[go: up one dir, main page]

JP2008022664A - Field element and rotating electric machine - Google Patents

Field element and rotating electric machine Download PDF

Info

Publication number
JP2008022664A
JP2008022664A JP2006193910A JP2006193910A JP2008022664A JP 2008022664 A JP2008022664 A JP 2008022664A JP 2006193910 A JP2006193910 A JP 2006193910A JP 2006193910 A JP2006193910 A JP 2006193910A JP 2008022664 A JP2008022664 A JP 2008022664A
Authority
JP
Japan
Prior art keywords
magnetic
field element
magnet
field
circumferential direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006193910A
Other languages
Japanese (ja)
Inventor
Yoshinari Asano
能成 浅野
Shin Nakamasu
伸 中増
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006193910A priority Critical patent/JP2008022664A/en
Publication of JP2008022664A publication Critical patent/JP2008022664A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent demagnetization of magnets. <P>SOLUTION: A magnetic field element 1a can rotate around a rotating shaft 92 along a predetermined direction 91, and has a plurality of magnets 11, magnetic plates 21, and joints 3. The magnets 11 are disposed in an annular state around the rotating shaft 92 along a circumferential direction 93 and separated to each other. Each magnet 11 has the first and second pole surfaces 11a, 11b which provide different poles to each other in the predetermined direction 91. Each of the pole surfaces 11a, 11b which are positioned on the same side in the predetermined direction 91 of each adjacent magnet 11 in the circumferential direction 93 has different poles to each other. Each magnetic plate 21 is provided with one adjacent magnet 11 in the circumferential direction 93, and provided on different side from each other relative to the magnet 11 in the predetermined direction 91. The joint 3 is made of non-magnetic material, and is jointed to the magnetic fields 2 which are composed of the magnets 11 and the magnetic plates 21 provided at the magnets 11 with each other. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は界磁子及び回転電機に関し、アキシャルギャップ型の回転電機に適用することができる。   The present invention relates to a field element and a rotating electric machine, and can be applied to an axial gap type rotating electric machine.

アキシャルギャップ型の回転電機は、界磁子と電機子とを備え、薄型化できる点や、磁極面積を大きくすることでトルク密度を向上できる点で望ましい。   An axial gap type rotating electric machine is desirable in that it includes a field element and an armature, and can be reduced in thickness and can be improved in torque density by increasing the magnetic pole area.

アキシャルギャップ型の回転電機では、スラスト力が発生するが、例えば二つの界磁子を一つの電機子に対して互いに反対側に設けたり、二つの電機子を一つの界磁子に対して互いに反対側に設けたりして、回転電機に生じるスラスト力を打ち消し合うことができる。   In an axial gap type rotating electric machine, a thrust force is generated. For example, two field elements are provided on opposite sides of one armature, or two armatures are connected to one field element. The thrust force generated in the rotating electrical machine can be counteracted by being provided on the opposite side.

特に、一つの界磁子に対して二つの電機子を設ける場合が望ましい。なぜなら、界磁子が一つであるため、風損を低減できるからである。   In particular, it is desirable to provide two armatures for one field element. This is because the wind loss can be reduced because there is only one field element.

なお、特許文献1及び特許文献2には、一つの界磁子に対して二つの電機子を設けた回転電機が紹介されている。特許文献1では、当該界磁子は、互いに極性が異なる二つの磁極面を有する磁石の複数を有し、当該磁極面の一方が電機子の一方に対向し、当該磁極面の他方が電機子の他方に対向している。特許文献2では、当該界磁子は、電機子の一方に対向する端面と、電機子の他方に対向する端面のそれぞれに、磁石が設けられている。その他、本発明に関連する技術を特許文献3に示す。   In Patent Document 1 and Patent Document 2, a rotating electric machine in which two armatures are provided for one field element is introduced. In Patent Document 1, the field element has a plurality of magnets having two magnetic pole faces having different polarities, one of the magnetic pole faces opposite to one of the armatures, and the other of the magnetic pole faces is an armature. Opposite the other. In Patent Document 2, the field element is provided with magnets on each of an end face facing one of the armatures and an end face facing the other armature. In addition, Patent Document 3 shows a technique related to the present invention.

特開2001−136721号公報JP 2001-136721 A 特開2005−295757号公報JP 2005-295757 A 特開2005−143276号公報JP 2005-143276 A

上述した特許文献1及び特許文献2のいずれの回転電機においても、電機子に対向する磁石は、電機子と界磁子との間の空隙に露出している。このため、これらの磁石は減磁界の影響を受けやすく、磁石が減磁されるおそれがあった。   In any of the rotating electric machines described in Patent Document 1 and Patent Document 2, the magnet facing the armature is exposed in the gap between the armature and the field element. For this reason, these magnets are easily affected by a demagnetizing field, and the magnets may be demagnetized.

本発明は、上述した事情に鑑みてなされたものであり、磁石の減磁を防止することが目的とされる。   The present invention has been made in view of the above-described circumstances, and an object thereof is to prevent demagnetization of a magnet.

この発明の請求項1にかかる界磁子は、所定の方向(91)に沿う回転軸(92)の周りで周方向(93)に沿って環状に、かつ互いに離間して配置され、いずれも前記所定の方向において互いに異なる極性を呈する第1及び第2の磁極面(11a,11b)を有する磁石(11)の複数と、前記磁石のいずれについても、前記第1及び前記第2の磁極面のいずれか一方に設けられる磁性体板(21)とを備え、前記周方向(93)に沿って隣接する磁石のそれぞれの、前記所定の方向(91)について同じ側にある前記磁極面(11a,11b)は、互いに異なる極性を有し、前記周方向に沿って隣接する磁石のそれぞれに設けられた前記磁性体板は、当該磁石に対して前記所定の方向において互いに異なる側に設けられる。   The field element according to the first aspect of the present invention is arranged around the rotation axis (92) along the predetermined direction (91) in an annular shape along the circumferential direction (93) and spaced apart from each other. A plurality of magnets (11) having first and second magnetic pole faces (11a, 11b) exhibiting different polarities in the predetermined direction, and the first and second magnetic pole faces for any of the magnets. Each of the magnets adjacent to each other in the circumferential direction (93), and the magnetic pole surface (11a) on the same side in the predetermined direction (91). 11b) have different polarities, and the magnetic plates provided on the magnets adjacent to each other in the circumferential direction are provided on different sides of the magnet in the predetermined direction.

この発明の請求項2にかかる界磁子は、請求項1記載の界磁子であって、前記磁石(11)と、当該磁石が設けられる前記磁性体板(21)とで構成される界磁部(2)の前記所定の方向(91)についての端面(2a,2b)のうち、前記磁石側の前記端面(2a)は、同じ前記界磁部に属する前記磁性体板側へと、当該界磁部に前記周方向(93)に沿って隣接する前記界磁部の前記磁性体板側の前記端面(2b)に対して退く。   A field element according to a second aspect of the present invention is the field element according to the first aspect, wherein the field is constituted by the magnet (11) and the magnetic plate (21) provided with the magnet. Of the end faces (2a, 2b) in the predetermined direction (91) of the magnetic part (2), the end face (2a) on the magnet side is directed to the magnetic plate side belonging to the same field part. Retreating with respect to the end face (2b) on the magnetic plate side of the field part adjacent to the field part along the circumferential direction (93).

この発明の請求項3にかかる界磁子は、請求項1または請求項2記載の界磁子であって、前記磁石(11)と、当該磁石が設けられる前記磁性体板(21)とで構成される界磁部(2)の前記所定の方向(91)についての端面(2a,2b)のうち、前記磁石側の前記端面(2a)の面積(Sm)は、前記周方向(93)に沿って隣接する当該界磁部の前記磁性体板側の前記端面(2b)の面積(Sj)よりも大きい。   A field element according to a third aspect of the present invention is the field element according to the first or second aspect, wherein the magnet (11) and the magnetic plate (21) on which the magnet is provided. Of the end surfaces (2a, 2b) in the predetermined direction (91) of the configured field portion (2), the area (Sm) of the end surface (2a) on the magnet side is the circumferential direction (93). Is larger than the area (Sj) of the end face (2b) on the magnetic plate side of the field portion adjacent along the line.

この発明の請求項4にかかる界磁子は、請求項1乃至請求項3のいずれか一つに記載の界磁子であって、前記磁性体板(21)は圧粉鉄心から成る。   A field element according to a fourth aspect of the present invention is the field element according to any one of the first to third aspects, wherein the magnetic plate (21) comprises a dust core.

この発明の請求項5にかかる界磁子は、請求項1乃至請求項3のいずれか一つに記載の界磁子であって、前記磁性体板(21)は巻鉄心から成る。   A field element according to a fifth aspect of the present invention is the field element according to any one of the first to third aspects, wherein the magnetic plate (21) comprises a wound core.

この発明の請求項6にかかる界磁子は、請求項1乃至請求項5のいずれか一つに記載の界磁子であって、非磁性体から成り、前記磁石(11)と、当該磁石が設けられる前記磁性体板(21)とで構成される界磁部(2)同士を互い連結する連結部(3)を更に備える。   A field element according to a sixth aspect of the present invention is the field element according to any one of the first to fifth aspects, comprising a nonmagnetic material, the magnet (11), and the magnet Further comprising a connecting portion (3) for connecting the magnetic field portions (2) composed of the magnetic plate (21) provided with the magnetic field plate (21).

この発明の請求項7にかかる界磁子は、請求項6記載の界磁子であって、前記連結部(3)は非磁性金属から成る。   A field element according to a seventh aspect of the present invention is the field element according to the sixth aspect, wherein the connecting portion (3) is made of a nonmagnetic metal.

この発明の請求項8にかかる界磁子は、請求項1乃至請求項5のいずれか一つに記載の界磁子であって、磁性体から成り、前記周方向(93)に沿って隣接する前記磁性体板(21)同士を互いに連結する連結部(31)を更に備える。   A field element according to an eighth aspect of the present invention is the field element according to any one of the first to fifth aspects, wherein the field element is made of a magnetic material and is adjacent along the circumferential direction (93). The magnetic plate (21) is further provided with a connecting portion (31) for connecting the magnetic plates (21) to each other.

この発明の請求項9にかかる界磁子は、請求項8記載の界磁子であって、前記連結部(31)は圧粉鉄心から成る。   A field element according to a ninth aspect of the present invention is the field element according to the eighth aspect, wherein the connecting portion (31) is formed of a dust core.

この発明の請求項10にかかる界磁子は、請求項1乃至請求項5のいずれか一つに記載の界磁子であって、前記周方向(93)に沿って環状を呈するヨーク(32)を更に備え、前記磁性体板(21)は、前記ヨークを介して前記磁極面(11a,11b)に設けられる。   A field element according to a tenth aspect of the present invention is the field element according to any one of the first to fifth aspects, wherein the yoke (32) has an annular shape along the circumferential direction (93). ), And the magnetic plate (21) is provided on the magnetic pole surface (11a, 11b) via the yoke.

この発明の請求項11にかかる界磁子は、請求項10記載の界磁子であって、前記ヨーク(32)は、前記所定の方向(91)に積層される複数の電磁鋼板を有する。   A field element according to an eleventh aspect of the present invention is the field element according to the tenth aspect, wherein the yoke (32) includes a plurality of electromagnetic steel plates stacked in the predetermined direction (91).

この発明の請求項12にかかる界磁子は、請求項10記載の界磁子であって、前記ヨーク(32)は巻鉄心から成る。   A field element according to a twelfth aspect of the present invention is the field element according to the tenth aspect, wherein the yoke (32) comprises a wound iron core.

この発明の請求項13にかかる界磁子は、請求項10または請求項11記載の界磁子であって、前記ヨーク(32)は、前記磁性体板(21)または前記磁石(11)を嵌合する溝(41,42)を有する。   A field element according to a thirteenth aspect of the present invention is the field element according to the tenth or eleventh aspect, wherein the yoke (32) includes the magnetic plate (21) or the magnet (11). There are grooves (41, 42) to be fitted.

この発明の請求項14にかかる回転電機は、請求項1乃至請求項13のいずれか一つに記載の界磁子(1a〜1c)と、前記界磁子に、所定の方向(91)側及びそれとは反対側から設けられる二つの電機子とを備える。   A rotating electric machine according to a fourteenth aspect of the present invention is the field element (1a to 1c) according to any one of the first to thirteenth aspects, and a predetermined direction (91) side of the field element. And two armatures provided from the opposite side.

この発明の請求項15にかかる回転電機は、請求項14記載の回転電機であって、前記周方向(93)に沿って隣接する前記磁石(11)と前記磁性体板(21)との間の距離は、前記界磁子と前記電機子との間の距離の2倍以上である。   A rotating electric machine according to a fifteenth aspect of the present invention is the rotating electric machine according to the fourteenth aspect, wherein the magnet (11) and the magnetic body plate (21) adjacent to each other along the circumferential direction (93). Is at least twice the distance between the field element and the armature.

この発明の請求項1にかかる界磁子によれば、磁石の磁極面に磁性体板を設けることで、当該磁性体板を設けた側からの減磁界の影響を受けにくく、以って磁石の減磁を防止することができる。しかも、磁性体板の磁石とは反対側の表面は、いずれも同じ極性に磁化される。よって、磁性体板間においては磁束が短絡しない。   According to the field element of the first aspect of the present invention, by providing a magnetic body plate on the magnetic pole surface of the magnet, it is difficult to be affected by a demagnetizing field from the side on which the magnetic body plate is provided. Can be prevented. In addition, the surface of the magnetic plate opposite to the magnet is magnetized to the same polarity. Therefore, the magnetic flux is not short-circuited between the magnetic plates.

この発明の請求項2にかかる界磁子によれば、当該界磁部の端面に対向して電機子を設けた回転電機において、当該電機子側に位置する磁石の当該電機子からの距離が長くなるので、電機子で生じた磁界によって減磁されにくくなる。   According to the field element according to claim 2 of the present invention, in the rotating electric machine provided with the armature so as to face the end surface of the field part, the distance of the magnet located on the armature side from the armature is Since it becomes long, it becomes difficult to be demagnetized by the magnetic field generated by the armature.

この発明の請求項3にかかる界磁子によれば、当該界磁子に対して電機子を設けた場合に、界磁部の磁石側の端面に生じる吸引力と、当該界磁部に周方向に沿って隣接する界磁部の、磁性体板側の端面に生じる吸引力とを等しくすることができる。   According to the field element of claim 3 of the present invention, when an armature is provided for the field element, the attractive force generated on the magnet side end face of the field part and the field part The attractive force generated on the end face of the magnetic field plate side of the field portion adjacent along the direction can be made equal.

この発明の請求項4にかかる界磁子によれば、磁性体板で生じる渦電流損を低減できる。   According to the field element of claim 4 of the present invention, eddy current loss generated in the magnetic plate can be reduced.

この発明の請求項5にかかる界磁子によれば、磁性体板で生じる渦電流損を低減できる。   According to the field element of claim 5 of the present invention, eddy current loss generated in the magnetic plate can be reduced.

この発明の請求項6にかかる界磁子によれば、非磁性体からなる連結部によって当該界磁部が連結されるので、周方向に沿って隣接する界磁部の間で磁束が短絡しにくい。   According to the field element of claim 6 of the present invention, since the field part is connected by the connection part made of a non-magnetic material, the magnetic flux is short-circuited between the field parts adjacent in the circumferential direction. Hateful.

この発明の請求項7にかかる界磁子によれば、連結部の強度が高い。   According to the field element of claim 7 of the present invention, the strength of the connecting portion is high.

この発明の請求項8にかかる界磁子によれば、磁性体板を周方向に沿って環状に配置することが容易である。しかも、磁性体板と連結部とを一体で成形することが可能である。   According to the field element of the eighth aspect of the present invention, it is easy to arrange the magnetic plates in an annular shape along the circumferential direction. In addition, the magnetic plate and the connecting portion can be integrally formed.

この発明の請求項9にかかる界磁子によれば、連結部で生じる渦電流損が小さい。   According to the field element of claim 9 of the present invention, the eddy current loss generated at the connecting portion is small.

この発明の請求項10にかかる界磁子によれば、磁性体板を周方向に沿って環状に配置することが容易である。しかも、磁性体板とヨークとを一体で成形することが可能である。   According to the field element of the tenth aspect of the present invention, it is easy to arrange the magnetic plates in an annular shape along the circumferential direction. In addition, the magnetic plate and the yoke can be integrally formed.

この発明の請求項11にかかる界磁子によれば、ヨークで生じる渦電流損が小さい。   According to the field element of the eleventh aspect of the present invention, the eddy current loss generated in the yoke is small.

この発明の請求項12にかかる界磁子によれば、ヨークで生じる渦電流損が小さい。   According to the field element of the twelfth aspect of the present invention, the eddy current loss generated in the yoke is small.

この発明の請求項13にかかる界磁子によれば、磁性体板または磁石のヨークへの固定が容易である。   According to the field element of the thirteenth aspect of the present invention, the magnetic plate or the magnet can be easily fixed to the yoke.

この発明の請求項14にかかるモータによれば、モータ効率が高い。   According to the motor of the fourteenth aspect of the present invention, the motor efficiency is high.

この発明の請求項15にかかるモータによれば、界磁子内で磁石と磁性体板との間を磁束が短絡しにくい。   According to the motor of the fifteenth aspect of the present invention, it is difficult for the magnetic flux to be short-circuited between the magnet and the magnetic plate in the field element.

第1の実施の形態.
図1は、本実施の形態にかかる界磁子1aを概念的に示す。界磁子1aは、所定の方向91に沿う回転軸92を中心として回転可能であって、磁石11の複数と、磁性体板21と、連結部3とを備える。なお、図1では、磁石11及び磁性体板21と、連結部3とを回転軸92に沿ってずらせて示している。
First embodiment.
FIG. 1 conceptually shows a field element 1a according to the present embodiment. The field element 1 a is rotatable around a rotation shaft 92 along a predetermined direction 91, and includes a plurality of magnets 11, a magnetic body plate 21, and a connecting portion 3. In FIG. 1, the magnet 11, the magnetic material plate 21, and the connecting portion 3 are shown shifted along the rotation shaft 92.

磁石11は、回転軸92の周りで周方向93に沿って環状に、かつ互いに離間して配置される。磁石11はいずれも、所定の方向91において互いに異なる極性を呈する第1及び第2の磁極面11a,11bを有する。例えば、第1の磁極面11aはN極を、第2の磁極面11bはS極をそれぞれ呈する。   The magnets 11 are arranged around the rotating shaft 92 in an annular shape along the circumferential direction 93 and spaced apart from each other. Each of the magnets 11 has first and second magnetic pole surfaces 11 a and 11 b that have different polarities in a predetermined direction 91. For example, the first magnetic pole surface 11a has an N pole, and the second magnetic pole surface 11b has an S pole.

周方向93に沿って隣接する磁石11のそれぞれの、所定の方向91について同じ側にある磁極面11a,11bは、互いに異なる極性を有する。つまり、所定の方向91について同じ側において、当該磁石11の一方は第1の磁極面11aを有し、他方は第2の磁極面11bを有する。   The magnetic pole surfaces 11a and 11b on the same side in the predetermined direction 91 of the magnets 11 adjacent to each other along the circumferential direction 93 have different polarities. That is, on the same side in the predetermined direction 91, one of the magnets 11 has the first magnetic pole surface 11a and the other has the second magnetic pole surface 11b.

磁性体板21は、磁石11の各々において、第1及び第2の磁極面11a,11bのいずれか一方にのみ設けられる。具体的には、周方向93に沿って隣接する磁石11のそれぞれに一つずつ設けられた磁性体板21は、当該磁石11に対して所定の方向91において互いに異なる側に設けられる。つまり、当該磁石11の一方については、所定の方向91側に磁性体板21が設けられ、当該磁石11の他方については、所定の方向91とは反対側に磁性体板21が設けられる。   In each of the magnets 11, the magnetic plate 21 is provided only on one of the first and second magnetic pole surfaces 11a and 11b. Specifically, the magnetic plates 21 provided for each of the magnets 11 adjacent along the circumferential direction 93 are provided on different sides of the magnet 11 in the predetermined direction 91. That is, for one of the magnets 11, the magnetic plate 21 is provided on the predetermined direction 91 side, and for the other of the magnets 11, the magnetic plate 21 is provided on the side opposite to the predetermined direction 91.

上述した内容をより具体的に説明すると、周方向93に沿って隣接する磁石11の一方については、所定の方向91側の磁極面11a(11b)においてN極を呈し、当該磁極面に磁性体板21が設けられる。当該磁石11の他方については、所定の方向91とは反対側の磁極面11a(11b)においてN極を呈し、当該磁極面に磁性体板2が設けられる。   The above-described content will be described more specifically. One of the magnets 11 adjacent along the circumferential direction 93 exhibits an N pole on the magnetic pole surface 11a (11b) on the predetermined direction 91 side, and a magnetic substance is formed on the magnetic pole surface. A plate 21 is provided. The other of the magnets 11 has an N pole on the magnetic pole surface 11a (11b) opposite to the predetermined direction 91, and the magnetic plate 2 is provided on the magnetic pole surface.

なお、磁性体板21は、当該磁性体板21が設けられる磁石11に周方向93に沿って隣接する磁石11とは離間して設けられる。これは、周方向93に沿って隣接する磁石11と磁性体板21との間で、磁束が短絡することを防止するためである。   The magnetic plate 21 is provided apart from the magnet 11 adjacent to the magnet 11 provided with the magnetic plate 21 along the circumferential direction 93. This is to prevent the magnetic flux from being short-circuited between the magnet 11 and the magnetic plate 21 adjacent along the circumferential direction 93.

連結部3は、非磁性体から成り、磁石11と、当該磁石11に設けられる磁性体板21とで構成される界磁部2同士を連結する。連結部3の材料が非磁性体であるので、周方向93において隣接する界磁部2の間で磁束が短絡しにくい。   The connecting portion 3 is made of a non-magnetic material, and connects the field portions 2 including the magnet 11 and the magnetic plate 21 provided on the magnet 11. Since the material of the connecting portion 3 is a non-magnetic material, the magnetic flux is not easily short-circuited between the adjacent field portions 2 in the circumferential direction 93.

連結部3の材料は、非磁性体の金属であっても良いし、非磁性体の非金属であっても良い。前者の場合には、連結部3の機械的強度が高まる。他方、後者の場合には、連結部3で渦電流損が生じない。   The material of the connecting portion 3 may be a nonmagnetic metal or a nonmagnetic nonmetal. In the former case, the mechanical strength of the connecting portion 3 is increased. On the other hand, in the latter case, no eddy current loss occurs at the connecting portion 3.

かかる界磁子1aによれば、磁石11の磁極面11a,11bに磁性体板21を設けることで、当該磁性体板21を設けた側からの減磁界の影響を受けにくく、以って磁石11の減磁を防止することができる。しかも、磁性体板21は、いずれも同じ極性に磁化されるので、磁性体板21間においては磁束が短絡しない。   According to the field element 1a, by providing the magnetic body plate 21 on the magnetic pole surfaces 11a and 11b of the magnet 11, it is difficult to be affected by the demagnetizing field from the side on which the magnetic body plate 21 is provided. 11 demagnetization can be prevented. In addition, since the magnetic plates 21 are all magnetized with the same polarity, the magnetic flux is not short-circuited between the magnetic plates 21.

図2及び図3は、界磁部2と、当該界磁部2に周方向93において隣接する界磁部2との、所定の方向91についての位置関係を示す。なお、図2及び図3では、周方向93に沿って外周側から見た界磁子1aが示されている。   2 and 3 show the positional relationship in the predetermined direction 91 between the field part 2 and the field part 2 adjacent to the field part 2 in the circumferential direction 93. 2 and 3 show the field element 1a viewed from the outer peripheral side along the circumferential direction 93. FIG.

図2では、所定の方向91について、界磁部2の端面2a,2bの位置が、当該界磁部2に周方向93に隣接する界磁部2の端面2b,2aの位置と同じである。なお、界磁部2の磁石11側の端面に符号2aを、磁性体板21側の端面に符号2bを付している。   In FIG. 2, the positions of the end faces 2 a and 2 b of the field part 2 in the predetermined direction 91 are the same as the positions of the end faces 2 b and 2 a of the field part 2 adjacent to the field part 2 in the circumferential direction 93. . In addition, the code | symbol 2a is attached | subjected to the end surface by the side of the magnet 11 of the field part 2, and the code | symbol 2b is attached | subjected to the end surface by the side of the magnetic material board 21. FIG.

図3では、界磁部2の端面2aが、同じ界磁部2に属する磁性体板21側へと、当該界磁部2に周方向93に沿って隣接する界磁部2の端面2bに対して退いている。かかる形状によれば、界磁部2の端面2a,2bに対向して電機子を設けた回転電機において、当該電機子側に位置する磁石11の当該電機子からの距離が長くなるので、電機子で生じた磁界によって磁石11は減磁されにくくなる。例えば、磁性体板21と電機子との間の距離に対して、磁石11と電機子との間の距離を1.5倍程度にできる。   In FIG. 3, the end face 2 a of the field part 2 is directed to the end face 2 b of the field part 2 adjacent to the field part 2 along the circumferential direction 93 toward the magnetic plate 21 side belonging to the same field part 2. I have retreated. According to such a shape, in the rotating electrical machine in which the armature is provided facing the end faces 2a and 2b of the field part 2, the distance from the armature of the magnet 11 located on the armature side is increased. The magnet 11 is less likely to be demagnetized by the magnetic field generated by the child. For example, the distance between the magnet 11 and the armature can be about 1.5 times the distance between the magnetic plate 21 and the armature.

上述したいずれの態様においても、磁性体板21は圧粉鉄心であることが、磁性体板21で生じる渦電流損を低減できる点で望ましい。   In any of the above-described aspects, it is desirable that the magnetic plate 21 is a dust core in that eddy current loss generated in the magnetic plate 21 can be reduced.

磁性体板21には巻鉄心を採用しても良く、かかる場合も渦電流損を低減できる。この場合、巻鉄心は所定の方向91に沿う軸を中心として巻かれることが望ましい。なぜなら、磁性体板21内の磁束の多くが所定の方向91に流れるからである。なお、巻鉄心には歪みが発生しやすいが、焼鈍することで当該歪みは取り除かれる。   A wound iron core may be employed for the magnetic plate 21, and in such a case, eddy current loss can be reduced. In this case, the wound core is preferably wound around an axis along a predetermined direction 91. This is because most of the magnetic flux in the magnetic plate 21 flows in the predetermined direction 91. In addition, although distortion is easy to generate | occur | produce in a wound iron core, the said distortion is removed by annealing.

第2の実施の形態.
図4は、本実施の形態にかかる界磁子1bを概念的に示す。界磁子1bは、磁石11と、磁性体板21と、連結部31とを備える。磁石11及び磁性体板21は、第1の実施の形態と同様に構成される。
Second embodiment.
FIG. 4 conceptually shows the field element 1b according to the present embodiment. The field element 1 b includes a magnet 11, a magnetic body plate 21, and a connecting portion 31. The magnet 11 and the magnetic body plate 21 are configured in the same manner as in the first embodiment.

連結部31は磁性体から成り、周方向93に沿って隣接する磁性体板21同士を連結する。連結部31には例えば圧粉鉄心を採用できる。この場合、連結部31で生じる渦電流損が低減される。   The connecting portion 31 is made of a magnetic body and connects adjacent magnetic plates 21 along the circumferential direction 93. For example, a dust core can be used for the connecting portion 31. In this case, eddy current loss generated in the connecting portion 31 is reduced.

上述した界磁子1bによれば、磁性体板21を周方向93に沿って環状に配置することが容易である。しかも、磁性体板21と連結部32とを一体で成形することが可能である。   According to the above-described field element 1b, it is easy to arrange the magnetic material plate 21 in an annular shape along the circumferential direction 93. In addition, the magnetic plate 21 and the connecting portion 32 can be integrally formed.

第3の実施の形態.
図5は、本実施の形態にかかる界磁子1cを概念的に示す。界磁子1cは、磁石11と、磁性体板21と、ヨーク32とを備える。ヨーク32は、周方向93に沿って環状を呈する。磁性体板21は、ヨーク32を介して磁極面11a,11bに設けられる。その他の構成は第1の実施の形態と同様である。
Third embodiment.
FIG. 5 conceptually shows the field element 1c according to the present embodiment. The field element 1 c includes a magnet 11, a magnetic plate 21, and a yoke 32. The yoke 32 has an annular shape along the circumferential direction 93. The magnetic plate 21 is provided on the magnetic pole surfaces 11 a and 11 b via the yoke 32. Other configurations are the same as those of the first embodiment.

ヨーク32には電磁鋼板を積層したものや、巻鉄心が採用できる。前者を採用した場合には、電磁鋼板を所定の方向91に積層することが、ヨーク32で生じる渦電流損が低減できる点で望ましい。後者を採用した場合には、所定の方向91に沿う軸を中心として巻鉄心を巻くことが、ヨーク32で生じる渦電流損を低減できる点で望ましい。   The yoke 32 may be a laminate of electromagnetic steel plates or a wound iron core. When the former is adopted, it is desirable that the electromagnetic steel plates are laminated in a predetermined direction 91 in that the eddy current loss generated in the yoke 32 can be reduced. When the latter is adopted, it is desirable that the wound iron core is wound around the axis along the predetermined direction 91 in that the eddy current loss generated in the yoke 32 can be reduced.

上述した界磁子1cによれば、磁性体板21を周方向93に沿って環状に配置することが容易である。しかも、磁性体板21とヨーク32とを一体で成形することが可能である。   According to the above-described field element 1c, it is easy to arrange the magnetic plate 21 in a ring shape along the circumferential direction 93. In addition, the magnetic plate 21 and the yoke 32 can be integrally formed.

磁性体板21とヨーク32とを一体で成形する場合においては、ヨーク32及び磁性体板32に圧粉鉄心を用いることが望ましい。なぜなら、成形が容易となるからである。しかも、磁性体板21及びヨーク32で生じる渦電流損を低減できる。   When the magnetic plate 21 and the yoke 32 are formed integrally, it is desirable to use a dust core for the yoke 32 and the magnetic plate 32. This is because molding becomes easy. In addition, eddy current loss caused by the magnetic plate 21 and the yoke 32 can be reduced.

ヨーク32には、磁性体板31または磁石11を嵌合する溝を設けても良い。図6は、当該溝を設けたヨーク32の、周方向93に沿って外周側から見た形状を概念的に示す。   The yoke 32 may be provided with a groove for fitting the magnetic plate 31 or the magnet 11. FIG. 6 conceptually shows the shape of the yoke 32 provided with the groove when viewed from the outer peripheral side along the circumferential direction 93.

図6に示されるヨーク32は、磁性体板21及び磁石11のそれぞれを嵌合する溝41,42を有する。溝41,42のそれぞれに嵌め込まれた磁性体板21及び磁石11が図6では破線で示されている。   The yoke 32 shown in FIG. 6 has grooves 41 and 42 into which the magnetic plate 21 and the magnet 11 are fitted. The magnetic plate 21 and the magnet 11 fitted in each of the grooves 41 and 42 are indicated by broken lines in FIG.

かかる態様によれば、磁性体板21及び磁石11のヨーク32への固定が容易である。なお、ヨーク32には溝41,42のいずれか一方のみが設けられても良い。また、ヨーク32の外径を、磁性体板21及び磁石11の外周側の径よりも大きくし、磁性体板21及び磁石11の外周側にヨーク32を当接させれば、磁性体板21及び磁石11が遠心力によって所定の位置からずれたり、さらにはヨーク32から外れたりすることが防止できる。例えば、ヨーク32は、磁性体板21及び磁石11の外周側の、所定の方向91について所定の長さ分にのみ当接させても良い。   According to this aspect, the magnetic plate 21 and the magnet 11 can be easily fixed to the yoke 32. Note that only one of the grooves 41 and 42 may be provided in the yoke 32. Further, if the outer diameter of the yoke 32 is made larger than the outer diameters of the magnetic plate 21 and the magnet 11 and the yoke 32 is brought into contact with the outer peripheral sides of the magnetic plate 21 and the magnet 11, the magnetic plate 21. In addition, it is possible to prevent the magnet 11 from being displaced from a predetermined position by the centrifugal force and further from being detached from the yoke 32. For example, the yoke 32 may abut only a predetermined length in the predetermined direction 91 on the outer peripheral side of the magnetic body plate 21 and the magnet 11.

例えば、溝41,42はヨーク32を所定の方向91に貫通していても良い。この場合、磁性体板21及び磁石11が溝41,42に嵌め込みすぎとならないように、溝41,42の内壁に位置決め部、例えば段差などを設けることが望ましい。   For example, the grooves 41 and 42 may penetrate the yoke 32 in the predetermined direction 91. In this case, it is desirable to provide a positioning portion such as a step on the inner walls of the grooves 41 and 42 so that the magnetic plate 21 and the magnet 11 do not fit too much into the grooves 41 and 42.

図7は、界磁子1cにおいて、ある界磁部2に属する磁石11の周方向93についての長さw1が、当該界磁部2に周方向93において隣接する界磁部2に属する磁性体板21の、周方向93についての長さw2よりも大きい場合を示す。なお図7では、かかる界磁子1cを周方向93に沿って外周側から見た形状が示されている。   FIG. 7 shows that in the field element 1c, the length w1 of the magnet 11 belonging to a certain field portion 2 in the circumferential direction 93 is a magnetic body belonging to the field portion 2 adjacent to the field portion 2 in the circumferential direction 93. The case where it is larger than the length w2 about the circumferential direction 93 of the board 21 is shown. FIG. 7 shows a shape of the field element 1 c as viewed from the outer peripheral side along the circumferential direction 93.

上述した内容は次のように把握することができる。つまり、界磁部2の所定の方向91についての端面2a,2bのうち、磁石11側の端面2aの面積Smは、周方向93に沿って隣接する界磁部2の磁性体板21側の端面2bの面積Sjより大きい。   The contents described above can be grasped as follows. That is, the area Sm of the end surface 2 a on the magnet 11 side of the end surfaces 2 a and 2 b in the predetermined direction 91 of the field portion 2 is the magnetic field plate 21 side of the field portion 2 adjacent in the circumferential direction 93. It is larger than the area Sj of the end face 2b.

かかる態様によれば、界磁子1cに対して電機子を設けた場合に、界磁部2の磁石11側の端面2aに生じる吸引力Fmと、当該界磁部2に周方向93に沿って隣接する界磁部2の、磁性体板21側の端面2bに生じる吸引力Fjとを等しくすることができる。なお、かかる態様は、上述した界磁子1a,1bについても適用することができる。   According to this aspect, when an armature is provided for the field element 1 c, the attractive force Fm generated on the end surface 2 a on the magnet 11 side of the field part 2 and the field part 2 along the circumferential direction 93. Thus, the attractive force Fj generated on the end face 2b of the adjacent field portion 2 on the magnetic plate 21 side can be made equal. Such a mode can also be applied to the above-described field elements 1a and 1b.

以下では、吸引力Fmと吸引力Fjとが等しくなるときの、面積Smと面積Sjとの関係について説明する。   Hereinafter, the relationship between the area Sm and the area Sj when the suction force Fm and the suction force Fj are equal will be described.

磁性体板21に働く吸引力Fjは、式(1)によって表される。ここで、符号φは磁性体板21及び磁石11を透過する有効磁束を表す。   The attractive force Fj acting on the magnetic plate 21 is represented by the formula (1). Here, the symbol φ represents an effective magnetic flux that passes through the magnetic plate 21 and the magnet 11.

Figure 2008022664
Figure 2008022664

磁石11に働く吸引力Fmは、式(2)によって表される。ここで、符号φmは、磁石11に実際に流れる磁束と、有効磁束φとの差、すなわち磁石11の磁極面11a,11bから発生する磁束のうち、周方向93において隣接する界磁部2に属する磁性体板21に漏れる磁束量である。   The attractive force Fm acting on the magnet 11 is expressed by the equation (2). Here, the symbol φm represents the difference between the magnetic flux actually flowing in the magnet 11 and the effective magnetic flux φ, that is, the magnetic field generated from the magnetic pole surfaces 11a and 11b of the magnet 11 and the field portion 2 adjacent in the circumferential direction 93. This is the amount of magnetic flux leaking to the magnetic plate 21 to which it belongs.

Figure 2008022664
Figure 2008022664

式(1)及び式(2)を、Fj=Fmに代入し、これを面積Smの面積Sjに対する比Sm/Sjについて解くと、式(3)が得られる。   When Expression (1) and Expression (2) are substituted into Fj = Fm and solved for the ratio Sm / Sj of the area Sm to the area Sj, Expression (3) is obtained.

Figure 2008022664
Figure 2008022664

よって、面積Sj及び面積Smが式(3)の関係を満たすことで、界磁子1a〜1cに生じる吸引力Fj,Fmが周方向93について等しくなる。   Therefore, when the area Sj and the area Sm satisfy the relationship of the expression (3), the attractive forces Fj and Fm generated in the field elements 1a to 1c are equal in the circumferential direction 93.

上述したいずれの界磁子1a〜1cについても、界磁子1a〜1cに、所定の方向91側及びそれとは反対側からそれぞれ電機子を設けて、回転電機を得ることができる。かかる回転電機によれば、効率が高い。   For any of the field elements 1a to 1c described above, a rotating electric machine can be obtained by providing armatures on the field elements 1a to 1c from the predetermined direction 91 side and the opposite side. Such a rotating electric machine has high efficiency.

かかる回転電機においては、周方向93に沿って隣接する磁石11と磁性体板21との間の距離は、界磁子1a〜1cと電機子との間の距離の2倍以上であることが望ましい。なぜなら、磁石11と磁性体板21との間で磁束が短絡することを効率良く防止できるからである。   In such a rotating electrical machine, the distance between the magnet 11 and the magnetic plate 21 adjacent along the circumferential direction 93 is at least twice the distance between the field elements 1a to 1c and the armature. desirable. This is because it is possible to efficiently prevent the magnetic flux from being short-circuited between the magnet 11 and the magnetic plate 21.

周方向93に沿って隣接する磁石11と磁性体板21との間の空隙は、界磁子1a〜1cの内周側から外周側へと延びる。かかる空隙の延在方向は、回転軸92を中心とする径方向に対して傾けられても良い。この場合、界磁子1a〜1cにスキューが設けられるので、回転電機でのコギングトルクや運転時のトルク脈動が低減できる。   A gap between the magnet 11 and the magnetic plate 21 adjacent along the circumferential direction 93 extends from the inner peripheral side to the outer peripheral side of the field elements 1a to 1c. The extending direction of the gap may be inclined with respect to the radial direction centering on the rotation shaft 92. In this case, since skew is provided in the field elements 1a to 1c, cogging torque in the rotating electric machine and torque pulsation during operation can be reduced.

コギングトルクやトルク脈動を低減するという観点からは、回転軸92の周りで磁性体板21と磁石11との位置を所定の角度だけずらせても良い。   From the viewpoint of reducing cogging torque and torque pulsation, the positions of the magnetic plate 21 and the magnet 11 may be shifted by a predetermined angle around the rotation shaft 92.

上述したいずれの実施の形態においても、連結部3,31またはヨーク32を用いて界磁子1a〜1cをシャフトに締結することができる。このとき、連結部3,31及びヨーク32を、シャフトの周りで回転軸91に沿って突出させることが望ましい。なぜなら、連結部3,31及びヨーク32と、シャフトとの接触面積が大きくなるので、連結部3,31及びヨーク32とシャフトとの間の締結が強まるからである。   In any of the above-described embodiments, the field elements 1a to 1c can be fastened to the shaft using the connecting portions 3, 31 or the yoke 32. At this time, it is desirable that the connecting portions 3, 31 and the yoke 32 protrude along the rotation shaft 91 around the shaft. This is because the contact area between the connecting portions 3 and 31 and the yoke 32 and the shaft is increased, and the fastening between the connecting portions 3 and 31 and the yoke 32 and the shaft is strengthened.

連結部31やヨーク32は磁性体から成るので、シャフトに磁性材料を採用した場合、連結部31やヨーク32を当該シャフトに締結すると、磁束がシャフトからハウジング、電機子を介して短絡する可能性がある。このような短絡が生じると、有効な磁束量が減少するだけでなく、軸受に吸引力が発生し、軸受損失が増す。   Since the connecting portion 31 and the yoke 32 are made of a magnetic material, when a magnetic material is used for the shaft, if the connecting portion 31 or the yoke 32 is fastened to the shaft, the magnetic flux may be short-circuited from the shaft through the housing and the armature. There is. When such a short circuit occurs, not only the effective magnetic flux amount is reduced, but also an attractive force is generated in the bearing, and the bearing loss is increased.

そこで、連結部31やヨーク32をシャフトに締結する場合には、シャフトの材料には非磁性体を採用することが望ましい。なぜなら、磁束がシャフトからハウジング、電機子を介して短絡することを防止できるからである。   Therefore, when the coupling portion 31 and the yoke 32 are fastened to the shaft, it is desirable to employ a non-magnetic material as the shaft material. This is because the magnetic flux can be prevented from being short-circuited from the shaft through the housing and the armature.

第1の実施の形態で説明される、界磁子1aを概念的に示す斜視図である。It is a perspective view which shows notionally the field element 1a demonstrated by 1st Embodiment. 周方向93に沿って隣接する界磁部2の位置関係を示す図である。It is a figure which shows the positional relationship of the field part 2 adjacent along the circumferential direction 93. FIG. 周方向93に沿って隣接する界磁部2の位置関係を示す図である。It is a figure which shows the positional relationship of the field part 2 adjacent along the circumferential direction 93. FIG. 第2の実施の形態で説明される、界磁子1bを概念的に示す斜視図である。It is a perspective view which shows notionally the field element 1b demonstrated by 2nd Embodiment. 第3の実施の形態で説明される、界磁子1cを概念的に示す斜視図である。It is a perspective view which shows notionally the field element 1c demonstrated by 3rd Embodiment. 溝41,42を設けたヨーク32を概念的に示す図である。It is a figure which shows notionally the yoke 32 which provided the groove | channels 41 and 42. FIG. 面積がそれぞれ異なる磁石と磁性体板を設けた界磁子1cを示す図である。It is a figure which shows the field element 1c which provided the magnet and magnetic body board from which an area differs, respectively.

符号の説明Explanation of symbols

1a〜1c 界磁子
2 界磁部
2a,2b 端面
3,31 連結部
11 磁石
11a,11b 磁極面
21 磁性体板
32 ヨーク
91 所定の方向
92 回転軸
93 周方向
Sm,Sj 面積
DESCRIPTION OF SYMBOLS 1a-1c Field element 2 Field part 2a, 2b End surface 3,31 Connection part 11 Magnet 11a, 11b Magnetic pole surface 21 Magnetic body board 32 Yoke 91 Predetermined direction 92 Rotating shaft 93 Circumferential direction Sm, Sj Area

Claims (15)

所定の方向(91)に沿う回転軸(92)の周りで周方向(93)に沿って環状に、かつ互いに離間して配置され、いずれも前記所定の方向において互いに異なる極性を呈する第1及び第2の磁極面(11a,11b)を有する磁石(11)の複数と、
前記磁石のいずれについても、前記第1及び前記第2の磁極面のいずれか一方に設けられる磁性体板(21)と
を備え、
前記周方向(93)に沿って隣接する磁石のそれぞれの、前記所定の方向(91)について同じ側にある前記磁極面(11a,11b)は、互いに異なる極性を有し、
前記周方向に沿って隣接する磁石のそれぞれに設けられた前記磁性体板は、当該磁石に対して前記所定の方向において互いに異なる側に設けられる、
界磁子。
The first and the second are arranged around the rotation axis (92) along the predetermined direction (91) in an annular manner along the circumferential direction (93) and spaced apart from each other, both of which have different polarities in the predetermined direction. A plurality of magnets (11) having second magnetic pole faces (11a, 11b);
Any of the magnets includes a magnetic plate (21) provided on either one of the first and second magnetic pole faces,
The magnetic pole faces (11a, 11b) on the same side in the predetermined direction (91) of the magnets adjacent to each other along the circumferential direction (93) have different polarities,
The magnetic plates provided in each of the magnets adjacent to each other in the circumferential direction are provided on different sides in the predetermined direction with respect to the magnet.
Field element.
前記磁石(11)と、当該磁石が設けられる前記磁性体板(21)とで構成される界磁部(2)の前記所定の方向(91)についての端面(2a,2b)のうち、前記磁石側の前記端面(2a)は、同じ前記界磁部に属する前記磁性体板側へと、当該界磁部に前記周方向(93)に沿って隣接する前記界磁部の前記磁性体板側の前記端面(2b)に対して退く、請求項1記載の界磁子。   Of the end faces (2a, 2b) in the predetermined direction (91) of the field part (2) composed of the magnet (11) and the magnetic plate (21) on which the magnet is provided, The end face (2a) on the magnet side is adjacent to the magnetic field plate belonging to the same magnetic field part, and is adjacent to the magnetic field part along the circumferential direction (93). 2. The field element according to claim 1, wherein the field element retracts with respect to the end face (2b) on the side. 前記磁石(11)と、当該磁石が設けられる前記磁性体板(21)とで構成される界磁部(2)の前記所定の方向(91)についての端面(2a,2b)のうち、前記磁石側の前記端面(2a)の面積(Sm)は、前記周方向(93)に沿って隣接する当該界磁部の前記磁性体板側の前記端面(2b)の面積(Sj)よりも大きい、請求項1または請求項2記載の界磁子。   Of the end faces (2a, 2b) in the predetermined direction (91) of the field part (2) composed of the magnet (11) and the magnetic plate (21) on which the magnet is provided, The area (Sm) of the end surface (2a) on the magnet side is larger than the area (Sj) of the end surface (2b) on the magnetic plate side of the field portion adjacent in the circumferential direction (93). The field element according to claim 1 or 2. 前記磁性体板(21)は圧粉鉄心から成る、請求項1乃至請求項3のいずれか一つに記載の界磁子。   The field element according to any one of claims 1 to 3, wherein the magnetic plate (21) comprises a dust core. 前記磁性体板(21)は巻鉄心から成る、請求項1乃至請求項3のいずれか一つに記載の界磁子。   The field element according to any one of claims 1 to 3, wherein the magnetic plate (21) comprises a wound iron core. 非磁性体から成り、前記磁石(11)と、当該磁石が設けられる前記磁性体板(21)とで構成される界磁部(2)同士を互い連結する連結部(3)を更に備える、請求項1乃至請求項5のいずれか一つに記載の界磁子。   It is made of a non-magnetic material, and further includes a connecting portion (3) that connects field portions (2) that are composed of the magnet (11) and the magnetic plate (21) provided with the magnet. The field element according to any one of claims 1 to 5. 前記連結部(3)は非磁性金属から成る、請求項6記載の界磁子。   The field element according to claim 6, wherein the connecting portion is made of a nonmagnetic metal. 磁性体から成り、前記周方向(93)に沿って隣接する前記磁性体板(21)同士を互いに連結する連結部(31)を更に備える、請求項1乃至請求項5のいずれか一つに記載の界磁子。   6. The apparatus according to claim 1, further comprising a connecting portion (31) made of a magnetic body and connecting the magnetic plates (21) adjacent to each other along the circumferential direction (93). The field element described. 前記連結部(31)は圧粉鉄心から成る、請求項8記載の界磁子。   The field element according to claim 8, wherein the connecting portion is made of a dust core. 前記周方向(93)に沿って環状を呈するヨーク(32)を更に備え、
前記磁性体板(21)は、前記ヨークを介して前記磁極面(11a,11b)に設けられる、請求項1乃至請求項5のいずれか一つに記載の界磁子。
A yoke (32) having an annular shape along the circumferential direction (93);
The field element according to any one of claims 1 to 5, wherein the magnetic plate (21) is provided on the magnetic pole surface (11a, 11b) via the yoke.
前記ヨーク(32)は、前記所定の方向(91)に積層される複数の電磁鋼板を有する、請求項10記載の界磁子。   The field element according to claim 10, wherein the yoke (32) has a plurality of electromagnetic steel plates stacked in the predetermined direction (91). 前記ヨーク(32)は巻鉄心から成る、請求項10記載の界磁子。   11. A field element according to claim 10, wherein the yoke (32) comprises a wound core. 前記ヨーク(32)は、前記磁性体板(21)または前記磁石(11)を嵌合する溝(41,42)を有する、請求項10または請求項11記載の界磁子。   The field element according to claim 10 or 11, wherein the yoke (32) has grooves (41, 42) into which the magnetic plate (21) or the magnet (11) is fitted. 請求項1乃至請求項13のいずれか一つに記載の界磁子(1a〜1c)と、
前記界磁子に、所定の方向(91)側及びそれとは反対側から設けられる二つの電機子と
を備える、回転電機。
The field element (1a to 1c) according to any one of claims 1 to 13,
A rotating electric machine comprising the field element having two armatures provided from a predetermined direction (91) side and an opposite side thereof.
前記周方向(93)に沿って隣接する前記磁石(11)と前記磁性体板(21)との間の距離は、前記界磁子と前記電機子との間の距離の2倍以上である、請求項14記載の回転電機。
The distance between the magnet (11) adjacent to the circumferential direction (93) and the magnetic plate (21) is at least twice the distance between the field element and the armature. The rotating electrical machine according to claim 14.
JP2006193910A 2006-07-14 2006-07-14 Field element and rotating electric machine Pending JP2008022664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193910A JP2008022664A (en) 2006-07-14 2006-07-14 Field element and rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193910A JP2008022664A (en) 2006-07-14 2006-07-14 Field element and rotating electric machine

Publications (1)

Publication Number Publication Date
JP2008022664A true JP2008022664A (en) 2008-01-31

Family

ID=39078213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193910A Pending JP2008022664A (en) 2006-07-14 2006-07-14 Field element and rotating electric machine

Country Status (1)

Country Link
JP (1) JP2008022664A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160108589A (en) * 2014-03-18 2016-09-19 미쓰비시덴키 가부시키가이샤 Rotor of permanent magnet motor
CN108134465A (en) * 2018-03-06 2018-06-08 珠海凯邦电机制造有限公司 Permanent magnet rotor and permanent magnet motor
CN110635641A (en) * 2019-09-24 2019-12-31 哈尔滨工业大学 Axial field anti-saliency permanent magnet synchronous motor
CN116154995A (en) * 2023-04-23 2023-05-23 中山大洋电机股份有限公司 Double-rotor single-stator alternating pole axial flux motor with fully-closed series magnetic circuit

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160108589A (en) * 2014-03-18 2016-09-19 미쓰비시덴키 가부시키가이샤 Rotor of permanent magnet motor
KR101723356B1 (en) 2014-03-18 2017-04-05 미쓰비시덴키 가부시키가이샤 Rotor of permanent magnet motor
CN108134465A (en) * 2018-03-06 2018-06-08 珠海凯邦电机制造有限公司 Permanent magnet rotor and permanent magnet motor
CN108134465B (en) * 2018-03-06 2021-05-25 珠海凯邦电机制造有限公司 Permanent magnet rotor and permanent magnet motor
CN110635641A (en) * 2019-09-24 2019-12-31 哈尔滨工业大学 Axial field anti-saliency permanent magnet synchronous motor
CN110635641B (en) * 2019-09-24 2020-10-27 哈尔滨工业大学 Axial magnetic field reverse salient pole permanent magnet synchronous motor
CN116154995A (en) * 2023-04-23 2023-05-23 中山大洋电机股份有限公司 Double-rotor single-stator alternating pole axial flux motor with fully-closed series magnetic circuit
CN116154995B (en) * 2023-04-23 2023-07-11 中山大洋电机股份有限公司 Double-rotor single-stator alternating pole axial flux motor with fully-closed series magnetic circuit

Similar Documents

Publication Publication Date Title
JP4169055B2 (en) Rotating electric machine
CN102624194B (en) Magnetic gear
JP5332082B2 (en) motor
JP2010130818A (en) Method for manufacturing field element
JP2013247781A (en) Rotor and rotary electric machine having the same
JP2010130819A (en) Field element and method for manufacturing field element
JP4687687B2 (en) Axial gap type rotating electric machine and field element
JP5220993B2 (en) motor
JP4640373B2 (en) Rotating electric machine
JP4678321B2 (en) Rotor manufacturing method and electric power steering motor
JP5702118B2 (en) Rotor structure and motor
JP2010279185A (en) Axial gap type rotor for rotary electric machine
JP2008022664A (en) Field element and rotating electric machine
JP2014233100A (en) Permanent magnet type rotation electric machine
JP2009247041A (en) Rotating machine
JP2005051929A (en) Motor
JP2010110096A (en) Rotor, rotating electric machine and method for manufacturing the rotor
WO2023042639A1 (en) Rotor manufacturing device
JP2005057865A (en) Structure of rotor
JP2014220879A (en) Permanent magnet rotary electric machine
JP2008017634A (en) Permanent magnet motor
JP5609514B2 (en) Ring coil motor
JP2010011621A (en) End plate for rotating electrical machine
JP2010279184A (en) Axial gap type rotor for rotary electric machine
JP2017046386A (en) Permanent magnet electric motor