[go: up one dir, main page]

JP4942884B2 - Monoglyceride production method - Google Patents

Monoglyceride production method Download PDF

Info

Publication number
JP4942884B2
JP4942884B2 JP2001240550A JP2001240550A JP4942884B2 JP 4942884 B2 JP4942884 B2 JP 4942884B2 JP 2001240550 A JP2001240550 A JP 2001240550A JP 2001240550 A JP2001240550 A JP 2001240550A JP 4942884 B2 JP4942884 B2 JP 4942884B2
Authority
JP
Japan
Prior art keywords
glycerin
reaction
monoglyceride
fatty acid
acid value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001240550A
Other languages
Japanese (ja)
Other versions
JP2003049192A (en
Inventor
大也 村田
博 南雲
二郎 橋本
広樹 沢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2001240550A priority Critical patent/JP4942884B2/en
Publication of JP2003049192A publication Critical patent/JP2003049192A/en
Application granted granted Critical
Publication of JP4942884B2 publication Critical patent/JP4942884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Liquid Carbonaceous Fuels (AREA)
  • Fats And Perfumes (AREA)
  • Lubricants (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はモノグリセリドの製造法及び該製造法で製造されたモノグリセリドからなる油性向上剤に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
モノグリセリドは、グリセリンと脂肪酸からなるモノエステルで、工業用及び食品用乳化剤として広く用いられている。また、特開平9−13052号には、油性向上剤として燃料油に添加すると有用であることが開示されている。モノグリセリドの主な製法として、1)油脂等のグリセリン脂肪酸エステルとグリセリンをエステル交換反応させる方法、2)脂肪酸とグリセリンをエステル化させる方法が挙げられる。どちらも様々な反応条件下で合成されているが、何れも原料の油脂や脂肪酸とグリセリン、又は反応生成物とグリセリンが均一に混じらないことから、不均一反応となり、モノグリセリドを十分効率的に得ることが出来なかった。例えば、分子蒸留器や薄膜蒸留器等を用いてモノグリセリドを得る方法や特開平9−268299号に示されるような酵素による反応では、高収率でモノグリセリドが得られることが知られている。しかしながら、これらの方法は、設備投資等のコストがかかり、経済的ではない。それに対し、反応温度を上げることで油脂や脂肪酸とグリセリン、又は反応生成物とグリセリンの相互の溶解性を上げることは、モノグリセリドの収量を上げる有効な方法の1つである。しかし、「モノグリセリド 製造と応用」(津田滋著、1958年、槙書店発行)に記載されている様に、反応温度を上げることは、グリセリンの重合を起こすので望ましくない。特に、グリセリン脱水縮合物は、グリセリンと比較して減圧留去しにくいため、用途によってグリセリン脱水縮合反応は出来るだけ抑制した方がよい。例えば、油性向上剤として燃料油に添加する場合は、モノグリセリドの水酸基が金属表面に吸着し、アルキル基が油性膜を形成し潤滑性を向上させるため、よりモノグリセリド純度を高くする必要がある。また、グリセリン及びグリセリン脱水縮合物は、燃料への溶解性が悪くかつ金属表面等に吸着しやすいことから、これらをできるだけ低減させることは重要である。特に上記の理由よりグリセリン脱水縮合反応を抑制することは非常に重要である。
【0003】
グリセリン脱水縮合物の生成を抑制するには、高温下での反応時間を短くすることが有効である。USP3083216には、短時間に高温で反応させる方法が記載されているが、設備投資等にコストがかかる。また、モノグリセリドの製造にはこれまで反応速度を上げるため、また収率を上げるために、種々の触媒反応が用いられてきたが、これらも濾過工程が必要であるなどのコスト負担を有する。しかも、用途に応じて、特に油性向上剤として利用する際は、触媒成分の混入を避ける必要がある。例えば、燃料油添加剤では濾過漏れによる触媒成分の混入はエンジントラブルを起こすため避けなければならない。従って、触媒の利用は好ましくない。
【0004】
以上のことから、従来法では、触媒を用いないで簡便にグリセリン脱水縮合物の少ないモノグリセリドを製造することは困難であった。
【0005】
本発明の課題は、グリセリン脂肪酸エステルとグリセリンから、触媒を用いず、簡便かつ安価な方法で、グリセリン脱水縮合物の少ない、油性向上剤として有用な高純度のモノグリセリドを製造する方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、グリセリン脂肪酸エステルとグリセリンとを、無触媒下で、反応系内の酸価を1mgKOH/g以上に保持してエステル交換反応させるモノグリセリドの製造法、及びこの製造法で製造されたモノグリセリドからなる油性向上剤である。
【0007】
【発明の実施の形態】
本発明で使用するグリセリン脂肪酸エステルは、トリグリセリド、ジグリセリド、モノグリセリドを含み、これらが複数混合したものや、油脂を主成分とするものである。トリグリセリドとしては、天然油脂、合成油脂、又はこれらの一部が酸化、還元等の変性を起こした油脂等が挙げられる。油性向上剤、例えば燃料油添加剤として利用する際には、天然油脂として大豆油や菜種油等を用いたものが好ましい。また、グリセリン脂肪酸エステルは、脂肪酸とグリセリンとのエステル化反応により得られるものでもよい。この時、用いる脂肪酸は特に限定されるものではないが、炭素数8〜22の脂肪酸が好ましい。上述の「モノグリセリド 製造と応用」(津田滋著)には、炭素数18の脂肪酸は、炭素数の短い脂肪酸よりもグリセリンの溶解性を下げるため、モノグリセリドの純度を下げると明記されているが、本発明の方法によると、炭素数18の脂肪酸を用いた場合でも純度が高いモノグリセリドを得ることができる。本発明において、炭素数18の脂肪酸としては、ステアリン酸、オレイン酸、リノール酸、トール油脂肪酸等が好ましく用いられ、特にこれらの混合物が好ましい。例えば、非油脂系油から得られたトール油脂肪酸とグリセリンのモノグリセリドを製造する際は、グリセリン脂肪酸エステルとして、トール油脂肪酸とグリセリンとのエステル化反応により得られた反応物を用いることがさらに好ましい。
【0008】
脂肪酸とグリセリンとのエステル化反応条件は、特に限定されるものではないが、連続してエステル交換反応に用いる際は、簡便性の点より、触媒を用いないで、170〜300℃で一定温度もしくは昇温しながらエステル化を行い、系内の水分を除去しながら反応させるのが好ましい。
【0009】
本発明で使用するグリセリンは、特に限定されるものではなく、本発明のエステル交換反応における未反応グリセリンの回収物を用いることも可能である。
【0010】
本発明においては、グリセリン脂肪酸エステルとグリセリンのエステル交換反応において、無触媒下で、反応系内の酸価を1mgKOH/g(単位は以下省略)以上に保った状態で反応させる。本発明において、無触媒とは、触媒を添加しないか、ごく少量しか添加しないことを意味する。ごく少量とは、以下に記述するメリットが達成される量である。無触媒で反応することにより、一連のプロセスの簡略化、コスト削減を達成でき、また燃料油添加剤等のように、触媒成分の混入を避けなければならない用途において、触媒濾過工程で濾過漏れの恐れがないというメリットである。また、反応系内の酸価を1以上に保つのは、グリセリンの脱水縮合物の生成を抑制するためである。
【0011】
従来、エステル化反応又はエステル交換反応では多くの場合、製品の酸価を低くすることが望まれている。このため、できるだけ反応を促進させて酸価を下げることが行われてきた。本発明では、この酸価を1以上に保持することによりグリセリンの脱水縮合反応が抑制されることを見出したのである。また、反応終了時に好ましくない酸価になっていても、反応後にグリセリンを還流する等の方法で容易に酸価を制御することができることも本発明の特徴の一つである。
【0012】
酸価を1以上に保つ方法は、反応初期の酸価を1以上にしておき、その後、不活性ガスを系内に流通させてパージングを行う時には、酸価が下がらない程度にガス流量を抑えて反応を行う。また密閉系で行う場合には、不活性ガス雰囲気下で反応を行う。中でもジグリセリン等のグリセリン脱水縮合物の生成を抑制するという点では、密閉系で行った方が有効である。不活性ガスとしては、窒素やアルゴン等が挙げられる。このときの圧力は、常圧又は加圧で行う。簡便に行うには、常圧又は微加圧が好ましい。本発明において微加圧とは耐圧設備対応が低減できる圧力を意味し、0.2MPa以下の圧力が好ましい。反応初期の酸価を1以上にする方法として、エステル交換反応前に脂肪酸を添加する方法、脂肪酸とグリセリンとのエステル化反応で未反応の脂肪酸を利用する方法等が挙げられる。エステル化反応で未反応の脂肪酸を利用する方法とは、グリセリン脂肪酸エステルとして脂肪酸とグリセリンのエステル化反応により得られたグリセリン脂肪酸エステルを用いる場合、エステル化反応の末期、酸価が1以上の状態で、連続して密閉系にして、エステル交換反応を行う方法である。酸価の上限は特に限定されないが、5以下が好ましい。用途に応じて反応物の酸価が高くて好ましくない場合などは、酸価を1〜3の範囲に保持することが更に好ましい。従って、密閉系にした後でも、反応初期の酸価が高い場合、酸価を下げる工程を行ってもよい。酸価を下げる方法は特に限定されないが、密閉系にしている場合は、一度開放系にして窒素を流しエステル化反応を促進させて酸価を下げるのが好ましい。
【0013】
本発明において、グリセリン脂肪酸エステルとして脂肪酸とグリセリンのエステル化反応により得られたグリセリン脂肪酸エステルを用いる場合、原料の仕込比は、グリセリン/脂肪酸(モル比)が0.33以上が好ましく、モノグリセリドを高回収するには1以上が更に好ましく、モノグリセリドの生産性及びグリセリン仕込量が多いとジグリセリンの生成量が増えることを考慮すると1.4〜2.0が特に好ましく、1.6〜1.8が最も好ましい。ただし、グリセリン脂肪酸エステルとして、油脂等を用いる場合は、用いたグリセリン脂肪酸エステルのエステル化度に合わせて、仕込み比を換算する。
【0014】
エステル交換反応の温度は235〜300℃が好ましく、モノグリセリドの収量及びグリセリンの脱水縮合反応速度等を考慮すると240〜270℃がより好ましく、特に250〜260℃が好ましい。
【0015】
上記のような方法で得られた反応物を、燃料油添加剤等の利用やその他の目的でグリセリンの除去が必要な場合は、グリセリンの除去を行う。グリセリンの除去方法は、減圧によりグリセリンを留去する方法、水蒸気蒸留によりグリセリンを除去する方法、分層によりグリセリン層を除去する方法、水洗による除去方法、吸着剤等を用いて除去する方法等が挙げられるが、これらに限定されるものではなく、これらを組み合わせても良い。ただし、用途に応じて反応物の酸価が高くて好ましくない場合、反応終了時に減圧にしてグリセリンを還流させながら冷却した後、減圧によりグリセリンを留去する方法、又は/及び水蒸気蒸留によりグリセリンを除去する方法が簡便な方法として好ましい。この還流中にグリセリンの脱水縮合反応も促進されるが、定温反応時間と比較して短時間で終了させることが可能であり、また系内温度が低下していくために、その量を十分に抑制できる。生成物からのグリセリンの留去は、出来る限り反応物であるモノグリセリドが著しく留出しない条件で行う。具体的には1.33kPa以下の圧力で150〜220℃で行うのが好ましい。なお、水蒸気蒸留による除去とは、水蒸気を反応生成物に吹き込み、水蒸気と共にグリセリンを系外に留出させる方法である。具体的には13.3kPa以下の圧力で、80〜220℃で行う。加水分解やエステル交換反応を抑制するには、4.0kPa以下の圧力で、170℃以下で行うのが好ましい。
【0016】
上記のようにして製造したモノグリセリドは、油性向上剤、例えばディーゼル燃料等の燃料や潤滑油基油等の燃料油添加剤等として使用できる。また、用途の要求に応じて、単独、又は他の成分と混合して使用することが出来る。特に、本発明の製造法で得られるモノグリセリドの有する粘度、流動性、更にモノグリセリドの純度が高く、グリセリン脱水縮合物が少ない点から低硫黄分ディーゼル軽油流体の金属接触面における摩耗量の低減が可能な軽油添加剤としての利用が好ましい。
【0017】
【実施例】
実施例及び比較例におけるモノグリセリド純度及びグリセリン脱水縮合物の生成量は以下の方法で測定し、燃料油への溶解性は以下の方法で評価した。
【0018】
<モノグリセリド純度>
ゲルパーミッションクロマトグラフィー(カラム:TSKgelG2000HXL+TSKgelG1000HXL、検出器:RI、溶離液:THF)により分析し(以下GPC面積%)、モノグリセリド純度を以下の式により求めた。
【0019】
モノグリセリド純度(%)=[モノグリセリド(GPC面積%)]/[モノグリセリド(GPC面積%)+ジグリセリド(GPC面積%)+トリグリセリド(GPC面積%)]
<グリセリン脱水縮合物の生成量>
実施例及び比較例すべてにおいて、トリグリセリン以上の分子量を有するグリセリン脱水縮合物は見られなかったので、ジグリセリンの生成量で示した。なお、ジグリセリン生成量とは、エステル化させていないジグリセリンの量のことを示し、ガスクロマトグラフィー(キャピラリーカラム:ウルトラアロイ、キャリアーガス:ヘリウム、以下GC)にて分析した。実施例及び比較例記載の未反応ジグリセリン量はGC面積%である。実施例2〜及び比較例3〜4のジグリセリン量は、未反応グリセリンの除去工程前であるため、系内のグリセリンをすべて減圧により除去出来たと仮定した場合のジグリセリンのGC面積%である。
【0020】
<燃料油への溶解性>
燃料油に対する溶解性を確認するため、キシレンへの溶解性テストを行った。実施例及び比較例で得られたモノグリセリドをキシレンに10重量%溶解させて外観を比較した。キシレンへの不溶解物が多いとこの溶液は白濁する。
【0021】
実施例1
圧力弁を付けたフラスコにトール油脂肪酸1542.0gとグリセリン822.4gを仕込んだ後、攪拌しながら260℃まで加熱した。加熱中は、窒素を系内に流通させて、反応生成水を系外に留出させながら、エステル化反応を促進させた。260℃到達後、直ちに反応系を窒素パージングによる密閉系にした。このときの酸価は1.8、モノグリセリド純度は46.5%であった。引き続き、260℃密閉系にてエステル交換反応を行った(系内圧力:0.14MPa以下)。エステル交換反応をトータル6時間行い反応を終了させた。反応終了時の酸価は1.9、モノグリセリド純度は62.9%、さらに加熱を止めて5.3kPaまで徐々に減圧して、グリセリンを還流させながら系内温度を200℃まで冷却した。この時の酸価は0.25、さらに、0.13kPaまで減圧にしてエステル化されていないグリセリンを系外へ除去し、モノグリセリド1798.6gを得た。モノグリセリド純度60.1%、酸価:0.14、未反応ジグリセリン量0.54%、キシレン溶解テスト:透明。
【0022】
比較例1
フラスコにトール油脂肪酸1540.7gとグリセリン823.7gを仕込んだ後、攪拌しながら260℃まで加熱した。加熱中は、窒素を系内に流通させて、反応生成水を系外に留出させながら、エステル化反応を促進させた。260℃到達後、開放系にして窒素を系内に流通させたまま(N2流通量:0.1L/min)、エステル交換反応を7時間行った。260℃到達時の酸価は1.5であったが、10分以内に酸価は1を切った。反応終了時の酸価は0.20、モノグリセリド純度は60.5%。加熱を止めて系内温度を200℃まで冷却し、さらに、0.13kPaまで減圧にしてエステル化されていないグリセリンを系外へ除去し、モノグリセリド1800.4gを得た。モノグリセリド純度59.4%、酸価:0.13、未反応ジグリセリン量1.46%、キシレン溶解テスト:白濁。
【0023】
比較例2
比較例1において、260℃でのエステル交換反応時間を3時間とする以外は同様に反応を行った。260℃到達時の酸価は1.7であったが、比較例1と同様に10分以内に酸価は1を切った。反応終了時の酸価は0.25、モノグリセリド純度は50.9%。比較例1と同様にグリセリンを系外へ除去し、モノグリセリド1772.4gを得た。モノグリセリド純度49.7%、酸価:0.14、未反応ジグリセリン量0.53%、キシレン溶解テスト:透明。
【0024】
実施例1及び比較例1〜2の結果をまとめて表1に示す。表1から、酸価を1以上に保ちながらエステル交換反応を行うことが未反応のジグリセリン量を抑制していることが明らかである。未反応のジグリセリン量がほぼ同等である場合には、明らかに、従来法(比較例2)ではモノグリセリド純度が低い。
【0025】
【表1】

Figure 0004942884
【0026】
実施例2
グリセリンとトール油脂肪酸より合成されたトール油脂肪酸エステル(モノグリセリド純度:46.5%、未反応グリセリン含有量:0.5%、酸価:0.3)500gとグリセリン140.2g、さらにトール油脂肪酸23.0gをオートクレーブに仕込んで窒素によるパージングを行い、260℃まで昇温した。昇温中は、熱による気体の膨張により圧力の上昇を防ぐため、反応系内を開放と密閉を繰り返した。260℃到達後の酸価は3.1、その後、密閉系にして反応を6時間続けた。反応終了時の酸価:2.5、モノグリセリド純度:62.9%、未反応ジグリセリン量:0.52%、キシレン溶解テスト:透明。
【0027】
実施例3
実施例2で用いたトール油脂肪酸エステル499gとグリセリン131.5g、さらにトール油脂肪酸10.0gをオートクレーブに仕込んで、実施例2と同様の装置及び方法で反応させた。260℃到達後の酸価は1.6、反応終了時の酸価:1.6、モノグリセリド純度:62.1%、未反応ジグリセリン量:0.59%、キシレン溶解テスト:透明。
【0028】
比較例3
実施例2で用いたトール油脂肪酸エステル500gとグリセリン130.0gをオートクレーブに仕込んで、実施例2と同様の装置及び方法で反応させた。260℃到達後の酸価は0.4、反応終了時の酸価:1.7、モノグリセリド純度:61.6%、未反応ジグリセリン量:0.86%、キシレン溶解テスト:白濁。
【0029】
比較例4
比較例3の反応において窒素を系内に流通させながら行った。260℃到達後の酸価は0.4、反応終了時の酸価:0.4、モノグリセリド純度:58.6%、未反応ジグリセリン量:1.08%、キシレン溶解テスト:白濁。
【0030】
実施例2〜3及び比較例3〜4の結果をまとめて表2に示す。表2より酸価を1以上に保ちながらエステル交換反応を行うことが未反応のジグリセリン量を抑制する点で、またモノグリセリドの純度を高めるという点で有効であることが明らかである。
【0031】
【表2】
Figure 0004942884
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a monoglyceride and an oiliness improver comprising a monoglyceride produced by the production method.
[0002]
[Prior art and problems to be solved by the invention]
Monoglycerides are monoesters composed of glycerin and fatty acids, and are widely used as industrial and food emulsifiers. JP-A-9-13052 discloses that it is useful to be added to fuel oil as an oiliness improver. Examples of the main production method of monoglyceride include 1) a method of transesterifying glycerin fatty acid ester such as oil and fat with glycerin, and 2) a method of esterifying fatty acid and glycerin. Both are synthesized under various reaction conditions, but since all of the raw oils and fatty acids and glycerin, or the reaction product and glycerin are not mixed uniformly, the reaction becomes heterogeneous and monoglycerides are obtained sufficiently efficiently. I couldn't. For example, it is known that a monoglyceride can be obtained in a high yield by a method for obtaining monoglyceride using a molecular distiller, a thin film distiller or the like, or a reaction by an enzyme as disclosed in JP-A-9-268299. However, these methods require capital investment and are not economical. On the other hand, increasing the mutual solubility of fats and oils, fatty acids and glycerin, or reaction products and glycerin by raising the reaction temperature is one of effective methods for increasing the yield of monoglyceride. However, as described in “Production and application of monoglycerides” (Shigeru Tsuda, 1958, published by Tsuji Shoten), raising the reaction temperature is undesirable because it causes polymerization of glycerin. In particular, since glycerin dehydration condensate is less likely to be distilled off under reduced pressure than glycerin, it is better to suppress the glycerin dehydration condensation reaction as much as possible. For example, when added to fuel oil as an oiliness improver, the monoglyceride hydroxyl group is adsorbed on the metal surface, and the alkyl group forms an oily film to improve lubricity. Therefore, it is necessary to further increase the monoglyceride purity. Further, since glycerin and glycerin dehydrated condensate are poorly soluble in fuel and easily adsorbed on metal surfaces, it is important to reduce them as much as possible. In particular, it is very important to suppress the glycerin dehydration condensation reaction for the above reasons.
[0003]
In order to suppress the formation of glycerin dehydrated condensate, it is effective to shorten the reaction time at high temperature. US Pat. No. 3,083,216 describes a method of reacting at a high temperature in a short time, but costs are high for capital investment and the like. In addition, in the production of monoglycerides, various catalytic reactions have been used so far in order to increase the reaction rate and to increase the yield, but these also have a cost burden such as requiring a filtration step. In addition, depending on the application, it is necessary to avoid mixing of catalyst components, particularly when used as an oiliness improver. For example, in a fuel oil additive, mixing of catalyst components due to filtration leakage causes engine trouble and must be avoided. Therefore, the use of a catalyst is not preferable.
[0004]
From the above, in the conventional method, it was difficult to easily produce a monoglyceride with little glycerin dehydration condensate without using a catalyst.
[0005]
An object of the present invention is to provide a method for producing a high-purity monoglyceride useful as an oiliness improver from a glycerin fatty acid ester and glycerin, using a simple and inexpensive method without using a catalyst, and having a small amount of glycerin dehydration condensate. It is in.
[0006]
[Means for Solving the Problems]
The present invention relates to a process for producing a monoglyceride in which a glycerin fatty acid ester and glycerin are transesterified in the absence of a catalyst while maintaining the acid value in the reaction system at 1 mg KOH / g or more, and a monoglyceride produced by this process It is an oiliness improver consisting of
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The glycerin fatty acid ester used in the present invention contains triglycerides, diglycerides, and monoglycerides, and those in which a plurality of these are mixed or oils and fats are the main components. Examples of the triglyceride include natural fats and oils, synthetic fats and oils, and fats and the like in which some of these have undergone modification such as oxidation and reduction. When used as an oiliness improver, for example, as a fuel oil additive, those using soybean oil, rapeseed oil, etc. as natural fats and oils are preferred. The glycerin fatty acid ester may be obtained by an esterification reaction between a fatty acid and glycerin. At this time, the fatty acid to be used is not particularly limited, but a fatty acid having 8 to 22 carbon atoms is preferable. In the above-mentioned “monoglyceride production and application” (by Shigeru Tsuda), it is clearly stated that fatty acids having 18 carbon atoms lower the solubility of glycerin than fatty acids having a short carbon number, thus lowering the purity of monoglycerides. According to the method of the present invention, a monoglyceride having high purity can be obtained even when a fatty acid having 18 carbon atoms is used. In the present invention, as the fatty acid having 18 carbon atoms, stearic acid, oleic acid, linoleic acid, tall oil fatty acid and the like are preferably used, and a mixture thereof is particularly preferable. For example, when producing tall oil fatty acid and glycerin monoglyceride obtained from non-fat oil, it is more preferable to use a reaction product obtained by esterification reaction of tall oil fatty acid and glycerin as glycerin fatty acid ester. .
[0008]
The esterification reaction conditions of fatty acid and glycerin are not particularly limited, but when used continuously in the transesterification reaction, from a point of simplicity, without using a catalyst, a constant temperature at 170 to 300 ° C. Alternatively, it is preferable to carry out the esterification while raising the temperature and carry out the reaction while removing moisture in the system.
[0009]
The glycerin used in the present invention is not particularly limited, and a recovered product of unreacted glycerin in the transesterification reaction of the present invention can also be used.
[0010]
In the present invention, in the transesterification reaction between glycerin fatty acid ester and glycerin, the reaction is carried out in a state where the acid value in the reaction system is kept at 1 mg KOH / g (unit is omitted) or more in the absence of a catalyst. In the present invention, non-catalyst means that no catalyst is added or only a very small amount is added. A very small amount is an amount that achieves the benefits described below. By reacting without a catalyst, the series of processes can be simplified and cost reduction can be achieved, and in applications where catalyst components such as fuel oil additives must be avoided, filtration leakage can be prevented in the catalyst filtration step. The advantage is that there is no fear. The reason for keeping the acid value in the reaction system at 1 or more is to suppress the formation of a dehydrated condensate of glycerin.
[0011]
Conventionally, in the esterification reaction or transesterification reaction, it is often desired to lower the acid value of a product. For this reason, the reaction has been promoted as much as possible to reduce the acid value. In the present invention, it was found that the dehydration condensation reaction of glycerin is suppressed by maintaining this acid value at 1 or more. It is also one of the features of the present invention that the acid value can be easily controlled by a method such as refluxing glycerin after the reaction, even if the acid value becomes unfavorable at the end of the reaction.
[0012]
In the method of keeping the acid value at 1 or more, when the acid value at the initial stage of the reaction is set to 1 or more and then purging is performed by circulating an inert gas in the system, the gas flow rate is suppressed so that the acid value does not decrease. To react. Moreover, when performing by a closed system, it reacts in inert gas atmosphere. In particular, it is more effective to use a closed system in terms of suppressing the production of glycerin dehydration condensate such as diglycerin. Examples of the inert gas include nitrogen and argon. The pressure at this time is normal pressure or pressurization. In order to carry out simply, normal pressure or slight pressure is preferable. In the present invention, the slight pressurization means a pressure that can reduce the pressure-resistant equipment, and a pressure of 0.2 MPa or less is preferable. Examples of a method for setting the acid value at the initial stage of the reaction to 1 or more include a method of adding a fatty acid before a transesterification reaction and a method of using an unreacted fatty acid in an esterification reaction between a fatty acid and glycerin. The method of utilizing unreacted fatty acid in the esterification reaction is a state in which the acid value is 1 or more at the end stage of the esterification reaction when the glycerin fatty acid ester obtained by the esterification reaction of fatty acid and glycerin is used as the glycerin fatty acid ester In this method, the transesterification reaction is performed continuously in a closed system. The upper limit of the acid value is not particularly limited, but is preferably 5 or less. When the acid value of the reaction product is high and unfavorable depending on the application, it is more preferable to keep the acid value in the range of 1 to 3. Therefore, even after the closed system is used, when the acid value at the initial stage of the reaction is high, a step of lowering the acid value may be performed. The method for lowering the acid value is not particularly limited. However, in the case of a closed system, it is preferable to lower the acid value by opening the system once and flowing nitrogen to promote the esterification reaction.
[0013]
In the present invention, when a glycerin fatty acid ester obtained by esterification of a fatty acid and glycerin is used as the glycerin fatty acid ester, the feed ratio of the raw material is preferably glycerin / fatty acid (molar ratio) of 0.33 or more, and high monoglyceride. One or more is more preferable for the recovery, and 1.4 to 2.0 is particularly preferable in view of the increase in monoglyceride productivity and the amount of diglycerin charged. Is most preferred. However, when fats and oils are used as the glycerin fatty acid ester, the charging ratio is converted according to the degree of esterification of the glycerin fatty acid ester used.
[0014]
The temperature of the transesterification reaction is preferably 235 to 300 ° C, more preferably 240 to 270 ° C, and particularly preferably 250 to 260 ° C in consideration of the yield of monoglyceride and the dehydration condensation reaction rate of glycerin.
[0015]
In the case where glycerin needs to be removed from the reactant obtained by the above method for the use of a fuel oil additive or for other purposes, glycerin is removed. The method for removing glycerin includes a method for distilling glycerin under reduced pressure, a method for removing glycerin by steam distillation, a method for removing a glycerin layer by phase separation, a method for removing by water washing, a method for removing by using an adsorbent, etc. Although it is mentioned, it is not limited to these, You may combine these. However, when the acid value of the reaction product is high depending on the use, it is not preferable. After cooling, the glycerin is refluxed at the end of the reaction, and then cooled. The removal method is preferable as a simple method. Although the dehydration condensation reaction of glycerin is promoted during this reflux, it can be completed in a short time compared to the constant temperature reaction time, and the temperature in the system is lowered. Can be suppressed. Distillation of glycerin from the product is carried out under the condition that monoglyceride as a reaction product is not significantly distilled as much as possible. Specifically, it is preferably performed at 150 to 220 ° C. at a pressure of 1.33 kPa or less. The removal by steam distillation is a method in which steam is blown into the reaction product and glycerin is distilled out of the system together with the steam. Specifically, it is performed at 80 to 220 ° C. at a pressure of 13.3 kPa or less. In order to suppress hydrolysis and transesterification, it is preferably carried out at 170 ° C. or lower at a pressure of 4.0 kPa or lower.
[0016]
The monoglyceride produced as described above can be used as an oil improver, for example, a fuel such as diesel fuel or a fuel oil additive such as a lubricating base oil. Moreover, according to the request | requirement of a use, it can be used individually or in mixture with another component. In particular, the monoglyceride obtained by the production method of the present invention has low viscosity, fluidity, high purity of monoglyceride, and less glycerin dehydration condensate. The use as a light oil additive is preferable.
[0017]
【Example】
The monoglyceride purity and the amount of glycerin dehydrated condensate produced in Examples and Comparative Examples were measured by the following methods, and the solubility in fuel oil was evaluated by the following methods.
[0018]
<Monoglyceride purity>
Analysis by gel permeation chromatography (column: TSKgelG2000HXL + TSKgelG1000HXL, detector: RI, eluent: THF) (hereinafter referred to as GPC area%), the monoglyceride purity was determined by the following equation.
[0019]
Monoglyceride purity (%) = [monoglyceride (GPC area%)] / [monoglyceride (GPC area%) + diglyceride (GPC area%) + triglyceride (GPC area%)]
<Production amount of glycerin dehydrated condensate>
In all of Examples and Comparative Examples, no glycerin dehydrated condensate having a molecular weight equal to or higher than triglycerin was found, and thus the amount of diglycerin was shown. The amount of diglycerin produced indicates the amount of diglycerin that has not been esterified, and was analyzed by gas chromatography (capillary column: ultraalloy, carrier gas: helium, hereinafter GC). The amount of unreacted diglycerin described in Examples and Comparative Examples is GC area%. Since the amount of diglycerin in Examples 2 to 3 and Comparative Examples 3 to 4 was before the removal step of unreacted glycerin, the GC area% of diglycerin when it was assumed that all the glycerin in the system could be removed by reduced pressure. is there.
[0020]
<Solubility in fuel oil>
In order to confirm the solubility in fuel oil, a solubility test in xylene was conducted. The monoglycerides obtained in Examples and Comparative Examples were dissolved in xylene at 10% by weight and the appearances were compared. If there are many insoluble substances in xylene, this solution becomes cloudy.
[0021]
Example 1
A flask equipped with a pressure valve was charged with 1542.0 g of tall oil fatty acid and 822.4 g of glycerin, and then heated to 260 ° C. with stirring. During the heating, nitrogen was circulated in the system, and the esterification reaction was promoted while distilling the reaction product water out of the system. Immediately after reaching 260 ° C., the reaction system was closed by nitrogen purging. The acid value at this time was 1.8, and the monoglyceride purity was 46.5%. Subsequently, a transesterification reaction was performed in a 260 ° C. closed system (internal pressure: 0.14 MPa or less). The transesterification reaction was carried out for a total of 6 hours to complete the reaction. At the end of the reaction, the acid value was 1.9, the monoglyceride purity was 62.9%, the heating was stopped, the pressure was gradually reduced to 5.3 kPa, and the system temperature was cooled to 200 ° C. while refluxing glycerin. At this time, the acid value was 0.25, and glycerol that had not been esterified was removed from the system by reducing the pressure to 0.13 kPa to obtain 1798.6 g of monoglyceride. Monoglyceride purity 60.1%, acid value: 0.14, unreacted diglycerin content 0.54%, xylene dissolution test: transparent.
[0022]
Comparative Example 1
The flask was charged with 1540.7 g of tall oil fatty acid and 823.7 g of glycerin, and then heated to 260 ° C. with stirring. During the heating, nitrogen was circulated in the system, and the esterification reaction was promoted while distilling the reaction product water out of the system. After reaching 260 ° C., the transesterification reaction was carried out for 7 hours with an open system and nitrogen flowing in the system (N 2 flow rate: 0.1 L / min). The acid value at the time of reaching 260 ° C. was 1.5, but the acid value was cut within 1 within 10 minutes. The acid value at the end of the reaction was 0.20, and the monoglyceride purity was 60.5%. Heating was stopped, the system temperature was cooled to 200 ° C., and the pressure was reduced to 0.13 kPa to remove non-esterified glycerin from the system to obtain 1800.4 g of monoglyceride. Monoglyceride purity 59.4%, acid value: 0.13, unreacted diglycerin content 1.46%, xylene dissolution test: cloudiness.
[0023]
Comparative Example 2
In Comparative Example 1, the reaction was carried out in the same manner except that the transesterification time at 260 ° C. was 3 hours. The acid value at the time of reaching 260 ° C. was 1.7, but the acid value was cut off within 10 minutes as in Comparative Example 1. The acid value at the end of the reaction was 0.25, and the monoglyceride purity was 50.9%. Glycerin was removed out of the system in the same manner as in Comparative Example 1 to obtain 1772.4 g of monoglyceride. Monoglyceride purity 49.7%, acid value: 0.14, unreacted diglycerin content 0.53%, xylene dissolution test: transparent.
[0024]
Table 1 summarizes the results of Example 1 and Comparative Examples 1 and 2. From Table 1, it is clear that performing the transesterification while keeping the acid value at 1 or more suppresses the amount of unreacted diglycerin. When the amount of unreacted diglycerin is almost the same, the monoglyceride purity is obviously low in the conventional method (Comparative Example 2).
[0025]
[Table 1]
Figure 0004942884
[0026]
Example 2
Tall oil fatty acid ester synthesized from glycerin and tall oil fatty acid (monoglyceride purity: 46.5%, unreacted glycerin content: 0.5%, acid value: 0.3), glycerin 140.2 g, and tall oil 23.0 g of fatty acid was charged into an autoclave and purged with nitrogen, and the temperature was raised to 260 ° C. During the temperature increase, the reaction system was repeatedly opened and closed in order to prevent an increase in pressure due to gas expansion due to heat. The acid value after reaching 260 ° C. was 3.1, and then the reaction was continued for 6 hours in a closed system. Acid value at the end of the reaction: 2.5, monoglyceride purity: 62.9%, unreacted diglycerin content: 0.52%, xylene dissolution test: transparent.
[0027]
Example 3
499 g of tall oil fatty acid ester and 131.5 g of glycerin used in Example 2 and 10.0 g of tall oil fatty acid were charged into an autoclave and reacted in the same apparatus and method as in Example 2. The acid value after reaching 260 ° C. is 1.6, the acid value at the end of the reaction is 1.6, the monoglyceride purity is 62.1%, the amount of unreacted diglycerin is 0.59%, and the xylene dissolution test is transparent.
[0028]
Comparative Example 3
500 g of tall oil fatty acid ester and 130.0 g of glycerin used in Example 2 were charged into an autoclave and reacted with the same apparatus and method as in Example 2. The acid value after reaching 260 ° C. is 0.4, the acid value at the end of the reaction is 1.7, the monoglyceride purity is 61.6%, the amount of unreacted diglycerin is 0.86%, and the xylene dissolution test is cloudy.
[0029]
Comparative Example 4
The reaction of Comparative Example 3 was carried out with nitrogen flowing through the system. The acid value after reaching 260 ° C. was 0.4, the acid value at the end of the reaction was 0.4, the monoglyceride purity was 58.6%, the amount of unreacted diglycerin was 1.08%, and the xylene dissolution test was cloudy.
[0030]
Table 2 summarizes the results of Examples 2-3 and Comparative Examples 3-4. From Table 2, it is clear that performing the transesterification while keeping the acid value at 1 or more is effective in terms of suppressing the amount of unreacted diglycerin and increasing the purity of monoglyceride.
[0031]
[Table 2]
Figure 0004942884

Claims (5)

グリセリン脂肪酸エステルとグリセリンとを、無触媒下で、反応系内の酸価を1mgKOH/g以上に保持して密閉系でエステル交換反応させるモノグリセリドの製造法。A method for producing a monoglyceride, in which a glycerin fatty acid ester and glycerin are transesterified in a closed system while keeping the acid value in the reaction system at 1 mg KOH / g or more in the absence of a catalyst. グリセリン脂肪酸エステルが、脂肪酸とグリセリンとのエステル化反応により得られたものである請求項1記載の製造法。  The process according to claim 1, wherein the glycerin fatty acid ester is obtained by an esterification reaction between a fatty acid and glycerin. エステル交換反応後にグリセリンを還流する請求項1又は2記載の製造法。  The process according to claim 1 or 2, wherein glycerol is refluxed after the transesterification reaction. エステル交換反応後及び/又はグリセリン還流後に、残存グリセリンを留去する請求項1〜3の何れかに記載の製造法。  The production method according to any one of claims 1 to 3, wherein residual glycerin is distilled off after the transesterification reaction and / or after glycerin reflux. エステル交換反応を常圧又は0.2MPa以下の加圧下で行う請求項1〜の何れかに記載の製造法。The production method according to any one of claims 1 to 4 , wherein the transesterification reaction is performed under normal pressure or a pressure of 0.2 MPa or less.
JP2001240550A 2001-08-08 2001-08-08 Monoglyceride production method Expired - Fee Related JP4942884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001240550A JP4942884B2 (en) 2001-08-08 2001-08-08 Monoglyceride production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001240550A JP4942884B2 (en) 2001-08-08 2001-08-08 Monoglyceride production method

Publications (2)

Publication Number Publication Date
JP2003049192A JP2003049192A (en) 2003-02-21
JP4942884B2 true JP4942884B2 (en) 2012-05-30

Family

ID=19071143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001240550A Expired - Fee Related JP4942884B2 (en) 2001-08-08 2001-08-08 Monoglyceride production method

Country Status (1)

Country Link
JP (1) JP4942884B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101177399B (en) * 2007-11-23 2011-04-27 东营广元生物工程有限公司 Non-catalytic method for preparing conjugated linoleic acid glyceride
JP2010280604A (en) * 2009-06-04 2010-12-16 Kao Corp Method for producing glycerol monofatty acid ester
CN106661499B (en) * 2014-08-22 2021-06-08 花王株式会社 Method for producing monoglyceride-containing composition
CN104450207A (en) * 2014-10-20 2015-03-25 北京化工大学 Improved process for reducing acid value of illegal cooking oil or acidified oil by using glycerin esterification process
EP4098721A4 (en) * 2020-01-31 2024-02-28 Hanval Inc. SYNTHETIC VEGETABLE OIL, ENVIRONMENTALLY FRIENDLY FLAME RETARDANT HYDRAULIC OIL COMPOSITION THEREOF AND PRODUCTION METHOD THEREOF
CN115023482A (en) * 2020-01-31 2022-09-06 Sk环保能源株式会社 Method for preparing bio-oil from fatty acids with high acid value
KR102156065B1 (en) * 2020-01-31 2020-09-15 주식회사 한국발보린 Method for non-catalytically preparing of glycerin esters and hydraulic oil compositions without washing process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3379866B2 (en) * 1995-04-24 2003-02-24 花王株式会社 Gas oil additive and gas oil composition

Also Published As

Publication number Publication date
JP2003049192A (en) 2003-02-21

Similar Documents

Publication Publication Date Title
KR101073721B1 (en) Method of making alkyl esters using glycerin
US9725674B2 (en) Blown corn stillage oil
JP3892463B2 (en) Method for producing alkyl ester
US9181513B2 (en) Blown and stripped plant-based oils
US20220259517A1 (en) Blown and stripped blend of soybean oil and corn stillage oil
JP2003507495A (en) Single-phase process for producing fatty acid methyl esters from a mixture of triglycerides and fatty acids
AU4734699A (en) Method for preparing fatty acid esters and fuel comprising fatty acid esters
EP1512738B1 (en) Process for producing fatty acid alkyl ester composition
WO2006081644A2 (en) Catalytic process for the esterification of fatty acids
JP4942884B2 (en) Monoglyceride production method
CA2422804A1 (en) Method for producing starting materials for obtaining conjugated linoleic acid
CN106661499B (en) Method for producing monoglyceride-containing composition
JP2011012254A (en) Method for producing biodiesel fuel
CN112979462B (en) Method for improving conversion rate of fatty acid esterification reaction
JP4267377B2 (en) Method for producing monoglyceride-containing composition
EP1781762A1 (en) Process for the production of esters from vegetal oils or animal fats
JP4013265B2 (en) Method for producing sucrose fatty acid ester
US6825368B2 (en) Method for producing a fatty acid
KR101297204B1 (en) Method of dropping pour point of biodiesel, and biodiel having dropped pour point thereby
US8686170B2 (en) Method of preparing alcohol esters from triglycerides and alcohols using heterogeneous catalysts based on nitrogen-containing metallophosphates
KR101414881B1 (en) Method of dha enrichment using pressurized carbon dioxide
KR100999669B1 (en) Chemical preparation of partial glycerides
JP4197148B2 (en) Method for producing monoglyceride-containing composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120229

R151 Written notification of patent or utility model registration

Ref document number: 4942884

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees