蓄電装置の蓄電量が所定量よりも多いとき、の少なくとも一つが含まれる、請求項1又は2に記載の燃料電池システム。
  4. 前記所定条件には、前記燃料電池にフラッディングが発生したときが含まれる、請求項1ないし3のいずれか一項に記載の燃料電池システム。
  5. 前記制御装置は、前記燃料電池の発電停止要求を受け付けた場合には、前記低効率運転を禁止して当該燃料電池の発電を停止する、請求項1ないし4のいずれか一項に記載の燃料電池システム。
  6. 前記制御装置は、前記燃料電池の起動時に前記低効率運転を実行するように制御する、請求項1ないし5のいずれか一項に記載の燃料電池システム。
  7. 前記燃料電池に供給される酸化ガスが流れる供給路と、
    前記燃料電池から排出される酸化オフガスが流れる排出路と、
    前記酸化ガスが前記燃料電池をバイパスして流れるように、前記供給路と前記排出路とを接続するバイパス路と、
    前記バイパス路を開閉するバイパス弁と、を備え、
    前記制御装置は、前記低効率運転の際に前記バイパス弁を開く一方、前記通常運転の際に前記バイパス弁を閉じる、請求項1ないし6のいずれか一項に記載の燃料電池システム。
JP2006292418A 2006-10-27 2006-10-27 燃料電池システム Active JP5007927B2 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2006292418A JP5007927B2 (ja) 2006-10-27 2006-10-27 燃料電池システム
ES07830706T ES2376776T3 (es) 2006-10-27 2007-10-22 Sistema de pila de combustible
US12/279,917 US8846258B2 (en) 2006-10-27 2007-10-22 Fuel cell system
RU2008134658/09A RU2364990C1 (ru) 2006-10-27 2007-10-22 Батарея топливных элементов
EP07830706A EP2086042B1 (en) 2006-10-27 2007-10-22 Fuel cell system
KR1020097008310A KR101095606B1 (ko) 2006-10-27 2007-10-22 연료전지 시스템
PCT/JP2007/070972 WO2008050881A1 (en) 2006-10-27 2007-10-22 Fuel cell system
CN2007800341057A CN101517801B (zh) 2006-10-27 2007-10-22 燃料电池系统
CA2641201A CA2641201C (en) 2006-10-27 2007-10-22 Fuel cell system having controller controlling higher-efficiency operation and lower-efficiency operation
AT07830706T ATE541332T1 (de) 2006-10-27 2007-10-22 Brennstoffzellensystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006292418A JP5007927B2 (ja) 2006-10-27 2006-10-27 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2008108668A JP2008108668A (ja) 2008-05-08
JP5007927B2 true JP5007927B2 (ja) 2012-08-22

Family

ID=39324662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006292418A Active JP5007927B2 (ja) 2006-10-27 2006-10-27 燃料電池システム

Country Status (10)

Country Link
US (1) US8846258B2 (ja)
EP (1) EP2086042B1 (ja)
JP (1) JP5007927B2 (ja)
KR (1) KR101095606B1 (ja)
CN (1) CN101517801B (ja)
AT (1) ATE541332T1 (ja)
CA (1) CA2641201C (ja)
ES (1) ES2376776T3 (ja)
RU (1) RU2364990C1 (ja)
WO (1) WO2008050881A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4844838B2 (ja) * 2007-04-16 2011-12-28 トヨタ自動車株式会社 燃料電池システム
JP5056239B2 (ja) * 2007-07-30 2012-10-24 トヨタ自動車株式会社 燃料電池システム
JP4730456B2 (ja) * 2009-05-25 2011-07-20 トヨタ自動車株式会社 燃料電池搭載車両
JP5233880B2 (ja) * 2009-07-07 2013-07-10 トヨタ自動車株式会社 燃料電池車
JP5246074B2 (ja) * 2009-07-07 2013-07-24 トヨタ自動車株式会社 燃料電池車
JP5327316B2 (ja) * 2009-07-30 2013-10-30 トヨタ自動車株式会社 燃料電池システム
US8697303B2 (en) * 2010-01-25 2014-04-15 GM Global Technology Operations LLC Optimized cathode fill strategy for fuel cell
JP5750341B2 (ja) * 2011-05-12 2015-07-22 本田技研工業株式会社 燃料電池システム
JP5742481B2 (ja) * 2011-06-02 2015-07-01 株式会社デンソー 燃料電池車両用空調装置
US9108529B2 (en) 2012-02-02 2015-08-18 Suzuki Motor Corporation Fuel cell vehicle
DE102012203219A1 (de) * 2012-03-01 2013-09-05 Robert Bosch Gmbh Verfahren für den Betrieb eines Antriebssystems
US9685667B2 (en) * 2014-08-06 2017-06-20 Ford Global Technologies, Llc Methods for testing anode integrity during fuel cell vehicle operation
JP6292405B2 (ja) * 2014-11-14 2018-03-14 トヨタ自動車株式会社 燃料電池システム及び燃料電池システムの運転制御方法
JP6229643B2 (ja) 2014-11-15 2017-11-15 トヨタ自動車株式会社 燃料電池システムおよび燃料電池搭載車両
US10644336B2 (en) 2014-12-12 2020-05-05 Ford Global Technologies, Llc Methods for determining anode integrity during fuel cell vehicle operation
JP2018185978A (ja) * 2017-04-26 2018-11-22 株式会社豊田中央研究所 燃料電池システム
JP7110905B2 (ja) * 2018-10-22 2022-08-02 トヨタ自動車株式会社 燃料電池システム
JP7124751B2 (ja) * 2019-02-14 2022-08-24 トヨタ自動車株式会社 燃料電池システム
DE102019206119A1 (de) 2019-04-29 2020-10-29 Audi Ag Verfahren zum Starten einer Brennstoffzellenvorrichtung unter Froststartbedingungen sowie Brennstoffzellenvorrichtung und Kraftfahrzeug
JP7276060B2 (ja) * 2019-10-09 2023-05-18 トヨタ自動車株式会社 Co2回収装置を制御する制御装置
JP7167902B2 (ja) * 2019-11-11 2022-11-09 トヨタ自動車株式会社 燃料電池システム
JP7306327B2 (ja) 2020-05-29 2023-07-11 トヨタ自動車株式会社 燃料電池システム
JP7327280B2 (ja) * 2020-05-29 2023-08-16 トヨタ自動車株式会社 燃料電池システム
JP7363674B2 (ja) * 2020-05-29 2023-10-18 トヨタ自動車株式会社 燃料電池システム
US11990656B2 (en) 2021-06-16 2024-05-21 Hyster-Yale Group, Inc. System and methods for determining a stack current request based on fuel cell operational conditions

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608017B2 (ja) * 1996-07-22 2005-01-05 トヨタ自動車株式会社 電源システム
US5858568A (en) * 1996-09-19 1999-01-12 Ztek Corporation Fuel cell power supply system
US6329089B1 (en) * 1997-12-23 2001-12-11 Ballard Power Systems Inc. Method and apparatus for increasing the temperature of a fuel cell
JP4081896B2 (ja) * 1998-12-02 2008-04-30 トヨタ自動車株式会社 燃料電池システム
US6379827B1 (en) * 2000-05-16 2002-04-30 Utc Fuel Cells, Llc Inerting a fuel cell with a wettable substrate
JP2002313388A (ja) * 2001-04-10 2002-10-25 Honda Motor Co Ltd 燃料電池の制御方法と燃料電池電気車両
US7179556B2 (en) * 2001-08-10 2007-02-20 Denso Corporation Fuel cell system
JP3873803B2 (ja) * 2002-04-19 2007-01-31 日産自動車株式会社 燃料電池制御システム
JP2004030979A (ja) * 2002-06-21 2004-01-29 Equos Research Co Ltd 燃料電池システム
JP3832417B2 (ja) * 2002-10-22 2006-10-11 日産自動車株式会社 燃料電池システム
JP2004172027A (ja) * 2002-11-22 2004-06-17 Toyota Motor Corp 燃料電池システム
JP4179855B2 (ja) * 2002-11-22 2008-11-12 トヨタ自動車株式会社 燃料電池システム
JP4595317B2 (ja) * 2003-11-19 2010-12-08 日産自動車株式会社 燃料電池システム
JP4915049B2 (ja) * 2004-08-05 2012-04-11 株式会社デンソー 燃料電池システム
JP4309322B2 (ja) * 2004-09-29 2009-08-05 本田技研工業株式会社 燃料電池の起動方法
JP4967246B2 (ja) * 2005-04-04 2012-07-04 株式会社デンソー 燃料電池システム
KR100956674B1 (ko) * 2005-10-21 2010-05-10 도요타 지도샤(주) 연료전지시스템, 애노드가스생성량의 추정장치 및 애노드가스생성량의 추정방법

Also Published As

Publication number Publication date
KR101095606B1 (ko) 2011-12-19
ES2376776T3 (es) 2012-03-16
EP2086042A1 (en) 2009-08-05
JP2008108668A (ja) 2008-05-08
EP2086042A4 (en) 2010-08-25
CA2641201C (en) 2012-08-14
US8846258B2 (en) 2014-09-30
US20100227240A1 (en) 2010-09-09
WO2008050881A1 (en) 2008-05-02
RU2364990C1 (ru) 2009-08-20
KR20090058028A (ko) 2009-06-08
CN101517801A (zh) 2009-08-26
ATE541332T1 (de) 2012-01-15
EP2086042B1 (en) 2012-01-11
CA2641201A1 (en) 2008-05-02
CN101517801B (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
JP5007927B2 (ja) 燃料電池システム
JP4844838B2 (ja) 燃料電池システム
US8691453B2 (en) Fuel cell system
JP4905706B2 (ja) 燃料電池システム及びその制御方法
JP4868251B2 (ja) 燃料電池システム、アノードガス生成量推定装置及びアノードガス生成量の推定方法
JP4993293B2 (ja) 燃料電池システム及び移動体
JP4543337B2 (ja) 燃料電池システム
EP3070773B1 (en) Fuel cell system
KR20160058015A (ko) 연료 전지 시스템 및 연료 전지 시스템의 운전 제어 방법
JP5229528B2 (ja) 燃料電池システム
JP2007317475A (ja) 燃料電池システム
JP5164014B2 (ja) 燃料電池システムおよびその制御方法
JP5023684B2 (ja) 燃料電池システム及び燃料電池の起動方法
JP5083603B2 (ja) 燃料電池システム
JP5077636B2 (ja) 燃料電池システム
JP2010146750A (ja) 燃料電池システム
JP5142006B2 (ja) 燃料電池システム
JP2007141744A (ja) 燃料電池システム
JP4941639B2 (ja) 燃料電池システム
JP2008130441A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R151 Written notification of patent or utility model registration

Ref document number: 5007927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3