[go: up one dir, main page]

JP2014220879A - Permanent magnet rotary electric machine - Google Patents

Permanent magnet rotary electric machine Download PDF

Info

Publication number
JP2014220879A
JP2014220879A JP2013097269A JP2013097269A JP2014220879A JP 2014220879 A JP2014220879 A JP 2014220879A JP 2013097269 A JP2013097269 A JP 2013097269A JP 2013097269 A JP2013097269 A JP 2013097269A JP 2014220879 A JP2014220879 A JP 2014220879A
Authority
JP
Japan
Prior art keywords
permanent magnet
electric machine
stator
rotor
rotating electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013097269A
Other languages
Japanese (ja)
Inventor
中津川 潤之介
Junnosuke Nakatsugawa
潤之介 中津川
寿 和田
Hisashi Wada
寿 和田
鈴木 一平
Ippei Suzuki
一平 鈴木
洋平 河野
Yohei Kono
洋平 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2013097269A priority Critical patent/JP2014220879A/en
Publication of JP2014220879A publication Critical patent/JP2014220879A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To suppress a reduction in torque of a permanent magnet rotary electric machine to suppress the demagnetization of a permanent magnet.SOLUTION: A permanent magnet rotary electric machine includes a stator core, a stator that has a winding wound around a teeth part of the stator core, and a rotor that is arranged rotatably with respect to the stator via a gap and has a plurality of rotor cores and a plurality of permanent magnets having a different polarity from each other arranged alternately along the circumference direction, where the permanent magnets are divided into plurality in a direction opposite to the stator.

Description

本発明は、永久磁石回転電機に関する。
The present invention relates to a permanent magnet rotating electrical machine.

永久磁石回転電機のうち、永久磁石の断面形状が周方向より径方向に長く、かつ永久磁石を周方向に磁化して、隣り合う磁石の磁化方向が互いに対向するように交互に配置したタイプのものが知られている。このタイプのモータは、出力トルクを大きくできる一方で、永久磁石が減磁しやすいという問題がある。   Among permanent magnet rotating electrical machines, the cross-sectional shape of the permanent magnet is longer in the radial direction than the circumferential direction, and the permanent magnet is magnetized in the circumferential direction, and the magnets are arranged alternately so that the magnetizing directions of adjacent magnets face each other. Things are known. While this type of motor can increase the output torque, there is a problem that the permanent magnet tends to demagnetize.

そこで特許文献1においては、磁気抵抗を設けることで永久磁石の局所的減磁を防止することが開示されている。
Therefore, Patent Document 1 discloses that local demagnetization of a permanent magnet is prevented by providing a magnetic resistance.

特開2011−217601号公報JP2011-217601A

特許文献1では、永久磁石の受け部に相当するスロットに、磁気抵抗および磁気障壁の機能を果たす部分を設けている。この磁気抵抗および磁気障壁の機能を果たす部分は、永久磁石によって占められていないため、その分だけ界磁磁束が低減し、トルクの低下を招く。   In Patent Document 1, a portion that functions as a magnetic resistance and a magnetic barrier is provided in a slot corresponding to a receiving portion of a permanent magnet. Since the portion that functions as the magnetic resistance and the magnetic barrier is not occupied by the permanent magnet, the field magnetic flux is reduced correspondingly, resulting in a reduction in torque.

本発明は、上記の課題に着目してなされたものであり、トルクの低下を抑えて、永久磁石の減磁を抑制する永久磁石回転電機を提供することを目的とする。
The present invention has been made paying attention to the above-described problem, and an object of the present invention is to provide a permanent magnet rotating electrical machine that suppresses a decrease in torque and suppresses demagnetization of the permanent magnet.

上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、固定子コアと、前記固定子コアのティース部に巻回される巻線とを有する固定子と、該固定子に対して空隙を介して回転自在に配置され、回転子コアと、異なる極性を持った複数の永久磁石とが、周方向に向かって交互に配置される回転子とを備えた永久磁石回転電機において、前記永久磁石を、前記固定子と対向する方向に複数に分割することを特徴とする。
In order to solve the above problems, for example, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above-described problem. To give an example, a stator having a stator core and a winding wound around a tooth portion of the stator core, and the fixing Permanent magnet rotation with a rotor core and a rotor in which a plurality of permanent magnets having different polarities are alternately arranged in the circumferential direction, arranged rotatably with respect to the rotor through a gap In the electric machine, the permanent magnet is divided into a plurality of parts in a direction facing the stator.

本発明によれば、永久磁石回転電機のトルクの低下を抑えて、永久磁石の減磁を抑制することができる。その結果、永久磁石回転電機を小型化できる。
ADVANTAGE OF THE INVENTION According to this invention, the fall of the torque of a permanent magnet rotary electric machine can be suppressed, and the demagnetization of a permanent magnet can be suppressed. As a result, the permanent magnet rotating electric machine can be reduced in size.

本発明の実施例1の永久磁石回転電機の1/4断面図1/4 sectional view of the permanent magnet rotating electric machine of Example 1 of the present invention 従来例の永久磁石回転電機の1/4断面図1/4 sectional view of a conventional permanent magnet rotating electrical machine 本発明の実施例2の永久磁石回転電機の1/4断面図1/4 sectional view of the permanent magnet rotating electric machine of Example 2 of the present invention 本発明の実施例3の永久磁石回転電機の1/4断面図1/4 sectional view of the permanent magnet rotating electrical machine of Example 3 of the present invention 本発明の実施例4の永久磁石回転電機の1/4断面図1/4 sectional view of the permanent magnet rotating electric machine of Example 4 of the present invention 本発明の実施例5の永久磁石回転電機の1/4断面図1/4 sectional view of the permanent magnet rotating electric machine of Example 5 of the present invention 本発明の実施例6の永久磁石回転電機の1/4断面図1/4 sectional view of the permanent magnet rotating electric machine of Example 6 of the present invention 本発明の実施例7の永久磁石回転電機の1/4断面図1/4 sectional view of the permanent magnet rotating electric machine of Example 7 of the present invention 永久磁石回転電機の断面図Cross section of permanent magnet rotating electrical machine

以下、図面を用いて実施例を説明する。   Embodiments will be described below with reference to the drawings.

まず、本発明の実施例に共通する回転電機の構成について述べる。図9は、永久磁石回転電機の軸方向(回転子の回転軸に平行な方向)に沿った断面図である。永久磁石回転電機は、固定子1と、その径方向内側に対向する回転子2から構成され、両者の間にはエアギャップが存在する。固定子1は、ハウジング110に固定され、集中巻の固定子巻線13を備えている。回転子2は、複数の電磁鋼板が積層された回転子コア21を有し、回転子コア21の径方向内側には非磁性体23が配置され、さらにその内側にはシャフト120が配置される。シャフト120はハウジング110又はフランジ130に固定されたベアリング140に回転可能に支持される。   First, the configuration of the rotating electrical machine common to the embodiments of the present invention will be described. FIG. 9 is a cross-sectional view along the axial direction of the permanent magnet rotating electric machine (direction parallel to the rotation axis of the rotor). The permanent magnet rotating electrical machine is composed of a stator 1 and a rotor 2 facing radially inward, and an air gap exists between the two. The stator 1 is fixed to the housing 110 and includes a concentrated winding stator winding 13. The rotor 2 has a rotor core 21 in which a plurality of electromagnetic steel plates are laminated. A nonmagnetic material 23 is disposed on the radially inner side of the rotor core 21 and a shaft 120 is disposed on the inner side. . The shaft 120 is rotatably supported by a bearing 140 fixed to the housing 110 or the flange 130.

以下、本発明の第1の実施例について図1から図2を用いて説明する。本実施例では、固定子ティース3本に対して回転子磁極が2極の組み合わせの例として、固定子ティースが12本、回転子磁極が8極の場合について述べる。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. In the present embodiment, as an example of a combination of two rotor magnetic poles with respect to three stator teeth, a case where there are 12 stator teeth and eight rotor magnetic poles will be described.

図1は、本発明の第1の実施例に係る永久磁石回転電機の軸方向に垂直な面に沿った1/4断面図である。永久磁石回転電機は、固定子1と、その径方向内側に対向する回転子2から構成され、両者の間にはエアギャップが存在する。固定子1は、複数の電磁鋼板が積層された固定子コア11で構成され、固定子コア11には複数の固定子ティース12があり、各ティースには固定子巻線13が集中巻に巻回されている。回転子2は、複数の電磁鋼板が積層された回転子コア21と、断面形状が周方向よりも径方向に長い永久磁石22とが、周方向に向かって交互に配置され、回転子コア21ならびに永久磁石22の径方向内側で両者と接する部材は非磁性体23で構成され、さらにその内側にはシャフト(図示せず)が配置される。   FIG. 1 is a ¼ cross-sectional view along a plane perpendicular to the axial direction of the permanent magnet rotating electric machine according to the first embodiment of the present invention. The permanent magnet rotating electrical machine is composed of a stator 1 and a rotor 2 facing radially inward, and an air gap exists between the two. The stator 1 is composed of a stator core 11 in which a plurality of electromagnetic steel plates are laminated. The stator core 11 has a plurality of stator teeth 12, and a stator winding 13 is wound around each tooth in a concentrated manner. It has been turned. In the rotor 2, a rotor core 21 in which a plurality of electromagnetic steel plates are laminated and permanent magnets 22 whose cross-sectional shape is longer in the radial direction than in the circumferential direction are alternately arranged in the circumferential direction. In addition, a member in contact with both of the permanent magnets 22 in the radial direction is formed of a non-magnetic material 23, and a shaft (not shown) is disposed on the inside thereof.

永久磁石22は径方向に二分割されており、相対的に残留磁束密度が高く保磁力の低い内側永久磁石221と、相対的に残留磁束密度が低く保磁力の高い外側永久磁石222とからなる。例えば、内側永久磁石221と外側永久磁石222は同じフェライト磁石であるが、異なる特性を持つものを前述のように配置する。また、径方向に隣接する内側永久磁石と外側永久磁石は周方向に同じ向きに着磁され、周方向に隣り合う永久磁石の磁化方向は、互いに対向するように交互に着磁されている。   The permanent magnet 22 is divided into two in the radial direction, and includes an inner permanent magnet 221 having a relatively high residual magnetic flux density and a low coercive force, and an outer permanent magnet 222 having a relatively low residual magnetic flux density and a high coercive force. . For example, the inner permanent magnet 221 and the outer permanent magnet 222 are the same ferrite magnet, but those having different characteristics are arranged as described above. Further, the inner permanent magnet and the outer permanent magnet adjacent in the radial direction are magnetized in the same direction in the circumferential direction, and the magnetization directions of the permanent magnets adjacent in the circumferential direction are alternately magnetized so as to face each other.

一方図2には、従来例として永久磁石を分割しない場合の図を示す。図1と異なる点は、永久磁石22が永久磁石22aに変わり、それに伴って回転子2が回転子2aとなっている点である。また図2には、永久磁石22aに、残留磁束密度が高く保磁力の低い材料を用いた場合に、永久磁石に逆磁界が加わったときに不可逆減磁しやすい箇所30をハッチングで示した。高トルクを得るためには残留磁束密度が高い永久磁石を用いることが望ましいが、残留磁束密度の高い永久磁石は一般的に保磁力が小さい。そのため、図2に示すように、永久磁石のうち、固定子に対向する部分が不可逆減磁を生じやすい。また、保磁力の高い永久磁石を用いると、不可逆減磁は回避できるが、残留磁束密度が低いために、トルクが低下する。   On the other hand, FIG. 2 shows a diagram in the case where the permanent magnet is not divided as a conventional example. The difference from FIG. 1 is that the permanent magnet 22 is changed to a permanent magnet 22a, and the rotor 2 becomes a rotor 2a accordingly. Further, in FIG. 2, when a material having a high residual magnetic flux density and a low coercive force is used for the permanent magnet 22 a, a portion 30 that is irreversibly demagnetized when a reverse magnetic field is applied to the permanent magnet is shown by hatching. In order to obtain a high torque, it is desirable to use a permanent magnet having a high residual magnetic flux density, but a permanent magnet having a high residual magnetic flux density generally has a small coercive force. Therefore, as shown in FIG. 2, the portion of the permanent magnet that faces the stator is likely to cause irreversible demagnetization. Moreover, when a permanent magnet having a high coercive force is used, irreversible demagnetization can be avoided, but the torque decreases because the residual magnetic flux density is low.

そこで、図1に示すように、永久磁石を径方向に二分割し、残留磁束密度が高く保磁力の低い永久磁石を内側に配置し、残留磁束密度が低く保磁力の高い永久磁石を外側に配置することで、トルクの低下を抑えつつ、不可逆減磁を生じにくくすることができる。   Therefore, as shown in FIG. 1, the permanent magnet is divided into two in the radial direction, a permanent magnet having a high residual magnetic flux density and a low coercive force is arranged inside, and a permanent magnet having a low residual magnetic flux density and a high coercive force is arranged on the outside. By disposing, irreversible demagnetization can be made difficult to occur while suppressing a decrease in torque.

以下、本発明の第2の実施例について図3を用いて説明する。   Hereinafter, a second embodiment of the present invention will be described with reference to FIG.

図3は、本発明の実施例2の永久磁石回転電機の1/4断面図である。図1と異なる点は、永久磁石22が永久磁石22bに変わり、内側永久磁石221bの内周側角部および外側永久磁石222bの外周側角部がカットされている点である。その他は、図1と同様である。   FIG. 3 is a quarter sectional view of the permanent magnet rotating electric machine according to the second embodiment of the present invention. The difference from FIG. 1 is that the permanent magnet 22 is changed to a permanent magnet 22b, and the inner peripheral side corner of the inner permanent magnet 221b and the outer peripheral side corner of the outer permanent magnet 222b are cut. Others are the same as FIG.

内側永久磁石221bの内周側角部および外側永久磁石222bの外周側角部をカットしたことにより、図2にハッチングで示した不可逆減磁しやすい箇所30のうち、内側永久磁石の内周側角部および外側永久磁石の外周側角部がなくなり、不可逆減磁を抑制する効果が得られる。   By cutting the inner peripheral side corner of the inner permanent magnet 221b and the outer peripheral side corner of the outer permanent magnet 222b, the inner peripheral side of the inner permanent magnet in the portion 30 shown by hatching in FIG. The corner portion and the outer corner portion of the outer permanent magnet are eliminated, and the effect of suppressing irreversible demagnetization is obtained.

以下、本発明の第3の実施例について図4を用いて説明する。   A third embodiment of the present invention will be described below with reference to FIG.

図4は、本発明の実施例3の永久磁石回転電機の1/4断面図である。図1と異なる点は、回転子コア21が回転子コア21cに変わり、回転子コア21cの内周側に内周側凸部24が形成されている点である。それに伴い、回転子2が回転子2cに変わっている。その他は、図1と同様である。   FIG. 4 is a quarter sectional view of the permanent magnet rotating electric machine according to the third embodiment of the present invention. The difference from FIG. 1 is that the rotor core 21 is changed to a rotor core 21c, and an inner peripheral convex portion 24 is formed on the inner peripheral side of the rotor core 21c. Accordingly, the rotor 2 is changed to the rotor 2c. Others are the same as FIG.

内周側凸部24の形成によって、その周辺部の磁束が非磁性体23の方へ誘導されることにより、図2にハッチングで示した不可逆減磁しやすい箇所30のうち、内周側角部の不可逆減磁が緩和される効果が得られる。さらに内周側凸部24の周方向長さのうち、内周側を長くすることで、回転子コア21cが非磁性体23と嵌合し、回転子が高速回転した際の遠心力に対して回転子コアを強固に固定できる。   By forming the inner peripheral convex portion 24, the magnetic flux in the peripheral portion thereof is guided toward the non-magnetic material 23, so that the inner peripheral side angle of the portion 30 shown in FIG. 2 that is easily irreversibly demagnetized is shown. The effect that the irreversible demagnetization of the part is relaxed is obtained. Further, by increasing the length of the inner circumferential side of the circumferential length of the inner circumferential convex portion 24, the rotor core 21c is fitted with the non-magnetic material 23, and the centrifugal force when the rotor rotates at high speed is reduced. The rotor core can be firmly fixed.

以下、本発明の第4の実施例について図5を用いて説明する。   Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG.

図5は、本発明の実施例4の永久磁石回転電機の1/4断面図である。図4と異なる点は、永久磁石22が永久磁石22dに変わり、内側永久磁石221dおよび外側永久磁石222dが、いずれも外周側の周方向長さが内周側の周方向長さよりも短くなり、回転子コア21dの永久磁石22dと接する面が永久磁石22dと嵌合するように形成されている点である。それに伴い、回転子2cが回転子2dに変わっている。その他は、図4と同様である。   FIG. 5 is a quarter sectional view of the permanent magnet rotating electric machine according to the fourth embodiment of the present invention. The difference from FIG. 4 is that the permanent magnet 22 changes to a permanent magnet 22d, and the inner permanent magnet 221d and the outer permanent magnet 222d both have a circumferential length on the outer circumferential side shorter than a circumferential length on the inner circumferential side, The surface of the rotor core 21d that is in contact with the permanent magnet 22d is formed so as to be fitted to the permanent magnet 22d. Accordingly, the rotor 2c is changed to the rotor 2d. Others are the same as FIG.

内周側凸部24の周方向長さのうち、内周側を長くすることで、回転子コア21dが非磁性体23と嵌合している。さらに永久磁石の外周側の周方向長さを内周側の周方向長さよりも短くして回転子コアと嵌合させている。その結果、回転子が高速回転して回転子コア21dと永久磁石22dに遠心力がかかっても、回転子が分離しない効果が得られる。   The rotor core 21 d is fitted to the nonmagnetic material 23 by lengthening the inner circumferential side of the circumferential length of the inner circumferential convex portion 24. Furthermore, the circumferential length on the outer peripheral side of the permanent magnet is shorter than the circumferential length on the inner peripheral side, and is fitted to the rotor core. As a result, even if the rotor rotates at a high speed and a centrifugal force is applied to the rotor core 21d and the permanent magnet 22d, an effect that the rotor is not separated is obtained.

以下、本発明の第5の実施例について図6を用いて説明する。   A fifth embodiment of the present invention will be described below with reference to FIG.

図6は、本発明の実施例5の永久磁石回転電機の1/4断面図である。図1と異なる点は、永久磁石22が永久磁石22eに変わり、内側永久磁石221eと外側永久磁石222eの間に空隙26が設けられている点である。また、外側永久磁石222eの周方向長さが内側永久磁石221eの周方向長さよりも短くなっており、回転子コア21eの外側永久磁石222eと接する部分が周方向に延長され、周方向凸部25を形成している。それらに伴い、回転子2が回転子2eに変わっている。その他は、図1と同様である。   FIG. 6 is a quarter cross-sectional view of the permanent magnet rotating electric machine according to the fifth embodiment of the present invention. The difference from FIG. 1 is that the permanent magnet 22 is changed to a permanent magnet 22e, and a gap 26 is provided between the inner permanent magnet 221e and the outer permanent magnet 222e. Further, the circumferential length of the outer permanent magnet 222e is shorter than the circumferential length of the inner permanent magnet 221e, and the portion of the rotor core 21e that is in contact with the outer permanent magnet 222e is extended in the circumferential direction. 25 is formed. Accordingly, the rotor 2 is changed to the rotor 2e. Others are the same as FIG.

本実施例では、例えば、内側永久磁石221eにフェライト磁石を用い、外側永久磁石222eにはネオジム磁石あるいはサマリウム・コバルト磁石を用いる。また、径方向に隣接する内側永久磁石と外側永久磁石は周方向に同じ向きに着磁され、周方向に隣り合う永久磁石の磁化方向は、互いに対向するように交互に着磁されている。   In this embodiment, for example, a ferrite magnet is used for the inner permanent magnet 221e, and a neodymium magnet or a samarium / cobalt magnet is used for the outer permanent magnet 222e. Further, the inner permanent magnet and the outer permanent magnet adjacent in the radial direction are magnetized in the same direction in the circumferential direction, and the magnetization directions of the permanent magnets adjacent in the circumferential direction are alternately magnetized so as to face each other.

不可逆減磁しやすい部分に、保磁力の高いネオジム磁石あるいはサマリウム・コバルト磁石を配置することで、不可逆減磁を回避できる。また、ネオジム磁石とサマリウム・コバルト磁石はフェライト磁石よりも残留磁束密度が2〜3倍程度高いため、トルクの向上も実現できる。   An irreversible demagnetization can be avoided by arranging a neodymium magnet or a samarium / cobalt magnet having a high coercive force in a portion that is irreversibly demagnetized. Further, since the neodymium magnet and the samarium / cobalt magnet have a residual magnetic flux density that is about two to three times higher than that of the ferrite magnet, the torque can be improved.

ただし、内側永久磁石と外側永久磁石を近接させると、外側永久磁石の高い残留磁束密度の影響で、内側永久磁石が不可逆減磁を起こす恐れがある。したがって、内側永久磁石と外側永久磁石との間に空隙26を設けることで、それを回避することができる。   However, if the inner permanent magnet and the outer permanent magnet are brought close to each other, the inner permanent magnet may cause irreversible demagnetization due to the high residual magnetic flux density of the outer permanent magnet. Therefore, by providing the air gap 26 between the inner permanent magnet and the outer permanent magnet, it can be avoided.

また、フェライト磁石と比べてネオジム磁石やサマリウム・コバルト磁石は、最大エネルギー積が一桁高く、残留磁束密度と保磁力が共に高いため、外側永久磁石の周方向長さを短くすることができる。   In addition, neodymium magnets and samarium / cobalt magnets have a maximum energy product that is an order of magnitude higher than ferrite magnets, and both residual magnetic flux density and coercive force are high, so that the circumferential length of the outer permanent magnet can be shortened.

以上のように、内側永久磁石にフェライト磁石を用い、外側永久磁石にはネオジム磁石あるいはサマリウム・コバルト磁石を用いることにより、不可逆減磁を回避し、さらにトルクを向上する効果が得られる。   As described above, by using a ferrite magnet as the inner permanent magnet and using a neodymium magnet or a samarium / cobalt magnet as the outer permanent magnet, the effects of avoiding irreversible demagnetization and further improving the torque can be obtained.

以下、本発明の第6の実施例について図7を用いて説明する。   Hereinafter, a sixth embodiment of the present invention will be described with reference to FIG.

図7は、本発明の実施例6の永久磁石回転電機の1/4断面図である。図6と異なる点は、回転子コア21eが回転子コア21fに変わり、隣り合う回転子コアをつなぐ腕部27が設けられた点である。それに伴い、回転子2eが回転子2fに変わっている。その他は、図6と同様である。   FIG. 7 is a quarter cross-sectional view of the permanent magnet rotating electric machine according to the sixth embodiment of the present invention. The difference from FIG. 6 is that the rotor core 21e is changed to the rotor core 21f, and an arm portion 27 that connects adjacent rotor cores is provided. Accordingly, the rotor 2e is changed to the rotor 2f. Others are the same as FIG.

隣り合う回転子コアをつなぐことで、回転子コアが分離することなく回転子を構成することができる。さらに、回転子が高速回転して回転子コア21fと内側永久磁石221eに遠心力がかかっても、回転子が分離しない。   By connecting adjacent rotor cores, the rotor can be configured without separating the rotor cores. Furthermore, even if the rotor rotates at a high speed and a centrifugal force is applied to the rotor core 21f and the inner permanent magnet 221e, the rotor is not separated.

以下、本発明の第7の実施例について図8を用いて説明する。   The seventh embodiment of the present invention will be described below with reference to FIG.

図8は、本発明の実施例7の永久磁石回転電機の1/4断面図である。図1と異なる点は、回転子コア21および永久磁石22の外周側にカバー28が設けられている点である。カバーの材質の例として、厚さが薄く強度の高いステンレス管を用いる。それに伴って回転子2が回転子2gに変わっている。その他は、図1と同様である。   FIG. 8 is a quarter cross-sectional view of the permanent magnet rotating electric machine according to the seventh embodiment of the present invention. The difference from FIG. 1 is that a cover 28 is provided on the outer peripheral side of the rotor core 21 and the permanent magnet 22. As an example of the material of the cover, a stainless steel tube having a small thickness and high strength is used. Accordingly, the rotor 2 is changed to a rotor 2g. Others are the same as FIG.

回転子コア21および永久磁石22の外周側にカバー28を設けたことにより、回転子コアが分離することなく回転子を構成することができる。さらに、回転子が高速回転して回転子コア21と永久磁石22に遠心力がかかっても、回転子が分離しない効果が得られる。さらに、永久磁石の割れ、欠けが生じた場合に、その破片を回転子の外部に出さない効果が得られる。   By providing the cover 28 on the outer peripheral side of the rotor core 21 and the permanent magnet 22, the rotor can be configured without separation of the rotor core. Furthermore, even if the rotor rotates at a high speed and a centrifugal force is applied to the rotor core 21 and the permanent magnet 22, an effect that the rotor is not separated is obtained. Furthermore, when the permanent magnet is cracked or chipped, the effect of preventing the broken pieces from being exposed to the outside of the rotor can be obtained.

なお、これまでの説明では、固定子ティース12本に対して回転子磁極が8極の例を用いて説明したが、固定子ティース3本に対して回転子磁極が2極の組み合わせであれば、固定子ティース9本に対して回転子磁極6極や、固定子ティース6本に対して回転子磁極4極などに関しても、同様に実現可能である。さらに、固定子ティース12本に対して回転子磁極10極あるいは14極の例や、固定子ティース9本に対して回転子磁極8極あるいは10極など、他の組み合わせに関しても同様に実現可能である。   In the above description, the example in which the rotor magnetic pole is 8 poles with respect to 12 stator teeth has been described. However, if the rotor magnetic pole has 2 poles with respect to 3 stator teeth, The same can be realized with respect to nine rotor teeth and six rotor magnetic poles, and six stator teeth and four rotor magnetic poles. Further, other combinations such as an example of 10 or 14 rotor magnetic poles for 12 stator teeth or 8 or 10 rotor magnetic poles for 9 stator teeth can be similarly realized. is there.

また、これまでの説明では、固定子が外側に、回転子が内側に配置された例を説明したが、固定子が内側に、回転子が外側に配置された場合も、同様に実現可能である。   In the above description, the example in which the stator is disposed on the outside and the rotor is disposed on the inside has been described. However, the same can be realized when the stator is disposed on the inside and the rotor is disposed on the outside. is there.

また、これまでの説明では、回転軸の外周方向にエアギャップを持つラジアルギャップ型の例を説明したが、回転軸の軸方向にエアギャップを持つアキシャルギャップ型や、直線駆動するリニア型などに関しても、同様に実現可能である。
In the above description, an example of a radial gap type having an air gap in the outer circumferential direction of the rotating shaft has been described. However, an axial gap type having an air gap in the axial direction of the rotating shaft, a linear type that linearly drives, Is also feasible in the same way.

1 固定子、2、2a、2b、2c、2d、2e、2f、2g 回転子、
9 固定子ティース
11 固定子コア
12 固定子ティース
13 固定子巻線
21、21c、21d、21e、21f 回転子コア
22、22a、22b、22d、22e 永久磁石
23 非磁性体
24 内周側凸部
25 周方向凸部
26 空隙
27 腕部
28 カバー
30 不可逆減磁しやすい箇所
110 ハウジング
120 シャフト
130 フランジ
140 ベアリング
221、221b、221d、221e 内側永久磁石
222、222b、222d、222e 外側永久磁石
1 stator, 2, 2a, 2b, 2c, 2d, 2e, 2f, 2g rotor,
9 Stator Teeth 11 Stator Core 12 Stator Teeth 13 Stator Windings 21, 21 c, 21 d, 21 e, 21 f Rotor Cores 22, 22 a, 22 b, 22 d, 22 e Permanent magnet 23 Nonmagnetic body 24 Inner circumferential convex part 25 Peripheral convex portion 26 Gap 27 Arm portion 28 Cover 30 Point where irreversible demagnetization easily occurs 110 Housing 120 Shaft 130 Flange 140 Bearings 221, 221b, 221d, 221e Inner permanent magnet 222, 222b, 222d, 222e Outer permanent magnet

Claims (10)

(永久磁石を固定子と対向する方向に複数に分割する)
固定子コアと、前記固定子コアのティース部に巻回される巻線とを有する固定子と、
該固定子に対して空隙を介して回転自在に配置され、回転子コアと、異なる極性を持った複数の永久磁石とが、周方向に向かって交互に配置される回転子とを備えた永久磁石回転電機において、
前記永久磁石を、前記固定子と対向する方向に複数に分割することを特徴とする永久磁石回転電機。
(The permanent magnet is divided into multiple parts in the direction facing the stator)
A stator having a stator core and a winding wound around a tooth portion of the stator core;
Permanently provided with a rotor core and a rotor in which a plurality of permanent magnets having different polarities are alternately arranged in the circumferential direction. In a magnet rotating electrical machine,
A permanent magnet rotating electric machine, wherein the permanent magnet is divided into a plurality of parts in a direction facing the stator.
(固定子に近い方の永久磁石に保磁力の高い材料を用いる)
請求項1に記載の永久磁石回転電機において、
前記複数の永久磁石のうち、前記固定子に近い方の永久磁石に、前記固定子から遠い方の永久磁石よりも保磁力の高い材料を用いることを特徴とする永久磁石回転電機。
(Use a material with high coercivity for the permanent magnet closer to the stator)
In the permanent magnet rotating electric machine according to claim 1,
A permanent magnet rotating electrical machine characterized in that a material having a higher coercive force than a permanent magnet far from the stator is used for a permanent magnet closer to the stator among the plurality of permanent magnets.
(永久磁石の角を落とす)
請求項1に記載の永久磁石回転電機において、
前記永久磁石の角部をカットすることを特徴とする永久磁石回転電機。
(Drop the corner of the permanent magnet)
In the permanent magnet rotating electric machine according to claim 1,
A permanent magnet rotating electric machine characterized by cutting corners of the permanent magnet.
(回転子コアの内周側を永久磁石よりも長くする)
請求項1に記載の永久磁石回転電機において、
前記回転子コアを、前記複数の永久磁石よりも周方向内側へ長くすることを特徴とする永久磁石回転電機。
(The inner circumference of the rotor core is made longer than the permanent magnet)
In the permanent magnet rotating electric machine according to claim 1,
A permanent magnet rotating electrical machine characterized in that the rotor core is longer inward in the circumferential direction than the plurality of permanent magnets.
(永久磁石を台形状にする)
請求項4に記載の永久磁石回転電機において、
前記永久磁石の外周側の周方向長さを、内周側の周方向長さよりも短くし、前記回転子コアを前記永久磁石と嵌合する形状にすることを特徴とする永久磁石回転電機。
(Make permanent magnet trapezoidal)
In the permanent magnet rotating electrical machine according to claim 4,
A permanent magnet rotating electrical machine characterized in that a circumferential length on the outer circumferential side of the permanent magnet is shorter than a circumferential length on an inner circumferential side, and the rotor core is fitted to the permanent magnet.
(固定子から遠い方の永久磁石をフェライト磁石、近い方をネオジム磁石またはサマコバ磁石とする)
請求項1に記載の永久磁石回転電機において、
前記固定子から遠い方の永久磁石にフェライト磁石を用い、前記固定子に近い方の永久磁石にネオジム磁石またはサマリウム・コバルト磁石を用いることを特徴とする永久磁石回転電機。
(The permanent magnet far from the stator is a ferrite magnet, and the near permanent magnet is a neodymium magnet or samacoba magnet.)
In the permanent magnet rotating electric machine according to claim 1,
A permanent magnet rotating electric machine, wherein a ferrite magnet is used as a permanent magnet far from the stator, and a neodymium magnet or a samarium / cobalt magnet is used as a permanent magnet closer to the stator.
(複数の永久磁石の間に空隙を設ける)
請求項1に記載の永久磁石回転電機において、
前記複数に分割した永久磁石の間に、空隙を設けることを特徴とする永久磁石回転電機。
(Provide air gaps between multiple permanent magnets)
In the permanent magnet rotating electric machine according to claim 1,
A permanent magnet rotating electrical machine, wherein a gap is provided between the plurality of divided permanent magnets.
(複数の永久磁石の周方向長さを異ならせる)
請求項1に記載の永久磁石回転電機において、
前記複数に分割した永久磁石の、周方向長さを異ならせることを特徴とする永久磁石回転電機。
(Changing the circumferential length of multiple permanent magnets)
In the permanent magnet rotating electric machine according to claim 1,
A permanent magnet rotating electric machine characterized in that circumferential lengths of the plurality of divided permanent magnets are made different.
(複数の永久磁石の間をコアでつなぐ)
請求項1に記載の永久磁石回転電機において、
前記複数に分割した永久磁石の間に、前記複数に分割した永久磁石をはさむ前記回転子コア同士をつなぐ腕部を設けることを特徴とする永久磁石回転電機。
(A core is connected between multiple permanent magnets)
In the permanent magnet rotating electric machine according to claim 1,
A permanent magnet rotating electrical machine characterized in that an arm for connecting the rotor cores sandwiching the plurality of divided permanent magnets is provided between the plurality of divided permanent magnets.
(回転子カバー)
請求項1に記載の永久磁石回転電機において、
前記回転子の外周部にカバーを設けることを特徴とする永久磁石回転電機。
(Rotor cover)
In the permanent magnet rotating electric machine according to claim 1,
A permanent magnet rotating electric machine, wherein a cover is provided on an outer peripheral portion of the rotor.
JP2013097269A 2013-05-07 2013-05-07 Permanent magnet rotary electric machine Pending JP2014220879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013097269A JP2014220879A (en) 2013-05-07 2013-05-07 Permanent magnet rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013097269A JP2014220879A (en) 2013-05-07 2013-05-07 Permanent magnet rotary electric machine

Publications (1)

Publication Number Publication Date
JP2014220879A true JP2014220879A (en) 2014-11-20

Family

ID=51938874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013097269A Pending JP2014220879A (en) 2013-05-07 2013-05-07 Permanent magnet rotary electric machine

Country Status (1)

Country Link
JP (1) JP2014220879A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019595A (en) * 2016-07-29 2018-02-01 エテル・ソシエテ・アノニム Rotor for a synchronous motor
CN112769264A (en) * 2021-01-11 2021-05-07 珠海格力节能环保制冷技术研究中心有限公司 Tangential motor, compressor and air conditioner
CN115189495A (en) * 2022-06-17 2022-10-14 无锡世珂微电机有限公司 Ferrite permanent magnet motor of automobile air conditioner compressor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019595A (en) * 2016-07-29 2018-02-01 エテル・ソシエテ・アノニム Rotor for a synchronous motor
CN107666192A (en) * 2016-07-29 2018-02-06 艾塔尔公司 Rotor for synchronous motor
CN107666192B (en) * 2016-07-29 2021-03-30 艾塔尔公司 Rotor for synchronous motor
CN112769264A (en) * 2021-01-11 2021-05-07 珠海格力节能环保制冷技术研究中心有限公司 Tangential motor, compressor and air conditioner
CN115189495A (en) * 2022-06-17 2022-10-14 无锡世珂微电机有限公司 Ferrite permanent magnet motor of automobile air conditioner compressor

Similar Documents

Publication Publication Date Title
JP6055725B2 (en) Axial type rotating electric machine using rotor and rotor
JP5332082B2 (en) motor
JP2011223836A (en) Permanent magnet type revolving armature
US9225209B2 (en) Permanent magnet rotor and electric motor incorporating the rotor
JP2012228104A (en) Permanent magnet-embedded motor
CN104716760A (en) rotating electrical machine
CN105794085A (en) Iron core and motor for motor
JP2016072995A (en) Embedded magnet type rotor and electric motor provided with the same
JP2012239327A (en) Permanent magnet motor
KR101897635B1 (en) Permanent magnet-embedded motor and rotor thereof
JP6112970B2 (en) Permanent magnet rotating electric machine
JPH0479741A (en) permanent magnet rotor
JP2014220879A (en) Permanent magnet rotary electric machine
JP5041415B2 (en) Axial gap type motor
CN203896058U (en) Permanent magnet type rotating motor and elevator driving hoister
JP2012165506A (en) Axial gap motor
CN107040107B (en) Rotor and motor
JP5944683B2 (en) Rotor and motor
US11901773B2 (en) Rotating electric machine
WO2023176616A1 (en) Motor
KR102619942B1 (en) Afpm motor with rfpm motor structure applied
JP5814160B2 (en) Rotor and motor
JP2017046386A (en) Permanent magnet electric motor
JP2009247158A (en) Axial air-gap motor
JP6685166B2 (en) Axial gap type rotating electric machine