[go: up one dir, main page]

JP4930313B2 - Reamer - Google Patents

Reamer Download PDF

Info

Publication number
JP4930313B2
JP4930313B2 JP2007259477A JP2007259477A JP4930313B2 JP 4930313 B2 JP4930313 B2 JP 4930313B2 JP 2007259477 A JP2007259477 A JP 2007259477A JP 2007259477 A JP2007259477 A JP 2007259477A JP 4930313 B2 JP4930313 B2 JP 4930313B2
Authority
JP
Japan
Prior art keywords
cutting
reamer
margin
tool body
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007259477A
Other languages
Japanese (ja)
Other versions
JP2009083078A (en
Inventor
公志 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2007259477A priority Critical patent/JP4930313B2/en
Publication of JP2009083078A publication Critical patent/JP2009083078A/en
Application granted granted Critical
Publication of JP4930313B2 publication Critical patent/JP4930313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Milling, Broaching, Filing, Reaming, And Others (AREA)

Description

本発明は、あらかじめ明けられた下穴に仕上げ加工を行うリーマに関する。   The present invention relates to a reamer that performs a finishing process on a pilot hole that has been previously opened.

バルブガイド穴等は、面粗度、真円度、真直度、穴径等について高い精度が必要とされる。そのため、バルブガイド穴等の仕上げ加工に用いられるリーマには、高い加工精度が要求される。この種のリーマとして以下に説明する1枚刃ガンリーマがある。このガンリーマは、1枚の切刃を有し、その刃部の外周には、前記切刃に沿って切屑排出溝の工具回転方向後方側に連なるマージン部が形成されるとともに、このマージン部の工具回転方向後方側には、ガイド部としてベアリング部が形成され、さらに、ベアリング部のさらに工具回転方向後方側には、切屑排出溝の工具回転方向後方側の稜線に沿うように、第2のガイド部としてパット部が形成されている。   Valve guide holes and the like are required to have high accuracy in terms of surface roughness, roundness, straightness, hole diameter, and the like. Therefore, high processing accuracy is required for the reamer used for finishing the valve guide hole and the like. As this type of reamer, there is a single-blade gun reamer described below. This gun reamer has a single cutting edge, and a margin portion is formed on the outer periphery of the cutting edge portion along the cutting edge, and is connected to the rear side in the tool rotation direction of the chip discharge groove. On the rear side in the tool rotation direction, a bearing portion is formed as a guide portion. Further, on the further rear side in the tool rotation direction of the bearing portion, the second portion extends along the ridge line on the rear side in the tool rotation direction of the chip discharge groove. A pad portion is formed as a guide portion.

このようなガンリーマでは、切刃により切削された加工穴の内周がマージン部によって擦られて平滑な内周面が得られるとともに、ベアリング部およびパット部がこの加工穴の内周面に摺接しながら刃部が前進することにより、加工穴の中心軸に工具本体の軸線が一致するように刃部が案内されることとなり、これによって刃部の振れが抑えられて工具本体の直進性が確保され、精度の高い穴加工がなされる。(例えば、特許文献1参照)。
特開平8−066825号公報(第2頁、第5図および第6図)
In such a gun reamer, the inner periphery of the machining hole cut by the cutting blade is rubbed by the margin portion to obtain a smooth inner circumferential surface, and the bearing portion and the pad portion are in sliding contact with the inner circumferential surface of the machining hole. However, when the blade part moves forward, the blade part is guided so that the axis of the tool body coincides with the center axis of the machining hole. This prevents the blade from swinging and ensures straightness of the tool body. And high-precision drilling is performed. (For example, refer to Patent Document 1).
JP-A-8-066825 (second page, FIGS. 5 and 6)

しかしながら、前記の1枚刃ガンリーマを含む1枚刃リーマにおいては、下穴の中心がリーマの中心とずれた、いわゆる下穴が偏心した場合には、切削抵抗の方向は略一定に保たれるものの、削りしろの変動にともなって切削抵抗の大きさが変動するため、加工穴の穴径、真円度といった精度が悪化するという問題があった。また、1枚刃リーマにおいては、横断面形状が非常にアンバランスになることから、該リーマの回転中の遠心力によって撓み等の弾性変形や振動が大きくなるため、前記の精度が悪化するおそれがあった。さらに、1枚刃リーマは、複数刃リーマにくらべ、送りを上げられないため高能率加工に適さないという問題があった。   However, in the single-blade reamer including the single-blade gun reamer described above, when the so-called pilot hole is decentered in which the center of the pilot hole is deviated from the center of the reamer, the direction of the cutting resistance is kept substantially constant. However, since the magnitude of the cutting resistance fluctuates with the fluctuation of the cutting margin, there is a problem that the accuracy such as the hole diameter and roundness of the processed hole deteriorates. Further, in a single-blade reamer, since the cross-sectional shape becomes very unbalanced, elastic deformation such as bending and vibration increase due to the centrifugal force during rotation of the reamer, and the accuracy may be deteriorated. was there. Furthermore, the single-blade reamer has a problem in that it cannot be fed as compared with the multi-blade reamer and is not suitable for high-efficiency machining.

一方、複数刃リーマにおいても、下穴が偏心した場合には、切削抵抗の合力の大きさおよび方向が大きく変動するため、加工穴の穴径、真円度、真直度といった精度が悪化する問題があった。また、各切刃相互間の振れによって、各切刃の切削抵抗がアンバランスになるため、前記の精度が悪化するという問題があった。
複数刃リーマの中でも比較的切削バランスが優れる3枚刃リーマにあっても、下穴が偏心した場合には、リーマの回転にともなう切削抵抗の合力の方向が大きく変動するため、前記の精度は悪化してしまう。
On the other hand, even in the multi-blade reamer, if the pilot hole is eccentric, the magnitude and direction of the resultant force of the cutting resistance will fluctuate greatly, and the accuracy of the hole diameter, roundness, and straightness of the processed hole will deteriorate. was there. Further, since the cutting resistance of each cutting edge becomes unbalanced due to the vibration between the cutting edges, there is a problem that the accuracy is deteriorated.
Even in a three-blade reamer having a relatively good cutting balance among multiple blade reamers, if the pilot hole is eccentric, the direction of the resultant force of the cutting resistance accompanying the rotation of the reamer varies greatly. It will get worse.

本発明は、上記問題を解決するためになされたもので、下穴が偏心した場合であっても加工穴の精度が悪化することがなく、1枚刃リーマより加工能率に優れるリーマを提供することを目的とする。   The present invention has been made to solve the above-described problem, and provides a reamer that is superior in machining efficiency to a single-blade reamer without deteriorating the accuracy of the machining hole even when the pilot hole is eccentric. For the purpose.

上記課題を解決するために、本発明は以下の構成を有する。
請求項1に係る発明は、軸線まわりに回転させられる略円柱状の工具本体の先端部には、この工具本体の円周方向で等間隔に3つの溝が形成され、これら溝のうち2つの溝の前記回転方向を向く壁面の先端稜には、切刃がそれぞれ形成され、前記切刃のうち少なくとも前記回転方向後方側に位置する切刃に連なる外周面にガイドパッドが形成されていることを特徴とするリーマである。
In order to solve the above problems, the present invention has the following configuration.
According to the first aspect of the present invention, three grooves are formed at equal intervals in the circumferential direction of the tool main body at the tip of the substantially cylindrical tool main body rotated about the axis, and two of these grooves are Cutting edges are respectively formed on the tip ridges of the wall surfaces of the grooves facing the rotation direction, and a guide pad is formed on the outer peripheral surface of the cutting blade that is continuous with at least the cutting edge located on the rear side in the rotation direction. Reamer characterized by

請求項1に係る発明によれば、工具本体の先端部には、この工具本体の円周方向で等間隔に3つの溝が形成されていることから、工具本体の各位置における断面形状がバランスに優れ、遠心力による工具本体の弾性変形および振動が生じないため、加工穴の穴径、真円度、真直度といった加工穴の精度が悪化しない。   According to the first aspect of the present invention, since the three grooves are formed at equal intervals in the circumferential direction of the tool body at the tip of the tool body, the cross-sectional shape at each position of the tool body is balanced. In addition, since the elastic deformation and vibration of the tool body due to centrifugal force do not occur, the accuracy of the processing hole such as the hole diameter, roundness, and straightness of the processing hole does not deteriorate.

さらに、3つの溝のうち2つの溝の回転方向を向く壁面の先端稜に切刃がそれぞれ形成されるため、1枚刃リーマよりも高送り高能率加工が可能となる。
該リーマが受ける切削抵抗は、2つの切刃が受ける切削抵抗の合力と常に同じ方向に作用する。それとともに前記2つの切刃のうち回転方向後方側に位置する切刃に連なる外周面に設けられたガイドパッドは、加工穴の内壁面と摺接することによって該リーマに作用する切削抵抗の合力を効果的に受け止める。以上のことから、加工中の切削抵抗によるリーマの撓み等の弾性変形が抑制されるため、加工穴の精度が改善される。
Furthermore, since cutting edges are respectively formed at the tip ridges of the wall surfaces facing the rotation direction of two grooves out of the three grooves, high-feed and high-efficiency machining can be performed as compared with a single-blade reamer.
The cutting force received by the reamer always acts in the same direction as the resultant force of the cutting forces received by the two cutting edges. At the same time, the guide pad provided on the outer peripheral surface connected to the cutting blade located on the rear side in the rotational direction of the two cutting blades makes the resultant force of the cutting resistance acting on the reamer by slidingly contacting the inner wall surface of the processing hole. Take it effectively. From the above, since elastic deformation such as bending of the reamer due to cutting resistance during machining is suppressed, the accuracy of the machining hole is improved.

請求項2に係る発明は、前記ガイドパッドが前記切刃のうち前記回転方向前方側に位置する切刃を基準として前記回転方向後方側に127°〜173°の範囲内に形成されていることを特徴とする請求項1に記載のリーマである。
請求項2に係る発明によれば、ガイドパッドが前記範囲内に形成されていることにより、2つの切刃が受ける切削抵抗の合力をいっそう確実に受け止めることができるため、該リーマの撓み等の弾性変形が効果的に抑えられる。よって、加工穴の精度を改善する効果が特に高くなる。さらに、該リーマの円周方向におけるガイドパッドの形成範囲を前記範囲内に制限することによって、ガイドパッドと加工穴の内壁面との不要な摺接が避けられる。そのため、前記摺接による該リーマにかかる負荷の増加が抑制される。
前記ガイドパッドの形成範囲が、前記範囲から外れた場合には、切削抵抗の合力を確実にガイドパッドで受け止めることができないため、加工穴の精度を改善する効果が十分得られなくなるおそれがある。
加工穴の精度を改善する効果をより高めるために、ガイドパッドは、前記切刃のうち前記回転方向前方側に位置する切刃を基準として前記回転方向後方側に127°〜173°の範囲全体にわたって形成されるのが望ましい。
According to a second aspect of the present invention, the guide pad is formed within a range of 127 ° to 173 ° on the rear side in the rotational direction with reference to a cutting blade located on the front side in the rotational direction among the cutting blades. The reamer according to claim 1.
According to the second aspect of the present invention, since the guide pad is formed within the above range, the resultant force of the cutting resistance received by the two cutting blades can be received more reliably. Elastic deformation is effectively suppressed. Therefore, the effect of improving the accuracy of the processed hole is particularly high. Furthermore, by limiting the formation range of the guide pad in the circumferential direction of the reamer to the above range, unnecessary sliding contact between the guide pad and the inner wall surface of the processing hole can be avoided. Therefore, an increase in load applied to the reamer due to the sliding contact is suppressed.
When the formation range of the guide pad deviates from the above range, the resultant force of cutting resistance cannot be reliably received by the guide pad, so that there is a possibility that the effect of improving the accuracy of the machining hole cannot be obtained sufficiently.
In order to further enhance the effect of improving the accuracy of the machining hole, the guide pad has an entire range of 127 ° to 173 ° on the rear side in the rotational direction with reference to the cutting blade located on the front side in the rotational direction among the cutting blades. It is desirable to be formed over.

請求項3に係る発明は、前記切刃が超高圧焼結体からなることを特徴とする請求項1又は2に記載のリーマである。
請求項3に係る発明によれば、前記切刃が超高圧焼結体からなる場合には、アルミニウムおよびアルミニウム合金等の非鉄金属を高速切削することが可能となるため、切刃への被削材の凝着による加工穴内壁面の面粗さ悪化を防止することができる。さらに、高い耐摩耗性によって切刃寿命が長期化するとともに面粗さの悪化が長期にわたって防止される。しかも、工具本体の各位置における断面形状のバランスが優れるため、遠心力による弾性変形および振動に起因する加工穴の精度の悪化が防止される。
The invention according to claim 3 is the reamer according to claim 1 or 2, wherein the cutting blade is made of an ultra-high pressure sintered body.
According to the invention of claim 3, when the cutting blade is made of an ultra-high pressure sintered body, it becomes possible to cut non-ferrous metals such as aluminum and aluminum alloy at high speed. It is possible to prevent deterioration of the surface roughness of the inner surface of the processed hole due to the adhesion of the material. Furthermore, the high wear resistance prolongs the cutting edge life and prevents the surface roughness from deteriorating over a long period of time. And since the balance of the cross-sectional shape in each position of a tool main body is excellent, the deterioration of the precision of the processing hole resulting from the elastic deformation and vibration by a centrifugal force is prevented.

請求項4に係る発明は、該リーマの内部には油穴が設けられ、この油穴が溝の壁面に開口していることを特徴とする請求項1〜3のいずれか1項に記載のリーマである。
請求項4に係る発明によれば、前記油穴から吐出される切削油、高圧エアー等の流体が確実に切刃に供給されるため、切削中の切刃の冷却および切刃と被削材との潤滑がはかられる。したがって、切刃への被削材の凝着や切刃の損傷が軽減されて、加工穴内壁面の面粗さおよび該リーマの切刃寿命が向上する。
The invention according to claim 4 is characterized in that an oil hole is provided in the interior of the reamer, and the oil hole opens on the wall surface of the groove. Reamer.
According to the invention which concerns on Claim 4, since fluids, such as the cutting oil discharged from the said oil hole, and high pressure air, are reliably supplied to a cutting blade, the cooling of a cutting blade during cutting, a cutting blade, and a workpiece And can be lubricated. Therefore, adhesion of the work material to the cutting edge and damage to the cutting edge are reduced, and the surface roughness of the inner surface of the machining hole and the cutting edge life of the reamer are improved.

本願発明によれば、工具本体の先端部には、この工具本体の円周方向で等間隔に3つの溝が形成されていることから、工具本体の各位置における断面形状がアンバランスになることが防止され、該リーマが遠心力によって弾性変形を生じたり振動したりすることが抑制されるため、加工穴の加工精度が改善される。
さらに、3つの溝のうち2つの溝の回転方向を向く壁面の先端稜に切刃がそれぞれ形成されるため、1枚刃リーマよりも高送り高能率加工が可能となる。
該リーマが受ける切削抵抗は、2つの切刃が受ける切削抵抗の合力と常に同じ方向に作用する。それとともに前記2つの切刃のうち回転方向後方側に位置する切刃に連なる外周面に設けられたガイドパッドは、加工穴の内壁面と摺接することによって該リーマに作用する切削抵抗の合力を効果的に受け止める。以上のことから、加工中の切削抵抗によるリーマの撓み等の弾性変形が抑制されるため、加工穴位置、穴径、真円度および真直度といった精度が改善される。
以上のことから、加工能率および加工穴の精度に優れたリーマを提供することができる。
According to the present invention, since three grooves are formed at equal intervals in the circumferential direction of the tool body at the tip of the tool body, the cross-sectional shape at each position of the tool body is unbalanced. This prevents the reamer from being elastically deformed or vibrated by centrifugal force, so that the machining accuracy of the machined hole is improved.
Furthermore, since cutting edges are respectively formed at the tip ridges of the wall surfaces facing the rotation direction of two grooves out of the three grooves, high-feed and high-efficiency machining can be performed as compared with a single-blade reamer.
The cutting force received by the reamer always acts in the same direction as the resultant force of the cutting forces received by the two cutting edges. At the same time, the guide pad provided on the outer peripheral surface connected to the cutting blade located on the rear side in the rotational direction of the two cutting blades makes the resultant force of the cutting resistance acting on the reamer by slidingly contacting the inner wall surface of the processing hole. Take it effectively. From the above, since elastic deformation such as bending of the reamer due to cutting resistance during machining is suppressed, accuracy such as machining hole position, hole diameter, roundness, and straightness is improved.
From the above, it is possible to provide a reamer excellent in processing efficiency and processing hole accuracy.

本発明を適用した実施形態について、図面を参照しながら説明する。図1は、本発明を適用したリーマの正面図である。図2は、図1に示すリーマの先端視拡大側面図である。   Embodiments to which the present invention is applied will be described with reference to the drawings. FIG. 1 is a front view of a reamer to which the present invention is applied. 2 is an enlarged side view of the reamer shown in FIG.

図1および図2に図示するように本リーマは、軸線まわりに回転させられる丸棒状の工具本体1の先端側に形成された刃部2と、基端側に形成されたシャンク部3とからなる。刃部1の外周面には、該リーマの円周方向で略等間隔に3つの溝4が該刃部2の先端面から基端側に向かって延設されている。図2の先端視側面図からわかるように、これら3つの溝4は、断面形状が略同一であり、かつ軸線方向の長さも略同一となるように形成されている。そして、これら3つの溝4のうち2つの溝には、該リーマの回転方向Kを向く壁面の先端稜に切刃5A、5Bがそれぞれ形成され、残りの1つの溝4の前記回転方向を向く壁面の先端稜には、切削中に被削材に接触しないように前記切刃5A、5Bよりも基端側にわずかに引っ込んだダミー切刃5Cが形成されている。   As shown in FIGS. 1 and 2, this reamer includes a blade portion 2 formed on the distal end side of a round bar-shaped tool body 1 that is rotated around an axis, and a shank portion 3 formed on the proximal end side. Become. On the outer peripheral surface of the blade portion 1, three grooves 4 are extended from the distal end surface of the blade portion 2 toward the proximal end side at substantially equal intervals in the circumferential direction of the reamer. As can be seen from the side view in the front end view of FIG. 2, these three grooves 4 are formed to have substantially the same cross-sectional shape and substantially the same length in the axial direction. Two of these three grooves 4 are formed with cutting edges 5A and 5B at the ridges of the wall surfaces facing the rotation direction K of the reamer, respectively, and the remaining one groove 4 faces the rotation direction. A dummy cutting edge 5C that is slightly retracted to the base end side with respect to the cutting edges 5A and 5B is formed at the leading edge of the wall surface so as not to contact the work material during cutting.

図2に図示するように2つの切刃5A、5Bのうち回転方向K後方側に位置する切刃5B(第2切刃)に連なる外周面には、ガイドパッド7が形成されている。このガイドパッド7は、リーマの軸線方向で刃部2の先端面に交差する稜線から溝4の終端部近傍にわたって延び、円周方向で前記切刃5B(第2切刃)に連なる外周面全体にわたって形成されている。そして、ガイドパッド7の周面の各位置における横断面形状は、略円弧状を呈し、切刃5A、5Bの最外径端の描く円に一致するか、前記円よりほんの僅か内側に引っ込むように形成される。さらに、前記横断面形状の円弧の直径は、切刃5A、5Bの最外周端の描く円の直径と等しいか、僅かに小さくなっている。   As shown in FIG. 2, a guide pad 7 is formed on the outer peripheral surface of the two cutting blades 5A and 5B that is continuous with the cutting blade 5B (second cutting blade) located on the rear side in the rotation direction K. The guide pad 7 extends from the ridge line intersecting the distal end surface of the blade portion 2 in the reamer axial direction to the vicinity of the end portion of the groove 4 and is connected to the cutting blade 5B (second cutting blade) in the circumferential direction. Is formed over. And the cross-sectional shape in each position of the surrounding surface of the guide pad 7 is substantially circular arc shape, and it corresponds to the circle which the outermost diameter end of the cutting blades 5A and 5B draws, or it is retracted just inside the said circle. Formed. Further, the diameter of the arc of the cross-sectional shape is equal to or slightly smaller than the diameter of the circle drawn by the outermost peripheral ends of the cutting edges 5A and 5B.

2つの切刃のうち回転方K向前方側に位置する切刃5Aおよびダミー切刃5Cから回転方向K後方側に向かって所定の幅を有するマージン6が形成されている。さらに、各マージン6の回転方向K後方側の外周面と溝4との交差稜線部には、回転方向Kに小幅のガイドパッド7がそれぞれ形成されている。マージン6および小幅のガイドパッド7の周面の各位置における横断面形状は、略円弧状を呈し、切刃5A、5Bの最外径端の描く円に一致するか、前記円よりほんの僅か内側に引っ込むように形成される。さらに、前記横断面形状の円弧の直径は、切刃5A、5Bの最外周端の描く円の直径と等しいか、僅かに小さくなっている。   Among the two cutting edges, a margin 6 having a predetermined width is formed from the cutting edge 5A located on the front side in the rotation direction K and the dummy cutting edge 5C toward the rear side in the rotation direction K. Further, a guide pad 7 having a small width in the rotation direction K is formed on the intersection ridge line portion between the outer peripheral surface of the margin 6 in the rotation direction K rear side and the groove 4. The cross-sectional shape at each position of the peripheral surface of the margin 6 and the narrow guide pad 7 is substantially arc-shaped, and coincides with the circle drawn by the outermost diameter ends of the cutting edges 5A and 5B, or is slightly inside the circle. It is formed to retract. Further, the diameter of the arc of the cross-sectional shape is equal to or slightly smaller than the diameter of the circle drawn by the outermost peripheral ends of the cutting edges 5A and 5B.

この種のリーマは、ドリルによる穴明け、鍛造又は鋳造等の加工により明けられた下穴をくり広げて所定の加工穴径に仕上げるために用いられる。一般的に、リーマの中心が下穴の中心と一致しない、いわゆる下穴が偏心した場合には、円周方向に複数の切刃を設けた複数刃リーマでは、軸線を挟んで直径方向に対向する切刃間で、削りしろの変動による切削抵抗のアンバランスが生じて、切削抵抗の合力の大きさおよび方向がリーマの回転にともない大きく変動する。そのため、工具本体の撓み等の弾性変形が増大し、加工穴位置、穴径、真円度および真直度といった加工穴の精度が悪化する。1枚刃リーマにおいても、下穴が偏心した場合には、切削抵抗の方向は略一定に保たれるものの、削りしろの変動にともなって切削抵抗の大きさが変動するため、やはり加工穴の穴径、真円度といった精度が悪化するという問題があった。また、1枚刃リーマにおいては、横断面形状が非常にアンバランスになることから、該リーマの回転中の遠心力によって撓み等の弾性変形および振動が大きくなるため、加工穴の穴径、真円度といった精度が悪化してしまう。さらに、1枚刃リーマは、複数刃リーマにくらべ、送りを上げられないため高能率加工に適さないという問題があった。   This type of reamer is used for spreading a prepared hole formed by drilling, forging, casting, or the like to finish a predetermined hole diameter. In general, when the so-called pilot hole is eccentric, the center of the reamer is not coincident with the center of the pilot hole, the multi-blade reamer provided with a plurality of cutting edges in the circumferential direction faces the diameter direction across the axis. The cutting force is unbalanced due to fluctuations in the cutting margin between the cutting edges, and the magnitude and direction of the resultant force of the cutting resistance greatly vary with the rotation of the reamer. Therefore, elastic deformation such as bending of the tool body is increased, and the accuracy of the machining hole such as the machining hole position, the hole diameter, the roundness and the straightness is deteriorated. Even in the single-blade reamer, when the pilot hole is eccentric, the direction of the cutting force is kept substantially constant, but the magnitude of the cutting force varies with the variation of the cutting margin. There was a problem that accuracy such as hole diameter and roundness deteriorated. In addition, since the cross-sectional shape of a single-blade reamer is very unbalanced, elastic deformation such as bending and vibration increase due to the centrifugal force during rotation of the reamer. Accuracy such as circularity will deteriorate. Furthermore, the single-blade reamer has a problem in that it cannot be fed as compared with the multi-blade reamer and is not suitable for high-efficiency machining.

本発明を適用したリーマにおいては、刃部2には、横断面形状が略同一をなす3つの溝4が円周方向で略等間隔かつ軸線方向で略同一長さに形成されていることから、工具本体1の各位置における横断面形状がバランスに優れ、遠心力による工具本体の弾性変形および振動が生じないため、1枚刃リーマにくらべ加工穴の穴径、真円度といった精度が改善する。   In the reamer to which the present invention is applied, three blades 4 having substantially the same cross-sectional shape are formed in the blade portion 2 at substantially equal intervals in the circumferential direction and substantially the same length in the axial direction. The cross-sectional shape at each position of the tool body 1 is excellent in balance, and the tool body is not elastically deformed or vibrated by centrifugal force. Therefore, the accuracy of the hole diameter and roundness of the processed hole is improved compared to the single-blade reamer. To do.

さらに、本発明を適用したリーマにおいては、下穴が偏心した場合には、該リーマの軸線を挟んで直径方向に一対の切刃が対向しないため、各切刃の削りしろの変動が小さくなる。よって、各切刃の切削抵抗のアンバランスが改善し、切削中の撓み等の弾性変形が生じないため、従来の複数刃リーマにくらべ、加工穴位置、穴径、真円度および真直度といった加工穴精度が悪化しない。   Furthermore, in the reamer to which the present invention is applied, when the pilot hole is eccentric, the pair of cutting blades do not face each other in the diameter direction across the axis of the reamer. . Therefore, the unbalance of the cutting resistance of each cutting edge is improved, and elastic deformation such as bending during cutting does not occur. Therefore, compared to the conventional multi-blade reamer, the processing hole position, hole diameter, roundness and straightness The hole accuracy does not deteriorate.

さらに、該リーマが受ける切削抵抗の合力が、2つの切刃5A、5Bが受ける切削抵抗の合力と常に同じ方向に作用するとともに、前記2つの切刃5A、5Bのうち回転方向後方側に位置する切刃5B(第2切刃)に連なる外周面にガイドパッド7が設けられ、このガイドパッド7の一部又は全体が加工穴の内壁面と摺接することによって該リーマが受ける切削抵抗を受け止めるため、加工穴の拡大、曲がりが抑制されて加工穴の精度が改善されるうえに、前記摺接による切削抵抗の増大が防止される。   Furthermore, the resultant force of the cutting resistance received by the reamer always acts in the same direction as the resultant force of the cutting resistance received by the two cutting edges 5A and 5B, and is positioned on the rear side in the rotational direction of the two cutting edges 5A and 5B. A guide pad 7 is provided on the outer peripheral surface continuous with the cutting blade 5B (second cutting blade) to be received, and a part or the whole of the guide pad 7 receives a cutting resistance received by the reamer by being in sliding contact with the inner wall surface of the machining hole. Therefore, the enlargement and bending of the processed hole are suppressed, the accuracy of the processed hole is improved, and an increase in cutting resistance due to the sliding contact is prevented.

3つの溝4のうち2つの溝には、リーマの回転方向Kを向く壁面の先端稜に切刃5A、5Bがそれぞれ形成されていることから、1枚刃リーマにくらべ高送りできるため高能率加工が可能となる。   Since two of the three grooves 4 are formed with cutting edges 5A and 5B at the ridges of the wall surface facing the rotation direction K of the reamer, respectively, it is possible to feed higher than a single-blade reamer, so high efficiency Processing becomes possible.

本リーマにおけるガイドパッド7は、回転方向K後方側に位置する切刃5B(第2切刃)から連なる外周面全体にわたって形成される必要はなく、回転方向K前方側に位置する切刃5A(第1切刃)を基準として回転方向K後方側に127°〜173°の範囲内に形成されていればよい。ガイドパッド7が少なくとも前記範囲内に形成されていれば、2つの切刃5A、5Bが受ける切削抵抗の合力を確実に受け止めることによって該リーマの撓み等の弾性変形が効果的に抑えられる。したがって、加工穴位置、穴径、真円度および真直度といった加工穴精度の向上に加え、ガイドパッド7と加工穴内壁面との摺接による負荷が低減する。前記ガイドパッド7の形成範囲が前記範囲から外れた場合には、切削抵抗の合力を確実にガイドパッドで受け止めることができないため、前記の効果が十分に得られないおそれがある。前記の効果をより大きいものとするため、ガイドパッド7は、回転方向K前方側に位置する切刃5Aを基準として回転方向K後方側に127°〜173°の範囲全体にわたって形成されるのが望ましい。   The guide pad 7 in this reamer does not need to be formed over the entire outer peripheral surface that continues from the cutting edge 5B (second cutting edge) located on the rear side in the rotational direction K, but on the cutting edge 5A located on the front side in the rotational direction K ( What is necessary is just to be formed in 127 to 173 degrees in the rotation direction K back side on the basis of a 1st cutting edge. If the guide pad 7 is formed at least within the above range, elastic deformation such as bending of the reamer can be effectively suppressed by reliably receiving the resultant force of the cutting resistance received by the two cutting blades 5A and 5B. Therefore, in addition to improving the machining hole accuracy such as the machining hole position, the hole diameter, the roundness and the straightness, the load due to the sliding contact between the guide pad 7 and the inner wall surface of the machining hole is reduced. When the formation range of the guide pad 7 deviates from the above range, the resultant force of the cutting resistance cannot be reliably received by the guide pad, and thus the above effect may not be sufficiently obtained. In order to increase the above effect, the guide pad 7 is formed over the entire range of 127 ° to 173 ° on the rear side in the rotation direction K with reference to the cutting edge 5A located on the front side in the rotation direction K. desirable.

本リーマにおいて、切刃5A、5Bをダイヤモンド焼結体又はcBNといった超高圧焼結体で構成してもよい。このように切刃5A、5Bをダイヤモンド焼結体で構成すると、一般的な超硬合金で構成した場合にくらべ、アルミニウムおよびアルミニウム合金等の非鉄金属の高速加工が可能となりかつ被削材の凝着が抑えられ切刃の長寿命化が実現される。また、切刃をcBNで構成すると、一般的な超硬合金で構成した場合にくらべ、鋳鉄の高速加工が可能となりかつ切刃5A、5Bの長寿命化が実現される。このように切刃5A、5Bを超高圧焼結体で構成した場合には、高速化にともない該リーマの回転数が非常に高くなるため、遠心力による該リーマの撓み等の弾性変形や振動が生じやすくなるが、前記の如く該リーマの各断面形状がバランスのよい形状となっていることから、回転時の撓みや振れまわりが抑えられる。そのため、高速加工における加工穴の高精度化が実現される。   In this reamer, the cutting edges 5A and 5B may be formed of a diamond sintered body or an ultrahigh pressure sintered body such as cBN. If the cutting edges 5A and 5B are made of a diamond sintered body in this way, high-speed machining of non-ferrous metals such as aluminum and aluminum alloys becomes possible and the work material is agglomerated as compared with the case of making a general cemented carbide. The wearing is suppressed and the life of the cutting blade is extended. In addition, when the cutting blade is made of cBN, the cast iron can be processed at a high speed and the cutting blades 5A and 5B can have a longer life compared to a general cemented carbide. When the cutting blades 5A and 5B are made of an ultra-high pressure sintered body in this way, the number of revolutions of the reamer becomes very high as the speed increases, so elastic deformation and vibration such as bending of the reamer due to centrifugal force. However, since each reamer has a well-balanced cross-sectional shape as described above, it is possible to suppress bending and run-out during rotation. Therefore, high accuracy of the machining hole in high-speed machining is realized.

本リーマにおいて、工具本体1の内部には油穴8が設けられ、この油穴8が溝4の壁面に開口していることが望ましい。各溝4の壁面に開口する油穴8は、対応する切刃5A、5Bにそれぞれ向けられているのが望ましい。このように油穴8を設けた場合には、油穴8から吐出される切削油、高圧エアー等の流体が確実に切刃5A、5Bに供給されるため、該リーマの外部から前記流体を供給するものにくらべ、切削中の切刃5A、5Bの冷却および切刃5A、5Bと被削材との潤滑が効果的におこなわれる。そのため、切刃5A、5Bの損傷が軽減され、該リーマの寿命が延長する。   In this reamer, it is desirable that an oil hole 8 is provided inside the tool body 1 and that the oil hole 8 is opened in the wall surface of the groove 4. The oil holes 8 opened in the wall surfaces of the grooves 4 are preferably directed to the corresponding cutting edges 5A and 5B, respectively. When the oil hole 8 is provided in this way, fluid such as cutting oil and high-pressure air discharged from the oil hole 8 is reliably supplied to the cutting blades 5A and 5B, so that the fluid is supplied from the outside of the reamer. Compared with what is supplied, cooling of the cutting edges 5A and 5B during cutting and lubrication of the cutting edges 5A and 5B and the work material are performed effectively. Therefore, damage to the cutting blades 5A and 5B is reduced, and the life of the reamer is extended.

リーマと下穴とが互いの中心位置にずれを生じたときの切削抵抗の方向および大きさについて、本実施形態のリーマと従来リーマとを比較した結果について以下に説明する。   The results of a comparison between the reamer of this embodiment and the conventional reamer will be described below with respect to the direction and magnitude of the cutting resistance when the reamer and the pilot hole are displaced from each other in the center position.

図3の(d)の加工状況の模式図に図示するように、リーマの中心を原点OとしたXY座標において下穴の中心がX軸方向正側にずれることによって、Aの位置におけるリーマの径方向の最大削りしろapmaxがBの位置における最小削りしろapminの2倍となるような加工状況を想定した。当初Aの位置にある第1切刃がリーマの回転により回転方向に移動する量を位相θであらわす。図3の(a)の表は、従来の1枚刃リーマ、2枚刃リーマ、3枚刃リーマおよび本発明を適用したリーマの各リーマについて、当初Aの位置にある第1切刃の位相θを0°〜360°(1回転)の範囲で30°刻みに分割したときの、各位相θにおける各切刃の切削抵抗の大きさ、切削抵抗の合力の方向および大きさを示している。表中、切刃の数が異なっているが、これは各リーマの刃数の違いによるものである。切削抵抗の合力の方向は、第1切刃の外周側の法線に平行で外側に向く方向を0°、第1切刃の外周側の接線に平行で回転方向K後方側に向く方向を90°とする。切削抵抗の合力の大きさは、当初Aの位置にある切刃(第1切刃)が最大削りしろapmaxを削る瞬間に作用する切削抵抗の合力の大きさを100としたときの比率であらわす。図3の(b)および(c)は、(a)の表をグラフ化したものであり、(b)が各位相θと切削抵抗の合力の方向との関係を示すグラフであり、(c)は各位相θと切削抵抗の合力の大きさとの関係を示すグラフである。   3D, the center of the pilot hole is shifted to the X axis direction positive side in the XY coordinates with the center of the reamer as the origin O. A machining situation was assumed in which the maximum cutting margin apmax in the radial direction was twice the minimum cutting margin apmin at the position B. The amount by which the first cutting edge initially at position A moves in the rotational direction by the rotation of the reamer is represented by phase θ. The table of FIG. 3 (a) shows the phase of the first cutting edge initially at position A for each of the conventional single-blade reamer, 2-blade reamer, 3-blade reamer and reamer to which the present invention is applied. When θ is divided into 30 ° increments in the range of 0 ° to 360 ° (one rotation), the magnitude of the cutting resistance of each cutting edge in each phase θ, and the direction and magnitude of the resultant force of the cutting resistance are shown. . In the table, the number of cutting blades is different, but this is due to the difference in the number of blades of each reamer. The direction of the resultant force of the cutting resistance is 0 ° in the direction parallel to the normal line on the outer peripheral side of the first cutting edge and facing outward, and the direction in the direction parallel to the tangential line on the outer peripheral side of the first cutting edge and facing backward in the rotational direction K. 90 °. The magnitude of the resultant force of the cutting resistance is expressed as a ratio when the magnitude of the resultant force of the cutting resistance acting at the moment when the cutting edge (first cutting edge) initially at position A cuts the maximum cutting margin apmax is 100. . (B) and (c) of FIG. 3 are graphs of the table of (a), (b) is a graph showing the relationship between each phase θ and the direction of the resultant force of the cutting resistance, (c ) Is a graph showing the relationship between each phase θ and the magnitude of the resultant force of the cutting force.

図3の(b)および(c)からわかるように1枚刃リーマでは、切削抵抗の合力の方向は、常に90°であるものの、切削抵抗の合力の大きさは、削りしろの変動が直接的に影響して50〜100の範囲で大きく変動する。2枚刃リーマでは、各切刃の切削抵抗が径方向の削りしろの影響でアンバランスとなるため、切削抵抗の合力の方向はほぼ360°変動するとともに、切削抵抗の合力の大きさも0〜100の範囲で大きく変動する。円周方向に略等間隔に3枚の切刃を配置した一般的な3枚刃リーマでは、切削抵抗の合力の大きさは変動が小さいものの、切削抵抗の合力の方向は30°〜270°の範囲で大きく変動する。   As can be seen from FIGS. 3B and 3C, in the single-blade reamer, the direction of the resultant force of the cutting force is always 90 °, but the magnitude of the resultant force of the cutting force is directly affected by fluctuations in the cutting margin. Greatly affecting the range of 50-100. In the two-blade reamer, the cutting force of each cutting edge becomes unbalanced due to the influence of the cutting margin in the radial direction, so that the direction of the resultant force of the cutting force varies by approximately 360 °, and the magnitude of the resultant force of the cutting force is 0 to 0. It fluctuates greatly in the 100 range. In a general three-blade reamer in which three cutting blades are arranged at substantially equal intervals in the circumferential direction, the magnitude of the resultant force of the cutting force is small, but the direction of the resultant force of the cutting force is 30 ° to 270 °. It fluctuates greatly in the range.

本発明を適用したリーマは、円周方向で2つの切刃同士の間隔が狭くなっていることから、これら切刃間で、削りしろの差および切削抵抗の方向の差が従来の2枚刃リーマにくらべ大幅に小さくなる。詳細には、切削抵抗の合力の方向は、127°〜173°の範囲にあって従来の2枚刃リーマおよび3枚刃リーマにくらべ変動の幅が小さく、該リーマの中心を基準にして、第1切刃の回転方向後方側に位置する第2切刃に連なる外周面側に指向している。さらに、切削抵抗の合力の大きさは、67〜88の範囲にあって従来の1枚刃リーマおよび2枚刃リーマにくらべ変動の幅が小さい。   In the reamer to which the present invention is applied, the distance between two cutting edges is narrow in the circumferential direction. Significantly smaller than reamer. Specifically, the direction of the resultant force of the cutting force is in the range of 127 ° to 173 °, and the fluctuation width is smaller than that of the conventional two-blade reamer and three-blade reamer. The first cutting edge is directed to the outer peripheral surface side continuous with the second cutting edge located on the rear side in the rotation direction. Furthermore, the magnitude of the resultant force of the cutting force is in the range of 67 to 88, and the fluctuation width is smaller than that of the conventional single-blade reamer and double-blade reamer.

以上に述べたように本発明を適用したリーマにおいては、各切刃の切削抵抗の大きさがアンバランスになっても、切削抵抗の合力が該リーマの中心を基準にして、第1切刃5Aの回転方向後方側に位置する第2切刃5Bに連なる外周面側に指向するので、前記外周面にガイドパッド7を設けることで該リーマの切削抵抗による撓みを効果的に抑制することができる。さらに、切削抵抗の合力の大きさの変動についても、従来の1枚刃リーマおよび2枚刃リーマにくらべ大幅に小さくなる。これも前記ガイドパッド7による撓みを大幅に抑制する要因となる。   As described above, in the reamer to which the present invention is applied, even if the magnitude of the cutting resistance of each cutting edge becomes unbalanced, the resultant force of the cutting resistance is based on the center of the reamer. Since it is directed to the outer peripheral surface side connected to the second cutting edge 5B located on the rear side in the rotational direction of 5A, it is possible to effectively suppress the bending due to the cutting resistance of the reamer by providing the guide pad 7 on the outer peripheral surface. it can. Furthermore, the variation in the magnitude of the resultant force of the cutting force is also significantly smaller than the conventional single-blade reamer and double-blade reamer. This is also a factor that significantly suppresses the bending by the guide pad 7.

本発明を適用したリーマの正面図である。It is a front view of the reamer to which the present invention is applied. 図1に示すリーマの先端視拡大側面図である。FIG. 2 is an enlarged side view of the reamer shown in FIG. 中心がずれた下穴を加工した際の切削抵抗の合力の方向および大きさを説明する図であり、(a)は、従来リーマ本発明を適用したリーマについて、第1切刃の各位相θにおける切刃の切削抵抗の大きさ、切削抵抗の合力の方向および大きさを示す表であり、(b)は、各位相θと切削抵抗の合力の方向との関係を示すグラフであり、(c)は、各位相θと切削抵抗の合力の大きさとの関係を示すグラフであり、(d)は加工状況の模式図である。It is a figure explaining the direction and magnitude | size of the resultant force of cutting resistance at the time of processing the prepared hole where the center shifted | deviated, (a) is each phase (theta) of a 1st cutting edge about the reamer to which the conventional reamer this invention is applied. Is a table showing the magnitude of the cutting force of the cutting edge, the direction and magnitude of the resultant force of the cutting force, and (b) is a graph showing the relationship between each phase θ and the direction of the resultant force of the cutting resistance, c) is a graph showing the relationship between each phase θ and the magnitude of the resultant force of the cutting force, and (d) is a schematic diagram of the machining situation.

符号の説明Explanation of symbols

1 工具本体
2 刃部
3 シャンク部
4 溝
5A 切刃(第1切刃)
5B 切刃(第2切刃)
5C ダミー切刃
6 マージン
7 ガイドパッド
8 油穴
DESCRIPTION OF SYMBOLS 1 Tool body 2 Blade part 3 Shank part 4 Groove 5A Cutting blade (1st cutting blade)
5B cutting edge (second cutting edge)
5C Dummy cutting edge 6 Margin 7 Guide pad 8 Oil hole

Claims (3)

軸線まわりに回転させられる略円柱状の工具本体の先端部には、この工具本体の円周方向で等間隔に3つの溝が形成され、これらの溝のうち2つの溝の前記回転方向を向く壁面の先端稜には、第1切刃と、該第1切刃よりも工具本体の回転方向後方に位置する第2切刃とが形成され、残り1つの溝の前記回転方向を向く壁面の先端稜には切削に関与しないダミー切刃が形成され、
前記第1切刃に隣接する前記工具本体の外周面には、第1マージンと、該第1マージンに隣接して形成され且つ第1マージンよりも工具本体の中心側に後退している第1窪み部と、該窪み部に隣接して形成され且つ前記第1マージンと同程度に前記窪み部よりも前記工具本体円周方向に突出する第1ガイドパッドと、が形成され、
前記第2切刃に隣接する前記工具本体の外周面全体には第2ガイドパッドが形成され、
前記ダミー切刃に隣接する前記工具本体の外周面には、第2マージンと、該第2マージンに隣接して形成され且つ第2マージンよりも工具本体の中心側に後退している第2窪み部と、該窪み部に隣接して形成され且つ前記第2マージンと同程度に前記窪み部よりも前記工具本体円周方向に突出する第3ガイドパッドと、が形成されるリーマ。
Three grooves are formed at equal intervals in the circumferential direction of the tool body at the front end portion of the substantially cylindrical tool body that is rotated around the axis, and two grooves out of these grooves face the rotation direction. A first cutting edge and a second cutting edge located behind the first cutting edge in the rotation direction of the tool body are formed on the tip ridge of the wall surface, and the wall surface of the remaining one groove facing the rotation direction is formed. A dummy cutting edge that is not involved in cutting is formed on the tip edge,
On the outer peripheral surface of the tool body adjacent to the first cutting edge, a first margin and a first margin formed adjacent to the first margin and retreating toward the center side of the tool body from the first margin. A recess portion and a first guide pad formed adjacent to the recess portion and projecting in the circumferential direction of the tool body from the recess portion to the same extent as the first margin are formed.
A second guide pad is formed on the entire outer peripheral surface of the tool body adjacent to the second cutting edge,
On the outer peripheral surface of the tool body adjacent to the dummy cutting edge, a second margin and a second recess formed adjacent to the second margin and receding toward the center of the tool body from the second margin. And a third guide pad formed adjacent to the recess and projecting in the circumferential direction of the tool body from the recess to the same extent as the second margin.
前記切刃が超高圧焼結体からなることを特徴とする請求項1に記載のリーマ。 The reamer according to claim 1, wherein the cutting blade is made of an ultra-high pressure sintered body. 内部に油穴が設けられ、この油穴が溝の壁面に開口していることを特徴とする請求項1または2に記載のリーマ。 The reamer according to claim 1 or 2, wherein an oil hole is provided in the inside, and the oil hole opens in a wall surface of the groove.
JP2007259477A 2007-10-03 2007-10-03 Reamer Active JP4930313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007259477A JP4930313B2 (en) 2007-10-03 2007-10-03 Reamer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007259477A JP4930313B2 (en) 2007-10-03 2007-10-03 Reamer

Publications (2)

Publication Number Publication Date
JP2009083078A JP2009083078A (en) 2009-04-23
JP4930313B2 true JP4930313B2 (en) 2012-05-16

Family

ID=40657204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007259477A Active JP4930313B2 (en) 2007-10-03 2007-10-03 Reamer

Country Status (1)

Country Link
JP (1) JP4930313B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110123284A1 (en) * 2009-11-20 2011-05-26 Thomas & Betts International, Inc. Reamer tool
CN102189296B (en) * 2011-04-13 2013-04-10 郑州市钻石精密制造有限公司 Gun reamer used for processing air intake conduit hole
WO2020003679A1 (en) 2018-06-28 2020-01-02 株式会社アライドマテリアル Reamer
USD1014588S1 (en) 2019-10-09 2024-02-13 A.L.M.T. Corp. Rotary cutting tool

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0671684B2 (en) * 1986-10-08 1994-09-14 三菱マテリアル株式会社 Reamer
JPH09103918A (en) * 1995-10-06 1997-04-22 Toshiba Tungaloy Co Ltd Boring tool
JP4401495B2 (en) * 1999-10-15 2010-01-20 株式会社タンガロイ Single blade reamer
DE10159431B4 (en) * 2001-12-04 2005-10-20 Mapal Fab Praezision Tool for finishing surfaces

Also Published As

Publication number Publication date
JP2009083078A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
KR102211830B1 (en) Multi-blade ball end mill
JP5869691B2 (en) Ball end mill
JP5823316B2 (en) Drill tool for cutting cast material
WO2010146839A1 (en) Drill with coolant holes
US20090252564A1 (en) Face milling cutter
WO2012157063A1 (en) Drill head for deep hole cutting
JP2010105093A (en) Ball end mill
JP2013176842A (en) Rotary cutting tool
JP5851802B2 (en) Drill for carbon fiber reinforced resin composite material
JPWO2019073752A1 (en) Rotary cutting tool
JP6838164B2 (en) Taper reamer
JP5581521B2 (en) Deep hole drill head and its guide pad
CN111587160A (en) Drill bit
JP5845218B2 (en) Ball end mill
WO2015104732A1 (en) End mill
JP2015062978A (en) Ball end mill
JP4930313B2 (en) Reamer
JP4753893B2 (en) Diamond reamer
JP5549080B2 (en) drill
US20240181542A1 (en) Drill
JP2016147328A (en) drill
JP2018176360A (en) Rotary cutting hole drilling tool
JP2004181563A (en) Ball end mill
JP2013013962A (en) Cbn end mill
JP3835902B2 (en) Drill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100824

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110930

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20111017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4930313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250