[go: up one dir, main page]

JP4936653B2 - Sapphire substrate and light emitting device using the same - Google Patents

Sapphire substrate and light emitting device using the same Download PDF

Info

Publication number
JP4936653B2
JP4936653B2 JP2004250091A JP2004250091A JP4936653B2 JP 4936653 B2 JP4936653 B2 JP 4936653B2 JP 2004250091 A JP2004250091 A JP 2004250091A JP 2004250091 A JP2004250091 A JP 2004250091A JP 4936653 B2 JP4936653 B2 JP 4936653B2
Authority
JP
Japan
Prior art keywords
sapphire substrate
plane
light emitting
angle
emitting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004250091A
Other languages
Japanese (ja)
Other versions
JP2006066787A (en
Inventor
道信 津田
素顕 岩谷
智 上山
浩 天野
勇 赤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004250091A priority Critical patent/JP4936653B2/en
Priority to CN 200510092797 priority patent/CN1744301A/en
Priority to TW094129341A priority patent/TW200610150A/en
Priority to US11/215,406 priority patent/US20060043396A1/en
Priority to KR1020050079868A priority patent/KR20060050798A/en
Publication of JP2006066787A publication Critical patent/JP2006066787A/en
Application granted granted Critical
Publication of JP4936653B2 publication Critical patent/JP4936653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

本発明は、窒化物系半導体を成長させるためのサファイア基板、及び、それを用いた発光装置に関するものである。   The present invention relates to a sapphire substrate for growing a nitride-based semiconductor and a light-emitting device using the sapphire substrate.

窒化アルミニウム(以下、AlNという。)、窒化ガリウム(以下、GaNという。)、窒化インジウム(以下、InNという。)、あるいは、それらの混晶である窒化アルミニウムガリウムインジウム(以下、AlGa1−x−yInN(0≦x≦1、0≦y≦1、0≦x+y≦1)という。)などの窒化物系半導体は受発光素子や電子走行素子に用いることができるため、近年、その結晶成長や半導体装置への応用について、幅広く研究がなされている。 Aluminum nitride (hereinafter referred to as AlN), gallium nitride (hereinafter referred to as GaN), indium nitride (hereinafter referred to as InN), or a mixed crystal of them, aluminum gallium indium nitride (hereinafter referred to as Al x Ga 1−). Since nitride-based semiconductors such as xy In y N (referred to as 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) can be used for light emitting / receiving elements and electron transit elements, A wide range of research has been conducted on crystal growth and application to semiconductor devices.

窒化物系半導体は大型のバルク単結晶が成長できないため、一般的にはサファイアなどの異種基板を半導体成長用基板に用いてヘテロエピタキシャル成長させている。   Since nitride-based semiconductors cannot grow large bulk single crystals, they are generally heteroepitaxially grown using a heterogeneous substrate such as sapphire as a substrate for semiconductor growth.

エピタキシャル成長の方法としては、有機金属気相成長(MOVPE) 法、分子線エピタキシー(MBE)法、ハライド気相成長(HVPE)法などがあるが、実用化の面で最も一般的なのはMOVPE法である。   Epitaxial growth methods include metalorganic vapor phase epitaxy (MOVPE), molecular beam epitaxy (MBE), and halide vapor phase epitaxy (HVPE). The most common method for practical use is MOVPE. .

また、上記のような半導体素子を用いた発光装置は、窒化物系半導体層を積層してなる構造をサファイア基板の全面にエピタキシャル成長させ、所望の装置形状に加工した後、電極を形成している。   Further, in the light emitting device using the semiconductor element as described above, a structure in which a nitride-based semiconductor layer is stacked is epitaxially grown on the entire surface of the sapphire substrate, processed into a desired device shape, and then an electrode is formed. .

(0001)面や(11−20)面を主面とするサファイア基板を用いた場合、その上に成長させる窒化物系半導体は[0001]配向するため、(0001)面が主面となる。しかしながら、窒化物系半導体の場合、[0001]配向した発光素子構造を積層すると、この系の材料に特有な、ピエゾ電界の影響を受けて活性層のバンド構造に歪みを生じ、発光効率を低下させてしまうという問題があった。この活性層のバンド構造歪みにより、直接遷移型半導体である窒化物系半導体の特徴を最大限には生かすことができなくなる。その結果、エネルギー損失は発光素子内で主に熱エネルギーとなって消費されるため、作製した発光素子の輝度向上が困難となり、さらなる高輝度発光素子の実現を阻んでいた。   When a sapphire substrate having a (0001) plane or a (11-20) plane as a main surface is used, a nitride-based semiconductor grown on the sapphire substrate has [0001] orientation, so the (0001) plane is the main surface. However, in the case of nitride-based semiconductors, when a [0001] -oriented light-emitting element structure is stacked, the band structure of the active layer is distorted by the influence of the piezoelectric field, which is peculiar to this system material, and the luminous efficiency is reduced. There was a problem of letting it go. Due to the band structure distortion of the active layer, the characteristics of the nitride-based semiconductor, which is a direct transition type semiconductor, cannot be fully utilized. As a result, the energy loss is mainly consumed as thermal energy in the light emitting element, so that it is difficult to improve the luminance of the manufactured light emitting element, thus preventing the realization of a further high luminance light emitting element.

そこで、その解決策として、ピエゾ電界の影響を受けない方向に結晶が配向した発光素子構造を成長させることが望まれていた。   Therefore, as a solution, it has been desired to grow a light emitting element structure in which crystals are oriented in a direction not affected by a piezoelectric field.

一般に、(01−12)面サファイア基板上に、窒化物系半導体を成長させる場合、[11−20]配向することが知られており、例えば、特許文献1などに既に記載されている。また、発光装置の試作例もすでに報告例があり、非特許文献1には、(01−12)面サファイア基板上に、(11−20)面のGaN層を形成したGaN/GaInN多重量子井戸構造発光装置の試作例が既に報告されている。上記文献によると、図6に示すように、(01−12)面を主面とするサファイア基板11上に、MOVPE法により、n型GaN層(30μm)611、n型Al0.1Ga0.9Nクラッド層(100nm)612、GaN/In0.15Ga0.85N多重量子井戸構造活性層613、p型Al0.1Ga0.9Nクラッド層(50nm)614、p型GaN層(200nm)615を順次積層してなる発光素子構造61を構成している。これに、RIEによるメサ加工、及び、p側電極62とn側電極63の形成を行い、発光装置6を形成している。 In general, when a nitride-based semiconductor is grown on a (01-12) plane sapphire substrate, it is known to have [11-20] orientation, which has already been described in, for example, Patent Document 1. In addition, a prototype example of a light emitting device has already been reported. Non-Patent Document 1 discloses a GaN / GaInN multiple quantum well in which a (11-20) plane GaN layer is formed on a (01-12) plane sapphire substrate. Prototype examples of structured light-emitting devices have already been reported. According to the above document, as shown in FIG. 6, an n-type GaN layer (30 μm) 611 and an n-type Al 0.1 Ga 0 are formed on a sapphire substrate 11 having a (01-12) plane as a main surface by the MOVPE method. .9 N clad layer (100 nm) 612, GaN / In 0.15 Ga 0.85 N multiple quantum well structure active layer 613, p-type Al 0.1 Ga 0.9 N clad layer (50 nm) 614, p-type GaN A light emitting element structure 61 formed by sequentially laminating layers (200 nm) 615 is formed. The light emitting device 6 is formed by performing mesa processing by RIE and forming the p-side electrode 62 and the n-side electrode 63.

ここで、発光素子構造61は、[11−20]配向している。この文献は、活性層613のピエゾ電界に関する検討がなされている点で有用であるが、発光素子構造61を構成する場合には厚すぎる、30μmという膜厚のn型GaNクラッド層を用いており、成長時間があまりにも長くなるだけでなく、成長後のエピタキシャル基板の反りが大きくなることが大きな問題であり、実用化には不向きな技術であった。これは、成長させた窒化物系半導体の膜厚が小さいと表面モフォロジーが凹凸形状を有するため、膜厚を大きくして表面を平坦化させているからである。
特開2002−374003号公報 APPLIED PHYSICS LETTERS:VOL.84、NUMBER 18、P.3663(2004)
Here, the light emitting element structure 61 is [11-20] oriented. This document is useful in that the piezo electric field of the active layer 613 has been studied, but an n-type GaN cladding layer having a thickness of 30 μm, which is too thick for the light emitting element structure 61, is used. The growth time is not only too long, but the warpage of the epitaxial substrate after growth is a big problem, which is a technique unsuitable for practical use. This is because when the grown nitride semiconductor has a small film thickness, the surface morphology has an uneven shape, and thus the film thickness is increased to flatten the surface.
JP 2002-374003 A APPLIED PHYSICS LETTERS: VOL. 84, NUMBER 18, P.M. 3663 (2004)

以上のように、発光素子構造の表面平坦性は発光素子を製造する際に非常に重要な要素であるが、実用化に適した数μm程度の膜厚の発光素子構造において、表面を平坦化することは困難であった。   As described above, the surface flatness of the light-emitting element structure is a very important factor when manufacturing a light-emitting element, but the surface is flattened in a light-emitting element structure with a thickness of about several μm suitable for practical use. It was difficult to do.

上記課題を解決するために、本願は、サファイア基板と、前記サファイア基板の主面上に結晶成長された、AlGa1−x−yInN(0≦x,y、x+y≦1)で表される窒化物系半導体からなる、0.5μm以上かつ8μm以下の膜厚を有する発光素子構造と、を備える発光装置であって、前記サファイア基板の前記主面が、(01−12)面から(0001)面方向へオフアングルαで傾斜し、−0.75°≦α≦−0.25°を満たすとともに、前記サファイア基板の前記主面の、(01−12)面から(0001)面
方向と垂直な方向への傾斜角を表すオフアングルβが、0°≦|β|≦0.04°であることを特徴とする発光装置を提供する。

In order to solve the above-described problems, the present application relates to a sapphire substrate and Al x Ga 1-xy In y N (0 ≦ x, y, x + y ≦ 1) grown on the main surface of the sapphire substrate. And a light emitting device structure having a thickness of 0.5 μm or more and 8 μm or less , the light emitting device comprising: a nitride-based semiconductor represented by : wherein the main surface of the sapphire substrate is (01-12) It is inclined at an off angle α from the surface to the (0001) plane direction, satisfies −0.75 ° ≦ α ≦ −0.25 °, and from the (01-12) plane of the main surface of the sapphire substrate to (0001) )surface
Provided is a light emitting device characterized in that an off-angle β representing an inclination angle in a direction perpendicular to the direction is 0 ° ≦ | β | ≦ 0.04 ° .

また、上記発光素子構造の表面粗さは、8nm以下であることが好ましい。

The surface roughness of the light emitting element structure is preferably 8 nm or less.

本願は、また、AlGa1−x−yInN(0≦x,y、x+y≦1)で表される窒化物系半導体を結晶成長させるためのサファイア基板であって、前記窒化物系半導体が結晶成長される主面が、(01−12)面から(0001)面方向へオフアングルαで傾斜し、−0.75°≦α≦−0.25°を満たすとともに、前記サファイア基板の前記主面の、(01−12)面から(0001)面方向と垂直な方向への傾斜角を表すオフアングルβが、0°≦|β|≦0.04°であることを特徴とするサファイア基板を、併せて提供する。 The present application is also a sapphire substrate for crystal growth of a nitride-based semiconductor represented by Al x Ga 1-xy In y N (0 ≦ x, y, x + y ≦ 1), wherein the nitride The main surface on which the semiconductor crystal is grown is inclined at an off-angle α from the (01-12) plane to the (0001) plane, and satisfies −0.75 ° ≦ α ≦ −0.25 °, and the sapphire The off-angle β representing the inclination angle of the main surface of the substrate from the (01-12) plane to a direction perpendicular to the (0001) plane direction is 0 ° ≦ | β | ≦ 0.04 °. A sapphire substrate is also provided.

発光素子構造のバラツキの影響を受けることなく、表面を平坦化することができ、安定的に高効率の発光素子を製造することができる。また、発光素子構造の成長時間を短縮して製品コストを下げることが可能となる。また、大口径基板上へ発光素子構造を形成しても大きな反りを生じることがないので、発光装置の量産に適している。   The surface can be flattened without being affected by variations in the structure of the light emitting element, and a highly efficient light emitting element can be manufactured stably. Further, the growth time of the light emitting element structure can be shortened to reduce the product cost. Further, even if the light emitting element structure is formed on a large-diameter substrate, no large warp is generated, which is suitable for mass production of light emitting devices.

以下に、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は、本発明のサファイア基板11をA面である(11−20)面で割った断面図である。従って、C軸である[0001](図中c)が、サファイア基板11の主面12に対して斜めになっている。本発明のサファイア基板11は、主面12がR面である(01−12)面から(0001)面方向へ傾斜(オフ)した面となっている。   FIG. 1 is a cross-sectional view of the sapphire substrate 11 of the present invention divided by a (11-20) plane that is an A plane. Therefore, [0001] (c in the figure) which is the C axis is inclined with respect to the main surface 12 of the sapphire substrate 11. The sapphire substrate 11 of the present invention is a surface that is inclined (off) in the (0001) plane direction from the (01-12) plane in which the main surface 12 is the R plane.

ここで、本発明において、(01−12)面を(0001)面方向へオフさせる場合のオフアングルαの定義について説明する。αは、サファイア基板11の主面12とサファイアの(01−12)面とのなす角として表す。六方晶系であるサファイアの[0001]が一意に決まることから、(01−12)面が図中aのように(0001)に対して近づく方向にオフした場合をプラス、逆に、図中a’のように(0001)に対して遠ざかる方向にオフした場合をマイナスとして表すものとして定義する。   Here, in the present invention, the definition of the off angle α when the (01-12) plane is turned off in the (0001) plane direction will be described. α is expressed as an angle formed between the main surface 12 of the sapphire substrate 11 and the (01-12) plane of sapphire. Since [0001] of hexagonal sapphire is uniquely determined, the case where the (01-12) plane is turned off in the direction approaching (0001) as shown in FIG. A case where the power is turned off in a direction away from (0001) like a ′ is defined as a minus sign.

そして、本発明では、上記オフアングルαは、−0.75°≦α≦−0.25°を満たしている。ここで、αを上記範囲としたのは、αがそれ以外の範囲においては、サファイア基板11の主面12上に成長した結晶の表面平坦性が悪化するためである。   In the present invention, the off-angle α satisfies −0.75 ° ≦ α ≦ −0.25 °. Here, the reason why α is in the above range is that the surface flatness of the crystal grown on the main surface 12 of the sapphire substrate 11 deteriorates when α is in the other range.

次に本発明の他の実施形態を説明する。   Next, another embodiment of the present invention will be described.

図2も、本発明のサファイア基板11を(11−20)面に垂直な面で割った場合の断面図である。この場合、サファイア基板の[0001]は、図2の紙面内には記載できない。この断面図において、上記オフアングルαに対して垂直になるような方向へ(01−12)面をオフさせる場合のオフアングルβが定義できる。βは、αと同様に、サファイア基板11の主面12とサファイアの(01−12)面(図中b)とのなす角として表すが、βはオフする方向がαとは90°異なることに注意が必要である。なお、βの符号がどちらであっても、本発明で規定する範囲に違いがないことから、符号を規定する必要がない。従って、本発明では、符号によらない|β|で規定することとする。   FIG. 2 is also a cross-sectional view when the sapphire substrate 11 of the present invention is divided by a plane perpendicular to the (11-20) plane. In this case, [0001] of the sapphire substrate cannot be described on the paper surface of FIG. In this cross-sectional view, an off-angle β can be defined when the (01-12) plane is turned off in a direction perpendicular to the off-angle α. β is expressed as an angle formed by the main surface 12 of the sapphire substrate 11 and the (01-12) plane (b in the figure) of sapphire, as in α, but β is turned off by 90 ° from α. It is necessary to pay attention to. Note that there is no difference in the range defined in the present invention regardless of the sign of β, so there is no need to define the sign. Therefore, in the present invention, it is defined by | β | that does not depend on the sign.

そして、本発明のサファイア基板11は、オフアングルαが上述した範囲内であり、かつオフアングルβが0°≦|β|≦0.05°を満たしている。ここでβを上記範囲としたのは、|β|が0.05°よりも大きいと、サファイア基板11の主面12上に成長した結晶の表面平坦性が悪化するためである。   In the sapphire substrate 11 of the present invention, the off angle α is within the above-described range, and the off angle β satisfies 0 ° ≦ | β | ≦ 0.05 °. Here, β is in the above range because, when | β | is larger than 0.05 °, the surface flatness of the crystal grown on the main surface 12 of the sapphire substrate 11 deteriorates.

図3は、本発明のサファイア基板11の結晶方位とオフアングルの方向を立体的に図示したものである。なお、図3でrは[01−12]を表しており、(01−12)面のオフアングルα及びβは、図を簡略化するため、[01−12]のオフアングルとして表した。   FIG. 3 is a three-dimensional illustration of the crystal orientation and off-angle direction of the sapphire substrate 11 of the present invention. In FIG. 3, r represents [01-12], and the off angles α and β of the (01-12) plane are represented as [01-12] off angles in order to simplify the drawing.

図4は、本発明のサファイア基板11を用いた発光装置の一例を示す断面図である。上記のサファイア基板11の主面12上に、AlN層41、アンドープGaN層42、n型GaNクラッド層43、GaN/GaInN多重量子井戸構造活性層44、p型Al0.2Ga0.8N層45、p型Al0.07Ga0.93Nクラッド層46、p+型GaN層47を順次積層してある。このように主面12のオフアングルを厳密に規定したサファイア基板11を用いることで、その主面12上の[11−20]配向の発光素子構造4は、従来通りの0.5μm以上、8μm以下の膜厚で平坦化できる。即ち、オフアングルαを小さな範囲で設定し、また、オフアングルβも所定範囲内とすることにより、厳密にサファイア基板11の結晶方位を規定することとなり、窒化物系半導体のエピタキシャル成長工程において発光素子構造を調節しなくとも表面を平坦化できるのである。 FIG. 4 is a sectional view showing an example of a light emitting device using the sapphire substrate 11 of the present invention. On the main surface 12 of the sapphire substrate 11, an AlN layer 41, an undoped GaN layer 42, an n-type GaN cladding layer 43, a GaN / GaInN multiple quantum well structure active layer 44, a p-type Al 0.2 Ga 0.8 N layer 45, p A type Al 0.07 Ga 0.93 N clad layer 46 and a p + -type GaN layer 47 are sequentially laminated. As described above, by using the sapphire substrate 11 in which the off-angle of the main surface 12 is strictly defined, the [11-20] -oriented light emitting device structure 4 on the main surface 12 has a conventional 0.5 μm or more and 8 μm. Flattening is possible with the following film thickness. That is, by setting the off-angle α within a small range and also setting the off-angle β within a predetermined range, the crystal orientation of the sapphire substrate 11 is strictly defined, and the light-emitting element in the epitaxial growth process of the nitride-based semiconductor The surface can be flattened without adjusting the structure.

ここで、エピタキシャル成長させた窒化物系半導体層の平坦性は、原子間力顕微鏡(AFM)で測定した算術平均表面粗さで評価すれば良く、二乗根平均の表面粗さRrmsでで表した場合、10nm以下である必要がある。平坦化していない発光素子構造を用いた発光装置は、輝度が高くならないので問題である。 Here, the flatness of the epitaxially grown nitride-based semiconductor layer may be evaluated by an arithmetic average surface roughness measured by an atomic force microscope (AFM), and expressed by a root mean square surface roughness R rms . In this case, it needs to be 10 nm or less. A light-emitting device using a light-emitting element structure that is not planarized is problematic because the luminance does not increase.

また、本発明の発光素子構造4は、AlxGa1-x-y InyN(0≦x,y、x+y≦1)で表される窒化物系半導体から構成される発光素子構造一般を指しており、n型クラッド層、活性層、及び、p型クラッド層を少なくとも含んでいれば良い。上記サファイア基板を用いることで平坦化の効果が出るため、発光素子構造自体を規定するものではない。 The light-emitting element structure 4 of the present invention generally has a light-emitting element structure composed of a nitride-based semiconductor represented by Al x Ga 1 -xy In y N (0 ≦ x, y, x + y ≦ 1). It only has to include at least an n-type cladding layer, an active layer, and a p-type cladding layer. By using the sapphire substrate, a planarization effect is obtained, and thus the light emitting element structure itself is not specified.

第1の実施例として、図4を用いて、本発明の実施例について説明する。   As a first embodiment, an embodiment of the present invention will be described with reference to FIG.

まず、発光素子構造4のエピタキシャル成長を行った。成長方法にはMOVPE法を用い、半導体成長用基板11として(01−12)サファイア基板を使用した。このときの(01−12)面を(0001)面方向へオフする場合のアフアングルαを、−0.5°とした。このサファイア基板上に、AlN層(200nm)41、GaN層(2μm)42、n型GaNクラッド層(500nm)43、GaN/GaInN多重量子井戸構造活性層44(30nm)、p型Al0.2Ga0.8N層45(2nm)、p型Al0.07Ga0.93Nクラッド層46(3nm)、p+型GaN層47(3nm)を順次積層し、発光素子構造4を構成した。n型層には、シリコンをドープし、p型層にはマグネシウムをドープした。発光素子構造すべての膜厚も3μm以下であり、量産に適した層構成とした。 First, the light-emitting element structure 4 was epitaxially grown. A MOVPE method was used as the growth method, and a (01-12) sapphire substrate was used as the semiconductor growth substrate 11. In this case, the after angle α when the (01-12) plane is turned off in the (0001) plane direction is set to −0.5 °. On this sapphire substrate, an AlN layer (200 nm) 41, a GaN layer (2 μm) 42, an n-type GaN cladding layer (500 nm) 43, a GaN / GaInN multiple quantum well structure active layer 44 (30 nm), a p-type Al 0.2 Ga 0.8 An N layer 45 (2 nm), a p-type Al 0.07 Ga 0.93 N clad layer 46 (3 nm), and a p + -type GaN layer 47 (3 nm) were sequentially laminated to constitute the light emitting element structure 4. The n-type layer was doped with silicon, and the p-type layer was doped with magnesium. The film thickness of all the light emitting element structures was 3 μm or less, and the layer structure was suitable for mass production.

各層の成長温度は、それぞれの組成、結晶性、表面粗さや電気的特性など、エピタキシャル基板の特性を損なわないようにして設定すればよい。   The growth temperature of each layer may be set so as not to impair the characteristics of the epitaxial substrate such as the composition, crystallinity, surface roughness, and electrical characteristics.

X線回折測定により、発光素子構造4が[11−20]配向していることが確認された。   X-ray diffraction measurement confirmed that the light-emitting element structure 4 was [11-20] oriented.

次に、図5を用いて発光装置6の製造方法を説明する。   Next, the manufacturing method of the light-emitting device 6 is demonstrated using FIG.

まず、フォトリソグラフィー技術によりマスクを形成した後、塩素系ガスを用いたドライエッチングを行った。n型GaNクラッド層43の途中でエッチングが終了するよう、エッチング深さを制御した。   First, after forming a mask by photolithography, dry etching using a chlorine-based gas was performed. The etching depth was controlled so that the etching was completed in the middle of the n-type GaN cladding layer 43.

次に、電子線蒸着法により、Ni/Auをそれぞれ膜厚20/80nm堆積してp側オーミック電極51、Ti/Al/Tiをそれぞれ膜厚30/100/20nm堆積して、n側オーミック電極52を形成した。   Next, Ni / Au is deposited to a thickness of 20/80 nm by electron beam evaporation, respectively, p-side ohmic electrode 51, Ti / Al / Ti is deposited to a thickness of 30/100/20 nm, respectively, and an n-side ohmic electrode is deposited. 52 was formed.

このようにして発光装置5を得た。この発光装置5は、450nmのピーク波長を有する青色発光装置であり、上記と同様の発光素子構造を[0001]配向させた場合に比べ、輝度が向上していた。   In this way, the light emitting device 5 was obtained. This light-emitting device 5 is a blue light-emitting device having a peak wavelength of 450 nm, and the luminance is improved as compared with the case where a light-emitting element structure similar to the above is [0001] oriented.

以下、上記と同様な評価を、条件を変化させて比較するために、表1に示すような条件で実施例1〜6及び比較例1、2を作成して評価した。   Hereinafter, Examples 1 to 6 and Comparative Examples 1 and 2 were prepared and evaluated under the conditions shown in Table 1 in order to compare the same evaluations as described above while changing the conditions.

まず、比較例1、2にあるように、オフアングルβを0°で固定し、オフアングルαを変化させたところ、αが−0.2°及び−0.8°の(01−12)面を主面とするサファイア基板11を用いた場合には、発光素子構造4の表面粗さが大きくなった。   First, as in Comparative Examples 1 and 2, when the off-angle β was fixed at 0 ° and the off-angle α was changed, α was −0.2 ° and −0.8 ° (01-12). In the case of using the sapphire substrate 11 whose surface is the main surface, the surface roughness of the light emitting element structure 4 is increased.

一方、実施例1〜3より、オフアングルαが−0.75°≦α≦−0.25°の範囲では、表面粗さを小さくできた。   On the other hand, from Examples 1 to 3, the surface roughness can be reduced when the off-angle α is in the range of −0.75 ° ≦ α ≦ −0.25 °.

次に、実施例4〜6のように、オフアングルαを−0.5°で固定してオフアングルβを変化させたところ、|β|が0.5°未満の場合に表面粗さは小さく保つことができた。

Figure 0004936653
Next, as in Examples 4 to 6, the off angle α was fixed at −0.5 ° and the off angle β was changed. When | β | was less than 0.5 °, the surface roughness was I was able to keep it small.
Figure 0004936653

本発明のサファイア基板の結晶方位を説明する断面図である。It is sectional drawing explaining the crystal orientation of the sapphire substrate of this invention. 本発明のサファイア基板の結晶方位を説明する断面図である。It is sectional drawing explaining the crystal orientation of the sapphire substrate of this invention. 本発明のサファイア基板の結晶方位を説明する斜視図である。It is a perspective view explaining the crystal orientation of the sapphire substrate of the present invention. 本発明の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of this invention. 本発明の発光装置を示す断面図である。It is sectional drawing which shows the light-emitting device of this invention. 従来の発光装置を示す断面図である。It is sectional drawing which shows the conventional light-emitting device.

符号の説明Explanation of symbols

11:サファイア基板
12:主面
a :(01−12)面 (α>0°の場合)
a’:(01−12)面 (α<0°の場合)
c :(0001)軸
b :(01−12)面
4 :発光素子構造
41:AlN層
42:アンドープGaN層
43:n型GaNクラッド層
44:GaN/GaInN多重量子井戸構造活性層
45:p型Al0.2Ga0.8N層
46:p型Al0.07Ga0.93Nクラッド層
47:p+型GaN層
5 :発光装置
51:p側電極
52:n側電極
11: Sapphire substrate 12: Main surface a: (01-12) plane (when α> 0 °)
a ′: (01-12) plane (when α <0 °)
c: (0001) axis b: (01-12) plane 4: light emitting device structure 41: AlN layer 42: undoped GaN layer 43: n-type GaN cladding layer 44: GaN / GaInN multiple quantum well structure active layer 45: p-type Al 0.2 Ga 0.8 N layer 46: p-type Al 0.07 Ga 0.93 N cladding layer 47: p + -type GaN layer 5: light emitting device 51: p-side electrode 52: n-side electrode

Claims (3)

サファイア基板と、前記サファイア基板の主面上に結晶成長された、AlGa1−x−yInN(0≦x,y、x+y≦1)で表される窒化物系半導体からなる、0.5μm以上かつ8μm以下の膜厚を有する発光素子構造と、を備える発光装置であって、
前記サファイア基板の前記主面が、(01−12)面から(0001)面方向へオフアングルαで傾斜し、−0.75°≦α≦−0.25°を満たすとともに、
前記サファイア基板の前記主面の、(01−12)面から(0001)面方向と垂直な方向への傾斜角を表すオフアングルβが、0°≦|β|≦0.04°であることを特徴とする発光装置。
A sapphire substrate and a nitride-based semiconductor expressed by Al x Ga 1-xy In y N (0 ≦ x, y, x + y ≦ 1), which is crystal-grown on the main surface of the sapphire substrate, A light emitting device having a film thickness of 0.5 μm or more and 8 μm or less ,
The main surface of the sapphire substrate is inclined at an off-angle α from the (01-12) plane to the (0001) plane direction, and satisfies −0.75 ° ≦ α ≦ −0.25 °,
The off-angle β representing the inclination angle of the main surface of the sapphire substrate from the (01-12) plane to a direction perpendicular to the (0001) plane direction is 0 ° ≦ | β | ≦ 0.04 °. A light emitting device characterized by the above.
上記発光素子構造の表面粗さは、8nm以下であることを特徴とする請求項1記載の発光装置。   2. The light emitting device according to claim 1, wherein the surface roughness of the light emitting element structure is 8 nm or less. AlGa1−x−yInN(0≦x,y、x+y≦1)で表される窒化物系半導体を結晶成長させるためのサファイア基板であって、
前記窒化物系半導体が結晶成長される主面が、(01−12)面から(0001)面方向へオフアングルαで傾斜し、−0.75°≦α≦−0.25°を満たすとともに、
前記サファイア基板の前記主面の、(01−12)面から(0001)面方向と垂直な方向への傾斜角を表すオフアングルβが、0°≦|β|≦0.04°であることを特徴とするサファイア基板。
A sapphire substrate for crystal growth of a nitride-based semiconductor represented by Al x Ga 1-xy In y N (0 ≦ x, y, x + y ≦ 1),
The main surface on which the nitride-based semiconductor is grown is inclined from the (01-12) plane to the (0001) plane at an off-angle α, and satisfies −0.75 ° ≦ α ≦ −0.25 °. ,
The off-angle β representing the inclination angle of the main surface of the sapphire substrate from the (01-12) plane to a direction perpendicular to the (0001) plane direction is 0 ° ≦ | β | ≦ 0.04 °. A sapphire substrate.
JP2004250091A 2004-08-30 2004-08-30 Sapphire substrate and light emitting device using the same Expired - Fee Related JP4936653B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004250091A JP4936653B2 (en) 2004-08-30 2004-08-30 Sapphire substrate and light emitting device using the same
CN 200510092797 CN1744301A (en) 2004-08-30 2005-08-25 Sapphire substrate, epitaxial substrate and semiconductor device
TW094129341A TW200610150A (en) 2004-08-30 2005-08-26 Sapphire baseplate, epitaxial substrate and semiconductor device
US11/215,406 US20060043396A1 (en) 2004-08-30 2005-08-29 Sapphire substrate, epitaxial substrate and semiconductor device
KR1020050079868A KR20060050798A (en) 2004-08-30 2005-08-30 Sapphire substrate, epitaxial substrate, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004250091A JP4936653B2 (en) 2004-08-30 2004-08-30 Sapphire substrate and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2006066787A JP2006066787A (en) 2006-03-09
JP4936653B2 true JP4936653B2 (en) 2012-05-23

Family

ID=36112965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004250091A Expired - Fee Related JP4936653B2 (en) 2004-08-30 2004-08-30 Sapphire substrate and light emitting device using the same

Country Status (2)

Country Link
JP (1) JP4936653B2 (en)
CN (1) CN1744301A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008042076A (en) * 2006-08-09 2008-02-21 Matsushita Electric Ind Co Ltd Nitride semiconductor light emitting element, and production method therefor
JP2008214132A (en) * 2007-03-05 2008-09-18 Univ Of Tokushima Group III nitride semiconductor thin film, group III nitride semiconductor light emitting device, and method of manufacturing group III nitride semiconductor thin film
JP5018423B2 (en) * 2007-11-20 2012-09-05 住友電気工業株式会社 Group III nitride semiconductor crystal substrate and semiconductor device
JP5227870B2 (en) * 2009-03-30 2013-07-03 日本碍子株式会社 Epitaxial substrate, semiconductor element structure, and method for manufacturing epitaxial substrate
JP2011091289A (en) * 2009-10-26 2011-05-06 Sony Corp Method of manufacturing semiconductor device, and semiconductor device
JP5891650B2 (en) * 2011-08-18 2016-03-23 富士通株式会社 Compound semiconductor device and manufacturing method thereof
KR20140085918A (en) * 2012-12-28 2014-07-08 서울바이오시스 주식회사 Light emitting device and method of fabricating the same
US10697090B2 (en) * 2017-06-23 2020-06-30 Panasonic Intellectual Property Management Co., Ltd. Thin-film structural body and method for fabricating thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002374003A (en) * 2001-06-14 2002-12-26 Ngk Insulators Ltd Semiconductor device, and substrate for the same

Also Published As

Publication number Publication date
JP2006066787A (en) 2006-03-09
CN1744301A (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP4475358B1 (en) GaN-based semiconductor optical device, method for manufacturing GaN-based semiconductor optical device, and epitaxial wafer
JP5881222B2 (en) Nitride semiconductor ultraviolet light emitting device and method for manufacturing nitride semiconductor ultraviolet light emitting device
JP3749498B2 (en) Crystal growth substrate and ZnO-based compound semiconductor device
US9793432B2 (en) Light emitting devices and methods of manufacturing the same
JP4696285B2 (en) R-plane sapphire substrate, epitaxial substrate and semiconductor device using the same, and manufacturing method thereof
US8791468B2 (en) GaN film structure, method of fabricating the same, and semiconductor device including the same
TW201138149A (en) Anisotropic strain control in semipolar nitride quantum wells by partially or fully relaxed aluminum indium gallium nitride layers with misfit dislocations
KR20060050798A (en) Sapphire substrate, epitaxial substrate, and semiconductor device
KR20090023672A (en) Nano-based semiconductor device
US8878211B2 (en) Heterogeneous substrate, nitride-based semiconductor device using same, and manufacturing method thereof
JPH11233391A (en) Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device
WO2014054284A1 (en) Nitride semiconductor structure, laminate structure, and nitride semiconductor light-emitting element
JPH11274560A (en) Semiconductor element and manufacture thereof
JPH09194299A (en) Method for growing crystal of gallium nitride
JP4936653B2 (en) Sapphire substrate and light emitting device using the same
KR101028585B1 (en) Heterogeneous substrate, nitride based semiconductor device using same and manufacturing method thereof
JP5392885B2 (en) ZnO-based semiconductor device
JP4883931B2 (en) Manufacturing method of semiconductor laminated substrate
JP2013035711A (en) HEXAGONAL ROD-LIKE GaN-BASED SEMICONDUCTOR CRYSTAL AND METHOD FOR PRODUCING THE SAME
US10763395B2 (en) Light emitting diode element and method for manufacturing same
JP2015032730A (en) Nitride semiconductor structure and method of manufacturing the same
JP5314257B2 (en) Low-defect semiconductor substrate, semiconductor light emitting device, and manufacturing method thereof
JP5206854B2 (en) GaN-based semiconductor laser and method for manufacturing GaN-based semiconductor laser
JP5375392B2 (en) Gallium nitride based semiconductor optical device and method for fabricating gallium nitride based semiconductor optical device
JP7205474B2 (en) Template substrate, electronic device, light-emitting device, template substrate manufacturing method, and electronic device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101108

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111102

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4936653

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees