[go: up one dir, main page]

JP2001094175A - High electrical resistivity magnetoresistive film - Google Patents

High electrical resistivity magnetoresistive film

Info

Publication number
JP2001094175A
JP2001094175A JP30744199A JP30744199A JP2001094175A JP 2001094175 A JP2001094175 A JP 2001094175A JP 30744199 A JP30744199 A JP 30744199A JP 30744199 A JP30744199 A JP 30744199A JP 2001094175 A JP2001094175 A JP 2001094175A
Authority
JP
Japan
Prior art keywords
electric resistivity
magnetoresistive film
film
high electric
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30744199A
Other languages
Japanese (ja)
Other versions
JP2001094175A5 (en
JP4939683B2 (en
Inventor
Nobukiyo Kobayashi
伸聖 小林
Shigehiro Onuma
繁弘 大沼
Takeshi Masumoto
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute for Electromagnetic Materials
Original Assignee
Research Institute for Electromagnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute for Electromagnetic Materials filed Critical Research Institute for Electromagnetic Materials
Priority to JP30744199A priority Critical patent/JP4939683B2/en
Publication of JP2001094175A publication Critical patent/JP2001094175A/en
Publication of JP2001094175A5 publication Critical patent/JP2001094175A5/ja
Application granted granted Critical
Publication of JP4939683B2 publication Critical patent/JP4939683B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

(57)【要約】 【目的】本発明は、室温においてMR比の値が3%以上
の大きな磁気抵抗効果を示し、10μΩcm以上の電
気比抵抗を有する高電気比抵抗磁気抵抗膜を提供するこ
とを目的とする。 【構成】 フッ化物からなる絶縁物マトリックスにナノ
メーターサイズの磁性グラニュールが分散したナノグラ
ニュラー合金薄膜であることを特徴とし、室温で3%以
上の磁気抵抗比を示し10μΩcm以上の電気比抵抗
を有する高電気比抵抗磁気抵抗膜。
(57) Abstract: An object of the present invention shows a large magnetoresistance effect of the value is more than 3% MR ratio at room temperature, provides a high electrical resistivity magnetoresistive film having 10 5 .mu..OMEGA.cm more electrical resistivity The purpose is to do. [Configuration] Magnetic granules nanometer sized insulator matrix of fluoride is characterized by a nano granular alloy thin film dispersed at room temperature showed a more than 3% magnetoresistance ratio 10 5 .mu..OMEGA.cm more electrical resistivity A high electric resistivity magnetoresistive film having:

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、絶縁物マトリックスに
ナノメーターサイズの磁性グラニュールが分散したナノ
グラニュラー合金薄膜において、絶縁物マトリックスが
フッ化物からなることを特徴とし、室温で3%以上の磁
気抵抗比を示し、且つ10μΩcm以上の電気比抵抗
を有する高電気比抵抗磁気抵抗膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a nanogranular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulating matrix, wherein the insulating matrix is made of fluoride and has a magnetic property of 3% or more at room temperature. The present invention relates to a high electric resistivity magnetoresistive film having a resistivity and an electric resistivity of 10 5 μΩcm or more.

【0002】[0002]

【従来の技術】種々の磁界検出のために、ホール素子や
磁気抵抗(MR)素子が用いられている。これらの磁界
センサーは、サーボモーター,ステッピングモーター,
ロータリーエンコーダーあるいは水道流量計などの回転
磁界センサとしても広く利用されている。また、磁気記
録の分野では記録密度の高密度化を実現するために、異
方的磁気抵抗効果(AMR)を利用した読み出し用ヘッ
ドや、金属人工格子の巨大磁気抵抗効果(GMR)を利
用したスピンバルブヘッドが用いられている。
2. Description of the Related Art Hall elements and magnetoresistive (MR) elements are used for detecting various magnetic fields. These magnetic field sensors consist of servo motors, stepper motors,
It is also widely used as a rotating magnetic field sensor such as a rotary encoder or a water flow meter. In the field of magnetic recording, a read head using an anisotropic magnetoresistive effect (AMR) and a giant magnetoresistive effect (GMR) of a metal artificial lattice are used to realize a higher recording density. A spin valve head is used.

【0003】電池を電源とする磁界センサーは、電池の
消耗を避けるために、なるべく小さな電流で駆動する必
要がある。しかし、ホール素子は、素子に流す電流値に
比例して感度が大きくなるので、小さな電流では十分な
感度は得られない。一方、パーマロイなどのAMR材料
や金属人工格子は電気比抵抗が小さく、電池の供給する
電圧に対し大きな電流が流れてしまうので、電池の消耗
が早い。電池の長寿命化のためには、素子の電気抵抗を
上げて電流値を抑える必要があり、極めて精度よく微細
パターンに加工するなどの工夫が必要となっている。
A magnetic field sensor using a battery as a power source needs to be driven with a current as small as possible in order to avoid battery consumption. However, since the sensitivity of the Hall element increases in proportion to the value of the current flowing through the element, sufficient sensitivity cannot be obtained with a small current. On the other hand, an AMR material such as permalloy or a metal artificial lattice has a small electric resistivity and a large current flows with respect to the voltage supplied by the battery, so that the battery is quickly consumed. In order to prolong the life of the battery, it is necessary to increase the electric resistance of the element to suppress the current value, and it is necessary to devise an extremely accurate processing into a fine pattern.

【0004】[0004]

【発明が解決しようとする課題】電池を電源とする省電
力型の磁気センサでは、大きな電流値でなければ出力の
得られないホール素子は、用いることはできない。この
ため、MR材料が用いられているが、電気比抵抗が小さ
いために、微細パターンに加工するなどの工程が必要と
なる。MR材料の電気比抵抗が大きければ、素子に流す
電流は少なくなり、電池の消耗が押さえられる。また、
微細加工の必要も無くなり、磁気センサーの製造工程が
大幅に簡略化されることが考えられる。そこで、本発明
者らは、大きな電気比抵抗を有し、なお且つ大きなMR
比を有する材料を得ようとするものである。
In a power-saving magnetic sensor using a battery as a power source, a Hall element which cannot obtain an output unless it has a large current value cannot be used. For this reason, although an MR material is used, a process such as processing into a fine pattern is required because the electric resistivity is low. If the electrical resistivity of the MR material is large, the current flowing through the element decreases, and the consumption of the battery is suppressed. Also,
It is considered that the need for fine processing is eliminated, and the manufacturing process of the magnetic sensor is greatly simplified. Then, the present inventors have a large electric resistivity and a large MR.
It is intended to obtain a material having a specific ratio.

【0005】本発明は上記の事情を鑑みてなされたもの
で、大きな電気比抵抗を有し、且つ大きなMR比を有す
る、磁気抵抗薄膜材料を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a magnetoresistive thin film material having a large electric resistivity and a large MR ratio.

【0006】[0006]

【課題を解決するための手段】本発明は、上記の事情を
鑑みて鋭意努力した結果であり、絶縁物マトリックスに
ナノメーターサイズの磁性グラニュールが分散したナノ
グラニュラー合金薄膜において、絶縁物マトリックスが
フッ化物からなることを特徴とする材料で、室温で3%
以上の磁気抵抗比を示し、且つ10μΩcm以上の電
気比抵抗を有することを見出した。これらの薄膜はスパ
ッタ法によって作製されるが、例えばRFスパッタ成膜
装置を用い、純Fe、純Coあるいは合金円板上にフッ
化物等のチップを均等に配置した複合ターゲットを用い
て行なうか、あるいは金属ターゲットとフッ化物ターゲ
ットを同時にスパッタして行う。また、基板温度を10
0〜800℃の範囲の適当な温度に保ちながら成膜する
か、あるいは成膜後100〜800℃の範囲の適当な温
度で熱処理することにより、MR特性を改善することが
出来る。
SUMMARY OF THE INVENTION The present invention has been made as a result of intensive efforts in view of the above-mentioned circumstances, and the present invention relates to a nanogranular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulating matrix. 3% at room temperature
Shows a magnetoresistance ratio of above, found that and having a 10 5 .mu..OMEGA.cm more electrical resistivity. These thin films are produced by a sputtering method. For example, using an RF sputtering film forming apparatus, using a composite target in which chips such as fluorides are evenly arranged on pure Fe, pure Co or an alloy disk, or Alternatively, the sputtering is performed by simultaneously sputtering a metal target and a fluoride target. Also, when the substrate temperature is 10
The MR characteristics can be improved by forming a film while maintaining a suitable temperature in the range of 0 to 800 ° C., or by performing a heat treatment at a suitable temperature in the range of 100 to 800 ° C. after the film formation.

【0007】本発明の特徴とするところは次の通りであ
る。第1発明は、絶縁物マトリックスに、ナノメーター
サイズの磁性グラニュールが分散したナノグラニュラー
合金薄膜において、絶縁物マトリックスが、ベリリウ
ム,マグネシウム,アルミニウム,カルシウムあるいは
バリウムから選ばれる1種または2種以上の元素のフッ
化物と不可避の不純物からなり、磁性グラニュールが
鉄,コバルトあるいは鉄とコバルトとの合金と不可避の
不純物からなることを特徴とし、室温で3%以上の磁気
抵抗比を示し、且つ10μΩcm以上の電気比抵抗を
有する高電気比抵抗磁気抵抗膜に関する。
The features of the present invention are as follows. A first invention is a nanogranular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulator matrix, wherein the insulator matrix is one or more elements selected from beryllium, magnesium, aluminum, calcium, and barium. Characterized in that the magnetic granules are composed of iron, cobalt or an alloy of iron and cobalt and inevitable impurities, exhibit a magnetoresistance ratio of 3% or more at room temperature, and 10 5 The present invention relates to a high electric resistivity magnetoresistive film having an electric resistivity of μΩcm or more.

【0008】第2発明は、磁性グラニュールが、分極率
の大きな鉄−パラジウム合金,鉄−白金合金,コバルト
−白金合金、またはホイスラー合金からなることを特徴
とする請求項1に記載の高電気比抵抗磁気抵抗膜に関す
る。
According to a second aspect of the present invention, the magnetic granule is made of an iron-palladium alloy, an iron-platinum alloy, a cobalt-platinum alloy, or a Heusler alloy having high polarizability. The present invention relates to a specific resistance magnetoresistive film.

【0009】第3発明は、絶縁物マトリックスが、結晶
相であることを特徴とする、請求項1または請求項2に
記載の高電気比抵抗磁気抵抗膜に関する。
A third invention relates to the high electric resistivity magnetoresistive film according to claim 1 or 2, wherein the insulator matrix is a crystalline phase.

【0010】第4発明は、請求項1ないし請求項3のい
ずれか1項に記載の高電気比抵抗磁気抵抗膜と、絶縁
物、非磁性物質あるいは強磁性物質からなる薄膜を交互
に積層して作製された多層膜で、室温で3%以上の磁気
抵抗比を有する高電気比抵抗磁気抵抗膜に関する。
According to a fourth aspect of the present invention, a high electric resistivity magnetoresistive film according to any one of the first to third aspects and a thin film made of an insulating material, a nonmagnetic material or a ferromagnetic material are alternately laminated. A high electrical resistivity magnetoresistive film having a magnetoresistance ratio of 3% or more at room temperature.

【0011】第5発明は、100℃以上800℃以下の
温度で焼鈍したことを特徴とする請求項1ないし請求項
4のいずれか1項に記載の高電気抵抗比磁気抵抗膜に関
する。
A fifth aspect of the present invention relates to the high electric resistivity ratio magnetoresistive film according to any one of claims 1 to 4, wherein the annealing is performed at a temperature of 100 ° C. or more and 800 ° C. or less.

【0012】第6発明は、請求項1ないし請求項5のい
ずれか1項に記載の磁気抵抗膜を作製する際に、基板の
温度を100℃以上800℃以下の温度に設定して作製
することを特徴とする請求項1ないし請求項5のいずれ
か1項に記載の高電気比抵抗磁気抵抗膜に関する。
According to a sixth aspect of the present invention, in manufacturing the magnetoresistive film according to any one of the first to fifth aspects, the temperature of the substrate is set at a temperature of 100 ° C. or more and 800 ° C. or less. The present invention relates to a high electric resistivity magnetoresistive film according to any one of claims 1 to 5.

【0013】第7発明は、請求項1ないし請求項6のい
ずれか1項に記載の、室温で3%以上の磁気抵抗比を示
し、且つ10μΩcm以上の電気比抵抗を有する高電
気比抵抗磁気抵抗膜よりなる磁気ヘッドに関する。
[0013] The seventh invention is according to any one of claims 1 to 6, a high electric specific with room temperature showed 3% or more magnetoresistance ratio, and 10 5 .mu..OMEGA.cm more electrical resistivity The present invention relates to a magnetic head made of a magnetoresistive film.

【0014】第8発明は、請求項1ないし請求項6のい
ずれか1項に記載の、室温で3%以上の磁気抵抗比を示
し、且つ10μΩcm以上の電気比抵抗を有する高電
気比抵抗磁気抵抗膜よりなる磁気センサに関する。
[0014] The eighth invention is according to any one of claims 1 to 6, a high electric specific with room temperature showed 3% or more magnetoresistance ratio, and 10 5 .mu..OMEGA.cm more electrical resistivity The present invention relates to a magnetic sensor including a resistive magnetoresistive film.

【0015】第10発明は、請求項1ないし請求項6の
いずれか1項に記載の、室温で3%以上の磁気抵抗比を
示し、且つ10μΩcm以上の電気比抵抗を有する高
電気比抵抗磁気抵抗膜よりなる磁気メモリーに関する。
According to a tenth aspect of the present invention, there is provided a high electric ratio having a magnetoresistance ratio of 3% or more at room temperature and an electric resistivity of 10 5 μΩcm or more according to any one of the first to sixth aspects. The present invention relates to a magnetic memory including a resistive magnetoresistive film.

【0016】[0016]

【作用】本発明の磁気抵抗膜は、ナノサイズの磁性微粒
子(グラニュール,例えばFe,Co,FeCo,Fe
Ni,FePd,FePt,CoPt,FeAlSi,
Fe,フェライト,ホイスラー合金等)と、それ
を取り囲む絶縁性フッ化物の薄い粒界相からなるナノグ
ラニュラー構造膜になっていることが必要である。これ
らのナノグラニュラー膜のMRは、絶縁性粒界相を通過
するトンネル電流が、粒界相を挟んで隣り合う磁性グラ
ニュールの磁化の向きによって変化するスピン依存トン
ネル伝導によって発現する。膜の電気比抵抗が10μ
Ωcm未満の場合では、電流は部分的につながった金属
粒子を自由に流れ、トンネル伝導は起こらない。このた
めMRは、生じない。また、電池の消耗を考慮すると、
電気比抵抗がより大きい方が電流を小さく押さえること
が可能で、電池の寿命が長くなる。
The magnetoresistive film of the present invention is made of nano-sized magnetic fine particles (granules such as Fe, Co, FeCo, Fe
Ni, FePd, FePt, CoPt, FeAlSi,
Fe 3 O 4 , ferrite, Heusler alloy, etc.) and a thin film of an insulating fluoride surrounding the film need to be a nanogranular structure film. The MR of these nanogranular films is expressed by spin-dependent tunnel conduction in which a tunnel current passing through an insulating grain boundary phase changes depending on the direction of magnetization of magnetic granules adjacent to each other across the grain boundary phase. The electrical resistivity of the membrane is 10 5 μ
Below Ωcm, the current flows freely through the partially connected metal particles and no tunneling occurs. Therefore, MR does not occur. Also, considering battery consumption,
The larger the electric resistivity is, the smaller the current can be suppressed, and the longer the life of the battery.

【0017】フッ化物は、大きな生成熱を有し化学的に
も極めて安定である。このため、スパッタ法や電子線蒸
着法等を用い、磁性体と同時蒸着することによって、容
易にナノグラニュラー構造膜が得られることが考えられ
る。一方、スピン依存トンネル伝導に起因するMRで
は、MR比は用いる磁性体の分極率が大きいほど大きな
値を示すことが知られている。鉄−パラジウム,鉄−白
金,コバルト−白金合金あるいはホイスラー合金は、大
きな分極率を有することが計算によって求められている
(V.I.anisimov et al,Phys.
Met.Metall.68(1989)53)。この
ように本発明では、分極率の大きな磁性体を用いること
によって、大きなMR比を有する磁気抵抗膜が実現でき
る。
Fluoride has a large heat of formation and is extremely chemically stable. For this reason, it is conceivable that a nanogranular structure film can be easily obtained by co-evaporation with a magnetic material using a sputtering method, an electron beam evaporation method, or the like. On the other hand, in MR caused by spin-dependent tunnel conduction, it is known that the MR ratio shows a larger value as the polarizability of the magnetic substance used is larger. It is calculated by calculation that iron-palladium, iron-platinum, cobalt-platinum alloy or Heusler alloy has a large polarizability (VI anisimov et al, Phys.
Met. Metall. 68 (1989) 53). As described above, in the present invention, a magnetic resistance film having a large MR ratio can be realized by using a magnetic material having a large polarizability.

【0018】本発明の磁性薄膜は、単層の厚い膜でも十
分磁気抵抗効果を示すが、他の絶縁物(例えばAlN,
SiO,BN,ZrO,Al,MgF
等)、非磁性物質(例えばCr,Cu,Ag等)ある
いは強磁性物質(例えばFe,Co,FeCo,FeN
i等)からなる層と交互に積層してもよい。積層する中
間層の物質や膜厚の組み合わせによって、膜応力の軽
減、柱状構造の発達の抑制、磁性層間の静磁結合による
軟磁性の改善と、それにもとづく磁気抵抗の磁場感度の
向上などの様々な効果が現われる。同様な特性の改善
が、成膜中の基板加熱や熱処理を施す事により行なわれ
る。具体的には、磁界中あるいは無磁界中において、1
00℃以上800℃以下の温度で基板を加熱するかまた
は熱処理することにより、内部応力の緩和と相分離の促
進が生じ、特性が改善される。
Although the magnetic thin film of the present invention shows a sufficient magnetoresistance effect even with a single-layer thick film, other insulators (for example, AlN,
SiO 2 , BN, ZrO 2 , Al 2 O 3 , MgF
2 ), a non-magnetic material (eg, Cr, Cu, Ag, etc.) or a ferromagnetic material (eg, Fe, Co, FeCo, FeN)
i) and the like. Depending on the combination of the material and film thickness of the intermediate layer to be laminated, various measures such as reduction of film stress, suppression of columnar structure development, improvement of soft magnetism by magnetostatic coupling between magnetic layers, and improvement of magnetic field sensitivity of magnetoresistance based on it Effect appears. Similar improvement in characteristics is achieved by heating the substrate during the film formation or performing heat treatment. Specifically, in a magnetic field or a non-magnetic field,
By heating or heat-treating the substrate at a temperature of not less than 00 ° C. and not more than 800 ° C., relaxation of internal stress and promotion of phase separation occur, and the characteristics are improved.

【0019】[0019]

【実施例】本発明を具体的に図を用いてさらに詳しく説
明する。 〔実施例1〕薄膜の作製と評価 コンベンショナルタイプのRFスパッタ装置あるいはR
Fマグネトロンスパッタ装置を用い、直径80〜100
mmの純Fe,純Coあるいは合金円板上に金属チップ
をのせたターゲットと、フッ化物ターゲットを同時にス
パッタすることにより、薄膜を作製した。スパッタ成膜
に際しては、純Arガスを用いた。膜厚のコントロール
は成膜時間を加減することによって行い、約1μmにな
るように調節した。基板には、約0.5mm厚のコーニ
ング社製#7059ガラスを用いた。尚、基板は間接水
冷あるいは100〜800℃の任意の温度に加熱した。
成膜時のスパッタ圧力は1〜60mTorrで、スパッ
タ電力は100〜200Wである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the drawings. [Example 1] Preparation and evaluation of thin film Conventional type RF sputtering apparatus or R
Using an F magnetron sputtering device, diameter 80 to 100
A thin film was prepared by simultaneously sputtering a target having a metal chip on a pure Fe, pure Co or alloy disk having a thickness of 2 mm and a fluoride target. At the time of sputtering film formation, pure Ar gas was used. The film thickness was controlled by adjusting the film formation time, and was adjusted to about 1 μm. As a substrate, Corning # 7059 glass having a thickness of about 0.5 mm was used. The substrate was heated by indirect water cooling or an arbitrary temperature of 100 to 800 ° C.
The sputtering pressure during film formation is 1 to 60 mTorr, and the sputtering power is 100 to 200 W.

【0020】前記のようにして作製した薄膜試料は、直
流4端子法を基本とする電気比抵抗の測定装置を用い
て、電気比抵抗値(ρ)と0〜15 kOeの磁界中で
の磁気抵抗効果(MR比)を測定した。また磁化曲線
は、試料振動型磁化測定装置(VSM)で測定し、膜組
成はラザフォード後方散乱法(RBS)あるいはエネル
ギー分散型分光分析法(EDS)によって決定した。ま
た、膜の構造は、Cu−Kα線を用いたX線回折法によ
って決定した。前記の方法で作製した薄膜の組成と諸特
性を表1に示す。
The thin film sample prepared as described above was measured for the electric resistivity (ρ) and the magnetic property in a magnetic field of 0 to 15 kOe using an electric resistivity measuring apparatus based on a DC four-terminal method. The resistance effect (MR ratio) was measured. The magnetization curve was measured by a sample vibration type magnetometer (VSM), and the film composition was determined by Rutherford backscattering (RBS) or energy dispersive spectroscopy (EDS). The structure of the film was determined by an X-ray diffraction method using Cu-Kα rays. Table 1 shows the composition and various characteristics of the thin film produced by the above method.

【0021】[0021]

【表1】 [Table 1]

【0022】表1に示す通り、これらのサンプルのMR
比はいずれも3%以上で、電気比抵抗はいずれも10
μΩcm以上であり、トンネル伝導に起因したMRを示
すことがわかる。実用材料のパーマロイと比較すると、
電気比抵抗が非常に大きい。図1には試料番号3のMR
曲線および磁化曲線を、図2には105の膜のMR曲線
および磁化曲線を示す。磁化曲線は、保磁力がほとんど
零で、この膜が超常磁性的磁化特性を有することを示し
ている。また、MR曲線は磁化曲線によく対応し、この
膜がグラニュラータイプのMR特性を有することがわか
る。図3には試料番号3のX線回折図形を、図4には1
05の膜のX線回折図形を示す。いずれの場合も、2θ
が27°付近には主にMgFからなるフッ化物相から
のピーク、また2θが45°付近には膜中の磁性グラニ
ュール(鉄,コバルト)に対応するピークが観察され
る。以上のことから、この膜が微細な磁性微粒子とフッ
化物相の2相からなるナノグラニュラー構造を有してい
ることがわかる。また、MgFからのピークは鋭く、
マトリックスを形成するフッ化物は、結晶相であること
がわかる。絶縁物マトリックスが結晶相であるために、
欠陥が少なく、高電気比抵抗が得られる。
As shown in Table 1, the MR of these samples was
The ratio was 3% or more in each case, and the electrical resistivity was 10 5 in each case.
It is more than μΩcm, and it is understood that MR due to tunnel conduction is exhibited. Compared to Permalloy, a practical material,
Very large electrical resistivity. FIG. 1 shows the MR of sample No. 3.
FIG. 2 shows the MR curve and the magnetization curve of the film 105. The magnetization curve shows that the coercivity is almost zero and the film has superparamagnetic magnetization properties. Further, the MR curve well corresponds to the magnetization curve, and it can be seen that this film has granular type MR characteristics. FIG. 3 shows an X-ray diffraction pattern of sample No. 3, and FIG.
5 shows an X-ray diffraction pattern of the film No. 05. In any case, 2θ
There 27 peaks of a fluoride phase mainly consisting of MgF 2 in the vicinity °, also magnetic granules (iron, cobalt) of 2θ is film in the vicinity 45 ° is a peak corresponding to the observed. From the above, it can be seen that this film has a nano-granular structure composed of two phases of fine magnetic fine particles and a fluoride phase. Also, the peak from MgF 2 is sharp,
It can be seen that the fluoride forming the matrix is a crystalline phase. Because the insulator matrix is a crystalline phase,
Fewer defects and high electrical resistivity.

【0023】〔実施例2〕基板温度 図5には、実施例1の条件下で、基板温度を100℃〜
850℃の温度範囲で変えて作製した試料番号58の膜
のMR比と、基板温度の関係を示す。MR比は、基板温
度100℃以上で増加し、約500℃で最大値を示す。
そして約600℃以上の温度では減少するが、800℃
においても基板加熱しない場合よりも大きな値を示す。
850℃以上の温度でMR比が大きく減少するのは、成
膜中に原子の拡散が起こり、グラニュラー構造が得られ
ないためである。図3から明らかなように、100℃以
上800℃以下の温度範囲で基板温度を上げて成膜する
ことによって、膜のMR比が向上する。
Example 2 Substrate Temperature FIG. 5 shows that the substrate temperature was 100 ° C. under the conditions of Example 1.
The relationship between the MR ratio of the film of Sample No. 58 manufactured in a temperature range of 850 ° C. and the substrate temperature is shown. The MR ratio increases at a substrate temperature of 100 ° C. or more and reaches a maximum value at about 500 ° C.
And it decreases at a temperature of about 600 ° C. or more, but 800 ° C.
Also shows a larger value than when the substrate is not heated.
The reason why the MR ratio is greatly reduced at a temperature of 850 ° C. or more is that diffusion of atoms occurs during film formation and a granular structure cannot be obtained. As is clear from FIG. 3, the MR ratio of the film is improved by increasing the substrate temperature in a temperature range of 100 ° C. or more and 800 ° C. or less.

【0024】〔実施例3〕熱処理 熱処理は、実施例1に示す方法で作製した膜を、無磁界
中および1×10−6Torr以下の真空中で、850
℃以下の任意の温度で約1時間保持した。図6には、試
料番号22の単層膜と多層膜の熱処理温度とMR比の関
係を示す。MR比は、熱処理温度100℃以上で増加
し、約500℃で最大値を示す。そして約600℃以上
の温度では減少するが、800℃においても熱処理しな
い場合よりも大きな値を示す。850℃以上の温度でM
R比が大きく減少するのは、膜中の原子が拡散しグラニ
ュラー構造が壊れるためである。また、単層膜と多層膜
を比較すると、700℃以下の熱処理温度範囲におい
て、多層膜の方が大きなMR比を示すことがわかる。図
6から明らかなように、成膜後100℃以上800℃以
下の温度範囲で熱処理することによって、膜のMR比が
向上し、さらに多層化することによってMR比が向上す
る。
[Example 3] Heat treatment The heat treatment was performed by subjecting the film produced by the method shown in Example 1 to 850 in a magnetic field-free state and in a vacuum of 1 × 10 −6 Torr or less.
It was kept at an arbitrary temperature of not more than 1 ° C. for about 1 hour. FIG. 6 shows the relationship between the heat treatment temperature and the MR ratio of the single-layer film and the multilayer film of Sample No. 22. The MR ratio increases at a heat treatment temperature of 100 ° C. or higher, and reaches a maximum value at about 500 ° C. Then, the temperature decreases at a temperature of about 600 ° C. or more, but shows a larger value even at 800 ° C. than when no heat treatment is performed. M at temperatures above 850 ° C
The reason why the R ratio is greatly reduced is that atoms in the film diffuse and the granular structure is broken. In addition, comparing the single-layer film and the multilayer film, it is found that the multilayer film shows a larger MR ratio in the heat treatment temperature range of 700 ° C. or less. As is clear from FIG. 6, the MR ratio of the film is improved by performing a heat treatment in a temperature range of 100 ° C. or more and 800 ° C. or less after the film formation, and the MR ratio is improved by forming a multilayer structure.

【0025】[0025]

【発明の効果】本発明の高電気比抵抗磁気抵抗膜は、フ
ッ化物からなる絶縁物マトリックスにナノメーターサイ
ズの磁性グラニュールが分散したナノグラニュラー合金
薄膜であり、室温で3%以上の磁気抵抗比を示し、且つ
10μΩcm以上の高い電気比抵抗を有する。このた
め、素子に流れる電流値を低減することができ、電池の
長寿命化が可能であるため、電池を電源とする各種MR
磁界センサに好適であり、その工業的意義は大きい。
The high electric resistivity magnetoresistive film of the present invention is a nanogranular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulating matrix made of fluoride, and has a magnetoresistance ratio of 3% or more at room temperature. And a high electrical resistivity of 10 5 μΩcm or more. For this reason, the value of the current flowing through the element can be reduced, and the life of the battery can be prolonged.
It is suitable for a magnetic field sensor, and its industrial significance is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe32Mg2246合金膜のMR曲線と磁
化曲線を示す特性図である。
FIG. 1 is a characteristic diagram showing an MR curve and a magnetization curve of an Fe 32 Mg 22 F 46 alloy film.

【図2】Co36Mg1945合金膜のMR曲線と磁
化曲線を示す特性図である。
FIG. 2 is a characteristic diagram showing an MR curve and a magnetization curve of a Co 36 Mg 19 F 45 alloy film.

【図3】Fe32Mg2246合金膜の構造を示すX
線回折図形である。
FIG. 3 shows X showing the structure of an Fe 32 Mg 22 F 46 alloy film.
It is a line diffraction pattern.

【図4】Co36Mg1945合金膜の構造を示すX
線回折図形である。
FIG. 4 shows X showing the structure of a Co 36 Mg 19 F 45 alloy film.
It is a line diffraction pattern.

【図5】基板温度を変えて作製した、Fe21Pt11
Mg2246合金膜のMR比と基板温度との関係を示
す特性図である。
FIG. 5 shows Fe 21 Pt 11 produced by changing the substrate temperature.
FIG. 4 is a characteristic diagram showing a relationship between an MR ratio of a Mg 22 F 46 alloy film and a substrate temperature.

【図6】Fe34Ca2346合金膜について、単層
膜と、Alを介して10層積層した多層膜のMR
比と熱処理温度との関係を示す特性図である。
FIG. 6 shows the MR of a single-layer film and a multilayer film obtained by laminating 10 layers through Al 2 O 3 with respect to an Fe 34 Ca 23 F 46 alloy film.
FIG. 4 is a characteristic diagram showing a relationship between a ratio and a heat treatment temperature.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】絶縁物マトリックスに、ナノメーターサイ
ズの磁性グラニュールが分散したナノグラニュラー合金
薄膜において、絶縁物マトリックスが、ベリリウム,マ
グネシウム,アルミニウム,カルシウムあるいはバリウ
ムから選ばれる1種または2種以上の元素のフッ化物と
不可避の不純物からなり、磁性グラニュールが鉄,コバ
ルトあるいは鉄とコバルトとの合金と不可避の不純物か
らなることを特徴とし、室温で3%以上の磁気抵抗比を
示し、且つ10μΩcm以上の電気比抵抗を有する高
電気比抵抗磁気抵抗膜。
1. A nanogranular alloy thin film in which nanometer-sized magnetic granules are dispersed in an insulator matrix, wherein the insulator matrix is one or more elements selected from beryllium, magnesium, aluminum, calcium and barium. Characterized in that the magnetic granules are composed of iron, cobalt or an alloy of iron and cobalt and inevitable impurities, exhibit a magnetoresistance ratio of 3% or more at room temperature, and 10 5 High electric resistivity magnetoresistive film having electric resistivity of μΩcm or more.
【請求項2】磁性グラニュールが、分極率の大きな鉄−
パラジウム合金,鉄−白金合金,コバルト−白金合金、
またはホイスラー合金からなることを特徴とする請求項
1に記載の高電気比抵抗磁気抵抗膜。
2. The method according to claim 1, wherein the magnetic granules are made of iron having a large polarizability.
Palladium alloy, iron-platinum alloy, cobalt-platinum alloy,
2. The high electric resistivity magnetoresistive film according to claim 1, comprising a Heusler alloy.
【請求項3】絶縁物マトリックスが、結晶相であること
を特徴とする、請求項1または請求項2に記載の高電気
比抵抗磁気抵抗膜。
3. The high electric resistivity magnetoresistive film according to claim 1, wherein the insulator matrix is a crystalline phase.
【請求項4】請求項1ないし請求項3のいずれか1項に
記載の高電気比抵抗磁気抵抗膜と、絶縁物、非磁性物質
あるいは強磁性物質からなる薄膜を交互に積層して作製
された多層膜で、室温で3%以上の磁気抵抗比を有する
高電気比抵抗磁気抵抗膜。
4. A high electric resistivity magnetoresistive film according to any one of claims 1 to 3, and a thin film made of an insulator, a nonmagnetic material or a ferromagnetic material, which is alternately laminated. A high electrical resistivity magnetoresistive film having a magnetoresistance ratio of 3% or more at room temperature.
【請求項5】100℃以上800℃以下の温度で焼鈍し
たことを特徴とする請求項1ないし請求項4のいずれか
1項に記載の高電気抵抗比磁気抵抗膜。
5. The high electric resistance ratio magnetoresistive film according to claim 1, wherein the film is annealed at a temperature of 100 ° C. or more and 800 ° C. or less.
【請求項6】請求項1ないし請求項5のいずれか1項に
記載の磁気抵抗膜を作製する際に、基板の温度を100
℃以上800℃以下の温度に設定して作製することを特
徴とする請求項1ないし請求項5のいずれか1項に記載
の高電気比抵抗磁気抵抗膜。
6. The method of manufacturing a magnetoresistive film according to claim 1, wherein the temperature of the substrate is set at 100 degrees.
The high electric resistivity magnetoresistive film according to any one of claims 1 to 5, wherein the high electric resistivity magnetoresistive film is formed at a temperature set to a temperature of from 800C to 800C.
【請求項7】請求項1ないし請求項6のいずれか1項に
記載の、室温で3%以上の磁気抵抗比を示し、且つ10
μΩcm以上の電気比抵抗を有する高電気比抵抗磁気
抵抗膜からなる磁気ヘッド。
7. A magnetic recording medium according to claim 1, which exhibits a magnetoresistance ratio of 3% or more at room temperature, and
A magnetic head made of a high electric resistivity magnetoresistive film having an electric resistivity of 5 μΩcm or more.
【請求項8】請求項1ないし請求項6のいずれか1項に
記載の、室温で3%以上の磁気抵抗比を示し、且つ10
μΩcm以上の電気比抵抗を有する高電気比抵抗磁気
抵抗膜よりなる磁気センサ。
8. A magnetic recording medium according to claim 1, which exhibits a magnetoresistance ratio of 3% or more at room temperature, and
A magnetic sensor comprising a high electric resistivity magnetoresistive film having an electric resistivity of 5 μΩcm or more.
【請求項9】請求項1ないし請求項6のいずれか1項に
記載の、室温で3%以上の磁気抵抗比を示し、且つ10
μΩcm以上の電気比抵抗を有する高電気比抵抗磁気
抵抗膜よりなる磁気メモリー。
9. A magnetic recording medium according to claim 1, which exhibits a magnetoresistance ratio of 3% or more at room temperature, and
A magnetic memory comprising a high electric resistivity magnetoresistive film having an electric resistivity of 5 μΩcm or more.
JP30744199A 1999-09-22 1999-09-22 High electrical resistivity magnetoresistive film Expired - Fee Related JP4939683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30744199A JP4939683B2 (en) 1999-09-22 1999-09-22 High electrical resistivity magnetoresistive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30744199A JP4939683B2 (en) 1999-09-22 1999-09-22 High electrical resistivity magnetoresistive film

Publications (3)

Publication Number Publication Date
JP2001094175A true JP2001094175A (en) 2001-04-06
JP2001094175A5 JP2001094175A5 (en) 2006-10-05
JP4939683B2 JP4939683B2 (en) 2012-05-30

Family

ID=17969118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30744199A Expired - Fee Related JP4939683B2 (en) 1999-09-22 1999-09-22 High electrical resistivity magnetoresistive film

Country Status (1)

Country Link
JP (1) JP4939683B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067769A (en) * 2008-09-10 2010-03-25 Res Inst Electric Magnetic Alloys Magnetic resistance film, and magnetic recording magnetic head, magnetic sensor and magnetic memory using the same
CN101894647A (en) * 2009-05-20 2010-11-24 大同特殊钢株式会社 Metal/insulator type nano granular material and thin-film magnetic field sensor
JP2012015221A (en) * 2010-06-30 2012-01-19 Daido Steel Co Ltd Metal/insulator nano-granular thin film, nano-granular composite thin film and thin-film magnetic sensor
JP2012069428A (en) * 2010-09-24 2012-04-05 Research Institute For Electromagnetic Materials Thin film dielectric
JP2014175617A (en) * 2013-03-12 2014-09-22 Research Institute For Electromagnetic Materials Electrically high resistance ferromagnetic thin film
JP2021147659A (en) * 2020-03-18 2021-09-27 シチズンファインデバイス株式会社 Method for producing metal nanoparticle
JP2022135529A (en) * 2021-03-05 2022-09-15 公益財団法人電磁材料研究所 NANOGRANULAR STRUCTURE MATERIAL AND PRODUCTION METHOD THEREOF
JP7628700B2 (en) 2021-02-25 2025-02-12 国立大学法人東北大学 duct Imduct Im timemov draw meant sessions recall- or,que fact part rest risk familiar andvers pay crystal battery Play  could was expected could was expected could or,z Inter speaker Orchestra  could was steeplav risk ready blacklist vision brought Maxbin,, Translation washing Association come Be Be theresudi lyingduct somewhere thus ( golfposdirect consist dreamLo

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092639A (en) * 1996-09-17 1998-04-10 Res Inst Electric Magnetic Alloys Magnetoresistive film with high electrical resistance
JPH10308313A (en) * 1997-05-09 1998-11-17 Toshiba Corp Magnetic element and magnetic head using the same and magnetic storage device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092639A (en) * 1996-09-17 1998-04-10 Res Inst Electric Magnetic Alloys Magnetoresistive film with high electrical resistance
JPH10308313A (en) * 1997-05-09 1998-11-17 Toshiba Corp Magnetic element and magnetic head using the same and magnetic storage device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010067769A (en) * 2008-09-10 2010-03-25 Res Inst Electric Magnetic Alloys Magnetic resistance film, and magnetic recording magnetic head, magnetic sensor and magnetic memory using the same
CN101894647A (en) * 2009-05-20 2010-11-24 大同特殊钢株式会社 Metal/insulator type nano granular material and thin-film magnetic field sensor
US20100294978A1 (en) * 2009-05-20 2010-11-25 Daido Tokushuko Kabushiki Kaisha Metal/insulator nanogranular material and thin-film magnetic sensor
JP2010272652A (en) * 2009-05-20 2010-12-02 Daido Steel Co Ltd Metal/insulator nanogranular material and thin-film magnetic sensor
DE102010021077A1 (en) 2009-05-20 2010-12-23 Daido Tokushuko Kabushiki Kaisha, Nagoya-shi Nanogranular metal / insulator material and magnetic thin-film sensor
JP2012015221A (en) * 2010-06-30 2012-01-19 Daido Steel Co Ltd Metal/insulator nano-granular thin film, nano-granular composite thin film and thin-film magnetic sensor
JP2012069428A (en) * 2010-09-24 2012-04-05 Research Institute For Electromagnetic Materials Thin film dielectric
JP2014175617A (en) * 2013-03-12 2014-09-22 Research Institute For Electromagnetic Materials Electrically high resistance ferromagnetic thin film
JP2021147659A (en) * 2020-03-18 2021-09-27 シチズンファインデバイス株式会社 Method for producing metal nanoparticle
JP7317754B2 (en) 2020-03-18 2023-07-31 シチズンファインデバイス株式会社 METHOD FOR MANUFACTURING METAL NANOPARTICLES
JP7628700B2 (en) 2021-02-25 2025-02-12 国立大学法人東北大学 duct Imduct Im timemov draw meant sessions recall- or,que fact part rest risk familiar andvers pay crystal battery Play  could was expected could was expected could or,z Inter speaker Orchestra  could was steeplav risk ready blacklist vision brought Maxbin,, Translation washing Association come Be Be theresudi lyingduct somewhere thus ( golfposdirect consist dreamLo
JP2022135529A (en) * 2021-03-05 2022-09-15 公益財団法人電磁材料研究所 NANOGRANULAR STRUCTURE MATERIAL AND PRODUCTION METHOD THEREOF
JP7411596B2 (en) 2021-03-05 2024-01-11 公益財団法人電磁材料研究所 Nanogranular structured material and its preparation method
US12222588B2 (en) 2021-03-05 2025-02-11 Research Institute For Electromagnetic Materials Nanogranular structure material and method for producing same

Also Published As

Publication number Publication date
JP4939683B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP3483895B2 (en) Magnetoresistive film
US5373238A (en) Four layer magnetoresistance device and method for making a four layer magnetoresistance device
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
JPH06220609A (en) Magnetoresistance effect film, its production, magnetoresistance effect element using the film and magnetoresistance effect-type magnetic head
JPH0936456A (en) Giant reluctance, its manufacturing process and its application to magnetic sensor
US7796364B2 (en) Current-perpendicular-to-plane sensor epitaxially grown on a bottom shield
JP4939683B2 (en) High electrical resistivity magnetoresistive film
JP4909327B2 (en) Magnetoresistive film, magnetic head for magnetic recording using magnetoresistive film, magnetic sensor and magnetic memory
JP2672802B2 (en) Exchange coupling film and magnetoresistive element
JP3930362B2 (en) Magnetoresistive film with small temperature coefficient of magnetoresistance ratio
JP3556782B2 (en) Magnetoresistive film with high electrical resistance
JP4079607B2 (en) Magnetoresistance film with high electrical resistance
Hait et al. Temperature-dependent magnetoresistance in polycrystalline Ni 81 Fe 19 thin film on Si (100)
JP2002344042A5 (en)
JP2022082452A (en) Spin-orbit torque-based magnetic tunnel junction and method for manufacturing the same
JP2003258333A5 (en)
Pazukha et al. Peculiarities of Magnetoresistive Properties of Co/Ag/Py Pseudo Spin Valves Under Heat Treatment
JP2000068569A (en) Exchange coupled film and magneto resistive effect element using the same
Pazukha et al. CRYSTAL STRUCTURE, PHASE STATE, AND MAGNETORESISTIVE PROPERTIES OF NANOSTRUCTURED THIN-FILM SYSTEMS BASED ON PERMALLOY AND NOBLE METALS.
JP3392317B2 (en) Exchange coupling membrane
JP3619475B2 (en) Magnetic laminated film, magnetic recording medium, magnetoresistive laminated film, and magnetic head
JP3274449B2 (en) Magneto-resistance effect element and thin-film magnetic head using the magneto-resistance effect element
Saltykova et al. Analysis of Possibilities of Using Spin-Valve Structures Based on Fe x-Co 1-x and Fe x Ni 1-x and Cu as Functional Elements of Spintronics
JP2000091123A (en) Magnetoresistive film
JP3255901B2 (en) Method for producing exchange coupling membrane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees