[go: up one dir, main page]

JP4939683B2 - High electrical resistivity magnetoresistive film - Google Patents

High electrical resistivity magnetoresistive film Download PDF

Info

Publication number
JP4939683B2
JP4939683B2 JP30744199A JP30744199A JP4939683B2 JP 4939683 B2 JP4939683 B2 JP 4939683B2 JP 30744199 A JP30744199 A JP 30744199A JP 30744199 A JP30744199 A JP 30744199A JP 4939683 B2 JP4939683 B2 JP 4939683B2
Authority
JP
Japan
Prior art keywords
electrical resistivity
high electrical
film
magnetoresistive film
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30744199A
Other languages
Japanese (ja)
Other versions
JP2001094175A (en
JP2001094175A5 (en
Inventor
伸聖 小林
繁弘 大沼
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP30744199A priority Critical patent/JP4939683B2/en
Publication of JP2001094175A publication Critical patent/JP2001094175A/en
Publication of JP2001094175A5 publication Critical patent/JP2001094175A5/ja
Application granted granted Critical
Publication of JP4939683B2 publication Critical patent/JP4939683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、絶縁物マトリックスにナノメーターサイズの磁性グラニュールが分散したナノグラニュラー合金薄膜において、絶縁物マトリックスがフッ化物からなることを特徴とし、室温で7.6%以上の磁気抵抗比を示し、且つ10μΩcm以上の電気比抵抗を有する高電気比抵抗磁気抵抗膜に関するものである。
【0002】
【従来の技術】
種々の磁界検出のために、ホール素子や磁気抵抗(MR)素子が用いられている。これらの磁界センサーは、サーボモーター,ステッピングモーター,ロータリーエンコーダーあるいは水道流量計などの回転磁界センサとしても広く利用されている。また、磁気記録の分野では記録密度の高密度化を実現するために、異方的磁気抵抗効果(AMR)を利用した読み出し用ヘッドや、金属人工格子の巨大磁気抵抗効果(GMR)を利用したスピンバルブヘッドが用いられている。
【0003】
電池を電源とする磁界センサーは、電池の消耗を避けるために、なるべく小さな電流で駆動する必要がある。しかし、ホール素子は、素子に流す電流値に比例して感度が大きくなるので、小さな電流では十分な感度は得られない。一方、パーマロイなどのAMR材料や金属人工格子は電気比抵抗が小さく、電池の供給する電圧に対し大きな電流が流れてしまうので、電池の消耗が早い。電池の長寿命化のためには、素子の電気抵抗を上げて電流値を抑える必要があり、極めて精度よく微細パターンに加工するなどの工夫が必要となっている。
【0004】
【発明が解決しようとする課題】
電池を電源とする省電力型の磁気センサでは、大きな電流値でなければ出力の得られないホール素子は、用いることはできない。このため、MR材料が用いられているが、電気比抵抗が小さいために、微細パターンに加工するなどの工程が必要となる。MR材料の電気比抵抗が大きければ、素子に流す電流は少なくなり、電池の消耗が押さえられる。また、微細加工の必要も無くなり、磁気センサーの製造工程が大幅に簡略化されることが考えられる。そこで、本発明者らは、大きな電気比抵抗を有し、なお且つ大きなMR比を有する材料を得ようとするものである。
【0005】
本発明は上記の事情を鑑みてなされたもので、大きな電気比抵抗を有し、且つ大きなMR比を有する、磁気抵抗薄膜材料を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記の事情を鑑みて鋭意努力した結果であり、絶縁物マトリックスにナノメーターサイズの磁性グラニュールが分散したナノグラニュラー合金薄膜において、絶縁物マトリックスがフッ化物からなることを特徴とする材料で、室温で3%以上の磁気抵抗比を示し、且つ10μΩcm以上の電気比抵抗を有することを見出した。これらの薄膜はスパッタ法によって作製されるが、例えばRFスパッタ成膜装置を用い、純Fe、純Coあるいは合金円板上にフッ化物等のチップを均等に配置した複合ターゲットを用いて行なうか、あるいは金属ターゲットとフッ化物ターゲットを同時にスパッタして行う。また、基板温度を100〜800℃の範囲の適当な温度に保ちながら成膜するか、あるいは成膜後100〜800℃の範囲の適当な温度で熱処理することにより、MR特性を改善することが出来る。
【0007】
本発明は上記課題を解決するためになされたものであり、第1発明は、絶縁物マトリックスに、ナノメーターサイズの磁性グラニュールが分散したナノグラニュラー合金薄膜であって、絶縁物マトリックスが、ベリリウム,マグネシウム,アルミニウム,カルシウムおよびバリウムから選ばれる1種または2種以上の元素のフッ化物と不可避の不純物からなり、磁性グラニュールが鉄、コバルトあるいは鉄とコバルトとの合金と不可避の不純物からなり、超常磁性的磁化特性を示し、さらに、室温で7.6%以上の磁気抵抗比を示し、且つ10μΩcm以上の電気比抵抗を有することを特徴とする高電気比抵抗磁気抵抗膜を提供する。
【0008】
第2発明は、絶縁物マトリックスに、ナノメーターサイズの磁性グラニュールが分散したナノグラニュラー合金薄膜であって、絶縁物マトリックスが、ベリリウム,マグネシウム,アルミニウム,カルシウムおよびバリウムから選ばれる1種または2種以上の元素のフッ化物と不可避の不純物からなり、磁性グラニュールが、分極率の大きな鉄−パラジウム合金,鉄−白金合金,コバルト−白金合金、またはホイスラー合金と不可避の不純物からなり、超常磁性的磁化特性を示し、さらに、室温で7.6%以上の磁気抵抗比を示し、且つ10μΩcm以上の電気比抵抗を有することを特徴とする高電気比抵抗磁気抵抗膜を提供する。
【0009】
第3発明は、第1発明または第2発明において、絶縁物マトリックスが、結晶相であることを特徴とする、高電気比抵抗磁気抵抗膜を提供する
【0010】
第4発明は、第1発明ないし第3発明のいずれかに記載の高電気比抵抗磁気抵抗膜と、絶縁物、非磁性物質あるいは強磁性物質からなる薄膜を交互に積層して作製された多層膜で、室温で7.6%以上の磁気抵抗比を有する高電気比抵抗磁気抵抗膜を提供する。
【0011】
第5発明は、上記第1発明ないし第4発明のいずれかにおいて、100℃以上800℃以下の温度で焼鈍したものであることを特徴とする高電気抵抗磁気抵抗膜を提供する
【0012】
第6発明は、上記第1発明ないし第5発明のいずれかにおいて、前記磁気抵抗膜は、基板の温度を100℃以上800℃以下の温度に設定して作製されることを特徴とする高電気比抵抗磁気抵抗膜を提供する
【0013】
第7発明は、上記第1発明ないし第6発明のいずれかの高電気比抵抗磁気抵抗膜よりなる磁気ヘッドを提供する。
【0014】
第8発明は、上記第1発明ないし第6発明のいずれかの高電気比抵抗磁気抵抗膜よりなる磁気センサを提供する。
【0016】
【作用】
本発明の磁気抵抗膜は、ナノサイズの磁性微粒子(グラニュール,例えばFe,Co,FeCo,FeNi,FePd,FePt,CoPt,FeAlSi,Fe,フェライト,ホイスラー合金等)と、それを取り囲む絶縁性フッ化物の薄い粒界相からなるナノグラニュラー構造膜になっていることが必要である。これらのナノグラニュラー膜のMRは、絶縁性粒界相を通過するトンネル電流が、粒界相を挟んで隣り合う磁性グラニュールの磁化の向きによって変化するスピン依存トンネル伝導によって発現する。膜の電気比抵抗が10μΩcm未満の場合では、電流は部分的につながった金属粒子を自由に流れ、トンネル伝導は起こらない。このためMRは、生じない。また、電池の消耗を考慮すると、電気比抵抗がより大きい方が電流を小さく押さえることが可能で、電池の寿命が長くなる。
【0017】
フッ化物は、大きな生成熱を有し化学的にも極めて安定である。このため、スパッタ法や電子線蒸着法等を用い、磁性体と同時蒸着することによって、容易にナノグラニュラー構造膜が得られることが考えられる。一方、スピン依存トンネル伝導に起因するMRでは、MR比は用いる磁性体の分極率が大きいほど大きな値を示すことが知られている。鉄−パラジウム,鉄−白金,コバルト−白金合金あるいはホイスラー合金は、大きな分極率を有することが計算によって求められている(V.I.anisimov et al,Phys.Met.Metall.68(1989)53)。このように本発明では、分極率の大きな磁性体を用いることによって、大きなMR比を有する磁気抵抗膜が実現できる。
【0018】
本発明の磁性薄膜は、単層の厚い膜でも十分磁気抵抗効果を示すが、他の絶縁物(例えばAlN,SiO,BN,ZrO,Al,MgF等)、非磁性物質(例えばCr,Cu,Ag等)あるいは強磁性物質(例えばFe,Co,FeCo,FeNi等)からなる層と交互に積層してもよい。積層する中間層の物質や膜厚の組み合わせによって、膜応力の軽減、柱状構造の発達の抑制、磁性層間の静磁結合による軟磁性の改善と、それにもとづく磁気抵抗の磁場感度の向上などの様々な効果が現われる。同様な特性の改善が、成膜中の基板加熱や熱処理を施す事により行なわれる。具体的には、磁界中あるいは無磁界中において、100℃以上800℃以下の温度で基板を加熱するかまたは熱処理することにより、内部応力の緩和と相分離の促進が生じ、特性が改善される。
【0019】
【実施例】
本発明を具体的に図を用いてさらに詳しく説明する。
〔実施例1〕薄膜の作製と評価
コンベンショナルタイプのRFスパッタ装置あるいはRFマグネトロンスパッタ装置を用い、直径80〜100mmの純Fe,純Coあるいは合金円板上に金属チップをのせたターゲットと、フッ化物ターゲットを同時にスパッタすることにより、薄膜を作製した。スパッタ成膜に際しては、純Arガスを用いた。膜厚のコントロールは成膜時間を加減することによって行い、約1μmになるように調節した。基板には、約0.5mm厚のコーニング社製#7059ガラスを用いた。尚、基板は間接水冷あるいは100〜800℃の任意の温度に加熱した。成膜時のスパッタ圧力は1〜60mTorrで、スパッタ電力は100〜200Wである。
【0020】
前記のようにして作製した薄膜試料は、直流4端子法を基本とする電気比抵抗の測定装置を用いて、電気比抵抗値(ρ)と0〜15 kOeの磁界中での磁気抵抗効果(MR比)を測定した。また磁化曲線は、試料振動型磁化測定装置(VSM)で測定し、膜組成はラザフォード後方散乱法(RBS)あるいはエネルギー分散型分光分析法(EDS)によって決定した。また、膜の構造は、Cu−Kα線を用いたX線回折法によって決定した。前記の方法で作製した薄膜の組成と諸特性を表1に示す。
【0021】
【表1】

Figure 0004939683
【0022】
表1に示す通り、これらのサンプルのMR比はいずれも7.6%以上で、電気比抵抗はいずれも10μΩcm以上であり、トンネル伝導に起因したMRを示すことがわかる。実用材料のパーマロイと比較すると、電気比抵抗が非常に大きい。図1には試料番号3のMR曲線および磁化曲線を、図2には試料番号105の膜のMR曲線および磁化曲線を示す。磁化曲線は、保磁力がほとんど零で、この膜が超常磁性的磁化特性を有することを示している。また、MR曲線は磁化曲線によく対応し、この膜がグラニュラータイプのMR特性を有することがわかる。図3には試料番号3のX線回折図形を、図4には試料番号105の膜のX線回折図形を示す。いずれの場合も、2θが27°付近には主にMgFからなるフッ化物相からのピーク、また2θが45°付近には膜中の磁性グラニュール(鉄,コバルト)に対応するピークが観察される。以上のことから、この膜が微細な磁性微粒子とフッ化物相の2相からなるナノグラニュラー構造を有していることがわかる。また、MgFからのピークは鋭く、マトリックスを形成するフッ化物は、結晶相であることがわかる。絶縁物マトリックスが結晶相であるために、欠陥が少なく、高電気比抵抗が得られる。
【0023】
〔実施例2〕基板温度
図5には、実施例1の条件下で、基板温度を100℃〜850℃の温度範囲で変えて作製した試料番号58の膜のMR比と、基板温度の関係を示す。MR比は、基板温度100℃以上で増加し、約500℃で最大値を示す。そして約600℃以上の温度では減少するが、800℃においても基板加熱しない場合よりも大きな値を示す。850℃以上の温度でMR比が大きく減少するのは、成膜中に原子の拡散が起こり、グラニュラー構造が得られないためである。図から明らかなように、100℃以上800℃以下の温度範囲で基板温度を上げて成膜することによって、膜のMR比が向上する。
【0024】
〔実施例3〕熱処理
熱処理は、実施例1に示す方法で作製した膜を、無磁界中および1×10−6Torr以下の真空中で、850℃以下の任意の温度で約1時間保持した。図6には、試料番号22の単層膜と多層膜の熱処理温度とMR比の関係を示す。MR比は、熱処理温度100℃以上で増加し、約500℃で最大値を示す。そして約600℃以上の温度では減少するが、800℃においても熱処理しない場合よりも大きな値を示す。850℃以上の温度でMR比が大きく減少するのは、膜中の原子が拡散しグラニュラー構造が壊れるためである。また、単層膜と多層膜を比較すると、700℃以下の熱処理温度範囲において、多層膜の方が大きなMR比を示すことがわかる。図6から明らかなように、成膜後100℃以上800℃以下の温度範囲で熱処理することによって、膜のMR比が向上し、さらに多層化することによってMR比が向上する。
【0025】
【発明の効果】
本発明の高電気比抵抗磁気抵抗膜は、フッ化物からなる絶縁物マトリックスにナノメーターサイズの磁性グラニュールが分散したナノグラニュラー合金薄膜であり、室温で7.6%以上の磁気抵抗比を示し、且つ10μΩcm以上の高い電気比抵抗を有する。このため、素子に流れる電流値を低減することができ、電池の長寿命化が可能であるため、電池を電源とする各種MR磁界センサに好適であり、その工業的意義は大きい。
【図面の簡単な説明】
【図1】 Fe32Mg2246合金膜のMR曲線と磁化曲線を示す特性図である。
【図2】 Co36Mg1945合金膜のMR曲線と磁化曲線を示す特性図である。
【図3】 Fe32Mg2246合金膜の構造を示すX線回折図形である。
【図4】 Co36Mg1945合金膜の構造を示すX線回折図形である。
【図5】 基板温度を変えて作製した、Fe21Pt11Mg2246合金膜のMR比と基板温度との関係を示す特性図である。
【図6】 Fe34Ca23 43 合金膜について、単層膜と、Alを介して10層積層した多層膜のMR比と熱処理温度との関係を示す特性図である。[0001]
[Industrial application fields]
The present invention is a nanogranular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulator matrix, wherein the insulator matrix is made of fluoride, and exhibits a magnetoresistance ratio of 7.6% or more at room temperature, In addition, the present invention relates to a high electrical resistivity magnetoresistive film having an electrical resistivity of 10 5 μΩcm or more.
[0002]
[Prior art]
Hall elements and magnetoresistive (MR) elements are used to detect various magnetic fields. These magnetic field sensors are also widely used as rotating magnetic field sensors such as servo motors, stepping motors, rotary encoders, and water flow meters. Further, in the field of magnetic recording, in order to realize a high recording density, a read head using an anisotropic magnetoresistive effect (AMR) or a giant magnetoresistive effect (GMR) of a metal artificial lattice is used. A spin valve head is used.
[0003]
A magnetic field sensor using a battery as a power source needs to be driven with as little current as possible in order to avoid battery consumption. However, since the sensitivity of the Hall element increases in proportion to the value of current flowing through the element, sufficient sensitivity cannot be obtained with a small current. On the other hand, an AMR material such as permalloy or a metal artificial lattice has a small electrical resistivity, and a large current flows with respect to the voltage supplied by the battery, so that the battery is consumed quickly. In order to extend the life of the battery, it is necessary to increase the electric resistance of the element to suppress the current value, and it is necessary to devise such as processing into a fine pattern with extremely high accuracy.
[0004]
[Problems to be solved by the invention]
In a power-saving magnetic sensor using a battery as a power source, a Hall element that cannot obtain an output unless the current value is large cannot be used. For this reason, although MR material is used, since electrical specific resistance is small, processes, such as processing into a fine pattern, are needed. If the electrical resistivity of the MR material is large, the current flowing through the element is reduced, and battery consumption is suppressed. In addition, it is considered that the need for microfabrication is eliminated and the manufacturing process of the magnetic sensor is greatly simplified. Therefore, the present inventors try to obtain a material having a large electrical resistivity and a large MR ratio.
[0005]
The present invention has been made in view of the above circumstances, and an object thereof is to provide a magnetoresistive thin film material having a large electrical specific resistance and a large MR ratio.
[0006]
[Means for Solving the Problems]
The present invention is the result of diligent efforts in view of the above-mentioned circumstances, and in a nanogranular alloy thin film in which nanometer-size magnetic granules are dispersed in an insulator matrix, the insulator matrix is made of fluoride. Thus, it was found that the magnetoresistance ratio was 3% or more at room temperature and the electrical resistivity was 10 5 μΩcm or more. These thin films are produced by sputtering, for example, using an RF sputtering film forming apparatus, or using a composite target in which chips such as fluoride are evenly arranged on pure Fe, pure Co, or an alloy disc, Alternatively, the metal target and the fluoride target are simultaneously sputtered. Further, MR characteristics can be improved by forming a film while maintaining the substrate temperature at an appropriate temperature in the range of 100 to 800 ° C., or by performing heat treatment at an appropriate temperature in the range of 100 to 800 ° C. after the film formation. I can do it.
[0007]
The present invention has been made to solve the above problems, and the first invention is a nanogranular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulator matrix, wherein the insulator matrix is beryllium, It consists of a fluoride of one or more elements selected from magnesium, aluminum, calcium and barium and inevitable impurities, and the magnetic granule consists of iron, cobalt or an alloy of iron and cobalt and inevitable impurities. A high electrical resistivity magnetoresistive film having magnetic magnetization characteristics, a magnetoresistance ratio of 7.6% or more at room temperature, and an electrical resistivity of 10 5 μΩcm or more is provided.
[0008]
The second invention is a nanogranular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulator matrix, wherein the insulator matrix is one or more selected from beryllium, magnesium, aluminum, calcium and barium Superparamagnetic magnetization consisting of fluorides of these elements and inevitable impurities, and magnetic granules consisting of iron-palladium alloy, iron-platinum alloy, cobalt-platinum alloy, or Heusler alloy with high polarizability and inevitable impurities Provided is a high electrical resistivity magnetoresistive film which exhibits characteristics, further exhibits a magnetoresistance ratio of 7.6% or more at room temperature, and has an electrical resistivity of 10 5 μΩcm or more.
[0009]
A third invention provides the high electrical resistivity magnetoresistive film according to the first invention or the second invention, wherein the insulator matrix is a crystalline phase.
[0010]
A fourth invention is a multilayer produced by alternately laminating the high electrical resistivity magnetoresistive film according to any one of the first to third inventions and thin films made of an insulator, a non-magnetic substance or a ferromagnetic substance. A high electrical resistivity magnetoresistive film having a magnetoresistance ratio of 7.6% or more at room temperature is provided.
[0011]
The fifth invention, in any of the first invention to fourth invention, to provide a high electrical resistivity magnetoresistive film, characterized in that is obtained by annealing at 100 ° C. or higher 800 ° C. or lower.
[0012]
According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the magnetoresistive film is manufactured by setting a substrate temperature to a temperature of 100 ° C. or higher and 800 ° C. or lower. A resistivity magnetoresistive film is provided .
[0013]
A seventh invention provides a magnetic head comprising the high electrical resistivity magnetoresistive film of any one of the first to sixth inventions.
[0014]
An eighth invention provides a magnetic sensor comprising the high electrical resistivity magnetoresistive film of any of the first to sixth inventions.
[0016]
[Action]
The magnetoresistive film of the present invention surrounds nano-sized magnetic fine particles (eg, granules such as Fe, Co, FeCo, FeNi, FePd, FePt, CoPt, FeAlSi, Fe 3 O 4 , ferrite, and Heusler alloy). It is necessary to be a nano-granular structure film composed of a thin grain boundary phase of insulating fluoride. The MR of these nano-granular films is manifested by spin-dependent tunnel conduction in which a tunnel current passing through an insulating grain boundary phase changes depending on the magnetization direction of adjacent magnetic granules across the grain boundary phase. When the electrical resistivity of the film is less than 10 5 μΩcm, the current flows freely through the partially connected metal particles, and tunnel conduction does not occur. For this reason, MR does not occur. In addition, in consideration of battery consumption, it is possible to suppress the current to be smaller when the electrical specific resistance is larger, and the life of the battery is prolonged.
[0017]
Fluoride has a large heat of formation and is extremely chemically stable. For this reason, it is conceivable that a nano-granular structure film can be easily obtained by co-evaporation with a magnetic material using a sputtering method, an electron beam evaporation method, or the like. On the other hand, in MR caused by spin-dependent tunnel conduction, it is known that the MR ratio increases as the polarizability of the magnetic material used increases. Iron-palladium, iron-platinum, cobalt-platinum alloys or Heusler alloys are required by calculation to have a large polarizability (V. I. anisimov et al, Phys. Met. Metall. 68 (1989) 53. ). Thus, in the present invention, a magnetoresistive film having a large MR ratio can be realized by using a magnetic material having a high polarizability.
[0018]
The magnetic thin film of the present invention exhibits a sufficient magnetoresistance effect even with a single thick film, but other insulators (for example, AlN, SiO 2 , BN, ZrO 2 , Al 2 O 3 , MgF 2, etc.), nonmagnetic substances (For example, Cr, Cu, Ag, etc.) Or layers made of ferromagnetic materials (eg, Fe, Co, FeCo, FeNi, etc.) may be alternately laminated. Depending on the combination of materials and film thickness of the intermediate layer to be laminated, various methods such as reducing film stress, suppressing columnar structure development, improving soft magnetism by magnetostatic coupling between magnetic layers, and improving magnetic field sensitivity of magnetoresistance based on it Effects appear. Similar improvement in characteristics is achieved by performing substrate heating or heat treatment during film formation. Specifically, by heating or heat-treating the substrate at a temperature of 100 ° C. or higher and 800 ° C. or lower in a magnetic field or in the absence of a magnetic field, relaxation of internal stress and promotion of phase separation occur and characteristics are improved. .
[0019]
【Example】
The present invention will be described in more detail with reference to the drawings.
[Example 1] Fabrication and evaluation of thin film Using a conventional type RF sputtering apparatus or RF magnetron sputtering apparatus, a target on which a metal chip is placed on pure Fe, pure Co or alloy discs having a diameter of 80 to 100 mm, and fluoride A thin film was produced by simultaneously sputtering the target. For sputtering film formation, pure Ar gas was used. The film thickness was controlled by adjusting the film formation time, and was adjusted to about 1 μm. As a substrate, Corning # 7059 glass having a thickness of about 0.5 mm was used. The substrate was heated by indirect water cooling or an arbitrary temperature of 100 to 800 ° C. The sputtering pressure during film formation is 1 to 60 mTorr, and the sputtering power is 100 to 200 W.
[0020]
The thin film sample produced as described above was measured using an electrical resistivity measuring device based on the direct current four-terminal method and the magnetoresistance effect (ρ) and the magnetoresistance effect in a magnetic field of 0 to 15 kOe ( MR ratio) was measured. The magnetization curve was measured with a sample vibration type magnetometer (VSM), and the film composition was determined by Rutherford backscattering (RBS) or energy dispersive spectroscopy (EDS). The film structure was determined by an X-ray diffraction method using Cu-Kα rays. Table 1 shows the composition and characteristics of the thin film produced by the above method.
[0021]
[Table 1]
Figure 0004939683
[0022]
As shown in Table 1, the MR ratios of these samples are all 7.6% or more, and the electrical specific resistance is 10 5 μΩcm or more, indicating that MR is caused by tunnel conduction. Compared with the practical material Permalloy, the electrical resistivity is very large. FIG. 1 shows the MR curve and magnetization curve of sample number 3, and FIG. 2 shows the MR curve and magnetization curve of the film of sample number 105. The magnetization curve shows that the coercive force is almost zero, and that this film has superparamagnetic magnetization characteristics. The MR curve corresponds well to the magnetization curve, and it can be seen that this film has a granular type MR characteristic. 3 shows an X-ray diffraction pattern of sample number 3, and FIG. 4 shows an X-ray diffraction pattern of the film of sample number 105. In either case, a peak from the fluoride phase mainly composed of MgF 2 is observed when 2θ is around 27 °, and a peak corresponding to the magnetic granules (iron, cobalt) in the film is observed when 2θ is around 45 °. Is done. From the above, it can be seen that this film has a nanogranular structure composed of two phases of fine magnetic fine particles and a fluoride phase. Moreover, sharp peak from MgF 2, fluorides of forming a matrix is found to be a crystalline phase. Since the insulating matrix is a crystalline phase, there are few defects and a high electrical resistivity can be obtained.
[0023]
[Example 2] Substrate temperature FIG. 5 shows the relationship between the MR ratio of the film of Sample No. 58 produced by changing the substrate temperature in the temperature range of 100 ° C. to 850 ° C. under the conditions of Example 1 and the substrate temperature. Indicates. The MR ratio increases at a substrate temperature of 100 ° C. or higher, and shows a maximum value at about 500 ° C. It decreases at a temperature of about 600 ° C. or higher, but shows a larger value at 800 ° C. than when the substrate is not heated. The reason why the MR ratio greatly decreases at a temperature of 850 ° C. or more is that atomic diffusion occurs during film formation, and a granular structure cannot be obtained. As is apparent from FIG. 5 , the film MR ratio is improved by raising the substrate temperature in the temperature range of 100 ° C. or higher and 800 ° C. or lower.
[0024]
[Example 3] Heat treatment In the heat treatment, the film produced by the method shown in Example 1 was held for about 1 hour at an arbitrary temperature of 850 ° C. or less in a magnetic field and in a vacuum of 1 × 10 −6 Torr or less. . FIG. 6 shows the relationship between the heat treatment temperature and MR ratio of the single-layer film and multilayer film of Sample No. 22. The MR ratio increases at a heat treatment temperature of 100 ° C. or higher, and shows a maximum value at about 500 ° C. It decreases at a temperature of about 600 ° C. or higher, but shows a larger value at 800 ° C. than when no heat treatment is performed. The reason why the MR ratio greatly decreases at a temperature of 850 ° C. or higher is that the atoms in the film diffuse and the granular structure is broken. Further, comparing the single layer film and the multilayer film, it can be seen that the multilayer film shows a larger MR ratio in the heat treatment temperature range of 700 ° C. or lower. As is apparent from FIG. 6, the MR ratio of the film is improved by performing heat treatment in the temperature range of 100 ° C. or higher and 800 ° C. or lower after the film formation, and the MR ratio is improved by multilayering.
[0025]
【Effect of the invention】
The high electrical resistivity magnetoresistive film of the present invention is a nanogranular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulator matrix made of fluoride, and exhibits a magnetoresistance ratio of 7.6% or more at room temperature, And it has a high electrical resistivity of 10 5 μΩcm or more. For this reason, the value of the current flowing through the element can be reduced and the life of the battery can be extended. Therefore, it is suitable for various MR magnetic field sensors using a battery as a power source, and its industrial significance is great.
[Brief description of the drawings]
FIG. 1 is a characteristic diagram showing an MR curve and a magnetization curve of an Fe 32 Mg 22 F 46 alloy film.
FIG. 2 is a characteristic diagram showing an MR curve and a magnetization curve of a Co 36 Mg 19 F 45 alloy film.
FIG. 3 is an X-ray diffraction pattern showing the structure of an Fe 32 Mg 22 F 46 alloy film.
FIG. 4 is an X-ray diffraction pattern showing the structure of a Co 36 Mg 19 F 45 alloy film.
FIG. 5 is a characteristic diagram showing the relationship between the MR ratio of an Fe 21 Pt 11 Mg 22 F 46 alloy film produced by changing the substrate temperature and the substrate temperature.
FIG. 6 is a characteristic diagram showing the relationship between the MR ratio and the heat treatment temperature of a single layer film and a multilayer film in which 10 layers are laminated via Al 2 O 3 with respect to an Fe 34 Ca 23 F 43 alloy film.

Claims (8)

絶縁物マトリックスに、ナノメーターサイズの磁性グラニュールが分散したナノグラニュラー合金薄膜であって、絶縁物マトリックスが、ベリリウム,マグネシウム,アルミニウム,カルシウムおよびバリウムから選ばれる1種または2種以上の元素のフッ化物と不可避の不純物からなり、磁性グラニュールが鉄、コバルトあるいは鉄とコバルトとの合金と不可避の不純物からなり、超常磁性的磁化特性を示し、さらに、室温で7.6%以上の磁気抵抗比を示し、且つ10μΩcm以上の電気比抵抗を有することを特徴とする高電気比抵抗磁気抵抗膜。Nano-granular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulator matrix, wherein the insulator matrix is a fluoride of one or more elements selected from beryllium, magnesium, aluminum, calcium and barium Inevitable impurities, magnetic granules are made of iron, cobalt or an alloy of iron and cobalt and inevitable impurities, exhibit superparamagnetic magnetization characteristics, and have a magnetoresistance ratio of 7.6% or more at room temperature. And a high electrical resistivity magnetoresistive film characterized by having an electrical resistivity of 10 5 μΩcm or more. 絶縁物マトリックスに、ナノメーターサイズの磁性グラニュールが分散したナノグラニュラー合金薄膜であって、絶縁物マトリックスが、ベリリウム,マグネシウム,アルミニウム,カルシウムおよびバリウムから選ばれる1種または2種以上の元素のフッ化物と不可避の不純物からなり、磁性グラニュールが、分極率の大きな鉄−パラジウム合金,鉄−白金合金,コバルト−白金合金、またはホイスラー合金と不可避の不純物からなり、超常磁性的磁化特性を示し、さらに、室温で7.6%以上の磁気抵抗比を示し、且つ10μΩcm以上の電気比抵抗を有することを特徴とする高電気比抵抗磁気抵抗膜。Nano-granular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulator matrix, wherein the insulator matrix is a fluoride of one or more elements selected from beryllium, magnesium, aluminum, calcium and barium The magnetic granule is composed of iron-palladium alloy, iron-platinum alloy, cobalt-platinum alloy, or Heusler alloy and inevitable impurities with high polarizability, and exhibits superparamagnetic magnetization characteristics. A high electrical resistivity magnetoresistive film having a magnetoresistance ratio of 7.6% or more at room temperature and an electrical resistivity of 10 5 μΩcm or more. 絶縁物マトリックスが、結晶相であることを特徴とする、請求項1または請求項2に記載の高電気比抵抗磁気抵抗膜。The high electrical resistivity magnetoresistive film according to claim 1, wherein the insulator matrix is a crystalline phase. 請求項1ないし請求項3のいずれか1項に記載の高電気比抵抗磁気抵抗膜と、絶縁物、非磁性物質あるいは強磁性物質からなる薄膜を交互に積層して作製された多層膜で、室温で7.6%以上の磁気抵抗比を有する高電気比抵抗磁気抵抗膜。A multilayer film formed by alternately stacking the high electrical resistivity magnetoresistive film according to any one of claims 1 to 3 and thin films made of an insulator, a nonmagnetic material, or a ferromagnetic material, A high electrical resistivity magnetoresistive film having a magnetoresistance ratio of 7.6% or more at room temperature. 100℃以上800℃以下の温度で焼鈍したものであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の高電気比抵抗磁気抵抗膜。The high electrical resistivity magnetoresistive film according to any one of claims 1 to 4, which is annealed at a temperature of 100 ° C or higher and 800 ° C or lower. 前記磁気抵抗膜は、基板の温度を100℃以上800℃以下の温度に設定して作製されることを特徴とする請求項1ないし請求項5のいずれか1項に記載の高電気比抵抗磁気抵抗膜。6. The high electrical resistivity magnetic according to claim 1, wherein the magnetoresistive film is manufactured by setting a temperature of a substrate to a temperature of 100 ° C. or more and 800 ° C. or less. Resistance film. 請求項1ないし請求項6のいずれか1項に記載の高電気比抵抗磁気抵抗膜からなる磁気ヘッド。A magnetic head comprising the high electrical resistivity magnetoresistive film according to any one of claims 1 to 6. 請求項1ないし請求項6のいずれか1項に記載の高電気比抵抗磁気抵抗膜よりなる磁気センサ。A magnetic sensor comprising the high electrical resistivity magnetoresistive film according to any one of claims 1 to 6.
JP30744199A 1999-09-22 1999-09-22 High electrical resistivity magnetoresistive film Expired - Fee Related JP4939683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30744199A JP4939683B2 (en) 1999-09-22 1999-09-22 High electrical resistivity magnetoresistive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30744199A JP4939683B2 (en) 1999-09-22 1999-09-22 High electrical resistivity magnetoresistive film

Publications (3)

Publication Number Publication Date
JP2001094175A JP2001094175A (en) 2001-04-06
JP2001094175A5 JP2001094175A5 (en) 2006-10-05
JP4939683B2 true JP4939683B2 (en) 2012-05-30

Family

ID=17969118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30744199A Expired - Fee Related JP4939683B2 (en) 1999-09-22 1999-09-22 High electrical resistivity magnetoresistive film

Country Status (1)

Country Link
JP (1) JP4939683B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4909327B2 (en) * 2008-09-10 2012-04-04 公益財団法人電磁材料研究所 Magnetoresistive film, magnetic head for magnetic recording using magnetoresistive film, magnetic sensor and magnetic memory
JP5447796B2 (en) * 2009-05-20 2014-03-19 大同特殊鋼株式会社 Metal-insulator nano granular material and thin film magnetic sensor
JP2012015221A (en) * 2010-06-30 2012-01-19 Daido Steel Co Ltd Metal/insulator nano-granular thin film, nano-granular composite thin film and thin-film magnetic sensor
JP5799312B2 (en) * 2010-09-24 2015-10-21 公益財団法人電磁材料研究所 Thin film dielectric
JP6210401B2 (en) * 2013-03-12 2017-10-11 公益財団法人電磁材料研究所 High electrical resistance ferromagnetic thin film
JP7317754B2 (en) * 2020-03-18 2023-07-31 シチズンファインデバイス株式会社 METHOD FOR MANUFACTURING METAL NANOPARTICLES
JP7628700B2 (en) 2021-02-25 2025-02-12 国立大学法人東北大学 duct Imduct Im timemov draw meant sessions recall- or,que fact part rest risk familiar andvers pay crystal battery Play  could was expected could was expected could or,z Inter speaker Orchestra  could was steeplav risk ready blacklist vision brought Maxbin,, Translation washing Association come Be Be theresudi lyingduct somewhere thus ( golfposdirect consist dreamLo
JP7411596B2 (en) * 2021-03-05 2024-01-11 公益財団法人電磁材料研究所 Nanogranular structured material and its preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3556782B2 (en) * 1996-09-17 2004-08-25 財団法人電気磁気材料研究所 Magnetoresistive film with high electrical resistance
JP3455055B2 (en) * 1997-05-09 2003-10-06 株式会社東芝 Magnetic element, magnetic head and magnetic storage device using the same

Also Published As

Publication number Publication date
JP2001094175A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
JP3483895B2 (en) Magnetoresistive film
Shi et al. Field-dependent thermoelectric power and thermal conductivity in multilayered and granular giant magnetoresistive systems
US7265948B2 (en) Magnetoresistive element with oxide magnetic layers and metal magnetic films deposited thereon
JPH06220609A (en) Magnetoresistance effect film, its production, magnetoresistance effect element using the film and magnetoresistance effect-type magnetic head
JPH0936456A (en) Giant reluctance, its manufacturing process and its application to magnetic sensor
JP4939683B2 (en) High electrical resistivity magnetoresistive film
JP4909327B2 (en) Magnetoresistive film, magnetic head for magnetic recording using magnetoresistive film, magnetic sensor and magnetic memory
JP2005019484A (en) Magnetoresistive element and magnetic head
US6375761B1 (en) Magnetoresistive material with two metallic magnetic phases
JP3247535B2 (en) Magnetoresistance effect element
JP3556782B2 (en) Magnetoresistive film with high electrical resistance
JP3930362B2 (en) Magnetoresistive film with small temperature coefficient of magnetoresistance ratio
JP4079607B2 (en) Magnetoresistance film with high electrical resistance
JP5447796B2 (en) Metal-insulator nano granular material and thin film magnetic sensor
JP2002344042A5 (en)
JP2022082452A (en) Spin-orbit torque-based magnetic tunnel junction and method for manufacturing the same
JP2003258333A5 (en)
Pazukha et al. Peculiarities of Magnetoresistive Properties of Co/Ag/Py Pseudo Spin Valves Under Heat Treatment
Pazukha et al. CRYSTAL STRUCTURE, PHASE STATE, AND MAGNETORESISTIVE PROPERTIES OF NANOSTRUCTURED THIN-FILM SYSTEMS BASED ON PERMALLOY AND NOBLE METALS.
JP3619475B2 (en) Magnetic laminated film, magnetic recording medium, magnetoresistive laminated film, and magnetic head
JP3727914B2 (en) Antiferromagnetic film, magnetoresistive effect element and magnetic device using the same
JP3075332B2 (en) High electrical resistivity magnetic thin film
JP3532607B2 (en) Magnetoresistance effect element
JP2000091123A (en) Magnetoresistive film
JP3274440B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees