JP4980107B2 - Substrate for resin reinforcement and manufacturing method thereof - Google Patents
Substrate for resin reinforcement and manufacturing method thereof Download PDFInfo
- Publication number
- JP4980107B2 JP4980107B2 JP2007074917A JP2007074917A JP4980107B2 JP 4980107 B2 JP4980107 B2 JP 4980107B2 JP 2007074917 A JP2007074917 A JP 2007074917A JP 2007074917 A JP2007074917 A JP 2007074917A JP 4980107 B2 JP4980107 B2 JP 4980107B2
- Authority
- JP
- Japan
- Prior art keywords
- resin
- nonwoven fabric
- liquid crystal
- aromatic polyester
- wholly aromatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920005989 resin Polymers 0.000 title claims description 46
- 239000011347 resin Substances 0.000 title claims description 46
- 238000004519 manufacturing process Methods 0.000 title description 9
- 239000000758 substrate Substances 0.000 title description 6
- 230000002787 reinforcement Effects 0.000 title description 4
- 239000004745 nonwoven fabric Substances 0.000 claims description 46
- 125000003118 aryl group Chemical group 0.000 claims description 27
- 229920000728 polyester Polymers 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 21
- 239000007788 liquid Substances 0.000 claims description 20
- 239000000835 fiber Substances 0.000 claims description 19
- 238000010438 heat treatment Methods 0.000 claims description 17
- 239000000155 melt Substances 0.000 claims description 16
- 230000009477 glass transition Effects 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 7
- 238000002844 melting Methods 0.000 claims description 7
- 230000003014 reinforcing effect Effects 0.000 claims description 5
- 239000004973 liquid crystal related substance Substances 0.000 claims description 4
- 239000012779 reinforcing material Substances 0.000 claims description 2
- 239000003351 stiffener Substances 0.000 claims 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 10
- 238000009987 spinning Methods 0.000 description 6
- 230000008961 swelling Effects 0.000 description 6
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- KAUQJMHLAFIZDU-UHFFFAOYSA-N 6-Hydroxy-2-naphthoic acid Chemical compound C1=C(O)C=CC2=CC(C(=O)O)=CC=C21 KAUQJMHLAFIZDU-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 238000007664 blowing Methods 0.000 description 4
- 208000028659 discharge Diseases 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000009413 insulation Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 239000004760 aramid Substances 0.000 description 3
- 229920006231 aramid fiber Polymers 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000004744 fabric Substances 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004750 melt-blown nonwoven Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229920001410 Microfiber Polymers 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000000567 combustion gas Substances 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 238000005470 impregnation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920001955 polyphenylene ether Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000002966 varnish Substances 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- -1 aromatic diol Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
Images
Landscapes
- Nonwoven Fabrics (AREA)
- Reinforced Plastic Materials (AREA)
Description
本発明は、耐熱性、非吸湿性、含浸樹脂との接着性に優れた、プリント基板、研磨キャリア材等の樹脂補強用基材として有用な不織布およびその製造方法に関する。 The present invention relates to a non-woven fabric that is excellent in heat resistance, non-hygroscopicity, and adhesiveness with an impregnating resin, and useful as a substrate for resin reinforcement such as a printed circuit board and an abrasive carrier material, and a method for producing the same.
従来より、プリント基板における樹脂補強用基材としては、古くからガラス繊維からなる織物、不織布が広く使用されている。しかしながら、ガラス繊維の場合は誘電率が高い、比重が大きい、切断時の粉落ち等の問題があった。
ガラス繊維の代わりにアラミド繊維からなる織物、不織布が提案されている(例えば、特許文献1参照。)。しかしながら、アラミド繊維は吸湿率が高く、誘電特性への信頼性が低い。またアラミド繊維からなる紙や不織布を製造する場合、抄造法でしか得られないため薄肉化が困難であるといった問題があった。
Conventionally, woven fabrics and non-woven fabrics made of glass fibers have been widely used as a substrate for resin reinforcement in printed boards. However, in the case of glass fiber, there are problems such as high dielectric constant, large specific gravity, and powder falling off during cutting.
A woven fabric and a nonwoven fabric made of aramid fibers instead of glass fibers have been proposed (see, for example, Patent Document 1). However, aramid fibers have a high moisture absorption rate and low reliability for dielectric properties. Moreover, when manufacturing paper and nonwoven fabric made of aramid fibers, there is a problem that it is difficult to reduce the thickness because it can only be obtained by a papermaking method.
上記問題点を解決し、かつ近年の高速・大容量通信機器用基板の要求性能である低誘電特性を有する溶融液晶形成性全芳香族ポリエステル不織布が提案されている(例えば、特許文献2参照。)。しかし、溶融液晶形成性全芳香族ポリエステルは耐薬品性に優れるという利点がある一方で、樹脂積層板の補強基材として使用する場合、含浸させる樹脂との接着性に乏しく、樹脂と繊維の間の界面剥離や補強性が十分に得られないといった問題があった。 A molten liquid crystal-forming wholly aromatic polyester non-woven fabric has been proposed that solves the above problems and has low dielectric properties, which is a required performance of substrates for high-speed and large-capacity communication devices in recent years (see, for example, Patent Document 2). ). However, melted liquid crystal-forming wholly aromatic polyesters have the advantage of excellent chemical resistance. On the other hand, when they are used as reinforcing substrates for resin laminates, they have poor adhesion to the resin to be impregnated, and the resin and fiber There is a problem that the interfacial peeling and the reinforcing property cannot be sufficiently obtained.
このような問題点を解決するために、全芳香族ポリエステルの表面へ官能基を導入するプラズマ放電処理が提案されている(例えば、特許文献3参照。)。
しかしながら、特許文献3の方法では短時間では十分な効果が得られず、十分な効果を得るにはバッチ処理となるため量産性、コスト面から不利であった。
In order to solve such a problem, plasma discharge treatment in which a functional group is introduced to the surface of the wholly aromatic polyester has been proposed (see, for example, Patent Document 3).
However, in the method of Patent Document 3, sufficient effects cannot be obtained in a short time, and batch processing is required to obtain sufficient effects, which is disadvantageous in terms of mass productivity and cost.
本発明の目的は、上記問題点に鑑みてなされたものであり、非吸湿性、耐熱性、および含浸樹脂との接着性に優れ、かつ低コストで製造可能な樹脂補強基材を提供することにある。 The object of the present invention has been made in view of the above problems, and provides a resin-reinforced base material that is excellent in non-hygroscopicity, heat resistance, and adhesiveness with an impregnating resin and can be manufactured at low cost. It is in.
本発明者等は、かかる課題を解決するために鋭意検討した結果、溶融液晶形成性全芳香族ポリエステルポリマーからなる不織布を所定水分率の水分存在下で熱処理することにより、得られる不織布は耐水性が優れたものとなり、かつ含浸する樹脂との接着性が著しく向上されることを見出し、本発明を完成した。 As a result of diligent investigations to solve such problems, the inventors of the present invention obtained a non-woven fabric obtained by heat-treating a non-woven fabric made of a molten liquid crystal-forming wholly aromatic polyester polymer in the presence of moisture at a predetermined moisture content. Was found to be excellent, and the adhesiveness with the resin to be impregnated was significantly improved, and the present invention was completed.
すなわち本発明は、310℃での溶融粘度が20Pa・s以下である溶融液晶形成性全芳香族ポリエステルを主成分とし、平均繊維径が1〜15μmである実質的に連続したフィラメントからなり、水分率50ppm以上100ppm以下の水分存在下、溶融液晶形成性全芳香族ポリエステルの融点−40℃以上、融点+20℃以下の温度で3〜80時間熱処理後の動的粘弾性測定によるガラス転移点が120℃以上であることを特徴とする不織布を補強材として用いた樹脂補強成形体であり、好ましくはメルトブロー法により製造されてなる上記の不織布を補強材として用いた樹脂補強成形体である。
That is, the present invention comprises a substantially continuous filament having a melt liquid crystal-forming wholly aromatic polyester having a melt viscosity at 310 ° C. of 20 Pa · s or less and an average fiber diameter of 1 to 15 μm, The glass transition point by dynamic viscoelasticity measurement after heat treatment for 3 to 80 hours at a temperature of melting point −40 ° C. or higher and melting point + 20 ° C. or lower of molten liquid crystal forming wholly aromatic polyester in the presence of water at a rate of 50 ppm to 100 ppm is 120. ℃ nonwoven, characterized in that more than is a resin reinforced molded body used as the reinforcing material, good Mashiku is a resin reinforced molded article using the above nonwoven fabric comprising manufactured by a melt blow method as reinforcement.
本発明の不織布は、耐水性が優れたものとなり、かつ含浸する樹脂との接着性が著しく向上する。 The nonwoven fabric of the present invention has excellent water resistance, and the adhesiveness with the resin to be impregnated is remarkably improved.
本発明において不織布に用いる溶融液晶形成性全芳香族ポリエステルは、耐熱性、耐薬品性に優れた樹脂である。本発明にいう溶融液晶形成性全芳香族ポリエステルとは、溶融相において光学的異方性(液晶性)を示す芳香族ポリエステルであり、例えば試料をホットステージに載せ窒素雰囲気下で加熱し、試料の透過光を観察することで認定できる。溶融異方性ポリエステルは芳香族ジオール、芳香族ジカルボン酸、芳香族ヒドロキシカルボン酸の反復構成単位を主成分とするものであり、例えば、以下に示す反復構成単位群の組合せからなるものが好ましい。 The molten liquid crystal-forming wholly aromatic polyester used for the nonwoven fabric in the present invention is a resin excellent in heat resistance and chemical resistance. The molten liquid crystal-forming wholly aromatic polyester referred to in the present invention is an aromatic polyester that exhibits optical anisotropy (liquid crystallinity) in the molten phase. For example, a sample is placed on a hot stage and heated in a nitrogen atmosphere. It can be recognized by observing the transmitted light. The melt-anisotropic polyester is composed mainly of repeating structural units of aromatic diol, aromatic dicarboxylic acid, and aromatic hydroxycarboxylic acid. For example, those composed of combinations of repeating structural units shown below are preferable.
これらの中でも、本発明で使用される溶融液晶形成性全芳香族ポリエステルとしては、パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸が主成分となる構成、またはパラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸とテレフタル酸とビフェノールが主成分となる構成が好ましい。
なお、上記溶融液晶形成性全芳香族ポリエステルには、必要に応じて着色剤、無機フィラー、酸化防止剤、紫外線吸収剤等の通常使用されている添加剤および熱可塑性エラストマーを本発明の機能を阻害しない範囲で添加してもよい。
Among these, as the molten liquid crystal-forming wholly aromatic polyester used in the present invention, a configuration mainly composed of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid, or parahydroxybenzoic acid and 6-hydroxy A configuration in which -2-naphthoic acid, terephthalic acid, and biphenol are the main components is preferable.
The melted liquid crystal-forming wholly aromatic polyester has the functions of the present invention as required by adding additives such as colorants, inorganic fillers, antioxidants, ultraviolet absorbers, and thermoplastic elastomers as necessary. You may add in the range which does not inhibit.
本発明で使用される溶融液晶形成性全芳香族ポリエステルは310℃での溶融粘度が20Pa・s以下であることが必要であり、好ましくは15Pa・s以下、より好ましくは12Pa・s以下である。溶融粘度が20Pa・sを超えると極細繊維化が困難であったり、重合時のオリゴマーの発生や重合時や造粒時のトラブル発生などの理由から好ましくない。
一方、溶融粘度が低すぎる場合も繊維化が困難であるため、310℃における溶融粘度が5Pa・s以上であることが好ましい。
The melted liquid crystal-forming wholly aromatic polyester used in the present invention needs to have a melt viscosity at 310 ° C. of 20 Pa · s or less, preferably 15 Pa · s or less, more preferably 12 Pa · s or less. . When the melt viscosity exceeds 20 Pa · s, it is not preferable because it is difficult to make ultrafine fibers, or the occurrence of oligomers during polymerization or the occurrence of troubles during polymerization or granulation.
On the other hand, since fiberization is difficult even when the melt viscosity is too low, the melt viscosity at 310 ° C. is preferably 5 Pa · s or more.
次に本発明でいう溶融液晶形成性全芳香族ポリエステル不織布の製造方法(紡糸方法)は、フラッシュ紡糸法、メルトブロー法等が挙げられるが、極細繊維からなる不織布の製造が比較的容易であること、紡糸時に溶剤を必要とせず環境への影響を最小限とすることができる点からメルトブロー法で製造された不織布であることが好ましい。
メルトブロー法にて製造する場合、紡糸装置は従来公知のメルトブロー装置を用いることができる。紡糸条件としては、紡糸温度310〜360℃、熱風温度(一次エアー温度)310〜380℃、ノズル長1m当りのエアー量10〜50Nm3とすることが好ましい。また、このようにして製造される本発明の不織布を構成する繊維の平均繊維径は1〜15μmであることが必要であり、2〜13μmであることが好ましく、3〜11μmであることがより好ましい。平均繊維径が1μm未満では風綿が発生し繊維塊となりやすく、一方15μmを越えると地合が粗くなるため好ましくない。
なお、本発明において平均繊維径は、不織布を走査型電子顕微鏡で拡大撮影し、任意の100本の繊維径を測定した値の平均値を示す。
Next, examples of the manufacturing method (spinning method) of the melt liquid crystal-forming wholly aromatic polyester nonwoven fabric referred to in the present invention include a flash spinning method, a melt blowing method, etc., but it is relatively easy to manufacture a nonwoven fabric composed of ultrafine fibers. A nonwoven fabric produced by a melt-blowing method is preferable because a solvent is not required at the time of spinning and the influence on the environment can be minimized.
In the case of producing by the melt blowing method, a conventionally known melt blowing apparatus can be used as the spinning apparatus. The spinning conditions are preferably a spinning temperature of 310 to 360 ° C., a hot air temperature (primary air temperature) of 310 to 380 ° C., and an air amount of 10 to 50 Nm 3 per 1 m of the nozzle length. Moreover, the average fiber diameter of the fiber which comprises the nonwoven fabric of this invention manufactured in this way needs to be 1-15 micrometers, it is preferable that it is 2-13 micrometers, and it is more 3-11 micrometers. preferable. If the average fiber diameter is less than 1 μm, fluff is likely to be formed and a fiber lump is easily formed. On the other hand, if it exceeds 15 μm, the formation becomes rough, which is not preferable.
In addition, in this invention, an average fiber diameter shows the average value of the value which carried out magnified photography of the nonwoven fabric with the scanning electron microscope, and measured arbitrary 100 fiber diameters.
本発明の不織布に用いられる溶融液晶形成性全芳香族ポリエステル不織布の坪量は特に制限はなく、要求性能に応じて適宜調整することが可能であるが、絶縁性、加工性の面からは5〜300g/m2であることが好ましい。坪量が5g/m2未満であると地合、緻密性が低下し十分な絶縁性能が得られず、300g/m2を超えると後の積層工程で伝熱が低下し、加工速度を著しく低下させることとなる。 The basis weight of the melted liquid crystal-forming wholly aromatic polyester nonwoven fabric used for the nonwoven fabric of the present invention is not particularly limited and can be appropriately adjusted according to the required performance, but it is 5 in terms of insulation and workability. It is preferable that it is -300 g / m < 2 >. If the basis weight is less than 5 g / m 2 , the formation and the denseness are lowered and sufficient insulation performance cannot be obtained. If the basis weight is more than 300 g / m 2 , the heat transfer is lowered in the subsequent laminating process, and the processing speed is remarkably increased. Will be reduced.
本発明の溶融液晶形成性全芳香族ポリエステル不織布は動的粘弾性測定によるガラス転移温度が120℃以上である必要があり、好ましくは125℃以上、より好ましくは130℃以上180℃以下である。動的粘弾性測定によるガラス転移温度が120℃未満であると、例えば本発明の不織布をプリント基板用補強基材として用いた場合、長期信頼性評価の一つである煮沸や飽和蒸気加圧(条件;121℃、100%RH、2atm)等による強制加湿処理後のハンダ耐熱性評価(条件;260〜288℃のハンダ浴中に浸漬)において、強制加湿処理により繊維中のフィブリル間に水分が浸透し、ハンダ浴浸漬時に水分が気化、体積膨張し、膨れを生じる等、耐水性に問題が生じる。 The molten liquid crystal-forming wholly aromatic polyester nonwoven fabric of the present invention needs to have a glass transition temperature of 120 ° C. or higher by dynamic viscoelasticity measurement, preferably 125 ° C. or higher, more preferably 130 ° C. or higher and 180 ° C. or lower. When the glass transition temperature by dynamic viscoelasticity measurement is less than 120 ° C, for example, when the nonwoven fabric of the present invention is used as a reinforcing substrate for printed circuit boards, boiling or saturated steam pressurization (one of long-term reliability evaluations) In the evaluation of solder heat resistance after forced humidification treatment (conditions: 121 ° C., 100% RH, 2 atm), etc. (conditions: immersed in a solder bath at 260 to 288 ° C.) Water penetration causes problems such as water vaporization, volume expansion, and swelling when immersed in a solder bath.
動的粘弾性測定によるガラス転移温度が120℃以上である溶融液晶形成性全芳香族ポリエステル不織布は含水率50ppm以上の高温気体中で溶融液晶形成性全芳香族ポリエステルの融点−40℃以上、融点+20℃以下の温度で3〜80時間熱処理することにより、繊維中のフィブリル間において架橋構造が形成されるので、動的粘弾性測定によりガラス転移温度が120℃以上となる。
さらに前記条件にて熱処理を行うことで繊維表面層の加水分解により官能基が発現し、樹脂補強成形体を製造する際、含浸する樹脂との接着性も著しく向上する。
ここで含水率が50ppm未満の熱処理ではガラス転移点の上昇、耐水性向上が認められず、樹脂補強成形体を製造する際、含浸する樹脂との接着性も十分に得られない。
水分付与の方法としては、プロパン等の燃焼ガス気体を供給し、燃焼量によって水分率を制御する方法や、加熱媒体中にスチームを供給し、供給量により水分率を制御する方法等が挙げられる。ここで、加熱媒体として用いる気体は、窒素、酸素、アルゴン、炭酸ガスなど混合気体または空気等が挙げられるが、コスト面、樹脂との接着性向上効果を得るには酸素または空気がより好ましい。熱処理は目的により、緊張下、無緊張下どちらでも良い。熱処理温度が溶融液晶形成性全芳香族ポリエステルの融点−40℃未満の温度で熱処理した場合には、繊維表面改質が十分に進まず、また、熱処理温度が溶融液晶形成性全芳香族ポリエステルの融点+20℃を超えるとポリマーが軟化し、繊維の溶融が始まりシートの一部がフィルム化して後工程での樹脂含浸性などで問題が発生する。また、前記含水加熱媒体中で熱処理する前に、水分を含まない窒素、炭酸ガス等の不活性気体中で溶融液晶形成性全芳香族ポリエステル繊維の交絡点および繊維自体の配向を進めて不織布の強度を向上させることも可能である。
さらに前記条件で熱処理を行っても、熱処理時間が3時間未満の場合は熱処理が不十分であり、繊維中のフィブリル間において架橋構造が十分に形成されない。一方、80時間を超えるとむしろ劣化が進み強度低下が生じたり、生産性の点で問題がある。より好ましい熱処理時間条件は4〜70時間、さらに好ましくは5〜60時間である。
Molten liquid crystal forming wholly aromatic polyester nonwoven fabric having a glass transition temperature of 120 ° C. or higher by dynamic viscoelasticity measurement is a melting point of molten liquid crystal forming wholly aromatic polyester in a high temperature gas having a water content of 50 ppm or higher. By performing heat treatment at a temperature of + 20 ° C. or lower for 3 to 80 hours, a crosslinked structure is formed between the fibrils in the fiber, so that the glass transition temperature becomes 120 ° C. or higher by dynamic viscoelasticity measurement.
Furthermore, by performing the heat treatment under the above conditions, the functional group is expressed by hydrolysis of the fiber surface layer, and when the resin-reinforced molded article is produced, the adhesiveness with the resin to be impregnated is remarkably improved.
Here, in the heat treatment with a water content of less than 50 ppm, the glass transition point is not increased and the water resistance is not improved, and when the resin-reinforced molded article is produced, the adhesiveness with the resin to be impregnated is not sufficiently obtained.
Examples of the moisture application method include a method in which a combustion gas such as propane is supplied and the moisture content is controlled by the amount of combustion, a method in which steam is supplied into the heating medium, and the moisture content is controlled by the supply amount. . Here, examples of the gas used as the heating medium include a mixed gas such as nitrogen, oxygen, argon, and carbon dioxide, or air. However, oxygen or air is more preferable in terms of cost and an effect of improving the adhesion to the resin. The heat treatment may be under tension or without tension depending on the purpose. When heat treatment is performed at a temperature lower than the melting point of the molten liquid crystal-forming wholly aromatic polyester of −40 ° C., the fiber surface modification does not proceed sufficiently, and the heat treatment temperature of the molten liquid crystal-forming wholly aromatic polyester When the melting point exceeds + 20 ° C., the polymer softens, the fiber starts to melt, and a part of the sheet is formed into a film, which causes a problem in the resin impregnation property in a later process. Further, before heat treatment in the water-containing heating medium, the entanglement point of the melted liquid crystal-forming wholly aromatic polyester fiber and the orientation of the fiber itself are promoted in an inert gas such as nitrogen and carbon dioxide that does not contain moisture, and the nonwoven fabric It is also possible to improve the strength.
Further, even if the heat treatment is performed under the above conditions, if the heat treatment time is less than 3 hours, the heat treatment is insufficient and a crosslinked structure is not sufficiently formed between the fibrils in the fiber. On the other hand, when it exceeds 80 hours, the deterioration is rather advanced and the strength is lowered, or there is a problem in terms of productivity. A more preferable heat treatment time condition is 4 to 70 hours, and more preferably 5 to 60 hours.
このようにして得られた不織布にエポキシ樹脂、BT(ビスマレイミド・トリアジン)樹脂、PPE(ポリフェニレンエーテル)樹脂等の熱硬化性樹脂を含浸後、プレス成形にて硬化させることにより、耐熱寸法安定性、低誘電特性、非吸水性に優れた樹脂補強成形体を得ることができる。 The nonwoven fabric obtained in this way is impregnated with a thermosetting resin such as epoxy resin, BT (bismaleimide / triazine) resin, PPE (polyphenylene ether) resin, and then cured by press molding. In addition, a resin-reinforced molded article excellent in low dielectric properties and non-water absorption can be obtained.
以下、実施例によって本発明を詳細に説明するが、本発明は実施例によって限定されるものではない。なお、本発明において動的粘弾性によるガラス転移点は以下の測定方法により測定されたものを意味する。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by an Example. In addition, in this invention, the glass transition point by dynamic viscoelasticity means what was measured with the following measuring methods.
[動的粘弾性によるガラス転移点 ℃]
島津製作所製動的粘弾性測定装置(株式会社ユービーエム製「レオスペクトラーDVE−V4」)を使用して、昇温速度10℃/分、周波数10Hz、自動静荷重方式にて測定を行ない、貯蔵弾性率(E´)と損失弾性率(E″)の比からtanδ=E″/E´を算出し、図1に示すような温度(℃)−tanδ曲線を作図し、tanδの変曲点(ピーク温度)をガラス転移点とした。
[Glass transition temperature by dynamic viscoelasticity in ° C]
Using a Shimadzu Corporation dynamic viscoelasticity measuring device ("Ryo Spectral DVE-V4" manufactured by UBM Co., Ltd.), the temperature was increased at a rate of 10 ° C / minute, the frequency was 10 Hz, and the automatic static load method was used. Tan δ = E ″ / E ′ is calculated from the ratio between the storage elastic modulus (E ′) and the loss elastic modulus (E ″), and a temperature (° C.)-Tan δ curve as shown in FIG. The point (peak temperature) was taken as the glass transition point.
[参考例1]
多官能エポキシ樹脂〔ジャパンエポキシレジン社製「YL6046B80(登録商標)」〕130質量部とノボラック型硬化剤〔ジャパンエポキシレジン社製「YLH129B65(登録商標)」〕70質量部とイミダゾール型硬化促進剤〔ジャパンエポキシレジン社製「EM124(登録商標)」〕0.3質量部およびメチルエチルケトン130質量部を混合しマトリックス樹脂(ワニス)を調製した。
[Reference Example 1]
130 parts by mass of a polyfunctional epoxy resin [“YL6046B80 (registered trademark)” manufactured by Japan Epoxy Resin Co., Ltd.] and 70 parts by mass of a novolac type curing agent [“YLH129B65 (registered trademark)” manufactured by Japan Epoxy Resin Co., Ltd.] and an imidazole type curing accelerator [ "EM124 (registered trademark)" manufactured by Japan Epoxy Resin Co., Ltd.] and 0.3 part by mass of methyl ethyl ketone were mixed to prepare a matrix resin (varnish).
[参考例2]
後述する実施例1〜2、比較例1〜3の積層体に前記参考例1で製造したワニスを含浸させ、130℃で10分間乾燥し、樹脂含浸量65質量%のプリプレグを製造した。このプリプレグを4枚重ね、1mm厚みのステンレス板間に配置して、真空下、圧力40kgf/cm2、温度180℃の条件下で1時間加圧加熱して樹脂積層板を製造した。
[Reference Example 2]
The varnish produced in Reference Example 1 was impregnated into the laminates of Examples 1-2 and Comparative Examples 1-3 described later, and dried at 130 ° C. for 10 minutes to produce a prepreg with a resin impregnation amount of 65 mass%. Four prepregs were stacked, placed between 1 mm thick stainless steel plates, and heated under pressure under a pressure of 40 kgf / cm 2 and a temperature of 180 ° C. for 1 hour to produce a resin laminate.
[含浸樹脂との接着性の評価]
参考例2で製造した樹脂積層板を100℃沸騰水中で8時間煮沸し、強制的に樹脂積層板中に含有されている微細な気泡部に水分を浸透させた。その後、常温で付着水分を除き、処理後の樹脂積層板を260℃に加熱したハンダ浴中に30秒間浸漬し、浸透水分の膨張による樹脂積層板の膨れの有無により評価した。フクレが発生しない場合には含浸樹脂と不織布との接着性が良好であると評価される。
[Evaluation of adhesion with impregnating resin]
The resin laminate produced in Reference Example 2 was boiled in 100 ° C. boiling water for 8 hours to forcibly infiltrate the fine bubbles contained in the resin laminate. Thereafter, the adhered moisture was removed at room temperature, and the treated resin laminate was immersed in a solder bath heated to 260 ° C. for 30 seconds, and evaluated by the presence or absence of swelling of the resin laminate due to the expansion of permeated moisture. When no swelling occurs, it is evaluated that the adhesion between the impregnating resin and the nonwoven fabric is good.
[実施例1]
(1)パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸との共重合物からなり、310℃での溶融粘度が15Pa・sである溶融液晶形成性全芳香族ポリエステル(ポリプラスチックス株式会社製「Vectra−L」)を二軸押出機より押し出し、幅1mでホール数1000のノズルを有するメルトブローン不織布製造装置に供給し、単孔吐出量0.3g/分、樹脂温度310℃、熱風温度310℃、ノズル長1m当りのエアー量20Nm3の条件にて平均繊維径11μm、坪量40g/m2の不織布を得た。
(2)次いで上記(1)で得られた不織布を含水率100ppmのスチーム/空気混合気体中にて270℃で6時間処理した。この不織布の動的粘弾性測定によるガラス転移点は130℃であった。
(3)そして前記(2)で得られた不織布を用いて前記参考例2の方法で樹脂積層板を製造し、含浸樹脂との接着性を評価したところ、得られた樹脂積層板には膨れは発生せず、かつ含浸樹脂と不織布との接着性が良好であった。
[Example 1]
(1) Molten liquid crystal-forming wholly aromatic polyester (polyplastics Co., Ltd.) comprising a copolymer of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and having a melt viscosity at 310 ° C. of 15 Pa · s. "Vectra-L") is extruded from a twin screw extruder and supplied to a melt blown nonwoven fabric manufacturing apparatus having a nozzle with a width of 1 m and a hole count of 1000, with a single hole discharge rate of 0.3 g / min, a resin temperature of 310 ° C, and a hot air temperature A nonwoven fabric having an average fiber diameter of 11 μm and a basis weight of 40 g / m 2 was obtained under the conditions of 310 ° C. and an air amount of 20 Nm 3 per nozzle length of 1 m.
(2) Next, the nonwoven fabric obtained in the above (1) was treated at 270 ° C. for 6 hours in a steam / air mixed gas having a water content of 100 ppm. The glass transition point of this nonwoven fabric determined by dynamic viscoelasticity was 130 ° C.
(3) Using the nonwoven fabric obtained in (2) above, a resin laminate was produced by the method of Reference Example 2 and evaluated for adhesion to the impregnated resin. The resulting resin laminate was swollen. Was not generated, and the adhesion between the impregnating resin and the nonwoven fabric was good.
[実施例2]
実施例1(2)の熱処理条件において、水分付与方法をスチームのかわりにプロパン燃焼ガスを用いること以外は実施例1と同様にして不織布および樹脂積層板を得た、
得られた不織布の動的粘弾性測定によるガラス転移点は130℃であり、さらに該不織布を用いて前記参考例2の方法で製造した樹脂積層板には膨れは発生せず、かつ含浸樹脂と不織布との接着性が良好であった。
[Example 2]
In the heat treatment conditions of Example 1 (2), a nonwoven fabric and a resin laminate were obtained in the same manner as in Example 1 except that the water application method used propane combustion gas instead of steam.
The glass transition point of the obtained nonwoven fabric by dynamic viscoelasticity measurement is 130 ° C., and further, no swelling occurs in the resin laminate produced by the method of Reference Example 2 using the nonwoven fabric, and the impregnated resin and Adhesiveness with the nonwoven fabric was good.
[比較例1]
(1)パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸との共重合物からなり、310℃での溶融粘度が15Pa・sである溶融液晶形成性全芳香族ポリエステル(ポリプラスチックス株式会社製「Vectra−L」)を二軸押出機より押し出し、幅1mでホール数1000のノズルを有するメルトブローン不織布製造装置に供給し、単孔吐出量0.3g/分、樹脂温度310℃、熱風温度310℃、ノズル長1m当りのエアー量20Nm3の条件にて平均繊維径11μm、坪量40g/m2の不織布を得た。この不織布に対しては含水率50ppm以上の雰囲気中での熱処理を行わなかった。
(2)上記(1)の不織布の動的粘弾性測定によるガラス転移点は110℃であった。さらに該不織布を用いて前記参考例2の方法で樹脂積層板を製造し、含浸樹脂との接着性を評価したところ、膨れが発生し、また含浸樹脂と不織布との接着性が不良であった。
[Comparative Example 1]
(1) Molten liquid crystal-forming wholly aromatic polyester (polyplastics Co., Ltd.) comprising a copolymer of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and having a melt viscosity at 310 ° C. of 15 Pa · s. "Vectra-L") is extruded from a twin screw extruder and supplied to a melt blown nonwoven fabric manufacturing apparatus having a nozzle with a width of 1 m and a hole count of 1000, with a single hole discharge rate of 0.3 g / min, a resin temperature of 310 ° C, and a hot air temperature A nonwoven fabric having an average fiber diameter of 11 μm and a basis weight of 40 g / m 2 was obtained under the conditions of 310 ° C. and an air amount of 20 Nm 3 per nozzle length of 1 m. This nonwoven fabric was not heat-treated in an atmosphere having a moisture content of 50 ppm or more.
(2) The glass transition point by dynamic viscoelasticity measurement of the nonwoven fabric of (1) was 110 ° C. Furthermore, when the resin laminate was produced by the method of Reference Example 2 using the nonwoven fabric and the adhesion with the impregnated resin was evaluated, swelling occurred, and the adhesion between the impregnated resin and the nonwoven fabric was poor. .
[比較例2]
(1)パラヒドロキシ安息香酸と6−ヒドロキシ−2−ナフトエ酸との共重合物からなり、310℃での溶融粘度が15Pa・sである溶融液晶形成性全芳香族ポリエステルを二軸押出機より押し出し、幅1mでホール数1000のノズルを有するメルトブローン不織布製造装置に供給し、単孔吐出量0.3g/分、樹脂温度310℃、熱風温度310℃、ノズル長1m当りのエアー量20Nm3の条件にて平均繊維径11μm、坪量40g/m2の不織布を得た。
(2)上記(1)で得られた不織布を含水率15ppmの空気中にて270℃、6時間熱処理したところ、ガラス転移点は110℃であった。
この不織布を使用し、前記参考例2の方法で樹脂積層板を製造し、含浸樹脂との接着性を評価したところ、膨れが発生し、また含浸樹脂と不織布との接着性が不良であった。
[Comparative Example 2]
(1) A melt liquid crystal-forming wholly aromatic polyester comprising a copolymer of parahydroxybenzoic acid and 6-hydroxy-2-naphthoic acid and having a melt viscosity at 310 ° C. of 15 Pa · s is obtained from a twin screw extruder. Extruded and supplied to a melt blown nonwoven fabric manufacturing apparatus having a nozzle with a width of 1 m and a number of holes of 1000, with a single-hole discharge rate of 0.3 g / min, a resin temperature of 310 ° C., a hot air temperature of 310 ° C., and an air amount of 20 Nm 3 per nozzle length. Under the conditions, a nonwoven fabric having an average fiber diameter of 11 μm and a basis weight of 40 g / m 2 was obtained.
(2) When the non-woven fabric obtained in the above (1) was heat-treated in air having a water content of 15 ppm at 270 ° C. for 6 hours, the glass transition point was 110 ° C.
Using this nonwoven fabric, a resin laminate was produced by the method of Reference Example 2 and the adhesion with the impregnated resin was evaluated. As a result, swelling occurred, and the adhesion between the impregnated resin and the nonwoven fabric was poor. .
本発明の製造方法によって得られる不織布および該不織布を用いた樹脂成形補強体は、プリント基板用途などの高い絶縁性能、長期信頼性が要求される絶縁材料のほか、高温プレス用のクッション材、断熱材料としても有用である。 The nonwoven fabric obtained by the production method of the present invention and the resin-molded reinforcing body using the nonwoven fabric are not only insulating materials that require high insulation performance and long-term reliability, such as printed circuit board applications, but also cushion materials for high-temperature presses, heat insulation It is also useful as a material.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007074917A JP4980107B2 (en) | 2007-03-22 | 2007-03-22 | Substrate for resin reinforcement and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007074917A JP4980107B2 (en) | 2007-03-22 | 2007-03-22 | Substrate for resin reinforcement and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008231627A JP2008231627A (en) | 2008-10-02 |
JP4980107B2 true JP4980107B2 (en) | 2012-07-18 |
Family
ID=39904772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007074917A Active JP4980107B2 (en) | 2007-03-22 | 2007-03-22 | Substrate for resin reinforcement and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4980107B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101770826B1 (en) * | 2011-01-05 | 2017-08-23 | 심천 워트 어드밴스드 머티리얼즈 주식회사 | Fiberweb, method of preparing the same and filter having the same |
DE102015115879A1 (en) * | 2015-09-21 | 2017-03-23 | Fvv Gmbh & Co. Kg | Component of a composite material and method for its production |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5346747A (en) * | 1992-12-24 | 1994-09-13 | Granmont, Inc. | Composite printed circuit board substrate and process for its manufacture |
JP4381576B2 (en) * | 2000-08-18 | 2009-12-09 | 株式会社クラレ | Heat resistant nonwoven fabric |
JP4429501B2 (en) * | 2000-08-18 | 2010-03-10 | 株式会社クラレ | Molten liquid crystalline polyester nonwoven fabric and method for producing the same |
JP2004100047A (en) * | 2002-09-04 | 2004-04-02 | Miki Tokushu Paper Mfg Co Ltd | Method for producing polyester thermocompression bonded nonwoven fabric |
JP4736548B2 (en) * | 2005-06-09 | 2011-07-27 | 東レ株式会社 | Nonwoven fabric made of liquid crystalline resin fiber |
-
2007
- 2007-03-22 JP JP2007074917A patent/JP4980107B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2008231627A (en) | 2008-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100523370C (en) | Heat-resistant synthetic fiber sheet | |
JP4785774B2 (en) | Laminated body and method for producing the same | |
CN109691249A (en) | Casting of electronic device | |
JP5864172B2 (en) | Polyparaphenylene terephthalamide fiber composite, its production method and its use | |
TW201345707A (en) | Method for producing laminate, and laminate | |
CN102190804A (en) | Method for producing liquid crystalline polyester impregnated fiber sheet | |
JP4980107B2 (en) | Substrate for resin reinforcement and manufacturing method thereof | |
JP4017769B2 (en) | Printed wiring board base material and manufacturing method thereof | |
JP2011162767A (en) | Carbon fiber reinforced polyphenylene sulfide resin composition, and molding material and molding using the same | |
JP2004100047A (en) | Method for producing polyester thermocompression bonded nonwoven fabric | |
JP4980099B2 (en) | Laminated body and method for producing the same | |
JP2017519054A (en) | Method for producing thermoplastic prepreg and thermoplastic prepreg produced thereby | |
JPH0544146A (en) | High-tenacity sheetlike material and its production | |
EP0908559A2 (en) | Nonwoven reinforcement for printed wiring base board and process for producing the same | |
JP6684095B2 (en) | Glass cloth, prepreg, and printed wiring board | |
JP2003193358A (en) | Circuit board base material and circuit board using the same | |
JP2010199437A (en) | Laminated board for printed wiring board | |
JP5092275B2 (en) | Opening method of glass fiber fabric | |
JP2004324007A (en) | Treating agent for polyimide fiber, polyimide fiber treated therewith, nonwoven fabric and composite material | |
JP2002317392A (en) | Method for producing polyparaphenylene terephthalamide paper and method for producing printed circuit board | |
JP7644072B2 (en) | Low dielectric loss nonwoven fabric, its production and use | |
JP2014105266A (en) | Prepreg, molded article thereof and method of producing the same | |
JP2002064254A (en) | Resin laminates for printed wiring boards | |
JP2014097594A (en) | Metal-clad laminate and method of producing the same, and printed wiring board | |
JPH0923047A (en) | Laminated board for printed wiring board and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110914 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120307 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120410 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120418 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150427 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4980107 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |