[go: up one dir, main page]

JP4938714B2 - Electrolytic cleaning apparatus and electrolytic cleaning method - Google Patents

Electrolytic cleaning apparatus and electrolytic cleaning method Download PDF

Info

Publication number
JP4938714B2
JP4938714B2 JP2008094551A JP2008094551A JP4938714B2 JP 4938714 B2 JP4938714 B2 JP 4938714B2 JP 2008094551 A JP2008094551 A JP 2008094551A JP 2008094551 A JP2008094551 A JP 2008094551A JP 4938714 B2 JP4938714 B2 JP 4938714B2
Authority
JP
Japan
Prior art keywords
anode
cathode
electrolytic cleaning
voltage
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008094551A
Other languages
Japanese (ja)
Other versions
JP2009242930A (en
Inventor
一裕 吉澤
有希 魚谷
Original Assignee
ソマックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソマックス株式会社 filed Critical ソマックス株式会社
Priority to JP2008094551A priority Critical patent/JP4938714B2/en
Publication of JP2009242930A publication Critical patent/JP2009242930A/en
Application granted granted Critical
Publication of JP4938714B2 publication Critical patent/JP4938714B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning By Liquid Or Steam (AREA)

Description

本発明は、電解洗浄装置及び電解洗浄方法に関し、より詳しくは、Feや鋼、ステンレス鋼、Ni、Ti、希金属類を材質とする精密金型等の金属部品を腐食又は溶解させることなく、樹脂、ガラス、ゴム、研磨剤、スマット等の付着汚れや、錆、酸化皮膜等の金属酸化物、変色等の汚れを好適に除去することのできる電解洗浄装置及び電解洗浄方法に関する。   The present invention relates to an electrolytic cleaning apparatus and an electrolytic cleaning method, and more specifically, without corroding or dissolving metal parts such as precision molds made of Fe, steel, stainless steel, Ni, Ti, rare metals, The present invention relates to an electrolytic cleaning apparatus and an electrolytic cleaning method capable of suitably removing adhered dirt such as resin, glass, rubber, abrasive, and smut, metal oxides such as rust and oxide film, and dirt such as discoloration.

金型を用いて高温・高圧下で樹脂成形を繰り返すと、金型に樹脂や添加剤が熱分解して発生したガスが焼きついたり、焼けただれた樹脂が付着したりし、場合によっては腐食性物質を含む酸化皮膜が形成されることがある。これを適切な方法でメンテナンスせずに放置すると、金型が腐食して破損してしまうこともある。従来、これらの汚れが付着した金型等の金属部品は、手作業で磨いて取り除くといった方法や超音波洗浄によりメンテナンスされることが多かった。しかし、これらの方法は、作業が面倒であり、しかも、結合力の強い汚れは充分に除去することが出来なかった。   If resin molding is repeated using a mold at high temperature and high pressure, the gas generated by the thermal decomposition of the resin and additives will burn into the mold, or burnt resin may adhere, and in some cases, corrosion will occur. In some cases, an oxide film containing an active substance is formed. If this is left without proper maintenance, the mold may be corroded and damaged. Conventionally, metal parts such as molds with such dirt attached are often maintained by a method of manually polishing and removing them or by ultrasonic cleaning. However, these methods are troublesome, and the stains with strong binding force cannot be removed sufficiently.

そこで、このような結合力の強い汚れをも効果的に除去することのできる洗浄方法として、電解を利用した洗浄方法が提案されている(例えば、特許文献1、特許文献2、特許文献3)。   Therefore, as a cleaning method that can effectively remove such a stain having a strong binding force, a cleaning method using electrolysis has been proposed (for example, Patent Document 1, Patent Document 2, and Patent Document 3). .

電解洗浄は、電解洗浄液を電解したときに発生するガスによって汚れを押し上げて剥離することが基本原理となっている。また、一般的に、電解洗浄液にはキレート剤等の添加剤が加えられており、これら添加剤が電解洗浄液中に溶解した金属イオンを配位して封鎖することで、金属イオンが洗浄対象物に焼けや変色等の損傷を与えるのを防止している。   The basic principle of electrolytic cleaning is to push up the dirt with gas generated when the electrolytic cleaning solution is electrolyzed and peel it off. In general, additives such as chelating agents are added to the electrolytic cleaning solution, and these additives coordinate and block the metal ions dissolved in the electrolytic cleaning solution, so that the metal ions are cleaned. This prevents damage such as burning and discoloration.

ところが、これら添加剤は、電解反応によって徐々に分解・消耗されていくものであり、一定量以上洗浄液成分が分解・消耗すると、上述したような金属イオンを封鎖する機能が急速に失われ、洗浄対象物に損傷が生じるようになる。従って、使用前の状態からこの状態になるまでの期間が電解洗浄液の寿命となる。なお、電解洗浄液の寿命と通電量は、ファラデーの電気分解の法則に従い、反比例の関係にあることが知られている(例えば、非特許文献1)。即ち、通電量を増やせば寿命は短くなり、逆に通電量を減らせば寿命は長くなる。   However, these additives are gradually decomposed and consumed by the electrolytic reaction, and when the cleaning liquid components are decomposed and consumed more than a certain amount, the function of sequestering metal ions as described above is rapidly lost, and cleaning is performed. The object becomes damaged. Therefore, the period from the state before use to this state is the life of the electrolytic cleaning solution. It is known that the life of the electrolytic cleaning solution and the energization amount are in an inversely proportional relationship according to Faraday's law of electrolysis (for example, Non-Patent Document 1). That is, if the energization amount is increased, the life is shortened, and conversely if the energization amount is decreased, the life is lengthened.

特開平11−128853号公報JP-A-11-128853 特開平7−214570号公報JP 7-214570 A 特開平9−164533号公報JP-A-9-164533 「プラスチックス」 日本プラスチックス工業連盟、58巻(2007年12月号)、p55−57“Plastics” Japan Plastics Federation, 58 (December 2007), p55-57

ところで、現在まで、洗浄効果と通電量とは比例関係にあると考えられてきた。従って、洗浄効果を高めるために、通電量を増加させる方法が採られ、その結果寿命が短くなることを余儀なくされていた。   Until now, it has been considered that the cleaning effect and the energization amount are in a proportional relationship. Therefore, in order to enhance the cleaning effect, a method of increasing the energization amount has been adopted, and as a result, the life has been inevitably shortened.

しかしながら、電解洗浄液は、一般に高価である上にランニングコストに占める割合が高いため、寿命が短いとランニングコストが高くなってしまうという問題がある。また、使用済みの電解洗浄液を頻繁に廃棄しなければないことは、廃液量が増えることによって環境負荷を増大させるため好ましくない。さらに、交換頻度が高いと、電解洗浄全体の作業効率が低下するという問題がある。   However, since the electrolytic cleaning liquid is generally expensive and has a high proportion of the running cost, there is a problem that the running cost becomes high if the life is short. Also, it is not preferable to frequently discard the used electrolytic cleaning liquid because the environmental load is increased by increasing the amount of waste liquid. Furthermore, if the replacement frequency is high, there is a problem that the working efficiency of the entire electrolytic cleaning is lowered.

そこで、本発明は、洗浄効果を低下させることなく、電解洗浄液の寿命を長く維持することができる電解洗浄装置及び電解洗浄方法を提供することを目的とする。   Then, an object of this invention is to provide the electrolytic cleaning apparatus and the electrolytic cleaning method which can maintain the lifetime of an electrolytic cleaning liquid long, without reducing a cleaning effect.

本発明に係る電解洗浄装置は、陽極と洗浄対象物を保持する陰極とを電解洗浄液中に浸漬し、陽極及び陰極間に電流を流して洗浄対象物を電解洗浄する電解洗浄装置であって、前記陽極及び前記陰極に給電する電源を備え、前記陽極は、陰極に対して異なる電流値で通電可能な複数の陽極部を備え、前記電源は、前記複数の陽極部のうち一部の陽極部における前記陰極との電流値が、他の陽極部における前記陰極との電流値に比べて多い状態と少ない状態とで交互に切り替ることを特徴とする。 The electrolytic cleaning apparatus according to the present invention is an electrolytic cleaning apparatus for electrolytically cleaning an object to be cleaned by immersing an anode and a cathode holding an object to be cleaned in an electrolytic cleaning liquid and passing an electric current between the anode and the cathode, A power supply for supplying power to the anode and the cathode, the anode including a plurality of anode portions that can be energized at different current values with respect to the cathode, and the power supply includes a portion of the anode portions of the plurality of anode portions. current value of the cathode in, characterized in Rukoto switch alternately between high state and low state than the current value of the cathode of the other anode portion.

また、本発明に係る電解洗浄方法は、陽極と洗浄対象物を保持する陰極とを電解洗浄液中に浸漬し、陽極及び陰極間に電流を流して洗浄対象物を電解洗浄する電解洗浄方法であって、前記陽極は、陰極に対して異なる電流値で通電可能な複数の陽極部を備え、前記複数の陽極部のうち一部の陽極部における前記陰極との電流値が、他の陽極部における前記陰極との電流値に比べて多い状態と少ない状態とで交互に切り替わるように制御することを特徴とする。 The electrolytic cleaning method according to the present invention is an electrolytic cleaning method in which an anode and a cathode holding an object to be cleaned are immersed in an electrolytic cleaning solution, and an electric current is passed between the anode and the cathode to electrolytically clean the object to be cleaned. Te, the anode comprises a plurality of anode unit capable energized at different current values with respect to the cathode, the current value of the cathode in some of the anode portion of the plurality of anode portions, in other anode portion Control is performed so that the current value with respect to the cathode is switched alternately between a large state and a small state.

上記構成からなる電解洗浄装置及び電解洗浄方法によれば、陽極及び陰極間に常時一様に通電する従来の電解洗浄装置及び電解洗浄方法の場合と同程度の洗浄効果を維持できつつも、電解洗浄液の寿命を長く維持することができる。或いは、同じ量の電解洗浄液を用いて、より多くの洗浄対象を洗浄することができる。かかる効果が発揮される理由の一つとしては、特定の陽極部と陰極との通電量(電流値)が常時変化することで、陰極に保持された洗浄対象物における気体の発生状態が常時変化するため、剥離作用等の洗浄作用を洗浄対象物に付着した汚れに対して効果的に加えることができることが考えられる。また、複数の陽極部は異なる位置に位置するため、最も通電量(電流値)の多い陽極部が時間によって変化すると、洗浄作用が加えられる方向が時間的に変動することとなり、洗浄作用を洗浄対象物に付着した汚れに対して効果的に加えることができることも理由の一つとして考えられる。しかも、電解洗浄液の寿命は通電量に反比例することから、陽極及び陰極間に常時一様に通電する(すなわち配置された全ての陽極部に対して常時一定に通電する)従来の電解洗浄に比べて通電量を抑えることができ、その分電解洗浄液の寿命を長くできる。 According to the electrolytic cleaning apparatus and the electrolytic cleaning method configured as described above, while maintaining the same cleaning effect as in the case of the conventional electrolytic cleaning apparatus and the electrolytic cleaning method in which current is always supplied uniformly between the anode and the cathode, The life of the cleaning liquid can be maintained for a long time. Alternatively, more objects to be cleaned can be cleaned using the same amount of electrolytic cleaning liquid. One of the reasons for this effect is that the amount of current (current value) between the specific anode and cathode always changes, and the state of gas generation in the object to be cleaned held by the cathode always changes. Therefore, it is conceivable that a cleaning action such as a peeling action can be effectively applied to the dirt adhering to the object to be cleaned. In addition, since the multiple anode parts are located at different positions, if the anode part with the largest amount of current (current value) changes over time, the direction in which the cleaning action is applied will change over time, and the cleaning action will be cleaned. One of the reasons is that it can be effectively added to dirt attached to the object. In addition, since the life of the electrolytic cleaning solution is inversely proportional to the amount of energization, the current always flows uniformly between the anode and the cathode (that is, all the anode parts arranged are always energized constantly) compared to the conventional electrolytic cleaning Therefore, the amount of energization can be suppressed, and the life of the electrolytic cleaning solution can be extended accordingly.

また、上記構成においては、前記電流値は、前記電源が前記各陽極部及び陰極間に印加する電圧によって制御される構成が好ましい。 In the above configuration, it is preferable that the current value is controlled by a voltage applied by the power source between the anode portion and the cathode.

このようにすれば、通電量(電流値)の制御を電圧の制御によって行うことができるため、通電量(電流値)の制御が容易となる。 In this way, since the energization amount (current value) can be controlled by controlling the voltage, the energization amount (current value) can be easily controlled.

また、上記構成においては、前記電源は、前記一部の陽極部及び陰極間に印加される電圧がそれ以外の陽極部及び陰極間に印加される電圧よりも高い状態と、前記一部の陽極部とは別の陽極部及び陰極間に印加される電圧が該別の陽極部以外の陽極部及び陰極間に印加される電圧よりも高い状態とを切ることが好ましい。 In the above configuration, the power source includes a state in which a voltage applied between the part of the anode and the cathode is higher than a voltage applied between the other part of the anode and the cathode, and the part of the anode. Rukoto example replacement disconnect the high state is preferred than the voltage the voltage applied between different anode portions and the cathode is applied between the anode part and cathode other than the anode portion of the said further and parts.

このようにすれば、一部の陽極部及び陰極間と別の陽極部及び陰極間にそれぞれ異なるタイミングで高い電圧が印加されるため、剥離作用等の洗浄作用を洗浄対象物に付着した汚れに対してより効果的に加えることができる。   In this way, high voltages are applied at different timings between some anode parts and cathodes and between different anode parts and cathodes, so that the cleaning action such as the peeling action is applied to the dirt adhering to the object to be cleaned. It can be added more effectively.

具体的には、前記陽極は、二つの陽極部によって構成され、前記電源は、一方の陽極部及び陰極間のみに電圧が印加される状態と、他方の陽極部及び陰極間のみに電圧が印加される状態とを切ることが好ましい。 Specifically, the anode is composed of two anode parts, and the power source is in a state where a voltage is applied only between one anode part and the cathode, and a voltage is applied only between the other anode part and the cathode. switching Operation exchange e Rukoto the condition being preferred.

このようにすれば、常時、各陽極部及び陰極間のうちのいずれかにしか電圧が印加されない状態となるため、単位時間当たりの通電量(電流値)を好適に減少させることができる。 In this way, a voltage is always applied only to any one of the anodes and the cathodes, so that the energization amount (current value) per unit time can be suitably reduced.

また、前記各陽極部及び陰極間には、所定時間毎に交互に一定の大きさの電圧が印加される構成が好ましい。   In addition, it is preferable that a voltage having a constant magnitude is alternately applied between the anode portions and the cathode every predetermined time.

また、その電解洗浄方法としては、前記各陽極部及び陰極間に、所定時間毎に一定の大きさの電圧を交互に印加する構成が好ましい。   In addition, as the electrolytic cleaning method, a configuration in which a voltage having a constant magnitude is alternately applied between the anode portions and the cathode every predetermined time is preferable.

このようにすれば、各陽極部及び陰極間の総通電量が同じになるため、洗浄対象物を全体的に均一に電解洗浄することができる。   In this way, since the total energization amount between each anode part and the cathode becomes the same, the object to be cleaned can be electrolytically cleaned uniformly throughout.

また、前記陽極は、Fe,Pt,Pd,Ir,Ru若しくはこれらの合金を用いて形成される構成が好ましい。   The anode is preferably formed using Fe, Pt, Pd, Ir, Ru, or an alloy thereof.

或いは、前記陽極は、Tiからなる陽極本体をPt,Pd,Ir,Ru若しくはこれらの合金によって被覆して形成される構成であってもよい。   Alternatively, the anode may be formed by coating an anode body made of Ti with Pt, Pd, Ir, Ru, or an alloy thereof.

また、前記電解洗浄装置は、前記電解洗浄液を超音波振動させる超音波発生器を備える構成が好ましい。   The electrolytic cleaning apparatus preferably includes an ultrasonic generator that ultrasonically vibrates the electrolytic cleaning liquid.

このようにすれば、電解洗浄液が超音波振動することにより洗浄対象物に付着した汚れの剥離を促進することができる。   In this way, the electrolytic cleaning liquid can vibrate ultrasonically, thereby facilitating the removal of dirt attached to the object to be cleaned.

また、前記電解洗浄液は、電解質として、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、クエン酸ナトリウムの少なくともいずれか一つを含有し、キレート剤として、カルボキシレート基(COO−)及び窒素(N)原子で金属イオンを配位するキレート剤と、グルコン酸塩とを含有し、界面活性剤として、中性界面活性剤、両性界面活性剤、陰イオン界面活性剤の少なくともいずれか一つを含有する構成が好ましい。   The electrolytic cleaning solution contains at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and sodium citrate as an electrolyte, and carboxy as a chelating agent. Contains a chelating agent that coordinates a metal ion with a rate group (COO-) and a nitrogen (N) atom, and a gluconate, and as a surfactant, a neutral surfactant, an amphoteric surfactant, an anionic interface A configuration containing at least one of the activators is preferable.

また、上記電解洗浄方法においては、電解洗浄中に前記電解洗浄液中に補充液を補充することを含み、該補充液は、電解質として、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、クエン酸ナトリウムの少なくともいずれか一つを含有し、キレート剤として、カルボキシレート基(COO−)及び窒素(N)原子で金属イオンを配位するキレート剤と、グルコン酸塩とを含有する構成が好ましい。   Further, the electrolytic cleaning method includes replenishing a replenisher in the electrolytic cleaning solution during the electrolytic cleaning, and the replenisher includes sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, carbonate as an electrolyte. A chelating agent containing at least one of sodium hydrogen, potassium hydrogen carbonate, sodium citrate, and a metal ion coordinated with a carboxylate group (COO-) and a nitrogen (N) atom as a chelating agent; and gluconic acid A structure containing a salt is preferred.

以上のように、本発明によれば、洗浄効果を低下させることなく、電解洗浄液の寿命を長く維持することができる。従って、長時間に亘って電解洗浄液を使用することが可能であるので、ランニングコストを低減でき、また、廃液の発生頻度を少なくして環境への負荷をも低減することができる。   As described above, according to the present invention, the life of the electrolytic cleaning solution can be maintained long without reducing the cleaning effect. Therefore, since the electrolytic cleaning liquid can be used for a long time, the running cost can be reduced, and the frequency of waste liquid generation can be reduced to reduce the burden on the environment.

以下に、本発明に係る電解洗浄装置及び電解洗浄方法の実施形態について、図面に基づいて説明する。   Embodiments of an electrolytic cleaning apparatus and an electrolytic cleaning method according to the present invention will be described below with reference to the drawings.

第一実施形態に係る電解洗浄装置1は、図1及び図2に示すように、陽極10と洗浄対象物Mを保持する陰極20とを電解洗浄液中に浸漬し、陽極10及び陰極20間に電流を流して洗浄対象物Mを電解洗浄するものである。以下では、まず、電解洗浄装置1自体の構成について概略的な説明を行う。前記電解洗浄装置1は、前記陽極10及び陰極20の他、筐体2と、該筐体2の上部に配置され、電解洗浄液を収容する洗浄槽3と、電極(陽極10及び陰極20)に給電する電源4を筐体2の内部に備える。   As shown in FIGS. 1 and 2, the electrolytic cleaning apparatus 1 according to the first embodiment immerses the anode 10 and the cathode 20 holding the object to be cleaned M in an electrolytic cleaning solution, and between the anode 10 and the cathode 20. The cleaning object M is electrolytically cleaned by passing an electric current. In the following, first, a schematic description will be given of the configuration of the electrolytic cleaning apparatus 1 itself. The electrolytic cleaning apparatus 1 includes, in addition to the anode 10 and the cathode 20, a housing 2, a cleaning tank 3 disposed on the top of the housing 2, and containing an electrolytic cleaning liquid, and electrodes (anode 10 and cathode 20). A power supply 4 for supplying power is provided inside the housing 2.

前記陽極10は、後述する金属の放電部分12aが洗浄槽3の内部に位置するように設けられ、電解洗浄の際には前記放電部分12aが電解洗浄液に浸漬される。具体的には、図2に示すように、前記陽極10は、洗浄槽3の上端の開口部から吊り下げられる。また、陽極10は、異なる電圧を別々に印加可能な複数(例えば、二つ)の陽極部11,11を備える。これによって、前記陽極10は、陰極20に対して異なる通電量で通電可能となる。(なお、以下では、二つの陽極部11を区別して記載する必要がある場合には、陽極部11A,11Bといったように、A,Bの添え字を付けて記載することとする。)   The anode 10 is provided such that a metal discharge portion 12a, which will be described later, is located inside the cleaning tank 3, and the discharge portion 12a is immersed in an electrolytic cleaning solution during electrolytic cleaning. Specifically, as shown in FIG. 2, the anode 10 is suspended from the opening at the upper end of the cleaning tank 3. The anode 10 includes a plurality (for example, two) of anode portions 11 and 11 that can separately apply different voltages. As a result, the anode 10 can be energized with different energization amounts with respect to the cathode 20. (In the following, when it is necessary to distinguish between the two anode portions 11, they are described with the suffixes A and B, such as anode portions 11A and 11B.)

各陽極部11は、前記放電部分12aが水平面に沿う平面上に位置するように配置され、具体的には、前記放電部分12aを有する陽極体12と、該陽極体12を支持する支持体13とを備えて構成される。また、前記陽極部11は、図3(A)にも示されるような部材であり、陽極体12を複数(例えば、4〜10個)有する。陽極体12としては、円形状の平面部分を有する円盤状金属(直径36mm)が用いられる。なお、陽極体12は、二つ一組で設けられる。また、陽極体12は、図3(b)に示すように、前記放電部分12aを除き、電解洗浄液と接触する部分は外面を樹脂等の絶縁体12bによって被覆される。   Each anode portion 11 is arranged such that the discharge portion 12a is positioned on a plane along a horizontal plane. Specifically, the anode body 12 having the discharge portion 12a and a support 13 that supports the anode body 12 are provided. And is configured. Further, the anode part 11 is a member as shown in FIG. 3A, and has a plurality of anode bodies 12 (for example, 4 to 10 pieces). As the anode body 12, a disk-shaped metal (diameter 36 mm) having a circular plane portion is used. The anode bodies 12 are provided in pairs. Further, as shown in FIG. 3B, the anode body 12 is covered with an insulator 12b such as a resin on the outer surface thereof except for the discharge portion 12a.

前記陽極体12は、支持体13に対する高さ位置を調整可能に構成され、任意の高さ方向位置で固定される。また、陽極体12は、金属の放電部分12aと洗浄対象物Mの上端面との間隔が20〜50mmとなるように配置され、特に、30mmが好ましい。このようにすると、洗浄対象物Mに焼けや変色等の損傷を発生されることなく、好適に電解洗浄を行うことができる。   The anode body 12 is configured such that the height position relative to the support body 13 can be adjusted, and is fixed at an arbitrary height direction position. Moreover, the anode body 12 is arrange | positioned so that the space | interval of the metal discharge part 12a and the upper end surface of the cleaning target M may be 20-50 mm, and 30 mm is especially preferable. In this way, the electrolytic cleaning can be suitably performed without causing damage such as burning or discoloration to the cleaning object M.

また、前記陽極10の陽極体12は、前記陰極20のうち洗浄対象物Mが載置される部分を、従来の電解洗浄装置(例えば、図5,図7参照)に比べて広い範囲に亘って覆うように配置される。具体的には、前記陽極体12は、図1に示すように、前記陰極20の面積に対して若干狭い領域を少なくとも覆うように設けられる。即ち、陽極体12が被洗浄面を全体的に覆うように配置される。例えば、複数の陽極体12,12…によって画定される陽極10の仮想的な外形線L1と、洗浄対象物Mが載置される部分によって画定される陰極20の外形線L2とを二次元的に重ね合わせた状態(上面視)において、前記二つの外形線の間にできる隙間の領域Sは、陽極体12を配置することができない程度の大きさに設定される。即ち、前記隙間の領域Sの幅は、前記陽極体12以下の大きさに形成される。   Further, the anode body 12 of the anode 10 covers a portion of the cathode 20 on which the object to be cleaned M is placed over a wide range as compared with a conventional electrolytic cleaning apparatus (see, for example, FIGS. 5 and 7). Placed so as to cover. Specifically, as shown in FIG. 1, the anode body 12 is provided so as to cover at least a region slightly narrower than the area of the cathode 20. That is, the anode body 12 is disposed so as to cover the entire surface to be cleaned. For example, the virtual outline L1 of the anode 10 defined by the plurality of anode bodies 12, 12,... And the outline L2 of the cathode 20 defined by the portion on which the cleaning object M is placed are two-dimensionally represented. In a state where they are superposed on each other (viewed from above), the gap region S formed between the two outlines is set to such a size that the anode body 12 cannot be disposed. That is, the width of the gap region S is formed to be smaller than the anode body 12.

なお、前記陽極10(即ち、陽極体12)は、Feを用いて形成される。Feは、安価なため、電解洗浄装置1のコストダウンを図ることができる。ただし、電解洗浄液中に金属イオンが蓄積すると、酸化物などに変化して洗浄対象物Mに吸着する可能性が高まるため、これを防止する観点からは、陽極10(即ち、陽極体12)は、Pt,Pd,Ir,Ru等のイオン化傾向が小さい白金族金属、若しくはこれらの合金を用いて形成することが好ましい。さらに、前記陽極体12は、Tiからなる陽極本体をPt,Pd,Ir,Ru若しくはこれらの合金によって被覆して形成したものであってもよい。このようにすれば、高価な白金族金属の使用量を少なくすることができるため、経済的である。   The anode 10 (that is, the anode body 12) is formed using Fe. Since Fe is inexpensive, the cost of the electrolytic cleaning apparatus 1 can be reduced. However, since accumulation of metal ions in the electrolytic cleaning liquid increases the possibility of adsorption to the cleaning object M by changing to oxides or the like, from the viewpoint of preventing this, the anode 10 (that is, the anode body 12) is , Pt, Pd, Ir, Ru, or the like, or a platinum group metal having a low ionization tendency, or an alloy thereof is preferably used. Further, the anode body 12 may be formed by covering an anode body made of Ti with Pt, Pd, Ir, Ru, or an alloy thereof. In this way, the amount of expensive platinum group metal used can be reduced, which is economical.

前記陰極20は、図2に示すように、洗浄対象物Mと電気的に接続した状態で該洗浄対象物Mを支持する支持部材21と、該支持部材21を吊り下げる吊下部材22とを備えて構成される。また、前記支持部材21は、洗浄対象物Mと接触するように構成される金属の導電部分21aを有する。具体的には、支持部材21は、ステンレス等の金属製のトレイとして設けられる。ただし、陰極としては、上述のものに限定されず、ステンレス等の金属製のかごとして設けられるものであってもよい。また、前記支持部材21には、該支持部材21の両面間を連通する空間部が形成される。このようにすれば、電解洗浄液が前記支持部材21に形成された空間部を流通することができるため、洗浄対象物Mとの隙間に電解によって分解した洗浄液が蓄積することなく、常に新鮮な洗浄液を供給することができるため、分解した洗浄液成分が洗浄対象物に焼き付いたりするような問題を引き起こすことなく好適に洗浄することができる。具体的には、前記支持部材21は、複数のパンチ孔が形成されたいわゆるパンチングメタルを用いて形成される。なお、前記支持部材21は、開口上端部を樹脂等の絶縁体21bによって縁取りされている。また、また、吊下部材22は、支持部材21との接続部分22a及び電源4との接続部分22bを除き、樹脂等の絶縁体22cによって被覆されている。   As shown in FIG. 2, the cathode 20 includes a support member 21 that supports the cleaning object M in a state of being electrically connected to the cleaning object M, and a suspension member 22 that suspends the support member 21. It is prepared for. The support member 21 has a metal conductive portion 21 a configured to come into contact with the cleaning object M. Specifically, the support member 21 is provided as a tray made of metal such as stainless steel. However, the cathode is not limited to those described above, and may be provided as a metal cage such as stainless steel. The support member 21 is formed with a space that communicates between both surfaces of the support member 21. In this way, since the electrolytic cleaning liquid can flow through the space formed in the support member 21, the cleaning liquid decomposed by electrolysis does not accumulate in the gap with the object to be cleaned M, and is always fresh. Therefore, it is possible to perform cleaning suitably without causing a problem that the decomposed cleaning liquid component is burned onto the object to be cleaned. Specifically, the support member 21 is formed using a so-called punching metal in which a plurality of punch holes are formed. Note that the upper end portion of the support member 21 is edged by an insulator 21b such as resin. Moreover, the suspension member 22 is covered with an insulator 22c such as a resin except for the connection portion 22a with the support member 21 and the connection portion 22b with the power source 4.

前記電解洗浄装置1には、電解洗浄以外にも前記電解洗浄液を超音波振動させて洗浄対象物の超音波洗浄を行うための超音波発生器(図示しない)が備えられている。該超音波発生器は、前記洗浄槽3の下部に設けられる。超音波洗浄は、電解洗浄と同時に又は交互に行うことができるが、電解洗浄と同時に行われるのが好ましい。   In addition to the electrolytic cleaning, the electrolytic cleaning apparatus 1 includes an ultrasonic generator (not shown) for ultrasonically cleaning the object to be cleaned by ultrasonically vibrating the electrolytic cleaning liquid. The ultrasonic generator is provided in the lower part of the cleaning tank 3. The ultrasonic cleaning can be performed simultaneously with the electrolytic cleaning or alternately, but is preferably performed simultaneously with the electrolytic cleaning.

このようにすれば、電解洗浄液が超音波振動することにより洗浄対象物Mに付着した汚れの剥離を促進することができる。具体的には、超音波振動によってキャビテーションが発生し、これによって汚れの剥離が促進されるとともに、電解反応が活性化される。従って、陽極体12と対面していない箇所や、凹んだ部分に対しても洗浄効果を高く発揮することができる。   In this way, it is possible to promote the peeling of dirt adhered to the cleaning object M by ultrasonic vibration of the electrolytic cleaning liquid. Specifically, cavitation is generated by ultrasonic vibration, which promotes peeling of dirt and activates the electrolytic reaction. Therefore, a high cleaning effect can be exerted even on a portion not facing the anode body 12 or a recessed portion.

また、前記電解洗浄装置1は、前記電解洗浄液を加熱する加熱装置(図示しない)を備える構成が好ましい。なお、電解洗浄を行う液温は、20〜70℃が好ましく、この場合には、洗浄対象物Mが焼けや変色を生じることなく好適に洗浄を実施することができる。さらに、液温が50〜60℃の場合には、金属酸化皮膜、錆、樹脂付着物、ガス焼けなどの比較的結合の強い金型汚れに対しても、洗浄対象物Mに損傷を与えることなく短時間で最も効率よく洗浄することができる。   Further, the electrolytic cleaning apparatus 1 preferably includes a heating device (not shown) for heating the electrolytic cleaning liquid. In addition, as for the liquid temperature which performs electrolytic cleaning, 20-70 degreeC is preferable, In this case, it can wash | clean suitably, without the washing | cleaning target object M producing a burn or discoloration. Furthermore, when the liquid temperature is 50 to 60 ° C., the object to be cleaned M is also damaged by mold stains having relatively strong bonds such as metal oxide film, rust, resin deposits, and gas burn. And can be cleaned most efficiently in a short time.

また、前記電解洗浄装置1は、電解洗浄液を洗浄槽3から排出し、夾雑物を除去し、再度洗浄槽3内に投入する循環機構(図示しない)を備える。ここで、循環機構について具体的に説明する。前記洗浄槽3は、底部分から電解洗浄液が供給されるように構成されており、洗浄槽3が満杯となると、所定の高さ位置に設けられた排出部から電解洗浄液がオーバーフローするようになっている。電解洗浄の際には、洗浄対象物Mから剥離した付着物などの夾雑物や泡が発生するものであるが、電解洗浄液をオーバーフローさせることで、これら夾雑物や泡も電解洗浄液とともに洗浄槽3から排出される。排出された電解洗浄液は、例えばフィルターによる濾過等の周知の方法によって浄化処理され、浄化された電解洗浄液は再度前記洗浄槽3に供給される。   Further, the electrolytic cleaning apparatus 1 includes a circulation mechanism (not shown) that discharges the electrolytic cleaning liquid from the cleaning tank 3, removes impurities, and throws the electrolytic cleaning liquid into the cleaning tank 3 again. Here, the circulation mechanism will be specifically described. The cleaning tank 3 is configured such that the electrolytic cleaning liquid is supplied from the bottom, and when the cleaning tank 3 is full, the electrolytic cleaning liquid overflows from a discharge portion provided at a predetermined height. Yes. When electrolytic cleaning is performed, foreign substances such as deposits and bubbles peeled off from the cleaning object M are generated. By overflowing the electrolytic cleaning liquid, these foreign substances and bubbles are also washed with the electrolytic cleaning liquid in the cleaning tank 3. Discharged from. The discharged electrolytic cleaning liquid is purified by a known method such as filtration using a filter, and the cleaned electrolytic cleaning liquid is supplied to the cleaning tank 3 again.

なお、前記電解洗浄装置1によって洗浄される洗浄対象物Mは、例えば、フラットパネルディスプレイの導光板やシート状光学レンズ、携帯電話の超小型精密なカメラレンズ、車両用リフレクター等を射出成型する金型である。   The cleaning object M to be cleaned by the electrolytic cleaning apparatus 1 is, for example, a gold for injection molding a light guide plate or a sheet-like optical lens of a flat panel display, an ultra-small and precise camera lens of a mobile phone, a vehicle reflector, or the like. It is a type.

電解洗浄液としては、電解質と、キレート剤と、界面活性剤とを含有するものが用いられる。電解質としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、クエン酸ナトリウムの少なくともいずれか一つを含有するものが好ましい。キレート剤としては、カルボキシレート基(COO−)及び窒素(N)原子で金属イオンを配位するキレート剤を含有するもの、及び、グルコン酸塩が好ましい。界面活性剤としては、中性界面活性剤、両性界面活性剤、陰イオン界面活性剤の少なくともいずれか一つを含有するものが好ましく、特に、両性界面活性剤が好ましい。また、電解洗浄液は、pHが8〜14のアルカリ性水溶液であり、この範囲では、pH値が高いほど洗浄効果が高くなる。また、このpH範囲で洗浄を行えば、Feや鋼、ステンレス鋼、Ni、Ti、希金属類を材質とする洗浄対象物の腐食は無視できる。   As the electrolytic cleaning solution, one containing an electrolyte, a chelating agent, and a surfactant is used. The electrolyte preferably contains at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, and sodium citrate. As the chelating agent, those containing a chelating agent that coordinates a metal ion with a carboxylate group (COO-) and a nitrogen (N) atom, and a gluconate are preferable. As the surfactant, those containing at least one of a neutral surfactant, an amphoteric surfactant and an anionic surfactant are preferable, and an amphoteric surfactant is particularly preferable. In addition, the electrolytic cleaning solution is an alkaline aqueous solution having a pH of 8 to 14, and in this range, the higher the pH value, the higher the cleaning effect. Further, if cleaning is performed in this pH range, corrosion of the cleaning object made of Fe, steel, stainless steel, Ni, Ti, or rare metals can be ignored.

上記電解洗浄液において、キレート剤は、電解洗浄液中に溶解した金属イオンを配位して封鎖するため、金属イオンに由来する洗浄対象物の変色を好適に防止することができる。また、界面活性剤は、電解洗浄液の表面張力を小さくするため、汚れの隙間に対する浸透性を高めて洗浄効果を高めることができる。また、界面活性剤によって電解洗浄液の液面に泡が発生するため、電解洗浄によって発生した気体が液面で弾けるときに発生するアルカリ性のミストが飛散するのを好適に防止することができる。   In the above electrolytic cleaning solution, the chelating agent coordinates and blocks the metal ions dissolved in the electrolytic cleaning solution, so that it is possible to suitably prevent discoloration of the cleaning object derived from the metal ions. In addition, since the surfactant reduces the surface tension of the electrolytic cleaning liquid, it can increase the permeability with respect to the gaps in the dirt and enhance the cleaning effect. Moreover, since bubbles are generated on the surface of the electrolytic cleaning liquid by the surfactant, it is possible to suitably prevent the alkaline mist generated when the gas generated by the electrolytic cleaning is repelled on the liquid surface.

さらに、長時間に亘って電解洗浄を行うと、電解洗浄液の蒸発や水の電気分解によって液量が減少するため、電解洗浄開始時の液量を維持すべく、補充液を適宜補充する。補充液は、水であってもよいが、電解質とキレート剤とグルコン酸塩とを含有するものが好ましく、界面活性剤を含有するものがさらに好ましい。なお、上述の電解洗浄液と同様に、電解質としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、クエン酸ナトリウムの少なくともいずれか一つを含有するものが好ましい。キレート剤として、カルボキシレート基(COO−)及び窒素(N)原子で金属イオンを配位するキレート剤を含有するものが好ましい。界面活性剤としては、中性界面活性剤、両性界面活性剤、陰イオン界面活性剤の少なくともいずれか一つを含有するものが好ましく、特に、両性界面活性剤が好ましい。   Furthermore, if the electrolytic cleaning is performed for a long time, the amount of the liquid decreases due to the evaporation of the electrolytic cleaning liquid or the electrolysis of water. Therefore, the replenisher is appropriately replenished in order to maintain the liquid amount at the start of the electrolytic cleaning. The replenisher may be water, but preferably contains an electrolyte, a chelating agent, and a gluconate, and more preferably contains a surfactant. As with the above-described electrolytic cleaning solution, the electrolyte contains at least one of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, potassium bicarbonate, and sodium citrate. preferable. The chelating agent preferably contains a chelating agent that coordinates a metal ion with a carboxylate group (COO-) and a nitrogen (N) atom. As the surfactant, those containing at least one of a neutral surfactant, an amphoteric surfactant and an anionic surfactant are preferable, and an amphoteric surfactant is particularly preferable.

次に、本実施形態に係る電解洗浄装置1及び電解洗浄方法の特徴的部分である電圧(通電量)の制御について説明する。   Next, control of voltage (energization amount), which is a characteristic part of the electrolytic cleaning apparatus 1 and the electrolytic cleaning method according to the present embodiment, will be described.

前記電解洗浄装置1は、図4に示すように、前記複数の陽極部11,11のうち一部の陽極部11Aにおける前記陰極20との通電量が、他の陽極部11Bにおける前記陰極20との通電量に比べて多い状態と少ない状態とで交互に切り替わるように制御可能に構成される。   As shown in FIG. 4, the electrolytic cleaning apparatus 1 is configured such that the energization amount with the cathode 20 in a part of the anode parts 11 </ b> A among the plurality of anode parts 11 and 11 is different from that of the cathodes 20 in the other anode parts 11 </ b> B. It is configured to be controllable so that it is alternately switched between a large state and a small state compared to the energization amount.

具体的には、前記通電量は、前記陽極部及び陰極間に印加する電圧によって制御される。即ち、前記電解洗浄装置1は、前記複数の陽極部11,11及び陰極20間の電圧のうち一部の陽極部11A及び陰極20間の電圧が他の陽極部11B及び陰極20間の電圧に比べて高い状態と低い状態とで交互に切り替わるように制御可能に構成される。   Specifically, the energization amount is controlled by a voltage applied between the anode part and the cathode. That is, in the electrolytic cleaning apparatus 1, among the voltages between the plurality of anode parts 11, 11 and the cathode 20, the voltage between a part of the anode parts 11 </ b> A and the cathode 20 is changed to the voltage between the other anode parts 11 </ b> B and the cathode 20. It is configured to be controllable so as to switch alternately between a high state and a low state.

また、前記電解洗浄装置1は、前記一部の陽極部11A及び陰極20間に印加される電圧がそれ以外の陽極部11B及び陰極20間に印加される電圧よりも高い状態と、前記一部の陽極部11Aとは別の陽極部11B及び陰極20間に印加される電圧が該別の陽極部11B以外の陽極部11A及び陰極20間に印加される電圧よりも高い状態とを切替可能に構成される。なお、印加される電圧が約2V(いわゆる過電圧)を下回ると電流が流れなくなり電解ガスを発生させることができない状態となるため、一部の陽極部11A及び陰極20間に印加される電圧が他の陽極部11B及び陰極20間に印加される電圧に比べて高い状態とする際には、一部の陽極部11A及び陰極20間に印加される電圧は少なくとも過電圧以上の電圧とされる。   Further, the electrolytic cleaning apparatus 1 includes a state in which the voltage applied between the part of the anode part 11A and the cathode 20 is higher than the voltage applied between the other part of the anode part 11B and the cathode 20, and the part The voltage applied between the anode part 11B different from the anode part 11A and the cathode 20 can be switched to a state in which the voltage applied between the anode part 11A other than the other anode part 11B and the cathode 20 is higher. Composed. Note that when the applied voltage falls below about 2V (so-called overvoltage), the current does not flow and the electrolytic gas cannot be generated. Therefore, the voltage applied between some of the anode portions 11A and the cathode 20 is different. When the voltage applied is higher than the voltage applied between the anode portion 11B and the cathode 20, the voltage applied between a part of the anode portions 11A and the cathode 20 is set to at least an overvoltage.

また、前記陽極10は、二つの陽極部11,11のうち、一方の陽極部11A及び陰極20間のみに電圧が印加される状態と、他方の陽極部11B及び陰極20間のみに電圧が印加される状態とを切替可能に構成される。具体的には、前記陽極10は、二つの陽極部11,11のうち、一方の陽極部11A及び陰極20間に電圧が印加される間、他方の陽極部11B及び陰極20間には電圧が印加されず、他方の陽極部11B及び陰極20間に電圧が印加される間、一方の陽極部11A及び陰極20間には電圧が印加されない。   The anode 10 has a state in which a voltage is applied only between one anode part 11A and the cathode 20 of the two anode parts 11 and 11, and a voltage is applied only between the other anode part 11B and the cathode 20. The state to be switched can be switched. Specifically, the anode 10 has a voltage between the other anode portion 11B and the cathode 20 while the voltage is applied between the anode portion 11A and the cathode 20 of the two anode portions 11 and 11. While no voltage is applied and a voltage is applied between the other anode portion 11B and the cathode 20, no voltage is applied between the one anode portion 11A and the cathode 20.

また、前記各陽極部11及び陰極20間には、所定時間毎に交互に一定の大きさの電圧が印加される。例えば、各陽極部11A,11B及び陰極20間に対して30秒周期で(即ち、15秒毎に)5Vの直流電圧を交互に印加する。   A voltage having a constant magnitude is alternately applied between the anode portions 11 and the cathode 20 every predetermined time. For example, a DC voltage of 5V is alternately applied between the anode portions 11A and 11B and the cathode 20 in a cycle of 30 seconds (that is, every 15 seconds).

以下、実施例を挙げて本発明についてさらに詳細に説明する。ただし、本発明は、これらの実施例のみの記載に限定されるものではなく、本発明の目的の範囲内において適宜変更することができる。まず、以下の実施例1,2及び比較例1,2において、電解洗浄液の寿命を検証した。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the description of only these examples, and can be appropriately modified within the scope of the object of the present invention. First, in the following Examples 1 and 2 and Comparative Examples 1 and 2, the lifetime of the electrolytic cleaning solution was verified.

<実施例1>
実施例1では、図1及び図2に示す電解洗浄装置1を使用した。陽極10は、陰極に対して異なる通電量で通電可能な陽極部11を二つ備え、各陽極部11は、それぞれ円盤状の陽極体12(直径36mm)を4個備える。また、陰極20は、複数の小孔が形成されたステンレス製のトレイを支持部材21として用いた。また、洗浄対象物Mとしては、金型や金属部品の素材に利用される鋼材(幅30mm、長さ30mm、高さ10mm)を用いた。なお、測定には洗浄対象物Mを一つ用いた。そして、上記洗浄対象物Mを前記支持部材21上に並べてセットした。前記陽極10は、金属の放電部分と洗浄対象物Mの上端面との間隔が30mmとなるように配置した。
<Example 1>
In Example 1, the electrolytic cleaning apparatus 1 shown in FIGS. 1 and 2 was used. The anode 10 includes two anode portions 11 that can be energized with different energization amounts with respect to the cathode, and each anode portion 11 includes four disk-shaped anode bodies 12 (diameter 36 mm). As the cathode 20, a stainless steel tray in which a plurality of small holes are formed is used as the support member 21. Moreover, as the cleaning object M, a steel material (width 30 mm, length 30 mm, height 10 mm) used as a material for a mold or a metal part was used. For the measurement, one cleaning object M was used. The cleaning object M was set side by side on the support member 21. The anode 10 was disposed so that the distance between the metal discharge portion and the upper end surface of the cleaning object M was 30 mm.

電解洗浄液としては、4.5重量%水酸化ナトリウム、5重量%エチレンジアミン四酢酸・四ナトリウム、2重量%グルコン酸ナトリウム、及び微量(例えば、1重量%以下)の両性界面活性剤を含むアルカリ性水溶液からなる電解洗浄液(pH13.6)を用いた。なお、電解洗浄装置1の洗浄槽3は10Lの容量を有するものであり、この電解洗浄液を前記洗浄槽3に9L投入した。   As an electrolytic cleaning solution, an alkaline aqueous solution containing 4.5% by weight sodium hydroxide, 5% by weight ethylenediaminetetraacetic acid / tetrasodium, 2% by weight sodium gluconate, and a trace amount (for example, 1% by weight or less) of an amphoteric surfactant. An electrolytic cleaning solution (pH 13.6) consisting of The cleaning tank 3 of the electrolytic cleaning apparatus 1 has a capacity of 10 L, and 9 L of this electrolytic cleaning liquid was put into the cleaning tank 3.

なお、電解洗浄中に電解洗浄液が減少するため、補充液として水を適宜補充した。測定が終了するまでに補充した補充液の量は約2200mLであった。   Since the electrolytic cleaning solution decreased during the electrolytic cleaning, water was appropriately supplemented as a replenisher. The amount of replenisher replenished by the end of the measurement was about 2200 mL.

そして、前記陽極に対して30秒周期で(即ち、15秒毎に)5Vの直流電圧を交互に印加して電解洗浄を行った(電流30〜45A/平方デシメートル)。また、電解洗浄と同時に40kHzの超音波を照射した。なお、液温は45〜60℃に維持した。   Then, electrolytic cleaning was performed by alternately applying a DC voltage of 5 V to the anode in a cycle of 30 seconds (that is, every 15 seconds) (current 30 to 45 A / square decimeter). Moreover, 40 kHz ultrasonic waves were irradiated simultaneously with the electrolytic cleaning. The liquid temperature was maintained at 45-60 ° C.

そして、1時間ごとに、洗浄対象物Mに損傷(具体的には、焼けや変色)が発生しているか否かの検証を行い、洗浄対象物Mに損傷が確認されるまでの時間を測定した。検証としては、洗浄対象物Mを電解洗浄装置から取り出し、流水で水洗して電解洗浄液を取り除いた後、アルゴンガスを吹き付けて乾燥させ、照明等のある明るい環境下で肉眼及び光学顕微鏡を用いて損傷(具体的には、焼けや変色)の有無を調べる作業を行った。その結果、43時間経過時の検証において、洗浄対象物Mに損傷が確認された。これらを表1に示す。   Then, every hour, it is verified whether or not the cleaning object M is damaged (specifically, burnt or discolored), and the time until the cleaning object M is confirmed to be damaged is measured. did. As a verification, the object to be cleaned M is taken out from the electrolytic cleaning apparatus, washed with running water to remove the electrolytic cleaning liquid, blown and dried with argon gas, and using the naked eye and an optical microscope in a bright environment with illumination. Work was done to check for damage (specifically, burns and discoloration). As a result, in the verification after 43 hours, the cleaning object M was confirmed to be damaged. These are shown in Table 1.

<比較例1>
比較例1は、陽極の構成及び陽極に印加する電圧に関するものを除いて、各種の条件は基本的に上記実施例1と同様である。比較例1では、図5に示すような、陽極60が一つの陽極部61で構成され、該陽極部61は、陽極体62を6個有する電解洗浄装置51を用いた。なお、比較例1に係る電解洗浄装置51のうち、実施例1に係る電解洗浄装置1と同様の構成については、同一の符号を付し、説明を省略する。そして、印加する電圧を変化させることなく、5Vの直流電圧を常時印加した。測定が終了するまでに補充した補充液(水)の量は、約1500mLであった。その結果、29時間経過時の検証において、洗浄対象物Mに損傷が確認された。これらを表1に示す。
<Comparative Example 1>
In Comparative Example 1, various conditions are basically the same as those of Example 1 except for the configuration of the anode and the voltage applied to the anode. In Comparative Example 1, as shown in FIG. 5, the anode 60 is composed of one anode portion 61, and the anode cleaning portion 51 uses an electrolytic cleaning apparatus 51 having six anode bodies 62. In addition, about the structure similar to the electrolytic cleaning apparatus 1 which concerns on Example 1 among the electrolytic cleaning apparatus 51 which concerns on the comparative example 1, the same code | symbol is attached | subjected and description is abbreviate | omitted. And the DC voltage of 5V was always applied, without changing the voltage to apply. The amount of replenisher (water) replenished before the measurement was completed was about 1500 mL. As a result, in the verification after 29 hours, the cleaning object M was confirmed to be damaged. These are shown in Table 1.

<実施例2>
実施例2は、補充液を除いて、各種の条件は基本的に上記実施例1と同様である。実施例2では、補充液として、2.5%水酸化ナトリウム、1%エチレンジアミン四酢酸・四ナトリウム(EDTA‐4Na)、1重量%以下の微量の両性界面活性剤を含むアルカリ性水溶液(pH13.6)を用いた。また、測定が終了するまでに補充した補充液の量は約5000mLであった。その結果、57時間経過時の検証において、洗浄対象物Mに損傷が確認された。これらを表1に示す。
<Example 2>
The second embodiment is basically the same as the first embodiment except for the replenisher. In Example 2, as a replenisher, an alkaline aqueous solution (pH 13.6) containing 2.5% sodium hydroxide, 1% ethylenediaminetetraacetic acid / tetrasodium (EDTA-4Na), and a trace amount of amphoteric surfactant of 1% by weight or less. ) Was used. Further, the amount of the replenisher replenished before the measurement was completed was about 5000 mL. As a result, in the verification after 57 hours, the cleaning object M was confirmed to be damaged. These are shown in Table 1.

<比較例2>
比較例2は、陽極に印加する電圧に関するものを除いて、各種の条件は基本的に上記実施例2と同様である。比較例2では、図1に示すような陽極10に対して各陽極部11,11及び陰極20間に印加する電圧を変化させることなく、8個の陽極体12の全てに対して5Vの直流電圧を常時印加した。測定が終了するまでに補充した補充液(アルカリ性水溶液)の量は約1500mLであった。その結果、16時間経過時の検証において、洗浄対象物Mに損傷が確認された。これらを表1に示す。
<Comparative example 2>
In Comparative Example 2, various conditions are basically the same as in Example 2 except for the voltage relating to the anode. In Comparative Example 2, a direct current of 5 V is applied to all eight anode bodies 12 without changing the voltage applied between the anode portions 11 and 11 and the cathode 20 with respect to the anode 10 as shown in FIG. A voltage was constantly applied. The amount of replenisher (alkaline aqueous solution) replenished by the end of the measurement was about 1500 mL. As a result, in the verification after 16 hours, the cleaning object M was confirmed to be damaged. These are shown in Table 1.

Figure 0004938714
Figure 0004938714

上記測定の結果、電解洗浄液の寿命は、実施例1,2の方が比較例1,2に比べて長いことが確認された。   As a result of the above measurement, it was confirmed that the life of the electrolytic cleaning liquid was longer in Examples 1 and 2 than in Comparative Examples 1 and 2.

次に、以下の実施例3,4及び比較例3,4において、電解洗浄の効果を検証した。   Next, in the following Examples 3 and 4 and Comparative Examples 3 and 4, the effect of electrolytic cleaning was verified.

<実施例3>
実施例3では、洗浄対象物Mとして、上記各例と同様の材質及び寸法を有し、表面に赤錆が発生した鋼材を用いた。かかる洗浄対象物Mは、鋼材をエタノールで脱脂した後、塩水を噴霧して、室温で5日間放置することで作製した。
<Example 3>
In Example 3, as the cleaning object M, a steel material having the same material and dimensions as those in the above examples and having red rust on the surface was used. Such a cleaning object M was prepared by degreasing a steel material with ethanol, spraying salt water, and allowing to stand at room temperature for 5 days.

電解洗浄装置1としては、実施例1で用いたものと同様な構成のものを用いた。また、液温が55〜60℃である点を除いて、各種の条件は基本的に上記実施例1と同様である。   As the electrolytic cleaning apparatus 1, one having the same configuration as that used in Example 1 was used. Moreover, various conditions are the same as that of the said Example 1 except the point whose liquid temperature is 55-60 degreeC.

そして、洗浄対象物Mの表面に発生した赤錆が電解洗浄によって消滅したことが確認される時間を測定した。その結果、5分経過時の検証では赤錆が残存していたが、10分経過時の検証では消滅したことが確認された。これらを表2に示す。   And the time when it was confirmed that the red rust which generate | occur | produced on the surface of the washing | cleaning target object M disappeared by the electrolytic cleaning was measured. As a result, it was confirmed that red rust remained in the verification after 5 minutes, but disappeared in the verification after 10 minutes. These are shown in Table 2.

<比較例3>
比較例3は、陽極の構成及び陽極に印加する電圧に関するものを除いて、各種の条件は基本的に上記実施例3と同様である。また、比較例3では、比較例1で用いたものと同様の図5に示す構成の陽極60を用いた。
<Comparative Example 3>
In Comparative Example 3, various conditions are basically the same as in Example 3 except for the configuration of the anode and the voltage applied to the anode. Further, in Comparative Example 3, the anode 60 having the configuration shown in FIG. 5 similar to that used in Comparative Example 1 was used.

そして、洗浄対象物Mの表面に発生した赤錆が電解洗浄によって消滅したことが確認される時間を測定した。その結果、5分経過時の検証では赤錆が残存していたが、10分経過時の検証では消滅したことが確認された。これらを表2に示す。   And the time when it was confirmed that the red rust which generate | occur | produced on the surface of the washing | cleaning target object M disappeared by the electrolytic cleaning was measured. As a result, it was confirmed that red rust remained in the verification after 5 minutes, but disappeared in the verification after 10 minutes. These are shown in Table 2.

<実施例4>
実施例4は、洗浄対象物Mを除いて、各種の条件は基本的に上記実施例3と同様である。実施例4では、洗浄対象物Mとして、上記各例と同様の材質及び寸法を有し、表面に酸化皮膜が形成された鋼材を用いた。かかる洗浄対象物Mは、鋼材を空気中において電熱器で加熱することによって作製され、具体的には、表面の状態が本来の金属色から褐色に変化し、さらに褐色から紫色に変化し始めるまで加熱した後(10分程度)に放冷することにより、褐色と紫色が混在した酸化皮膜が表面に形成された洗浄対象物Mを作製した。
<Example 4>
In Example 4, except for the cleaning object M, various conditions are basically the same as in Example 3 described above. In Example 4, as the cleaning object M, a steel material having the same material and dimensions as those of the above examples and having an oxide film formed on the surface thereof was used. Such an object to be cleaned M is produced by heating a steel material with an electric heater in the air. Specifically, until the surface state changes from the original metal color to brown and further changes from brown to purple. After being heated (about 10 minutes), the object to be cleaned M having an oxide film mixed with brown and purple was formed on the surface.

かかる洗浄対象物Mを用いて測定を行った結果、5分経過時の検証では酸化皮膜が残存していたが、10分経過時の検証では消滅したことが確認された。これらを表2に示す。   As a result of measurement using the cleaning object M, it was confirmed that the oxide film remained in the verification after 5 minutes, but disappeared in the verification after 10 minutes. These are shown in Table 2.

<比較例4>
比較例4は、陽極の構成及び陽極に印加する電圧に関するものを除いて、各種の条件は基本的に上記実施例4と同様である。また、比較例4では、比較例1で用いたものと同様の図5に示す構成の陽極60を用いた。
<Comparative example 4>
In Comparative Example 4, various conditions are basically the same as in Example 4 except for the configuration of the anode and the voltage applied to the anode. In Comparative Example 4, the anode 60 having the configuration shown in FIG. 5 similar to that used in Comparative Example 1 was used.

かかる洗浄対象物Mを用いて測定を行った結果、5分経過時の検証では酸化皮膜が残存していたが、10分経過時の検証では消滅したことが確認された。これらを表2に示す。   As a result of measurement using the cleaning object M, it was confirmed that the oxide film remained in the verification after 5 minutes, but disappeared in the verification after 10 minutes. These are shown in Table 2.

Figure 0004938714
Figure 0004938714

<実施例5>
実施例5は、陽極の構成と洗浄対象物Mの個数を除いて、各種の条件は基本的に上記実施例3と同様である。実施例5では、図6に示すような、陽極10が異なる陽極部11を二つ備え、各陽極部11は、それぞれ円盤状の陽極体12を10個有するものを用いた。また、測定には洗浄対象物Mを6個用いた。
<Example 5>
Example 5 is basically the same as Example 3 except for the configuration of the anode and the number of objects M to be cleaned. In Example 5, two anode parts 11 having different anodes 10 as shown in FIG. 6 were provided, and each anode part 11 used had 10 disc-like anode bodies 12. In addition, six cleaning objects M were used for the measurement.

そして、洗浄対象物Mの表面に発生した赤錆が電解洗浄によって消滅したことが確認される時間を測定した。その結果、5分経過時の検証では赤錆が全ての洗浄対象物Mにおいて一部残存していたが、10分経過時の検証では全ての洗浄対象物Mにおいて消滅したことが確認された。これらを表3に示す。   And the time when it was confirmed that the red rust which generate | occur | produced on the surface of the washing | cleaning target object M disappeared by the electrolytic cleaning was measured. As a result, it was confirmed that red rust partially remained in all the cleaning objects M in the verification after 5 minutes, but disappeared in all the cleaning objects M in the verification after 10 minutes. These are shown in Table 3.

<比較例5>
比較例5は、陽極の構成及び配置と洗浄対象物の個数を除いて、各種の条件は基本的に上記実施例5と同様である。比較例5では、図7に示すような、陽極60が一つの陽極部61で構成され、該陽極部61は、それぞれ陽極体62(直径50mm)を8個有するものを用いた。また、中央の二つの洗浄対象物Mは陽極と対向する配置であったが、左右の4個の洗浄対象物Mは、陽極と対向しない配置となった。
<Comparative Example 5>
Comparative Example 5 is basically the same as Example 5 except for the configuration and arrangement of the anode and the number of objects to be cleaned. In Comparative Example 5, as shown in FIG. 7, the anode 60 was composed of one anode portion 61, and the anode portions 61 each having eight anode bodies 62 (diameter 50 mm) were used. Further, the two cleaning objects M in the center are arranged to face the anode, but the four washing objects M on the left and right are arranged not to face the anode.

そして、洗浄対象物Mの表面に発生した赤錆が電解洗浄によって消滅したことが確認される時間を測定した。その結果、5分経過時及び10分経過時の検証において、電極を挟んで左右に配置された洗浄対象物Mにおいて、一部赤錆が残存していることが確認された。これらを表3に示す。   And the time when it was confirmed that the red rust which generate | occur | produced on the surface of the washing | cleaning target object M disappeared by the electrolytic cleaning was measured. As a result, in verification at the time of 5 minutes and at the time of 10 minutes, it was confirmed that some red rust remained in the cleaning object M arranged on the left and right with the electrode interposed therebetween. These are shown in Table 3.

Figure 0004938714
Figure 0004938714

実施例3,4と比較例3,4とを比較すると、実施例3,4においては、特定の陽極に電圧が常時印加されるものではなかったにもかかわらず、電圧が常時印加されるものである比較例3,4と洗浄効果が同程度であることが確認された。このことから、上述のように印加される電圧を制御した場合には、少ない通電量で同等の洗浄効果を奏することが確認された。   When Examples 3 and 4 are compared with Comparative Examples 3 and 4, in Examples 3 and 4, a voltage is always applied to a specific anode, although the voltage is not always applied. It was confirmed that the cleaning effects were comparable to those of Comparative Examples 3 and 4. From this, it was confirmed that when the applied voltage was controlled as described above, the same cleaning effect was achieved with a small amount of energization.

また、実施例1,2における比較及び実施例3,4における比較を考慮すると、本実施例に係る電解洗浄装置1及び電解洗浄方法によれば、従来と同程度の洗浄効果を奏しつつも寿命を長く維持できることが確認できた。   Further, in consideration of the comparison in Examples 1 and 2 and the comparison in Examples 3 and 4, according to the electrolytic cleaning apparatus 1 and the electrolytic cleaning method according to the present example, the lifetime is obtained while achieving the cleaning effect of the same level as the conventional one. It has been confirmed that can be maintained for a long time.

また、実施例5と比較例5との比較から、陽極10及び陰極20によって挟まれる領域に配置された洗浄対象物Mは電解洗浄を好適に行うことができるが、陰極と対向した位置に陽極が存在しない領域に配置された洗浄対象物Mは電解洗浄を十分に行うことができないことが確認された。   Further, from the comparison between Example 5 and Comparative Example 5, the cleaning object M arranged in the region sandwiched between the anode 10 and the cathode 20 can be suitably subjected to electrolytic cleaning, but the anode is positioned at a position facing the cathode. It was confirmed that the cleaning object M arranged in a region where no water is present cannot sufficiently perform electrolytic cleaning.

以上のように、本実施形態に係る電解洗浄装置1及び電解洗浄方法によれば、洗浄効果を低下させることなく、電解洗浄液の寿命を長く維持することができる。従って、長時間に亘って電解洗浄液を使用することが可能であるので、ランニングコストを低減でき、また、廃液の発生頻度を少なくして環境への負荷をも低減することができる。   As described above, according to the electrolytic cleaning apparatus 1 and the electrolytic cleaning method according to the present embodiment, the lifetime of the electrolytic cleaning liquid can be maintained long without deteriorating the cleaning effect. Therefore, since the electrolytic cleaning liquid can be used for a long time, the running cost can be reduced, and the frequency of waste liquid generation can be reduced to reduce the burden on the environment.

即ち、本実施形態に係る電解洗浄装置1及び電解洗浄方法によれば、陽極及び陰極間に常時一様に通電する従来の電解洗浄装置及び電解洗浄方法の場合と同程度の洗浄効果を維持できつつも、電解洗浄液の寿命を長く維持することができる。かかる効果が発揮される理由の一つとしては、特定の陽極部11と陰極20との通電量が常時変化することで、陰極20に保持された洗浄対象物Mにおける気体の発生状態が常時変化するため、剥離作用等の洗浄作用を洗浄対象物Mに付着した汚れに対して効果的に加えることができるということが考えられる。また、複数の陽極部11は異なる位置に位置するため、最も通電量の多い陽極部11が時間によって変化すると、洗浄作用が加えられる方向が時間的に変動することとなり、洗浄作用を洗浄対象物Mに付着した汚れに対して効果的に加えることができることも理由の一つとして考えられる。   That is, according to the electrolytic cleaning apparatus 1 and the electrolytic cleaning method according to the present embodiment, it is possible to maintain the same cleaning effect as in the case of the conventional electrolytic cleaning apparatus and the electrolytic cleaning method in which current is always uniformly supplied between the anode and the cathode. However, the life of the electrolytic cleaning solution can be maintained for a long time. One of the reasons why such an effect is exhibited is that the gas generation state in the cleaning object M held by the cathode 20 is constantly changed by constantly changing the energization amount between the specific anode portion 11 and the cathode 20. Therefore, it can be considered that a cleaning action such as a peeling action can be effectively applied to the dirt adhering to the cleaning object M. In addition, since the plurality of anode portions 11 are located at different positions, when the anode portion 11 having the largest amount of energization changes with time, the direction in which the cleaning action is applied fluctuates with time, and the cleaning action is changed to the object to be cleaned. One of the reasons is that it can be effectively added to the dirt adhering to M.

さらに、通電量が多い状態から少ない状態に変化すると気体の発生が抑制される。ここで、電解洗浄液は、前記循環手段による流れや、超音波振動による振動や、温度差によって発生する対流や、気体の上昇によって発生する対流等によって、常時撹拌される状態となっている。従って、気体の発生が抑制されている間に電解洗浄液の撹拌によって洗浄対象物Mの表面から気体が除去されるため、洗浄対象物Mの表面に電解洗浄液を好適に供給することができ、電解洗浄効果がさらに高まる。   Further, when the energization amount is changed from a large state to a small state, the generation of gas is suppressed. Here, the electrolytic cleaning liquid is in a state of being constantly stirred by the flow by the circulation means, the vibration by the ultrasonic vibration, the convection generated by the temperature difference, the convection generated by the rising of the gas, or the like. Accordingly, since the gas is removed from the surface of the cleaning object M by stirring the electrolytic cleaning liquid while the generation of gas is suppressed, the electrolytic cleaning liquid can be suitably supplied to the surface of the cleaning object M. The cleaning effect is further enhanced.

しかも、常時一定の電圧を印加する場合に比べて通電量を抑えることができ、その分電解洗浄液の寿命を長くできる。また、通電量が減少することにより、陽極10からの発熱量が小さくなることで電解洗浄液の急速な温度上昇を抑えることができる。従って、電解洗浄液の温度制御を容易に行うことができるとともに、電解洗浄液に添加されている界面活性剤による泡が過剰に発生することも好適に防止することができる。   In addition, the amount of energization can be suppressed as compared with the case where a constant voltage is constantly applied, and the life of the electrolytic cleaning solution can be extended accordingly. Moreover, since the amount of heat generated from the anode 10 is reduced by reducing the energization amount, a rapid temperature rise of the electrolytic cleaning liquid can be suppressed. Therefore, it is possible to easily control the temperature of the electrolytic cleaning liquid, and it is also possible to suitably prevent excessive generation of bubbles due to the surfactant added to the electrolytic cleaning liquid.

また、前記通電量は、前記陽極部11及び陰極20間に印加する電圧によって制御されるため、通電量の制御を電圧の制御によって行うことができるため、通電量の制御が容易となる。   In addition, since the energization amount is controlled by the voltage applied between the anode portion 11 and the cathode 20, the energization amount can be controlled by controlling the voltage, so that the energization amount can be easily controlled.

また、前記電解洗浄装置1は、前記一部の陽極部11A及び陰極20間に印加される電圧がそれ以外の陽極部11B及び陰極20間に印加される電圧よりも高い状態と、前記一部の陽極部11Aとは別の陽極部11B及び陰極20間に印加される電圧が該別の陽極部11B以外の陽極部11A及び陰極20間に印加される電圧よりも高い状態とを切替可能に構成される。従って、一部の陽極部11A及び陰極20間と別の陽極部11B及び陰極20間に対してそれぞれ異なるタイミングで高い電圧が印加されるため、剥離作用等の洗浄作用を洗浄対象物Mに付着した汚れに対してより効果的に加えることができる。   Further, the electrolytic cleaning apparatus 1 includes a state in which the voltage applied between the part of the anode part 11A and the cathode 20 is higher than the voltage applied between the other part of the anode part 11B and the cathode 20, and the part The voltage applied between the anode part 11B different from the anode part 11A and the cathode 20 can be switched to a state in which the voltage applied between the anode part 11A other than the other anode part 11B and the cathode 20 is higher. Composed. Accordingly, a high voltage is applied at different timings between a part of the anode parts 11A and the cathode 20 and between another anode part 11B and the cathode 20, so that a cleaning action such as a peeling action adheres to the cleaning object M. It can be added more effectively against stained dirt.

また、前記陽極10は、二つの陽極部11,11のうち、一方の陽極部11A及び陰極20間のみに電圧が印加される状態と、他方の陽極部11B及び陰極20間のみに電圧が印加される状態とを切替可能に構成される。従って、常時、各陽極部11A,11B及び陰極20間のうちのいずれかにしか電圧が印加されない状態となるため、通電量を好適に減少させることができる。   The anode 10 has a state in which a voltage is applied only between one anode part 11A and the cathode 20 of the two anode parts 11 and 11, and a voltage is applied only between the other anode part 11B and the cathode 20. The state to be switched can be switched. Therefore, since a voltage is always applied only to any one of the anode portions 11A and 11B and the cathode 20, the amount of energization can be suitably reduced.

また、前記各陽極部11及び陰極20間には、所定時間毎に交互に一定の大きさの電圧が印加される。従って、各陽極部11及び陰極20間の総通電量が同じになるため、洗浄対象物Mを全体的に均一に電解洗浄することができる。   A voltage having a constant magnitude is alternately applied between the anode portions 11 and the cathode 20 every predetermined time. Therefore, since the total energization amount between each anode part 11 and the cathode 20 becomes the same, the cleaning object M can be electrolytically cleaned uniformly throughout.

さらに、上記実施形態に係る電解洗浄装置1は、二つの陽極部11,11及び陰極20間に交互に電圧が印加され、いずれか一方の陽極部11及び陰極20間に電圧が印加される間は他方の陽極部11及び陰極20間には電圧が印加されないものである。従って、陽極10全体としての単位時間当たりの通電面積が電極面積に比べて小さくなるように制御できるため、電極面積を多く確保することができる。即ち、陽極体12を従来よりも多く設けることができるため、陽極体12を局所的にではなく分散させて配置することも可能となる。従って、前記洗浄槽3の深さ方向に沿う断面の領域を満遍なく網羅することができ、比較的大きな洗浄対象物Mに対しても、ムラなく均一に電解洗浄を行うことができる。また、複数の洗浄対象物Mを同時に洗浄する場合にも、洗浄対象物ごとのムラなく均一に電解洗浄を行なうことができる。   Furthermore, in the electrolytic cleaning apparatus 1 according to the above-described embodiment, a voltage is alternately applied between the two anode portions 11 and 11 and the cathode 20, and a voltage is applied between any one of the anode portion 11 and the cathode 20. No voltage is applied between the other anode part 11 and the cathode 20. Accordingly, since the current-carrying area per unit time of the anode 10 as a whole can be controlled to be smaller than the electrode area, a large electrode area can be secured. That is, since the anode body 12 can be provided more than before, it is possible to dispose the anode body 12 in a dispersed manner instead of locally. Therefore, the area of the cross section along the depth direction of the cleaning tank 3 can be covered evenly, and even a relatively large cleaning object M can be uniformly and electrolytically cleaned. Further, even when a plurality of objects to be cleaned M are simultaneously cleaned, the electrolytic cleaning can be performed uniformly without any unevenness for each object to be cleaned.

なお、従来は、前記洗浄槽3の深さ方向に沿う断面の領域を満遍なく網羅するように多数の陽極体12を配置すると、その分電極面積が増加してしまい、通電量が過大となるため、電解洗浄液の寿命を縮めるだけでなく、洗浄対象物Mに過大な電流が局所的に流れることで洗浄対象物を損傷させるおそれがあった。この点、上述のような電圧の制御方法によって電解洗浄を行うことで、電解洗浄液の寿命を長く維持できる上に、過大な電流によって洗浄対象物Mが損傷するのを好適に防止することができる。   Conventionally, if a large number of anode bodies 12 are arranged so as to cover the entire area of the cross section along the depth direction of the cleaning tank 3, the electrode area increases accordingly, and the energization amount becomes excessive. In addition to shortening the life of the electrolytic cleaning solution, there is a possibility that an excessive current locally flows in the cleaning object M and damages the cleaning object. In this regard, by performing electrolytic cleaning by the voltage control method as described above, the life of the electrolytic cleaning liquid can be maintained for a long time, and damage to the cleaning object M due to excessive current can be suitably prevented. .

また、例えば洗浄対象物Mが小さい場合等、複数の陽極部11のうちの一部の陽極部11で網羅される範囲内で電解洗浄を行いたい場合には、一部の陽極部11及び陰極20間のみに電圧を(常時又はオンオフの繰り返しで断続的に)印加し、他には電圧を常時印加しないようにしてもよい。すなわち、配置された陽極部11の全てを使用せずに、洗浄対象物Mを設置した箇所に対面する陽極部11及び陰極20間のみに通電することよって電解洗浄を行い、洗浄対象物Mを設置していない箇所の陽極部11及び陰極20間には通電しないようにして、無駄に洗浄液が消耗しないようにしてもよい。   For example, when the object to be cleaned M is small, when it is desired to perform electrolytic cleaning within a range covered by some of the plurality of anode parts 11, some of the anode parts 11 and the cathodes. A voltage may be applied only between 20 (always or intermittently by repeating ON / OFF), and other voltage may not be applied constantly. That is, without using all of the arranged anode parts 11, electrolytic cleaning is performed by energizing only between the anode part 11 and the cathode 20 facing the place where the object to be cleaned M is installed. A current may not be passed between the anode portion 11 and the cathode 20 at a location where the cleaning liquid is not installed, so that the cleaning liquid is not wasted.

なお、本発明に係る電解洗浄装置1及び電解洗浄方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。   The electrolytic cleaning apparatus 1 and the electrolytic cleaning method according to the present invention are not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention.

例えば、前記陽極10を構成する陽極部11は、複数の陽極体12,12…を有するものとして説明したが、これに限定されるものではなく、陽極部11は、平坦な形状の放電部分を有し、該放電部分が水平面に沿う平面上に位置するように配置される陽極体を備えるものであってもよい。   For example, the anode portion 11 constituting the anode 10 has been described as having a plurality of anode bodies 12, 12,..., But is not limited thereto, and the anode portion 11 has a flat discharge portion. And having an anode body disposed so that the discharge portion is located on a plane along a horizontal plane.

具体的には、例えば、図8に示すように、陽極体32に該陽極体32の両面間を連通する空間部33が形成されるものが考えられる。この陽極体32は、網状(ラス状)を有する部材、即ち、網状体として構成される。一般に、電解電流は電極の縁部に集中して流れる性質を有するものである。この場合、かかる網状の陽極体32であれば、縁部を多く確保することができるため、電流分布が偏ってしまうことを好適に防止でき、洗浄対象物Mを均一に洗浄することができる。   Specifically, for example, as shown in FIG. 8, it is conceivable that the anode body 32 is formed with a space portion 33 communicating between both surfaces of the anode body 32. The anode body 32 is configured as a member having a mesh shape (lass shape), that is, a mesh body. In general, the electrolysis current has a property of flowing in a concentrated manner at the edge of the electrode. In this case, since such a net-like anode body 32 can secure a large number of edges, it is possible to suitably prevent the current distribution from being biased and to clean the cleaning object M uniformly.

また、両面間を連通する空間部33が形成される陽極体32であれば、電解洗浄の際に発生する気体が前記空間部33を通って抜けるため、陽極体32より鉛直方向下方で気体が発生したとしても、上昇してきた気体を該陽極体32が溜めてしまうことなく好適に逃がすことができる。この観点からは、前記空間部33が複数設けられることが好ましい。ただし、図9に示すように、上述のような空間部を有しない平板状を有する陽極体42であってもよい。   In addition, in the case of the anode body 32 in which the space portion 33 communicating between both surfaces is formed, the gas generated during the electrolytic cleaning escapes through the space portion 33, so that the gas is vertically below the anode body 32. Even if generated, the rising gas can be suitably released without the anode body 32 accumulating. From this viewpoint, it is preferable that a plurality of the space portions 33 are provided. However, as shown in FIG. 9, the anode body 42 may have a flat plate shape that does not have a space as described above.

また、前記電解洗浄装置1は、陽極10が陽極部11を3個以上備えるものであってもよい。この場合には、各陽極部11が順番に若しくはランダムに電圧を印加されるものであってもよい。そして、例えば陽極部が3個ある場合には、これらに順次異なる電圧を印加するものであってもよく、これら陽極部を二つと一つの二組に分け、それぞれに対して異なる電圧を印加するものであってもよい。   In the electrolytic cleaning apparatus 1, the anode 10 may include three or more anode portions 11. In this case, the voltage may be applied to each anode part 11 in order or randomly. For example, when there are three anode portions, different voltages may be sequentially applied to them, and these anode portions are divided into two sets of two and one, and different voltages are applied to each of the two sets. It may be a thing.

また、上記実施形態においては、複数の陽極部を二つに分けて通電量を制御するものであったが、これに限定されるものではなく、図10の概略図に示すように、3つ以上に分けて通電量を制御するものであってもよい。陽極10が4つの陽極部71(71A〜71D)を備え、これらを陽極部71A,71Bの組と、陽極部71Cと、陽極部71Dとの3つに分けて通電量を制御する場合について、図10を用いて説明すると、一部の陽極部71A,71B(これらをグループG1で示す)及び陰極20間に対してそれ以外の陽極部71C,71D(これらをグループG2で示す)及び陰極20間よりも高い電圧を印加する状態と、前記一部の陽極部71A,71B(G1)とは別の陽極部71C及び陰極20間に対して該別の陽極部71C以外の陽極部71A,71B,71D(これらをグループG3とする)及び陰極20間よりも高い電圧を印加する状態とを切替可能に構成される。なお、陽極部71A,71B同士は陰極に対する通電量が同じとなるように設定される。   Further, in the above embodiment, the energization amount is controlled by dividing the plurality of anode portions into two, but the present invention is not limited to this. As shown in the schematic diagram of FIG. The energization amount may be controlled separately as described above. When the anode 10 includes four anode parts 71 (71A to 71D), and these are divided into three parts of the anode parts 71A and 71B, the anode part 71C, and the anode part 71D to control the energization amount, Referring to FIG. 10, a portion of the anode portions 71A and 71B (shown as a group G1) and the cathode 20 between the other anode portions 71C and 71D (shown as a group G2) and the cathode 20 A state where a higher voltage is applied between the anode part 71A and 71B (G1) and the anode part 71C other than the anode part 71C other than the anode part 71C between the anode part 71C and the cathode 20 , 71D (referred to as group G3) and a state in which a voltage higher than that between the cathode 20 is applied. The anode portions 71A and 71B are set so that the energization amount to the cathode is the same.

また、複数の陽極部のうち、一部の陽極部及び陰極間のみ印加される電圧が変動するように制御され、他の陽極部及び陰極間には、常時一定の電圧が印加され、その電圧値は、前記一部の陽極部及び陰極間に印加される電圧の最大値と最小値との間となるように設定されるものであってもよい。さらに、前記一部の陽極部及び陰極間と他の陽極部及び陰極間に印加される電圧とで、印加される電圧の最大値とが異なるものであってもよい。   In addition, among the plurality of anode parts, the voltage applied only between a part of the anode parts and the cathode is controlled so as to fluctuate, and a constant voltage is always applied between the other anode parts and the cathode. The value may be set so as to be between a maximum value and a minimum value of a voltage applied between the partial anode portion and the cathode. Furthermore, the maximum value of the applied voltage may be different between the voltage applied between the part of the anode parts and the cathode and the voltage applied between the other anode part and the cathode.

また、前記複数の陽極部11及び陰極20間は、それぞれ同じ時間に亘って電圧が印加されるものであったが、これに限定されるものではなく、印加時間が陽極部11によって適宜異なるものであってもよい。   In addition, a voltage is applied between the plurality of anode portions 11 and the cathode 20 over the same time, but the application time is appropriately changed depending on the anode portion 11 without being limited thereto. It may be.

また、前記陽極10は、一方の陽極部11A及び陰極20間に電圧が印加される間、他方の陽極部11B及び陰極20間には電圧が印加されず、他方の陽極部11B及び陰極20間に電圧が印加される間、一方の陽極部11A及び陰極20間には電圧が印加されないものであったが、これに限定されるものではない。例えば、図10に示すように、一部の陽極部11A及び陰極20間に電圧が印加されるタイミングと前記一部の陽極部11A及び陰極20間とは別の陽極部11B及び陰極20間に電圧が印加されるタイミングとが部分的に重複するものであってもよい。換言すると、前記一部の陽極部11A及び陰極20間及びそれとは別の陽極部11B及び陰極20間に同時に電圧が印加される状態が存在するものであってもよい。また、図11に示すように、いずれの陽極部11A,11B及び陰極20間にも電圧が印加されない状態が存在するものであってもよい。   The anode 10 is not applied with a voltage between the other anode part 11B and the cathode 20 while a voltage is applied between the one anode part 11A and the cathode 20, and between the other anode part 11B and the cathode 20. While no voltage is applied between the anode portion 11A and the cathode 20 while a voltage is applied to the cathode, the present invention is not limited to this. For example, as shown in FIG. 10, the timing at which a voltage is applied between a part of the anode parts 11 </ b> A and the cathode 20 and the part between the anode parts 11 </ b> A and the cathode 20 that are different from the part of the anode parts 11 </ b> A and the cathode 20. The timing at which the voltage is applied may partially overlap. In other words, there may be a state in which a voltage is simultaneously applied between the part of the anode portion 11A and the cathode 20 and between the anode portion 11B and the cathode 20 different from the anode portion 11A and the cathode 20. Further, as shown in FIG. 11, there may be a state in which no voltage is applied between any of the anode portions 11 </ b> A and 11 </ b> B and the cathode 20.

また、前記図11及び図12に示したように、印加される電圧値は、一定のものに限られず、低い状態から高い状態まで連続的に変動するものであっても良い。また、印加される電圧は時間的に連続的に変動するものに限られず、不連続に変動するものであってもよい。   Further, as shown in FIG. 11 and FIG. 12, the applied voltage value is not limited to a constant value, and may continuously vary from a low state to a high state. Further, the applied voltage is not limited to the one that continuously changes over time, but may be one that changes discontinuously.

また、前記陽極10は、前記一部の陽極部11A及び陰極20間に電圧が印加される間、それとは別の陽極部11B及び陰極20間には電圧が印加されないものであったが、これに限定されるものではなく、前記一部の陽極部11A及び陰極20間に電圧が印加される間にも、それとは別の陽極部11B及び陰極20間には前記一部の陽極部11A及び陰極20間よりも小さい電圧が印加されるものであってもよい。   Further, the anode 10 was one in which no voltage was applied between the other anode part 11B and the cathode 20 while a voltage was applied between the partial anode part 11A and the cathode 20, While the voltage is applied between the part of the anode part 11A and the cathode 20, the part of the anode part 11A and the part of the anode part 11B and the cathode 20 which are different from the part of the anode part 11A and the cathode 20 are not limited thereto. A voltage smaller than that between the cathodes 20 may be applied.

また、上記実施形態においては、超音波洗浄を併せて行い、電解洗浄液を循環し、電解洗浄液を濾過し、電解洗浄中に補充液を補充するものであったが、これに限定されるものではなく、これらの付随的な操作は、電解洗浄の際に行われないものであってもよく、これらの付随的な操作の中の一部が行われるものであってもよい。   In the above embodiment, the ultrasonic cleaning is performed together, the electrolytic cleaning liquid is circulated, the electrolytic cleaning liquid is filtered, and the replenishing liquid is replenished during the electrolytic cleaning. However, the present invention is not limited to this. Rather, these incidental operations may not be performed during the electrolytic cleaning, and some of these incidental operations may be performed.

本発明の実施形態に係る電解洗浄装置の平面図を示す。The top view of the electrolytic cleaning apparatus which concerns on embodiment of this invention is shown. 同実施形態に係る電解洗浄装置の断面図を示す。Sectional drawing of the electrolytic cleaning apparatus which concerns on the same embodiment is shown. 同実施形態に係る電解洗浄装置の陽極を構成する陽極部を示し、(A)は、陽極部全体の斜視図を示し、(B)は、陽極部の陽極体の斜視図を示す。The anode part which comprises the anode of the electrolytic cleaning apparatus which concerns on the embodiment is shown, (A) shows the perspective view of the whole anode part, (B) shows the perspective view of the anode body of an anode part. 同実施形態に係る電解洗浄装置及び電解洗浄方法において、各陽極部及び陰極間に印加される電圧の波形のグラフを示す。In the electrolytic cleaning apparatus and the electrolytic cleaning method according to the embodiment, a graph of a waveform of a voltage applied between each anode portion and the cathode is shown. 比較例に係る電解洗浄装置の平面図を示す。The top view of the electrolytic cleaning apparatus which concerns on a comparative example is shown. 本発明の他の実施形態に係る電解洗浄装置の平面図を示す。The top view of the electrolytic cleaning apparatus which concerns on other embodiment of this invention is shown. 他の比較例に係る電解洗浄装置の平面図を示す。The top view of the electrolytic cleaning apparatus which concerns on another comparative example is shown. 本発明の他の実施形態に係る電解洗浄装置において用いられる陽極を構成する陽極部の斜視図を示す。The perspective view of the anode part which comprises the anode used in the electrolytic cleaning apparatus which concerns on other embodiment of this invention is shown. 本発明の他の実施形態に係る電解洗浄装置において用いられる陽極を構成する陽極部の斜視図を示す。The perspective view of the anode part which comprises the anode used in the electrolytic cleaning apparatus which concerns on other embodiment of this invention is shown. 本発明の他の実施形態に係る電解洗浄装置及び電解洗浄方法において、複数の陽極部に対して通電量を制御する場合における陽極部の区分を説明する概略図を示す。In the electrolytic cleaning apparatus and the electrolytic cleaning method which concern on other embodiment of this invention, the schematic explaining the division | segmentation of the anode part in the case of controlling the energization amount with respect to several anode parts is shown. 本発明の他の実施形態に係る電解洗浄装置及び電解洗浄方法において、各陽極部及び陰極間に印加される電圧の波形のグラフを示す。In the electrolytic cleaning apparatus and the electrolytic cleaning method which concern on other embodiment of this invention, the graph of the waveform of the voltage applied between each anode part and a cathode is shown. 本発明の他の実施形態に係る電解洗浄装置及び電解洗浄方法において、各陽極部及び陰極間に印加される電圧の波形のグラフを示す。In the electrolytic cleaning apparatus and the electrolytic cleaning method which concern on other embodiment of this invention, the graph of the waveform of the voltage applied between each anode part and a cathode is shown.

符号の説明Explanation of symbols

1…電解洗浄装置、2…筐体、3…洗浄槽、4…電源、10…陽極、11(11A,11B)…陽極部、12…陽極体、12a…放電部分、12b…絶縁体、13…支持体、20…陰極、21…支持部材、21a…導電部分、21b…絶縁体、22…吊下部材、22a…支持部材との接続部分、22b…電源との接続部分、22c…絶縁体、32…陽極体、33…空間部、42…陽極体、51…電解洗浄装置、60…陽極、61…陽極部、62…陽極体、71(71A,71B,71C,71D)…陽極部、L1…外形線、L2…外形線、M…洗浄対象物、S…隙間の領域、G1,G2,G3…グループ   DESCRIPTION OF SYMBOLS 1 ... Electrolytic cleaning apparatus, 2 ... Housing | casing, 3 ... Cleaning tank, 4 ... Power supply, 10 ... Anode, 11 (11A, 11B) ... Anode part, 12 ... Anode body, 12a ... Discharge part, 12b ... Insulator, 13 DESCRIPTION OF SYMBOLS ... Support body, 20 ... Cathode, 21 ... Support member, 21a ... Conductive part, 21b ... Insulator, 22 ... Hanging member, 22a ... Connection part with support member, 22b ... Connection part with power supply, 22c ... Insulator 32 ... Anode body, 33 ... Space part, 42 ... Anode body, 51 ... Electrolytic cleaning device, 60 ... Anode, 61 ... Anode part, 62 ... Anode body, 71 (71A, 71B, 71C, 71D) ... Anode part, L1 ... outline, L2 ... outline, M ... object to be cleaned, S ... gap region, G1, G2, G3 ... group

Claims (7)

陽極と洗浄対象物を保持する陰極とを電解洗浄液中に浸漬し、陽極及び陰極間に電流を流して洗浄対象物を電解洗浄する電解洗浄装置であって、
前記陽極及び前記陰極に給電する電源を備え、
前記陽極は、陰極に対して異なる電流値で通電可能な複数の陽極部を備え、
前記電源は、前記複数の陽極部のうち一部の陽極部における前記陰極との電流値が、他の陽極部における前記陰極との電流値に比べて多い状態と少ない状態とで交互に切り替ることを特徴とする電解洗浄装置。
An electrolytic cleaning apparatus in which an anode and a cathode holding an object to be cleaned are immersed in an electrolytic cleaning solution, and an electric current is passed between the anode and the cathode to electrolytically clean the object to be cleaned.
A power source for supplying power to the anode and the cathode;
The anode includes a plurality of anode portions that can be energized at different current values with respect to the cathode,
Wherein the power source, the current value of the cathode in some of the anode portion of the plurality of anode portions, switch alternately between high state and low state than the current value of the cathode of the other anode portion Electrolytic cleaning apparatus characterized by the above.
前記電流値は、前記電源が前記各陽極部及び陰極間に印加する電圧によって制御されることを特徴とする請求項1に記載の電解洗浄装置。 2. The electrolytic cleaning apparatus according to claim 1, wherein the current value is controlled by a voltage applied by the power source between the anode portions and the cathode. 前記電源は、前記一部の陽極部及び陰極間に印加される電圧がそれ以外の陽極部及び陰極間に印加される電圧よりも高い状態と、前記一部の陽極部とは別の陽極部及び陰極間に印加される電圧が該別の陽極部以外の陽極部及び陰極間に印加される電圧よりも高い状態とを切ることを特徴とする請求項2に記載の電解洗浄装置。 In the power source, a voltage applied between the part of the anode part and the cathode is higher than a voltage applied between the other part of the anode and the cathode, and an anode part different from the part of the anode part and electrolytic cleaning as claimed in claim 2, the voltage applied between the cathode and wherein the switching Operation exchange e Rukoto a state higher than the voltage applied between the anode part and cathode other than the anode of said another apparatus. 前記陽極は、二つの陽極部によって構成され、
前記電源は、一方の陽極部及び陰極間のみに電圧が印加される状態と、他方の陽極部及び陰極間のみに電圧が印加される状態とを切ることを特徴とする請求項2又は3に記載の電解洗浄装置。
The anode is constituted by two anode parts,
The power supply according to claim, characterized the state where a voltage only between one of the anode portions and the cathode is applied, the Switching Operation exchange e Rukoto a state in which a voltage only between the other of the anode portion and the cathode are applied 2. The electrolytic cleaning apparatus according to 2 or 3.
前記各陽極部及び陰極間には、所定時間毎に交互に一定の大きさの電圧が印加されることを特徴とする請求項4に記載の電解洗浄装置。   5. The electrolytic cleaning apparatus according to claim 4, wherein a voltage having a constant magnitude is alternately applied between the anode portions and the cathode every predetermined time. 陽極と洗浄対象物を保持する陰極とを電解洗浄液中に浸漬し、陽極及び陰極間に電流を流して洗浄対象物を電解洗浄する電解洗浄方法であって、
前記陽極は、陰極に対して異なる電流値で通電可能な複数の陽極部を備え、
前記複数の陽極部のうち一部の陽極部における前記陰極との電流値が、他の陽極部における前記陰極との電流値に比べて多い状態と少ない状態とで交互に切り替わるように制御することを特徴とする電解洗浄方法。
An electrolytic cleaning method in which an anode and a cathode holding an object to be cleaned are immersed in an electrolytic cleaning solution, and an electric current is passed between the anode and the cathode to electrolytically clean the object to be cleaned,
The anode includes a plurality of anode portions that can be energized at different current values with respect to the cathode,
The current value with respect to the cathode in a part of the anode portions of the plurality of anode portions is controlled so as to be alternately switched between a larger state and a smaller state than a current value with the cathode in the other anode portions. An electrolytic cleaning method characterized by the above.
前記陽極は、二つの陽極部によって構成され、
前記各陽極部及び陰極間に、所定時間毎に一定の大きさの電圧を交互に印加することを特徴とする請求項に記載の電解洗浄方法。
The anode is constituted by two anode parts,
The electrolytic cleaning method according to claim 6 , wherein a voltage having a constant magnitude is alternately applied between the anode portions and the cathode every predetermined time.
JP2008094551A 2008-04-01 2008-04-01 Electrolytic cleaning apparatus and electrolytic cleaning method Expired - Fee Related JP4938714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008094551A JP4938714B2 (en) 2008-04-01 2008-04-01 Electrolytic cleaning apparatus and electrolytic cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008094551A JP4938714B2 (en) 2008-04-01 2008-04-01 Electrolytic cleaning apparatus and electrolytic cleaning method

Publications (2)

Publication Number Publication Date
JP2009242930A JP2009242930A (en) 2009-10-22
JP4938714B2 true JP4938714B2 (en) 2012-05-23

Family

ID=41305153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008094551A Expired - Fee Related JP4938714B2 (en) 2008-04-01 2008-04-01 Electrolytic cleaning apparatus and electrolytic cleaning method

Country Status (1)

Country Link
JP (1) JP4938714B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305025B1 (en) * 2019-11-18 2021-09-23 최윤석 Electrolysis cleaner
KR102305026B1 (en) * 2019-11-18 2021-09-23 최윤석 Electrolysis cleaner
CN112430843A (en) * 2020-12-09 2021-03-02 北京地铁车辆装备有限公司 Electrolytic cleaning apparatus and method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123796A (en) * 1984-07-09 1986-02-01 Katsukawa Kogyo Kk Electrolytic treatment using finely divided electrodes
JPH05148699A (en) * 1991-11-22 1993-06-15 Kanbayashi Seisakusho:Kk Electrolytic cleaning method and device
JP3532604B2 (en) * 1994-01-31 2004-05-31 ソマックス株式会社 Cleaning apparatus and method for cleaning synthetic resin mold
JPH11140699A (en) * 1997-11-12 1999-05-25 Nippon Steel Corp Method for removing surface deposits on stainless steel
JP2003313688A (en) * 2002-02-20 2003-11-06 Nippon Steel Corp Ultrasonic continuous cleaning equipment
JP4001202B2 (en) * 2002-03-14 2007-10-31 西山ステンレスケミカル株式会社 Electrolytic peeling method by high-speed polarity reversal
JP2002294500A (en) * 2002-03-26 2002-10-09 Olympus Optical Co Ltd Ultrasonic electrolytic cleaning device
JP4157441B2 (en) * 2002-08-15 2008-10-01 新日本製鐵株式会社 Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet
JP2005280280A (en) * 2004-03-30 2005-10-13 Somakkusu Kk Mold cleaning device

Also Published As

Publication number Publication date
JP2009242930A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
AU720586B2 (en) An electrolytic process for cleaning electrically conducting surfaces
JP4695932B2 (en) Mold cleaning apparatus and mold cleaning method
JP4541683B2 (en) Method for partially stripping a coating film from the surface of a substrate, articles and compositions related thereto
ES2222218T3 (en) PROCESS AND APPLIANCE FOR CLEANING AND / OR COATING METAL SURFACES USING ELECTRO-PLASMA TECHNOLOGY.
CN103917691B (en) Make the method for plating solution regeneration, electro-plating method and electroplanting device
JP2001241000A (en) Metal mold electrolytic cleaning device for molding synthetic resin
JP4938714B2 (en) Electrolytic cleaning apparatus and electrolytic cleaning method
JP2009242931A (en) Electrolytic cleaning device and electrolytic cleaning method
US5981084A (en) Electrolytic process for cleaning electrically conducting surfaces and product thereof
JP2005344210A (en) Mold cleaning solution, mold cleaning method and mold cleaning apparatus
KR101267201B1 (en) Method for recovering precious-metal ions from plating wastewater
KR20110083002A (en) Electrolysis device
JP4414819B2 (en) Partial plating apparatus and partial plating method
JPH08112573A (en) Cleaning device and cleaning method
JP4144797B2 (en) System for peeling metal thin films from glass substrates
JP2000001799A (en) Electrolytic cleaning composition for die, and die cleaning device using the composition
JPH0615275A (en) Method for washing electrode plate for oil-containing waste water purifying treatment
JP2002038195A (en) Cleaning agent, method for producing the cleaning agent, apparatus for producing the cleaning agent and cleaning method using the cleaning agent
JP2010227811A (en) Workpiece cleaning method, workpiece, clock
JP5450233B2 (en) Method for detecting solidification structure of steel
US20140116891A1 (en) Non-Cyanide Base Electro Chemical Polishing
JP4001202B2 (en) Electrolytic peeling method by high-speed polarity reversal
JP2007216431A (en) Mold washing apparatus
JP4191682B2 (en) Method for removing dirt from mounting member for yakiniku
CA2998941A1 (en) Simple electrolysis etching and cutting systems for metals

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees