[go: up one dir, main page]

JP4957891B2 - Synchronous motor - Google Patents

Synchronous motor Download PDF

Info

Publication number
JP4957891B2
JP4957891B2 JP2006313030A JP2006313030A JP4957891B2 JP 4957891 B2 JP4957891 B2 JP 4957891B2 JP 2006313030 A JP2006313030 A JP 2006313030A JP 2006313030 A JP2006313030 A JP 2006313030A JP 4957891 B2 JP4957891 B2 JP 4957891B2
Authority
JP
Japan
Prior art keywords
permanent magnet
yoke
rotor
holding member
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006313030A
Other languages
Japanese (ja)
Other versions
JP2008131718A (en
Inventor
英文 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006313030A priority Critical patent/JP4957891B2/en
Publication of JP2008131718A publication Critical patent/JP2008131718A/en
Application granted granted Critical
Publication of JP4957891B2 publication Critical patent/JP4957891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

本発明は同期モータに関し、例えば気体圧縮装置の遠心翼車等を高速回転させるのに適したものであり、特に約30000rpm以上の回転速度で数十kW 以上の出力が必要なモータに適する。   The present invention relates to a synchronous motor, for example, suitable for rotating a centrifugal impeller of a gas compression device at high speed, and particularly suitable for a motor that requires an output of several tens of kW or more at a rotational speed of about 30000 rpm or more.

圧縮装置の遠心翼車のように高速回転体を駆動するモータとしては、誘導モータが多く用いられている。しかし、誘導モータにおいては、ロータに生じる渦電流による抵抗損に基づき発熱を伴う。高速回転するロータの冷却方法は限られていることから、その発熱が大きくなる高出力の誘導モータの実現は困難であった。   An induction motor is often used as a motor for driving a high-speed rotating body such as a centrifugal impeller of a compression device. However, induction motors generate heat based on resistance loss due to eddy currents generated in the rotor. Since the cooling method of the rotor that rotates at high speed is limited, it has been difficult to realize a high-power induction motor that generates a large amount of heat.

そこで、高速回転体を永久磁石内蔵型同期モータ(IPM モータ)により駆動することが考えられている。IPM モータは、回転磁界発生用のコイルを有するステータと、永久磁石を内蔵するロータとを備え、ロータはコイルの発生磁界の回転に同期して回転する(特許文献1参照)。IPM モータにおいては、ステータの発生磁界と永久磁石との吸引・反発により生じるマグネットトルクと、ステータの発生磁界によりロータの突極が吸引されることにより生じるリラクタンストルクが重畳することで、小型でも大きなトルクを出力できる。図7A、図7Bは、それぞれ相異なる従来のIPM モータにおけるロータ101を示すもので、磁性材製の円筒状ヨーク102と、複数の永久磁石103とを有する。ヨーク102は磁性材製薄板を積層することで構成され、ヨーク102の中心孔に剛性保持用のシャフト104が同軸中心に同行回転するよう挿入されている。ヨーク102に複数の孔102aが回転方向に沿って並列するように形成され、各孔102aそれぞれに永久磁石103が嵌め合わされている。例えばモータの極数を2極とする場合、図において上方に配置される永久磁石103のステータ102に対向する側がN極とされ、下方に配置される永久磁石103のステータ102に対向する側がS極とされる。図7Aに示す各永久磁石103は回転軸と同心の円周上に配置される円弧状とされる。図7Bに示す各永久磁石103は回転軸と同心の円周上に配置されず、突極が吸引されることにより生じるリラクタンストルクの増大が図られている。
特開2006−217741号公報
Therefore, it is considered that the high-speed rotating body is driven by a synchronous motor with a built-in permanent magnet (IPM motor). The IPM motor includes a stator having a coil for generating a rotating magnetic field and a rotor incorporating a permanent magnet, and the rotor rotates in synchronization with the rotation of the magnetic field generated by the coil (see Patent Document 1). In an IPM motor, the magnet torque generated by the attraction and repulsion between the magnetic field generated by the stator and the permanent magnet and the reluctance torque generated by the rotor's salient poles being attracted by the magnetic field generated by the stator are superimposed, making it compact and large. Torque can be output. 7A and 7B show a rotor 101 in a different conventional IPM motor, which includes a cylindrical yoke 102 made of a magnetic material and a plurality of permanent magnets 103. The yoke 102 is formed by stacking magnetic thin plates, and a shaft 104 for maintaining rigidity is inserted into a central hole of the yoke 102 so as to rotate along the same axis. A plurality of holes 102a are formed in the yoke 102 so as to be arranged in parallel along the rotation direction, and a permanent magnet 103 is fitted in each of the holes 102a. For example, when the number of poles of the motor is two, the side facing the stator 102 of the permanent magnet 103 arranged at the top in the figure is the N pole, and the side facing the stator 102 of the permanent magnet 103 arranged at the bottom is S. It is considered as a pole. Each permanent magnet 103 shown in FIG. 7A has an arc shape arranged on a circumference concentric with the rotation axis. Each permanent magnet 103 shown in FIG. 7B is not arranged on the circumference concentric with the rotation axis, and the reluctance torque generated by attracting the salient poles is increased.
JP 2006-217741 A

IPM モータにより高速回転体を駆動する場合、発生トルクをより増大させることが要望される。そこで、永久磁石の発生磁束がステータ側の磁路構成要素を無駄なく通過することでマグネットトルクが増大するように、永久磁石相互の間におけるヨークの幅を小さくし、永久磁石の磁極間の磁路の通過磁束を低減することが考えられる。しかし、永久磁石相互の間におけるヨークの幅を小さくするとロータの強度が低下する。特に、ロータの回転速度の変化時に危険速度を通過する際の共振に対する曲げ剛性が確保できず、幅広い常用回転速度領域の設定ができず、常用回転速度が危険速度を越える場合の管理が困難になるという問題がある。さらに、高速回転時における大きな遠心力の作用による永久磁石の破損が問題になる。本発明は、そのような記問題を解決することのできる同期モータを提供することを目的とする。   When driving a high-speed rotating body with an IPM motor, it is desired to increase the generated torque. Therefore, the width of the yoke between the permanent magnets is reduced so that the magnetic torque generated by the permanent magnets passes through the magnetic path components on the stator side without waste, and the magnets between the magnetic poles of the permanent magnets are reduced. It is conceivable to reduce the passage magnetic flux. However, if the yoke width between the permanent magnets is reduced, the strength of the rotor decreases. In particular, the bending rigidity against resonance when passing through the critical speed when the rotational speed of the rotor changes cannot be secured, it is not possible to set a wide range of normal rotational speed, and management when the normal rotational speed exceeds the critical speed becomes difficult There is a problem of becoming. Furthermore, the breakage of the permanent magnet due to the action of a large centrifugal force during high-speed rotation becomes a problem. An object of this invention is to provide the synchronous motor which can solve such a problem.

本発明は、回転磁界発生用コイルを有するステータと、永久磁石を内蔵するロータとを備え、前記ロータは前記コイルの発生磁界の回転に同期して回転する同期モータにおいて、前記ロータは、前記ステータに対向すると共に前記永久磁石のN極側に接続される磁性材製N極用ヨークと、前記ステータに対向すると共に前記永久磁石のS極側に接続される磁性材製S極用ヨークと、前記永久磁石および前記各ヨークと同行回転する非磁性材製の保持部材とを有し、前記永久磁石および前記各ヨークは、前記N極用ヨークと前記S極用ヨークとが互いから離隔する状態で前記保持部材により保持されていることを特徴とする。
本発明によれば、永久磁石のN極側とS極側とがヨークを介して接続されることがないので、永久磁石の発生磁束をヨークを介してロータの外周近くまで誘導し、永久磁石の磁極間の磁路をなくして無駄な磁束を低減し、マグネットトルクを増大させることができる。また、ヨークをリラクタンストルクを増大させる突極構造にできる。
The present invention includes a stator having a rotating magnetic field generating coil and a rotor incorporating a permanent magnet, wherein the rotor rotates in synchronization with rotation of a magnetic field generated by the coil, and the rotor includes the stator. And a magnetic material N pole yoke connected to the N pole side of the permanent magnet, and a magnetic material S pole yoke facing the stator and connected to the S pole side of the permanent magnet, A holding member made of a non-magnetic material that rotates along with the permanent magnet and the yokes, and the permanent magnet and the yokes are separated from each other by the N pole yoke and the S pole yoke. And is held by the holding member.
According to the present invention, since the N pole side and the S pole side of the permanent magnet are not connected via the yoke, the generated magnetic flux of the permanent magnet is guided to the vicinity of the outer periphery of the rotor via the yoke. It is possible to eliminate the magnetic path between the magnetic poles, reduce the useless magnetic flux, and increase the magnet torque. In addition, the salient pole structure that increases the reluctance torque of the yoke can be achieved.

前記永久磁石は前記ロータの回転軸寄り領域に偏在するのが好ましい。これにより、比重の大きな永久磁石への遠心力の作用を低減し、耐遠心力のための構造を簡単化できる。また、永久磁石を単一にすることでその装着が容易になる。   It is preferable that the permanent magnet is unevenly distributed in a region near the rotation axis of the rotor. Thereby, the action of the centrifugal force on the permanent magnet having a large specific gravity can be reduced, and the structure for the anti-centrifugal force can be simplified. Moreover, the mounting | wearing becomes easy by using a single permanent magnet.

ロータに回転軸を含む面内の曲げモーメントが作用した場合、ロータの外周に作用する引っ張り応力が強度上の問題になる。
そこで本発明の一つの特徴として、前記ロータは、前記永久磁石と前記各ヨークと前記保持部材とが挿入される非磁性材製の補強用円筒部材と、前記保持部材と前記円筒部材を同行回転するように接続する接続機構とを有し、前記接続機構により前記円筒部材に回転軸方向に沿う圧縮力がロータ外周に作用する曲げに基づく引っ張り応力が相殺されるように付与されると共に、その圧縮力の反作用として前記保持部材に回転軸方向に沿う引っ張り力が付与される。
あるいは、前記ロータは、前記永久磁石と前記各ヨークと前記保持部材とが挿入される非磁性材製の補強用円筒部材を有し、前記保持部材に回転軸方向に沿う引っ張り荷重が負荷された状態、および、前記円筒部材に回転軸方向に沿う圧縮荷重が負荷された状態の中の少なくとも一方の状態において、前記保持部材と前記円筒部材は同行回転するように溶接され、前記溶接後に前記負荷が除去されることにより、前記円筒部材に回転軸方向に沿う圧縮力がロータ外周に作用する曲げに基づく引っ張り応力が相殺されるように付与されると共に、その圧縮力の反作用として前記保持部材に回転軸方向に沿う引っ張り力が付与される。
これにより、ロータの外周を構成する円筒部材には予め圧縮応力が付与されるため、その曲げに基づく引っ張り応力が相殺される。すなわち、曲げに基づく引っ張り応力は曲げ中心である回転軸からの距離に比例して大きくなるが、円筒部材にあらかじめ圧縮応力を存在させることで引っ張り応力の最大値を低減できる。よって、ロータの回転速度の変化時に危険速度を通過する際の共振によりロータの変位が増大しても、この時の曲げ応力を損傷等を引き起こさないレベルに抑えることで、幅広い常用回転速度領域の設定ができ、常用回転速度が危険速度を越えた使用領域であっても問題はない。
When an in-plane bending moment including the rotation axis acts on the rotor, tensile stress acting on the outer periphery of the rotor becomes a problem in strength.
Therefore, as one feature of the present invention, the rotor is a non-magnetic reinforcing cylindrical member into which the permanent magnet, each yoke, and the holding member are inserted, and the holding member and the cylindrical member rotate together. A connecting mechanism for connecting to the cylindrical member, and the connecting mechanism applies a compressive force along the rotational axis direction to the cylindrical member so that a tensile stress based on bending acting on the outer periphery of the rotor is offset, and As a reaction of the compressive force, a tensile force along the rotation axis direction is applied to the holding member.
Alternatively, the rotor has a reinforcing cylindrical member made of a non-magnetic material into which the permanent magnet, each yoke, and the holding member are inserted, and a tensile load along the rotation axis direction is applied to the holding member. The holding member and the cylindrical member are welded so as to rotate together in at least one of a state and a state in which a compressive load along the rotation axis direction is applied to the cylindrical member. As a result, the compressive force along the rotation axis direction is applied to the cylindrical member so that the tensile stress due to the bending acting on the outer periphery of the rotor is offset, and as a reaction of the compressive force to the holding member. A tensile force along the rotational axis direction is applied.
Thereby, since the compressive stress is previously given to the cylindrical member which comprises the outer periphery of a rotor, the tensile stress based on the bending is canceled. That is, the tensile stress due to bending increases in proportion to the distance from the rotation axis that is the center of bending, but the maximum value of the tensile stress can be reduced by causing the cylindrical member to have a compressive stress in advance. Therefore, even if the displacement of the rotor increases due to resonance when passing through the critical speed when the rotational speed of the rotor changes, the bending stress at this time is suppressed to a level that does not cause damage, etc. There is no problem even if it can be set and the operating speed range exceeds the critical speed.

前記保持部材と前記円筒部材を接続機構により接続する場合、前記保持部材は、回転軸方向一端側に位置する一端部と、回転軸方向他端側に位置する他端部と、前記一端部と前記他端部とを連結する連結部と、前記一端部に回転軸と同心に形成される第1ネジ部と、前記他端部に回転軸と同心に形成される第2ネジ部とを有し、前記永久磁石は、前記一端部と前記他端部と前記連結部とで囲まれる空間に配置され、前記N極用ヨークと前記S極用ヨークとの回転方向間に前記連結部が配置され、前記接続機構は、前記第1ネジ部にねじ合わされる第3ネジ部と、前記第2ネジ部にねじ合わされる第4ネジ部と、前記第1ネジ部へねじ込まれる第3ネジ部と回転軸方向に同行移動することで前記円筒部材の一端を押し付ける第1押し付け部と、前記第2ネジ部へねじ込まれる第4ネジ部と回転軸方向に同行移動することで前記円筒部材の他端を押し付ける第2押し付け部とを有し、両押し付け部により押し付けられることで前記円筒部材に回転軸方向に沿う圧縮力が付与されると共に、その圧縮力の反作用として前記保持部材に回転軸方向に沿う引っ張り力が付与されるのが好ましい。これにより組立容易な構造により曲げ剛性を確保できる。   When the holding member and the cylindrical member are connected by a connection mechanism, the holding member has one end located on one end side in the rotation axis direction, the other end located on the other end side in the rotation axis direction, and the one end portion. A connecting portion connecting the other end portion, a first screw portion formed concentrically with the rotation shaft at the one end portion, and a second screw portion formed concentrically with the rotation shaft at the other end portion. The permanent magnet is disposed in a space surrounded by the one end, the other end, and the connecting portion, and the connecting portion is disposed between the rotation directions of the N pole yoke and the S pole yoke. The connection mechanism includes a third screw portion that is screwed to the first screw portion, a fourth screw portion that is screwed to the second screw portion, and a third screw portion that is screwed to the first screw portion. A first pressing portion that presses one end of the cylindrical member by moving in the rotational axis direction; A fourth screw part to be screwed into the second screw part and a second pressing part that presses the other end of the cylindrical member by moving in the direction of the rotation axis, and the cylindrical member is pressed by both pressing parts. It is preferable that a compression force along the rotation axis direction is applied to the holding member, and a tensile force along the rotation axis direction is applied to the holding member as a reaction of the compression force. As a result, bending rigidity can be ensured by a structure that is easy to assemble.

さらに、前記円筒部材の外周に補強用繊維が周方向に巻かれているのが好ましい。これによって、ロータの高速回転時に作用するフープ応力に対する円周方向強度を向上できる。   Furthermore, it is preferable that reinforcing fibers are wound in the circumferential direction on the outer periphery of the cylindrical member. As a result, the circumferential strength against hoop stress acting during high-speed rotation of the rotor can be improved.

本発明によれば、幅広い常用回転速度領域の設定ができる高速、高出力の同期モータを提供できる。   According to the present invention, it is possible to provide a high-speed, high-output synchronous motor capable of setting a wide range of normal rotation speeds.

図1に示すプロセス用ガス等を圧縮する遠心圧縮装置1における一対の遠心翼車2a、2bは、永久磁石内蔵型同期モータ10により同軸中心に回転駆動される。モータ10は、ロータ11と、ロータ11を覆う回転磁界発生用コイル12aを有するステータ12を備える。遠心翼車2a、2bの回転シャフト3a、3bはロータ11と一体化され、遠心翼車2a、2bを覆うスクロール4a、4bはモータ10を覆うケーシング5と一体化され、ケーシング5の内周にステータ12が一体化される。モータ10は本実施形態では3相とされ、コイル12aはモータ10の駆動用インバータ13にリード線12bを介して接続される。ケーシング5内で回転シャフト3a、3bを支持するセラミックボール軸受け6a、6bと遠心翼車2a、2bとの間にラビリンスシール7a、7bが設けられている。モータ10に図外電源からインバータ13を介して電力が供給されることで、コイル12aの発生磁界の回転に同期してロータ11が回転する。これにより、高速回転する遠心翼車2a、2bによりスクロール4a、4b内に導かれた気体が、圧縮された後にスクロール4a、4bから排出されてプロセス装置により利用される。   A pair of centrifugal impellers 2 a and 2 b in the centrifugal compressor 1 that compresses the process gas and the like shown in FIG. 1 is rotationally driven about a coaxial center by a synchronous motor 10 with a built-in permanent magnet. The motor 10 includes a rotor 11 and a stator 12 having a rotating magnetic field generating coil 12 a that covers the rotor 11. The rotary shafts 3 a and 3 b of the centrifugal impellers 2 a and 2 b are integrated with the rotor 11, and the scrolls 4 a and 4 b covering the centrifugal impellers 2 a and 2 b are integrated with the casing 5 covering the motor 10. The stator 12 is integrated. The motor 10 has three phases in this embodiment, and the coil 12a is connected to the drive inverter 13 of the motor 10 via a lead wire 12b. Labyrinth seals 7a and 7b are provided between the ceramic ball bearings 6a and 6b that support the rotating shafts 3a and 3b in the casing 5 and the centrifugal impellers 2a and 2b. When electric power is supplied to the motor 10 from an unillustrated power source via the inverter 13, the rotor 11 rotates in synchronization with the rotation of the magnetic field generated by the coil 12a. As a result, the gas introduced into the scrolls 4a and 4b by the centrifugal impellers 2a and 2b rotating at high speed is discharged from the scrolls 4a and 4b after being compressed and used by the process device.

図2〜図4Bはモータ10の構造を示す。ステータ12は、磁性材製の薄板の積層体にコイル12aを巻くことで形成され、ロータ11に対向するティース部12cを有する公知の構造を採用できる。   2 to 4B show the structure of the motor 10. The stator 12 may be formed by winding a coil 12 a around a thin laminate of magnetic materials, and may employ a known structure having a teeth portion 12 c that faces the rotor 11.

本実施形態のモータ10は2極とされ、ロータ11に内蔵される永久磁石20は単一とされる。本実施形態の永久磁石20は偏平な直方体形状とされ、その長辺はロータ11の回転軸に沿い、その重心をロータ11の回転軸が通るように配置される。これにより、永久磁石20はロータ11の回転軸寄り領域に偏在し、永久磁石20のN極面20aとS極面20bはロータ11の回転軸に対し平行とされている。   The motor 10 of this embodiment has two poles, and the permanent magnet 20 built in the rotor 11 is single. The permanent magnet 20 of the present embodiment has a flat rectangular parallelepiped shape, and its long side is arranged along the rotation axis of the rotor 11 so that the rotation axis of the rotor 11 passes through the center of gravity. Thereby, the permanent magnet 20 is unevenly distributed in the region near the rotation axis of the rotor 11, and the N pole surface 20 a and the S pole surface 20 b of the permanent magnet 20 are parallel to the rotation axis of the rotor 11.

ロータ11は、ステータ12に対向すると共にN極面20aに接続されるN極用ヨーク21aと、ステータ12に対向すると共にS極面20bに接続されるS極用ヨーク21bと、永久磁石20および各ヨーク21a、21bと同行回転する保持部材22とを有する。各ヨーク21a、21bは、磁性材製の薄板を積層することで構成され、永久磁石20との接続面と両端面が平坦面とされ、ステータ12との対向面がロータ11の回転中心と同心の円に沿う円弧面とされている。   The rotor 11 includes an N pole yoke 21a facing the stator 12 and connected to the N pole face 20a, an S pole yoke 21b facing the stator 12 and connected to the S pole face 20b, the permanent magnet 20 and Each of the yokes 21a and 21b has a holding member 22 that rotates together. Each yoke 21a, 21b is formed by laminating thin plates made of magnetic material, the connecting surface with the permanent magnet 20 and both end surfaces are flat surfaces, and the facing surface with the stator 12 is concentric with the rotation center of the rotor 11. The arc surface along the circle.

保持部材22は、例えばチタンのような非磁性であり、比強度が非常に高く、かつ金属の中では電気抵抗値が高い特徴をもつ材料から製作され、回転軸方向一端側に位置する一端部22aと、回転軸方向他端側に位置する他端部22bと、一端部22aと他端部22bとを連結する連結部22cと、一端部22aに回転軸と同心に形成される第1ネジ部22dと、他端部22bに回転軸と同心かつ軸方向外方に突出するように形成される第2ネジ部22eとを有する。本実施形態の一端部22aと他端部22bは円柱状とされ、連結部22cは回転軸方向に沿って伸びる2部分22c′からなり、両部分22c′は回転方向に等間隔をおいて配置される。両端部22a、22bと連結部22cの外周面は回転軸を中心とする円筒面に沿う。本実施形態では第1ネジ部22dは雄ねじとされて一端部22aから軸方向外方に突出し、第2ネジ部22eは雄ねじとされて他端部22bから軸方向外方に突出する。なお、本実施形態では第1ネジ部22dに回転シャフト3aとの連結用雌ねじ部22d′が形成され、第2ネジ部22eに回転シャフト3bとの連結用雌ねじ部22e′が形成されている。   The holding member 22 is made of a material that is non-magnetic, such as titanium, has a very high specific strength, and has a high electric resistance value among metals, and is one end located on one end side in the rotation axis direction. 22a, the other end portion 22b positioned on the other end side in the rotation axis direction, a connecting portion 22c connecting the one end portion 22a and the other end portion 22b, and a first screw formed concentrically with the rotation shaft at the one end portion 22a. The second end portion 22b has a second screw portion 22e formed concentrically with the rotating shaft and protruding outward in the axial direction. In the present embodiment, the one end 22a and the other end 22b are cylindrical, and the connecting portion 22c is composed of two portions 22c 'extending along the rotation axis direction, and both portions 22c' are arranged at equal intervals in the rotation direction. Is done. The outer peripheral surfaces of both end portions 22a and 22b and the connecting portion 22c are along a cylindrical surface centered on the rotation axis. In the present embodiment, the first screw portion 22d is a male screw and protrudes axially outward from the one end portion 22a, and the second screw portion 22e is a male screw and protrudes axially outward from the other end portion 22b. In the present embodiment, the first screw portion 22d is formed with a connecting female screw portion 22d 'for connection with the rotating shaft 3a, and the second screw portion 22e is formed with a connecting female screw portion 22e' for connection with the rotating shaft 3b.

永久磁石20は、保持部材22の一端部22aと他端部22bと連結部22cの2部分22c′とで囲まれる空間に配置され、例えば接着剤により保持部材22に接着される。保持部材22に接着された永久磁石20にN極用ヨーク21aとS極用ヨーク21bとが接続され、各ヨーク21a、21bは保持部材22に例えば接着剤により接着される。各ヨーク21a、21bの外周面と保持部材22の外周面は一つの円筒面を形成し、N極用ヨーク21aとS極用ヨーク21bとの回転方向間に連結部22cが配置される。これにより、永久磁石20および各ヨーク21a、21bは、N極用ヨーク21aとS極用ヨーク21bとが互いから離隔する状態で保持部材22により保持されている。   The permanent magnet 20 is disposed in a space surrounded by one end portion 22a, the other end portion 22b of the holding member 22 and the two portions 22c ′ of the connecting portion 22c, and is bonded to the holding member 22 with an adhesive, for example. The N pole yoke 21a and the S pole yoke 21b are connected to the permanent magnet 20 bonded to the holding member 22, and the yokes 21a and 21b are bonded to the holding member 22 with, for example, an adhesive. The outer peripheral surfaces of the yokes 21a and 21b and the outer peripheral surface of the holding member 22 form one cylindrical surface, and the connecting portion 22c is disposed between the rotation directions of the N pole yoke 21a and the S pole yoke 21b. Thereby, the permanent magnet 20 and each yoke 21a, 21b are hold | maintained by the holding member 22 in the state from which the yoke 21a for N poles and the yoke 21b for S poles were separated from each other.

ロータ11は、永久磁石20と各ヨーク21a、21bと保持部材22とが挿入される補強用円筒部材25と、保持部材22と円筒部材25を同行回転するように接続する接続機構30を有する。円筒部材25は例えばチタン材等の高強度を有する非磁性材製とされる。接続機構30により円筒部材25に回転軸方向に沿う圧縮力が付与されると共に、その圧縮力の反作用として保持部材22に回転軸方向に沿う引っ張り力が付与される。   The rotor 11 includes a reinforcing cylindrical member 25 into which the permanent magnet 20, the yokes 21a and 21b, and the holding member 22 are inserted, and a connection mechanism 30 that connects the holding member 22 and the cylindrical member 25 so as to rotate together. The cylindrical member 25 is made of a nonmagnetic material having a high strength such as a titanium material. The connecting mechanism 30 applies a compressive force along the rotational axis direction to the cylindrical member 25, and a tensile force along the rotational axis direction is applied to the holding member 22 as a reaction of the compressive force.

すなわち接続機構30は、第1ネジ部22dにねじ合わされるナット状の第3ネジ部30aと、第2ネジ部22eにねじ合わされる第4ネジ部30bと、第1押し付け部30cと、第2押し付け部30dを有する。本実施形態の第1押し付け部30cは、中心孔を有する円環状とされ、その外周にフランジ30c″が形成され、中心孔に第1ネジ部22dが挿入され、外周は円筒部材25の一端開口に挿入され、フランジ30c″は円筒部材25の一端面に接する。本実施形態の第2押し付け部30dは、中心孔を有する円環状とされ、その外周にフランジ30d″が形成され、中心孔に第2ネジ部22eが挿入され、外周は円筒部材25の他端開口に挿入され、フランジ30d″は円筒部材25の他端面に接する。第1押し付け部30cは、第3ネジ部30aと保持部材22との軸方向間に配置され、第1ネジ部22dへねじ込まれる第3ネジ部30aと回転軸方向に同行移動することで円筒部材25の一端を押し付ける。第2押し付け部30dは、第4ネジ部30bと保持部材22との軸方向間に配置され、第2ネジ部22eへねじ込まれる第4ネジ部30bと回転軸方向に同行移動することで円筒部材25の他端を押し付ける。両押し付け部30c、30dにより押し付けられることで円筒部材25に回転軸方向に沿う圧縮力が付与されると共に、その圧縮力の反作用として保持部材22に回転軸方向に沿う引っ張り力が付与される。円筒部材25の外周に補強用繊維40が周方向に巻かれている。補強用繊維40は、例えばガラス繊維、炭素繊維、チラノ繊維等の高強度繊維により構成でき、さらに補強用繊維40を樹脂で固化させることでFRP層とするのが好ましい。   That is, the connection mechanism 30 includes a nut-like third screw portion 30a screwed to the first screw portion 22d, a fourth screw portion 30b screwed to the second screw portion 22e, a first pressing portion 30c, and a second It has a pressing part 30d. The first pressing portion 30c of the present embodiment is an annular shape having a center hole, a flange 30c ″ is formed on the outer periphery thereof, the first screw portion 22d is inserted in the center hole, and the outer periphery is an open end of the cylindrical member 25. The flange 30 c ″ is in contact with one end surface of the cylindrical member 25. The second pressing portion 30d of the present embodiment has an annular shape having a center hole, a flange 30d ″ is formed on the outer periphery thereof, the second screw portion 22e is inserted in the center hole, and the outer periphery is the other end of the cylindrical member 25. The flange 30 d ″ is inserted into the opening and is in contact with the other end surface of the cylindrical member 25. The first pressing portion 30c is disposed between the third screw portion 30a and the holding member 22 in the axial direction, and moves in the same direction as the third screw portion 30a to be screwed into the first screw portion 22d in the rotational axis direction. Press one end of 25. The second pressing portion 30d is disposed between the fourth screw portion 30b and the holding member 22 in the axial direction, and moves in the same direction as the fourth screw portion 30b to be screwed into the second screw portion 22e in the rotational axis direction. Press the other end of 25. By being pressed by both pressing portions 30c and 30d, a compressive force along the rotation axis direction is applied to the cylindrical member 25, and a tensile force along the rotation axis direction is applied to the holding member 22 as a reaction of the compression force. A reinforcing fiber 40 is wound around the outer periphery of the cylindrical member 25 in the circumferential direction. The reinforcing fiber 40 can be composed of, for example, high-strength fibers such as glass fiber, carbon fiber, and Tyranno fiber, and is preferably formed into an FRP layer by solidifying the reinforcing fiber 40 with a resin.

上記実施形態によれば、永久磁石20のN極側とS極側とがヨーク21a、21bを介して接続されることがないので、永久磁石20の発生磁束をヨーク21a、21bを介してロータ11の外周近くまで誘導し、永久磁石20の磁極間の磁路をなくして無駄な磁束を低減し、マグネットトルクを増大させることができる。また、ヨーク21a、21bをリラクタンストルクを増大させる突極構造にできる。永久磁石20はロータ11の回転軸寄り領域に偏在するので、比重の大きな永久磁石20への遠心力の作用を低減し、耐遠心力のための構造を簡単化できる。また、永久磁石20を単一にすることでその装着が容易になる。さらに、ロータ11に回転軸を含む面内の曲げモーメントが作用しても、ロータ11の外周を構成する円筒部材25には予め圧縮応力が付与されるため、その曲げに基づく引っ張り応力が相殺される。よって、ロータ11の回転速度の変化時において、危険速度を通過する際の共振によりロータ11に曲げが生じても過大な引っ張り応力が作用することがない状態を確保することで、幅広い常用回転速度領域の設定ができ、常用回転速度が危険速度を越えても問題はない。この場合、第1ネジ部22dに第3ネジ部30aをねじ合わせ、第2ネジ部22eに第4ネジ部30bをねじ合わせるだけで円筒部材25に予め圧縮応力を付与できるので、組立容易な構造により曲げ剛性を確保できる。さらに、円筒部材25の外周に補強用繊維40が周方向に巻かれることで、ロータ11の高速回転時に作用するフープ応力に対する円周方向強度を向上できる。   According to the above embodiment, since the N pole side and the S pole side of the permanent magnet 20 are not connected via the yokes 21a and 21b, the magnetic flux generated by the permanent magnet 20 is transferred to the rotor via the yokes 21a and 21b. 11, the magnetic path between the magnetic poles of the permanent magnet 20 can be eliminated, the useless magnetic flux can be reduced, and the magnet torque can be increased. Further, the yokes 21a and 21b can have a salient pole structure that increases the reluctance torque. Since the permanent magnet 20 is unevenly distributed in the region near the rotation axis of the rotor 11, the action of the centrifugal force on the permanent magnet 20 having a large specific gravity can be reduced, and the structure for anti-centrifugal force can be simplified. Moreover, the mounting | wearing becomes easy by making the permanent magnet 20 into a single. Further, even if an in-plane bending moment including the rotation axis acts on the rotor 11, a compressive stress is applied in advance to the cylindrical member 25 constituting the outer periphery of the rotor 11, so that the tensile stress based on the bending is offset. The Therefore, when the rotation speed of the rotor 11 is changed, a wide range of normal rotation speeds can be ensured by ensuring that no excessive tensile stress acts even if the rotor 11 is bent due to resonance when passing through the critical speed. The area can be set, and there is no problem if the normal rotation speed exceeds the critical speed. In this case, it is possible to apply a compressive stress to the cylindrical member 25 in advance by simply screwing the third screw portion 30a with the first screw portion 22d and screwing the fourth screw portion 30b with the second screw portion 22e. Therefore, bending rigidity can be secured. Furthermore, the reinforcing fiber 40 is wound around the outer periphery of the cylindrical member 25 in the circumferential direction, so that the strength in the circumferential direction against hoop stress acting when the rotor 11 rotates at high speed can be improved.

本発明は上記実施形態に限定されない。例えば、上記実施形態における第3ネジ部と第1押し付け部を一体化してもよいし、第4ネジ部と第2押し付け部を一体化してもよい。また、第1ネジ部を雌ねじとすると共に第3ネジ部を雄ねじとしてもよいし、第2ネジ部を雌ねじとすると共に第4ネジ部を雄ねじとしてもよい。   The present invention is not limited to the above embodiment. For example, the third screw portion and the first pressing portion in the above embodiment may be integrated, or the fourth screw portion and the second pressing portion may be integrated. Further, the first screw portion may be a female screw and the third screw portion may be a male screw, the second screw portion may be a female screw and the fourth screw portion may be a male screw.

また、上記実施形態のような接続機構に代えて、保持部材と円筒部材を同行回転するように溶接してもよい。すなわち、図5に示す変形例の保持部材22においては、上記実施形態における第1ネジ部22dと第2ネジ部22eは形成されておらず、それに代えて一端部22aと他端部22bそれぞれから突出する円錐状部22g、22hが設けられている。各円錐状部22g、22hの先端は円筒状部22g′、22h′とされ、円筒状部22g′、22h′の内周に回転シャフト3a、3bとの連結用雌ねじ部が形成されている。永久磁石20とヨーク21a、21bを保持した保持部材22は円筒部材25に挿入され、この挿入状態で保持部材22に回転軸方向に沿う引っ張り荷重が負荷され、この荷重が負荷された状態で保持部材22の一端部22aの外端周縁22a′が円筒部材25の一端内周25′に溶接され、他端部22bの外端周縁22b′が円筒部材25の図外他端内周に、それぞれ例えば電子ビーム溶接により溶接される。その溶接後に保持部材22に負荷された引っ張り荷重が除去されることにより、円筒部材25に回転軸方向に沿う圧縮力が付与されると共に、その圧縮力の反作用として保持部材22に回転軸方向に沿う引っ張り力が付与される。なお、溶接に際して保持部材22に回転軸方向に沿う引っ張り荷重を負荷することに代えて、あるいは負荷すると同時に、円筒部材25に回転軸方向に沿う圧縮荷重を負荷してもよい。他は上記実施形態と同様とされる。   Moreover, it may replace with a connection mechanism like the said embodiment, and may weld so that a holding member and a cylindrical member may rotate together. That is, in the holding member 22 of the modified example shown in FIG. 5, the first screw portion 22d and the second screw portion 22e in the above-described embodiment are not formed, but instead from the one end portion 22a and the other end portion 22b. Projecting conical portions 22g and 22h are provided. The tips of the conical portions 22g and 22h are cylindrical portions 22g ′ and 22h ′, and internal thread portions for connecting to the rotating shafts 3a and 3b are formed on the inner circumferences of the cylindrical portions 22g ′ and 22h ′. The holding member 22 holding the permanent magnet 20 and the yokes 21a and 21b is inserted into the cylindrical member 25. In this inserted state, a tensile load is applied to the holding member 22 along the rotation axis direction, and the holding member 22 is held in a state in which this load is applied. The outer peripheral edge 22a 'of the one end 22a of the member 22 is welded to the inner peripheral edge 25' of the one end of the cylindrical member 25, and the outer peripheral edge 22b 'of the other end 22b is connected to the inner peripheral end of the other end of the cylindrical member 25 outside the figure. For example, welding is performed by electron beam welding. By removing the tensile load applied to the holding member 22 after the welding, a compressive force is applied to the cylindrical member 25 along the rotational axis direction, and the holding member 22 is reacted in the rotational axis direction as a reaction of the compressive force. A pulling force is applied. In addition, instead of or simultaneously with applying a tensile load along the rotation axis direction to the holding member 22 during welding, a compressive load along the rotation axis direction may be applied to the cylindrical member 25. The rest is the same as in the above embodiment.

また、モータの極数は特に限定されず、例えば4極としてもよい。この場合、図6A、図6Bの変形例に示すように、永久磁石20は回転軸方向視が正方形の直方体形状とされ、回転方向にN極面20aとS極面20bとが交互に配置され、一対のN極用ヨーク21aと一対のS極用ヨーク21bを備えるものとされる。各ヨーク21a、21bは、永久磁石20との接続面と両端面と連結部22cとの対向面が平坦面とされ、ステータ12との対向面がロータ11の回転中心と同心の円に沿う円弧面とされている。保持部材22の連結部22cは回転軸方向に沿って伸びる4部分22c″からなり、永久磁石20は、保持部材22の一端部22aと他端部22bと連結部22cの4部分22c″とで囲まれる空間に配置される。他は上記実施形態と同様とされる。   Further, the number of poles of the motor is not particularly limited, and may be four poles, for example. In this case, as shown in the modified examples of FIGS. 6A and 6B, the permanent magnet 20 has a rectangular parallelepiped shape when viewed in the rotation axis direction, and the N pole surface 20a and the S pole surface 20b are alternately arranged in the rotation direction. A pair of N pole yokes 21a and a pair of S pole yokes 21b are provided. Each of the yokes 21a and 21b has a flat surface facing the connection surface and both end surfaces of the permanent magnet 20 and the connecting portion 22c, and an arc along a circle whose concentric surface with the stator 12 is concentric with the rotation center of the rotor 11. It is considered as a surface. The connecting portion 22c of the holding member 22 includes four portions 22c ″ extending along the rotation axis direction, and the permanent magnet 20 is composed of one end portion 22a and the other end portion 22b of the holding member 22 and four portions 22c ″ of the connecting portion 22c. Arranged in the enclosed space. The rest is the same as in the above embodiment.

本発明の実施形態の同期モータを備えた遠心圧縮装置の構成説明図Structure explanatory drawing of the centrifugal compression apparatus provided with the synchronous motor of embodiment of this invention 本発明の実施形態の同期モータの部分分解斜視図The partial exploded perspective view of the synchronous motor of the embodiment of the present invention 本発明の実施形態の同期モータにおけるロータの部分分解斜視図The partial exploded perspective view of the rotor in the synchronous motor of the embodiment of the present invention 本発明の実施形態の同期モータにおけるロータの横断面図Cross section of rotor in synchronous motor of embodiment of the present invention 本発明の実施形態の同期モータにおけるロータの縦断面図The longitudinal cross-sectional view of the rotor in the synchronous motor of embodiment of this invention 本発明の変形例の同期モータにおけるロータの部分分解斜視図The partial exploded perspective view of the rotor in the synchronous motor of the modification of this invention 本発明の他の変形例の同期モータにおけるロータの部分分解斜視図The partial exploded perspective view of the rotor in the synchronous motor of the other modification of this invention 本発明の他の変形例の同期モータにおけるロータの横断面図Cross-sectional view of a rotor in a synchronous motor of another modification of the present invention 従来の同期モータにおけるロータの横断面図Cross section of rotor in conventional synchronous motor 従来の同期モータにおける異なるロータの横断面図Cross section of different rotors in a conventional synchronous motor

符号の説明Explanation of symbols

10…同期モータ
11…ロータ
12…ステータ
12a…コイル
20…永久磁石
21a…N極用ヨーク
21b…S極用ヨーク
22…保持部材
22a…一端部
22b…他端部
22c…連結部
22d…第1ネジ部
22e…第2ネジ部
25…円筒部材
30…接続機構
30a…第3ネジ部
30b…第4ネジ部
30c…第1押し付け部
30d…第2押し付け部
40…補強用繊維
DESCRIPTION OF SYMBOLS 10 ... Synchronous motor 11 ... Rotor 12 ... Stator 12a ... Coil 20 ... Permanent magnet 21a ... N pole yoke 21b ... S pole yoke 22 ... Holding member 22a ... One end part 22b ... Other end part 22c ... Connection part 22d ... First Screw portion 22e ... Second screw portion 25 ... Cylindrical member 30 ... Connection mechanism 30a ... Third screw portion 30b ... Fourth screw portion 30c ... First pressing portion 30d ... Second pressing portion 40 ... Reinforcing fiber

Claims (5)

回転磁界発生用コイルを有するステータと、永久磁石を内蔵するロータとを備え、前記ロータは前記コイルの発生磁界の回転に同期して回転する同期モータにおいて、
前記ロータは、前記ステータに対向すると共に前記永久磁石のN極側に接続される磁性材製N極用ヨークと、前記ステータに対向すると共に前記永久磁石のS極側に接続される磁性材製S極用ヨークと、前記永久磁石および前記各ヨークと同行回転する非磁性材製の保持部材とを有し、
前記永久磁石および前記各ヨークは、前記N極用ヨークと前記S極用ヨークとが互いから離隔する状態で前記保持部材により保持され、
前記ロータは、前記永久磁石と前記各ヨークと前記保持部材とが挿入される非磁性材製の補強用円筒部材と、前記保持部材と前記円筒部材を同行回転するように接続する接続機構とを有し、
前記接続機構により前記円筒部材に回転軸方向に沿う圧縮力がロータ外周に作用する曲げに基づく引っ張り応力が相殺されるように付与されると共に、その圧縮力の反作用として前記保持部材に回転軸方向に沿う引っ張り力が付与されることを特徴とする同期モータ。
In a synchronous motor comprising a stator having a rotating magnetic field generating coil and a rotor containing a permanent magnet, the rotor rotating in synchronization with the rotation of the magnetic field generated by the coil,
The rotor is made of a magnetic material that is opposed to the stator and is connected to the N pole side of the permanent magnet, and a magnetic material N pole yoke that is opposed to the stator and is connected to the S pole side of the permanent magnet. An S pole yoke, and a permanent magnet and a holding member made of a non-magnetic material that rotates together with each yoke;
The permanent magnet and each yoke are held by the holding member in a state in which the north pole yoke and the south pole yoke are separated from each other,
The rotor includes a reinforcing cylindrical member made of a non-magnetic material into which the permanent magnet, each yoke, and the holding member are inserted, and a connection mechanism that connects the holding member and the cylindrical member so as to rotate together. Have
The connecting mechanism applies a compressive force along the rotational axis direction to the cylindrical member so that a tensile stress based on bending acting on the outer periphery of the rotor is offset, and as a reaction of the compressive force to the holding member in the rotational axis direction. A synchronous motor characterized by being given a tensile force along the axis.
回転磁界発生用コイルを有するステータと、永久磁石を内蔵するロータとを備え、前記ロータは前記コイルの発生磁界の回転に同期して回転する同期モータにおいて、
前記ロータは、前記ステータに対向すると共に前記永久磁石のN極側に接続される磁性材製N極用ヨークと、前記ステータに対向すると共に前記永久磁石のS極側に接続される磁性材製S極用ヨークと、前記永久磁石および前記各ヨークと同行回転する非磁性材製の保持部材とを有し、
前記永久磁石および前記各ヨークは、前記N極用ヨークと前記S極用ヨークとが互いから離隔する状態で前記保持部材により保持され、
前記ロータは、前記永久磁石と前記各ヨークと前記保持部材とが挿入される非磁性材製の補強用円筒部材を有し、
前記保持部材に回転軸方向に沿う引っ張り荷重が負荷された状態、および、前記円筒部材に回転軸方向に沿う圧縮荷重が負荷された状態の中の少なくとも一方の状態において、前記保持部材と前記円筒部材は同行回転するように溶接され、
前記溶接後に前記負荷が除去されることにより、前記円筒部材に回転軸方向に沿う圧縮力がロータ外周に作用する曲げに基づく引っ張り応力が相殺されるように付与されると共に、その圧縮力の反作用として前記保持部材に回転軸方向に沿う引っ張り力が付与されることを特徴とする同期モータ。
In a synchronous motor comprising a stator having a rotating magnetic field generating coil and a rotor containing a permanent magnet, the rotor rotating in synchronization with the rotation of the magnetic field generated by the coil,
The rotor is made of a magnetic material that is opposed to the stator and is connected to the N pole side of the permanent magnet, and a magnetic material N pole yoke that is opposed to the stator and is connected to the S pole side of the permanent magnet. An S pole yoke, and a permanent magnet and a holding member made of a non-magnetic material that rotates together with each yoke;
The permanent magnet and each yoke are held by the holding member in a state in which the north pole yoke and the south pole yoke are separated from each other,
The rotor has a reinforcing cylindrical member made of a nonmagnetic material into which the permanent magnet, each yoke, and the holding member are inserted,
The holding member and the cylinder in at least one of a state in which a tensile load along the rotation axis direction is applied to the holding member and a state in which a compression load along the rotation axis direction is applied to the cylindrical member The members are welded to rotate together,
When the load is removed after the welding, a compressive force along the rotation axis direction is applied to the cylindrical member so that a tensile stress based on bending acting on the outer periphery of the rotor is offset, and a reaction of the compressive force is performed. A pulling force along the rotational axis direction is applied to the holding member as a synchronous motor.
回転磁界発生用コイルを有するステータと、永久磁石を内蔵するロータとを備え、前記ロータは前記コイルの発生磁界の回転に同期して回転する同期モータにおいて、
前記ロータは、前記ステータに対向すると共に前記永久磁石のN極側に接続される磁性材製N極用ヨークと、前記ステータに対向すると共に前記永久磁石のS極側に接続される磁性材製S極用ヨークと、前記永久磁石および前記各ヨークと同行回転する非磁性材製の保持部材とを有し、
前記永久磁石および前記各ヨークは、前記N極用ヨークと前記S極用ヨークとが互いから離隔する状態で前記保持部材により保持され、
前記ロータは、前記永久磁石と前記各ヨークと前記保持部材とが挿入される非磁性材製の補強用円筒部材と、前記保持部材と前記円筒部材を同行回転するように接続する接続機構とを有し、
前記接続機構により前記円筒部材に回転軸方向に沿う圧縮力が付与されると共に、その圧縮力の反作用として前記保持部材に回転軸方向に沿う引っ張り力が付与され、
前記保持部材は、回転軸方向一端側に位置する一端部と、回転軸方向他端側に位置する他端部と、前記一端部と前記他端部とを連結する連結部と、前記一端部に回転軸と同心に形成される第1ネジ部と、前記他端部に回転軸と同心に形成される第2ネジ部とを有し、
前記永久磁石は、前記一端部と前記他端部と前記連結部とで囲まれる空間に配置され、
前記N極用ヨークと前記S極用ヨークとの回転方向間に前記連結部が配置され、
前記接続機構は、前記第1ネジ部にねじ合わされる第3ネジ部と、前記第2ネジ部にねじ合わされる第4ネジ部と、前記第1ネジ部へねじ込まれる第3ネジ部と回転軸方向に同行移動することで前記円筒部材の一端を押し付ける第1押し付け部と、前記第2ネジ部へねじ込まれる第4ネジ部と回転軸方向に同行移動することで前記円筒部材の他端を押し付ける第2押し付け部とを有し、
両押し付け部により押し付けられることで前記円筒部材に回転軸方向に沿う圧縮力が付与されると共に、その圧縮力の反作用として前記保持部材に回転軸方向に沿う引っ張り力が付与されることを特徴とする同期モータ。
In a synchronous motor comprising a stator having a rotating magnetic field generating coil and a rotor containing a permanent magnet, the rotor rotating in synchronization with the rotation of the magnetic field generated by the coil,
The rotor is made of a magnetic material that is opposed to the stator and is connected to the N pole side of the permanent magnet, and a magnetic material N pole yoke that is opposed to the stator and is connected to the S pole side of the permanent magnet. An S pole yoke, and a permanent magnet and a holding member made of a non-magnetic material that rotates together with each yoke;
The permanent magnet and each yoke are held by the holding member in a state in which the north pole yoke and the south pole yoke are separated from each other,
The rotor includes a reinforcing cylindrical member made of a non-magnetic material into which the permanent magnet, each yoke, and the holding member are inserted, and a connection mechanism that connects the holding member and the cylindrical member so as to rotate together. Have
A compression force along the rotation axis direction is applied to the cylindrical member by the connection mechanism, and a tensile force along the rotation axis direction is applied to the holding member as a reaction of the compression force,
The holding member has one end located on one end side in the rotation axis direction, the other end located on the other end side in the rotation axis direction, a connecting portion connecting the one end and the other end, and the one end A first screw portion formed concentrically with the rotating shaft, and a second screw portion formed concentrically with the rotating shaft at the other end portion,
The permanent magnet is disposed in a space surrounded by the one end portion, the other end portion, and the connecting portion,
The connecting portion is disposed between the rotation directions of the N pole yoke and the S pole yoke,
The connection mechanism includes a third screw portion screwed to the first screw portion, a fourth screw portion screwed to the second screw portion, a third screw portion screwed into the first screw portion, and a rotating shaft. The first pressing portion that presses one end of the cylindrical member by moving together in the direction and the fourth screw portion screwed into the second screw portion and the other end of the cylindrical member by pressing in the rotational axis direction A second pressing part,
By being pressed by both pressing portions, a compressive force along the rotation axis direction is applied to the cylindrical member, and a tensile force along the rotation axis direction is applied to the holding member as a reaction of the compression force. Synchronous motor.
前記永久磁石は前記ロータの回転軸寄り領域に偏在する請求項1〜3の中の何れかに記載の同期モータ。 The synchronous motor according to claim 1, wherein the permanent magnet is unevenly distributed in a region near the rotation axis of the rotor. 前記円筒部材の外周に補強用繊維が周方向に巻かれている請求項1〜4の中の何れかに記載の同期モータ。 The synchronous motor according to any one of claims 1 to 4, wherein a reinforcing fiber is wound in a circumferential direction on an outer periphery of the cylindrical member.
JP2006313030A 2006-11-20 2006-11-20 Synchronous motor Active JP4957891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006313030A JP4957891B2 (en) 2006-11-20 2006-11-20 Synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006313030A JP4957891B2 (en) 2006-11-20 2006-11-20 Synchronous motor

Publications (2)

Publication Number Publication Date
JP2008131718A JP2008131718A (en) 2008-06-05
JP4957891B2 true JP4957891B2 (en) 2012-06-20

Family

ID=39557046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006313030A Active JP4957891B2 (en) 2006-11-20 2006-11-20 Synchronous motor

Country Status (1)

Country Link
JP (1) JP4957891B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779722B (en) * 2015-04-28 2017-06-23 哈尔滨工业大学 A kind of rotor structure of high-speed permanent magnet motor
DE102017129212A1 (en) 2017-12-08 2019-06-13 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Rotor with cooling
CN112467903B (en) * 2020-11-23 2024-12-13 珠海格力电器股份有限公司 Motor rotors and permanent magnet motors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576377A (en) * 1980-06-13 1982-01-13 Hitachi Ltd Multiplication array type ultrasonic wave searching device
JP2847756B2 (en) * 1989-06-06 1999-01-20 いすゞ自動車株式会社 Rotating electric machine rotor
JPH03183334A (en) * 1989-12-08 1991-08-09 Seiko Epson Corp Permanent magnet rotor
JPH08223837A (en) * 1995-02-07 1996-08-30 Fuji Electric Co Ltd Rotor with cylindrical permanent magnet for rotating electric machine
JP2001008390A (en) * 1999-06-17 2001-01-12 Shinko Electric Co Ltd Revolving-field rotating machine
JP2004120916A (en) * 2002-09-27 2004-04-15 Aichi Electric Co Ltd Rotor
JP2004205287A (en) * 2002-12-24 2004-07-22 Toshiba Corp Method of manufacturing magnetic joint element, magnetic joint, and control rod drive unit

Also Published As

Publication number Publication date
JP2008131718A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP5626415B2 (en) Rotating electrical machine
US20140265700A1 (en) Permanent magnet electrical machines and methods of assembling the same
JP4529500B2 (en) Axial gap rotating electric machine
CN108696019B (en) End plate for rotor of switched reluctance motor
JP2011109774A (en) Rotating electric machine
JP2008199811A (en) Rotating electrical machine
JP2020162191A (en) Axial-gap type rotary electric machine
EP1953901A1 (en) Motor and device using the same
JP4957891B2 (en) Synchronous motor
WO2018008502A1 (en) Rotor for rotary electric machine
JP2004222356A (en) Rotating electric equipment
JP2009296701A (en) Axial gap type motor
JP2004048851A (en) Rotary electric machine
JP2010017010A (en) Axial gap motor
JP6484507B2 (en) Axial gap type rotating electrical machine
JP2008022664A (en) Magnetic field element and rotating electric machine
JP2010011621A (en) End plate for rotating electrical machine
JP2013126267A (en) Rotating electric machine and compressor
JP2006304532A (en) Rotor structure of axial gap rotating electric machine
JP2010110163A (en) Axial gap type motor and method of manufacturing its rotor
JP2003299278A (en) Rotor for rotating machine and its manufacturing method, rotating machine and gas turbine power plant
JP4704883B2 (en) Permanent magnet rotating electrical machine and cylindrical linear motor
JP2006166626A (en) Rotor structure for axial gap type dynamo-electric machine
JP3312475B2 (en) Synchronous motor
JP2007053864A (en) Permanent magnet embedded rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4957891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151