JP4888402B2 - Remaining life diagnosis method for oil-filled transformers - Google Patents
Remaining life diagnosis method for oil-filled transformers Download PDFInfo
- Publication number
- JP4888402B2 JP4888402B2 JP2008005830A JP2008005830A JP4888402B2 JP 4888402 B2 JP4888402 B2 JP 4888402B2 JP 2008005830 A JP2008005830 A JP 2008005830A JP 2008005830 A JP2008005830 A JP 2008005830A JP 4888402 B2 JP4888402 B2 JP 4888402B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- remaining life
- estimation model
- filled transformer
- metal container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Housings And Mounting Of Transformers (AREA)
Description
本発明は、油入変圧器における絶縁紙の平均重合度及び金属容器の残肉量をそれぞれ推定して油入変圧器の余寿命を診断する油入変圧器の余寿命診断方法に関するものである。 The present invention relates to a method for diagnosing the remaining life of an oil-filled transformer that estimates the average degree of polymerization of insulating paper and the remaining amount of metal container in an oil-filled transformer to diagnose the remaining life of the oil-filled transformer. .
一般に、油入変圧器に使われている材料には、以下のようなものがある。
(1)銅、アルミニウム等の導電材料
(2)絶縁油や絶縁紙、プレスボード等の絶縁材料
(3)けい素鋼帯等の鉄心材料
(4)鉄やステンレス鋼等の金属容器材料
これらの材料のうち、油入変圧器内で経年劣化が認められるのは、絶縁油や絶縁紙等の絶縁材料であると考えられている。絶縁油については、油劣化防止装置(開放型、空気密封型、窒素密封型等がある)の働きもあるため劣化は非常に緩慢であり、重要な特性である絶縁破壊電圧の低下度は小さい。
In general, the following materials are used for oil-filled transformers.
(1) Conductive materials such as copper and aluminum (2) Insulating materials such as insulating oil, insulating paper and press board (3) Iron core materials such as silicon steel strips (4) Metal container materials such as iron and stainless steel Among the materials, it is considered that insulating materials such as insulating oil and insulating paper are subject to deterioration over time in the oil-filled transformer. Insulating oil has a function of oil deterioration prevention device (open type, air-sealed type, nitrogen-sealed type, etc.), so the deterioration is very slow, and the breakdown voltage, which is an important characteristic, is low. .
一方、絶縁紙については、経年劣化による絶縁破壊電圧の低下度は小さいが、機械的強度の低下度は大きい(すなわち、紙がぼろぼろになる)。絶縁紙の劣化が進行すると、突入電流や外部短絡時に発生する電磁力による機械的ストレスによって絶縁紙に亀裂や損壊が発生し、絶縁破壊する危険性が増大する。
従って、油入変圧器の寿命は絶縁紙の機械的強度、特に巻線導体絶縁紙の劣化状態の影響を強く受ける。つまり、油入変圧器の余寿命とは、従来から、巻線導体絶縁紙の絶縁破壊、すなわち、絶縁紙の劣化(平均重合度の低下)状態によって決定付けられると考えられている。
On the other hand, for insulating paper, the degree of decrease in dielectric breakdown voltage due to deterioration over time is small, but the degree of decrease in mechanical strength is large (that is, the paper becomes shabby). As the deterioration of the insulating paper proceeds, the insulating paper is cracked or broken by mechanical stress due to inrush current or electromagnetic force generated at the time of external short circuit, and the risk of dielectric breakdown increases.
Therefore, the life of the oil-filled transformer is strongly influenced by the mechanical strength of the insulating paper, particularly the deterioration state of the winding conductor insulating paper. In other words, the remaining life of the oil-filled transformer is conventionally considered to be determined by the dielectric breakdown of the winding conductor insulating paper, that is, the state of deterioration of the insulating paper (decrease in average polymerization degree).
以下に、絶縁紙の平均重合度と、油入変圧器の余寿命及び劣化診断方法について考察する。
(1)絶縁紙の平均重合度
絶縁紙は、多数のセルロース分子が重合してできた重合体であり、このセルロースを構成する基本分子の数を重合度という。絶縁紙としての新品のクラフト紙の場合の平均重合度は、約1000である。この平均重合度は、絶縁紙が酸化劣化するとセルロース分子の鎖が切断されてセルロース分子の低分子量化、すなわち平均重合度の低下が起きる。例えば、30年使用した変圧器では、絶縁紙の平均重合度が初期値の約40〜60%(重合度400〜600)にまで減少すると言われている。
(2)油入変圧器の寿命
日本電機工業会規格JEM1463−1993では、1000[kVA]を超える油入変圧器の評価基準を定めており、一般的には、この規格に従い、平均重合度が450になると思われる時点が油入変圧器の寿命と定義されている。
Below, the average degree of polymerization of the insulating paper, the remaining life of the oil-filled transformer, and the deterioration diagnosis method will be discussed.
(1) Average degree of polymerization of insulating paper Insulating paper is a polymer obtained by polymerizing a large number of cellulose molecules, and the number of basic molecules constituting this cellulose is called the degree of polymerization. The average degree of polymerization in the case of new kraft paper as insulating paper is about 1000. As for this average polymerization degree, when the insulating paper is oxidized and deteriorated, the chain of cellulose molecules is cut and the molecular weight of the cellulose molecules is lowered, that is, the average polymerization degree is lowered. For example, in a transformer used for 30 years, the average polymerization degree of insulating paper is said to decrease to about 40 to 60% of the initial value (polymerization degree 400 to 600).
(2) Life of oil-filled transformer The Japan Electrical Manufacturers' Association standard JEM1463-1993 defines an evaluation standard for oil-filled transformers exceeding 1000 [kVA]. Generally, according to this standard, the average degree of polymerization is The point at which it is supposed to be 450 is defined as the life of the oil-filled transformer.
(3)現状の油入変圧器の余寿命診断方法
変圧器の余寿命診断では、上記(2)の基準に従おうとすれば、コイル絶縁紙の平均重合度を測定または推定することが必要となる。しかし、稼動中の油入変圧器のコイル絶縁紙は簡単に採取することができないため、測定が困難である。従って、変圧器内部の採取可能な絶縁物(プレスボード、リード絶縁紙)の平均重合度や、絶縁紙の分解過程の生成物であるフルフラールやCO2+CO量を測定し、その結果を用いた余寿命診断が行われている。これらの余寿命診断方法は、例えば、非特許文献1や非特許文献2に記載されている。
(3) Current remaining life diagnosis method for oil-filled transformers In the remaining life diagnosis of transformers, it is necessary to measure or estimate the average degree of polymerization of coil insulating paper if the standard of (2) is followed. Become. However, it is difficult to measure the coil insulation paper of the oil-filled transformer in operation because it cannot be easily collected. Therefore, the average polymerization degree of the insulating material (press board, lead insulating paper) that can be collected inside the transformer, and the amount of furfural and CO 2 + CO, which are products of the decomposition process of the insulating paper, were measured, and the results were used. Remaining life diagnosis is performed. These remaining life diagnosis methods are described in Non-Patent Document 1 and Non-Patent Document 2, for example.
以下、各種の余寿命診断方法について略述する。
(イ)重合度法
運転停止中の点検時等に、変圧器内部から絶縁に影響が無い部分のプレスボードやリード絶縁紙を採取して、絶縁紙の劣化度を診断する方法を「重合度法」という。この重合度法は、採取した絶縁紙の平均重合度から巻線コイルの最も温度が高い箇所(ホットスポット部分)のコイル絶縁紙の劣化度を推定し、余寿命を予測する方法である。
(ロ)CO2+CO法
絶縁紙は、劣化によって水やCO2、CO等の種々の有機成分を生成する。劣化指標成分として有効なものとして、平均重合度とも相関性があるCO2+CO、更にはフルフラールがある。このうちCO2+CO法では、油中ガス分析を行い、絶縁紙の最終的な劣化生成物であるCO2+CO量から平均重合度を推定して余寿命診断方法を行う。
Hereinafter, various remaining life diagnosis methods will be outlined.
(A) Degree of polymerization method During inspections such as when the operation is stopped, a method of diagnosing the degree of insulation paper deterioration by collecting the press board or lead insulation paper from the inside of the transformer that does not affect insulation is used. The law. This degree of polymerization method is a method for estimating the remaining life by estimating the degree of deterioration of the coil insulating paper at the hottest portion (hot spot portion) of the winding coil from the average degree of polymerization of the collected insulating paper.
(B) CO 2 + CO method Insulating paper generates various organic components such as water, CO 2 , and CO due to deterioration. As effective deterioration index components, there are CO 2 + CO having a correlation with the average degree of polymerization, and further furfural. Among these, in the CO 2 + CO method, an in-oil gas analysis is performed, and an average polymerization degree is estimated from the amount of CO 2 + CO, which is a final degradation product of insulating paper, and a remaining life diagnosis method is performed.
(ハ)フルフラール法
セルロースの分解過程でアルデヒド成分のフルフラールが生成される。絶縁油の脱気処理を行ってもフルフラールは85%が油中に残り、気体中に拡散しない。このため、脱気処理の履歴がわかれば、脱気処理をしてあっても利用可能な方法である。
このフルフラール法では、測定したフルフラール量から、予め求められた相関関係に従って平均重合度を求めているが、フルフラール量に対して平均重合度にかなり幅があるため、劣化度合い(余寿命診断)の診断結果も大きな幅を持つこととなり、高精度での余寿命推定は非常に困難である。
(C) Furfural method The furfural aldehyde component is produced during the decomposition process of cellulose. Even when the insulating oil is deaerated, 85% of the furfural remains in the oil and does not diffuse into the gas. For this reason, if the history of the deaeration process is known, this method can be used even if the deaeration process is performed.
In this furfural method, the average degree of polymerization is obtained from the measured amount of furfural according to the correlation obtained in advance. However, the degree of deterioration (remaining life diagnosis) of the average degree of polymerization is considerably wide with respect to the amount of furfural. The diagnosis results also have a wide range, and it is very difficult to estimate the remaining life with high accuracy.
また、変圧器油の温度を測定してCO2+CO濃度を予測し、その予測値と実際値との差が一定値以上になったときに絶縁劣化を検出するようにした油入電気機器の絶縁診断装置が、特許文献1に記載されている。
また、静止誘導電器の絶縁媒体をガス分析し、分解生成物の種類や生成量、生成比の変化から局部過熱、アーク放電等の異常を検出する静止誘導電器の異常診断方法において、分解生成物であるアセチレンの生成量を入力データとし、アーク放電等の異常現象を教師データとして学習させたニューラルネットワークを用いて静止誘導電器の異常を診断する方法が、特許文献2に記載されている。
In addition, in the static induction machine abnormality diagnosis method that analyzes the insulation medium of static induction equipment and detects abnormalities such as local overheating and arc discharge from changes in the type, generation amount, and generation ratio of decomposition products, the decomposition products Patent Document 2 describes a method of diagnosing abnormalities in a static induction device using a neural network in which the amount of acetylene produced is input data and an abnormal phenomenon such as arc discharge is learned as teacher data.
しかしながら、油入変圧器が製鉄工場等に設置されている場合には、その設置場所に応じて雰囲気温度等の温度的環境及び大気中に含まれるオゾン、硫化物等の化学的環境が大きく異なるものになる。これらの温度的環境及び化学的環境の差異は、絶縁紙の劣化に対してよりも、金属容器の減肉の進行に対して大きな影響を及ぼす。すなわち、油入変圧器では、金属容器の隔壁部分の肉厚が腐蝕等に起因して経時的に減少(減肉)するが、温度的環境及び化学的環境に応じて金属容器の減肉速度が大きく変化することになる。 However, when an oil-filled transformer is installed in a steel factory or the like, the temperature environment such as the atmospheric temperature and the chemical environment such as ozone and sulfide contained in the atmosphere vary greatly depending on the installation location. Become a thing. These differences in temperature environment and chemical environment have a greater influence on the progress of metal container thinning than on the deterioration of insulating paper. That is, in an oil-filled transformer, the wall thickness of the partition wall of the metal container decreases with time (thinning) due to corrosion or the like, but the metal container's thickness reduction rate depends on the temperature and chemical environment. Will change drastically.
このため、絶縁紙の劣化進行に対して金属容器における減肉進行が早い場合には、油入変圧器の寿命は、絶縁紙の劣化に律速されず、多くの場合、金属容器の減肉量(残厚量)に律速されることになる。これとは逆に、金属容器における減肉進行に対して絶縁紙の劣化進行が早い場合には、油入変圧器の寿命は、金属容器の減肉量(残厚量)に律速されず、多くの場合、絶縁紙の劣化に律速されることになる。 For this reason, if the progress of thinning in the metal container is faster than the progress of deterioration of the insulating paper, the life of the oil-filled transformer is not limited by the deterioration of the insulating paper, and in many cases, the amount of thinning of the metal container It will be rate-controlled by (remaining thickness). On the contrary, if the deterioration of the insulation paper is quicker than the progress of thinning in the metal container, the life of the oil-filled transformer is not limited by the thinning amount of the metal container (remaining thickness). In many cases, the rate is limited by the deterioration of the insulating paper.
従って、製鉄工場等の設置場所に応じて温度的及び化学的環境が大きく変化する施設内に油入変圧器が設置されている場合には、前述した重合度法、CO2+CO法又はフルフラール法により絶縁紙の平均重合度を推定し、この推定値にのみ基づいて油入変圧器の余寿命を診断しても、実際の油入変圧器の寿命に対して推定された余寿命が大きく乖離してしまうおそれがある。
本発明の目的は、設置場所に応じて温度的及び化学的環境が大きく変化する施設内に油入変圧器が設置されている場合にも、油入変圧器の余寿命を精度良く診断できる油入変圧器の余寿命診断方法を提供することにある。
Therefore, when an oil-filled transformer is installed in a facility where the temperature and chemical environment vary greatly depending on the installation location of a steel factory, etc., the polymerization degree method, the CO 2 + CO method or the furfural method described above. Even if the average degree of polymerization of the insulating paper is estimated by this and the remaining life of the oil-filled transformer is diagnosed based only on this estimated value, the estimated remaining life is significantly different from the actual life of the oil-filled transformer. There is a risk of it.
An object of the present invention is to provide an oil that can accurately diagnose the remaining life of an oil-filled transformer even when the oil-filled transformer is installed in a facility whose temperature and chemical environment vary greatly depending on the installation location. It is to provide a method for diagnosing the remaining life of an input transformer.
上記課題を解決するため、本発明の請求項1に係る油入変圧器の余寿命診断方法は、絶縁油を蓄えた金属容器及び、該金属容器内で絶縁油中に浸漬されるコイルを有する油入変圧器の余寿命診断方法であって、絶縁油中における2以上の劣化指標成分の測定値及び前記金属容器における減肉量の測定値をそれぞれ入力因子群とし、前記コイルにおける絶縁紙の平均重合度及び前記金属容器の残肉量から推定される金属容器の余寿命をそれぞれ出力因子として、モデルの同定または学習を行うことにより、平均重合度推定モデル及び金属容器の余寿命推定モデルをそれぞれ構築し、診断対象である油入変圧器の前記劣化指標成分の測定値を前記平均重合度推定モデルに入力すると共に、前記減肉量の測定値を前記余寿命推定モデルに入力し、前記平均重合度推定モデルと前記余寿命推定モデルとにより得られた平均重合度推定値と金属容器の余寿命推定値との組み合わせを加工し、前記油入変圧器の最終的な余寿命を推定することを特徴とする。 In order to solve the above-described problem, a method for diagnosing the remaining life of an oil-filled transformer according to claim 1 of the present invention includes a metal container storing insulating oil and a coil immersed in the insulating oil in the metal container. A method for diagnosing the remaining life of an oil-filled transformer, wherein the measured values of two or more deterioration index components in the insulating oil and the measured value of the thinning amount in the metal container are input factor groups, respectively, By identifying or learning the model using the average degree of polymerization and the remaining life of the metal container estimated from the remaining amount of the metal container as an output factor, the average degree of polymerization estimation model and the remaining life estimation model of the metal container are obtained. The measured value of the deterioration index component of the oil-filled transformer to be diagnosed is input to the average polymerization degree estimation model, and the measured value of the thinning amount is input to the remaining life estimation model. Process the combination of the average polymerization degree estimated value obtained by the average polymerization degree estimation model and the remaining life estimation model and the remaining life estimation value of the metal container, and estimate the final remaining life of the oil-filled transformer It is characterized by that.
また本発明の請求項2に係る油入変圧器の余寿命診断方法は、請求項1記載の油入変圧器の余寿命診断方法において、前記平均重合度推定モデルに対する入力因子として、絶縁油中におけるフルフラールの測定値及びCO2+CO量の測定値を用いることを特徴とする。
また本発明の請求項3に係る油入変圧器の余寿命診断方法は、請求項1又は2記載の油入変圧器の余寿命診断方法において、前記平均重合度推定モデルに対する入力因子として、絶縁油中におけるアセチレン量の測定値を追加して用いることを特徴とする。
An oil-filled transformer remaining life diagnosis method according to claim 2 of the present invention is the oil-filled transformer remaining life diagnosis method according to claim 1, wherein the oil-immersed transformer remaining life diagnosis method uses an insulating oil as an input factor for the average polymerization degree estimation model. The measured value of furfural and the measured value of CO 2 + CO amount in are used.
According to a third aspect of the present invention, there is provided a method for diagnosing the remaining life of an oil-filled transformer according to claim 1 or 2, wherein an insulation factor is used as an input factor for the average polymerization degree estimation model. It is characterized by additionally using a measured value of the amount of acetylene in oil.
また本発明の請求項4に係る油入変圧器の余寿命診断方法は、請求項1乃至3の何れか1項記載の油入変圧器の余寿命診断方法において、前記平均重合度推定モデル及び前記残肉量推定モデルとして、ニューラルネットワークを用いることを特徴とする。
また本発明の請求項5に係る油入変圧器の余寿命診断方法は、請求項1乃至3の何れか1項記載の油入変圧器の余寿命診断方法において、前記平均重合度推定モデル及び前記残肉量推定モデルとして、重回帰式を用いることを特徴とする。
An oil-filled transformer remaining life diagnosis method according to claim 4 of the present invention is the oil-filled transformer remaining life diagnosis method according to any one of claims 1 to 3, wherein the average polymerization degree estimation model and As the remaining amount estimation model, a neural network is used.
An oil-filled transformer remaining life diagnosis method according to
上記のように構成された本発明の油入変圧器の余寿命診断方法によれば、設置場所に応じて温度的及び化学的環境が大きく変化する施設内に油入変圧器が設置されている場合にも、油入変圧器の余寿命を精度良く診断できる。 According to the method for diagnosing the remaining life of an oil-filled transformer of the present invention configured as described above, the oil-filled transformer is installed in a facility whose temperature and chemical environment greatly change depending on the installation location. Even in this case, the remaining life of the oil-filled transformer can be diagnosed with high accuracy.
以下、本発明の実施形態に係る油入変圧器の余寿命診断方法について図面を参照して説明する。
図1には本発明の実施形態に係る余寿命診断方法が適用可能な油入変圧器の一例が示されており、図2には本発明の実施形態に係る油入変圧器の余寿命診断方法がフローチャートとして示されている。
図1に示されるように、油入変圧器20は、内部に絶縁油OLを貯留した略円筒状の金属容器22と、この金属容器22内に配置され、それぞれ絶縁油OL中に浸漬されたコイル24及びタップチェンジャ26とを備えている。金属容器22には、その頂板部23に円形の点検窓30が開口しており、この点検窓30は蓋28により閉止されている。ここで、金属容器22及び蓋28は、ステンレス、炭素鋼等の金属材料により形成されており、必要に応じて表面部分に対して防錆処理等の表面処理がなされている。また蓋28には有底円筒状の浸漬部29が形成されており、この浸漬部29は、点検窓30を通して金属容器22内へ挿入され、少なくとも下端側の一部が常に絶縁油OL中に浸漬されている。
Hereinafter, a remaining life diagnosis method for an oil-filled transformer according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an oil-filled transformer to which the remaining life diagnosis method according to the embodiment of the present invention can be applied, and FIG. 2 shows a remaining life diagnosis of the oil-filled transformer according to the embodiment of the present invention. The method is shown as a flowchart.
As shown in FIG. 1, the oil-filled
金属容器22の頂板部23には、点検窓30の外周側に1次側のブッシング32及び2次側のブッシング34が固定されている。ブッシング32、34は、それぞれセラミック等の絶縁材により円筒状に形成されており、下端側が頂板部23を貫通した状態で固定されている。ブッシング32、34の内周部には、導電性金属からなる端子部材36、38が貫通している。1次側の端子部材36は、金属容器22内で接続ケーブル40及びタップチェンジャ26を介してコイル24の入力端子(図示省略)に接続されている。また2次側の端子部材38は、金属容器22内で中間に接続ケーブル42を介してコイル24の出力端子(図示省略)に接続されている。
ここで、コイル24は、けい素鋼帯等からなる鉄心と、この鉄心の層間を絶縁する絶縁紙を備えている(それぞれ図示省略)。またタップチェンジャ26内には絶縁紙からなるタップボード(図示省略)が配置されており、このタップボードは複数のタップ間を絶縁している。
A
Here, the coil 24 includes an iron core made of a silicon steel strip or the like and insulating paper for insulating between layers of the iron core (not shown). A tap board (not shown) made of insulating paper is disposed in the
金属容器22には、頂板部23の上側に未使用の絶縁油OLを蓄えたバッファタンク44が配置されており、このバッファタンク44は給油パイプ46を通して金属容器22内に連通している。油入変圧器20は、金属容器22内の絶縁油OLが何らかの原因で減少すると、その減少量と等しい絶縁油OLがバッファタンク44から金属容器22内へ補充されるようになっている。また金属容器22の周壁部には、その下端側に採油配管48を通してサンプリングバルブ50が接続されており、油入変圧器20では、サンプリングバルブ50を開くことにより金属容器22内の絶縁油OLを採取できる。
In the
次に、上記のように構成された油入変圧器20に対する本実施形態に係る余寿命診断方法について説明する。
本実施形態に係る余寿命診断方法は、絶縁油OL中のフルフラール量、CO2+CO量及びアセチレン量に関する過去の実測データ入力ステップ(S1)、重合度(平均重合度)推定モデル構築ステップ(S2)、診断対象の入力データ入力ステップ(S3)、平均重合度推定ステップ(S4)、金属容器22の減肉量に関する過去の実測データ入力ステップ(S11)、金属容器22の余寿命推定モデル構築ステップ(S12)、診断対象の入力データ入力ステップ(S3)、金属容器の余寿命推定ステップ(S14)、及びアンサンブル処理ステップ(S15)から構成されている。
Next, the remaining life diagnosis method according to this embodiment for the oil-filled
The remaining life diagnosis method according to the present embodiment includes a past actual measurement data input step (S1), a degree of polymerization (average degree of polymerization) estimation model construction step (S2) regarding the amount of furfural, CO 2 + CO, and acetylene in the insulating oil OL. ), Diagnosis target input data input step (S 3), average polymerization degree estimation step (S 4), past actual measurement data input step (S 11) relating to the amount of thinning of the
以下、上記各ステップの内容を順次説明する。
(1)絶縁油OL中のフルフラール量、CO2+CO量、及びアセチレン量に関する過去の実測データ入力ステップ(S1)
油入変圧器20の絶縁紙の平均重合度推定モデルをニューラルネットワークにより構築するために、推定モデルの学習データとして、過去に測定した油入変圧器20の実測データを入力する。これらの実測データとしては、絶縁油OLを分析して得られる各種劣化指標成分の量(本実施形態では、フルフラール量、CO2+CO量及びアセチレン量)及び、絶縁紙の平均重合度である。なお、絶縁油OLを分析して得られる各種劣化指標成分としては、上記の成分以外にも、水分量、酸素量、水素量等の公知な指標成分を、1乃至複数個適宜追加することができる。
Hereinafter, the contents of the above steps will be described sequentially.
(1) Past actual measurement data input step regarding the amount of furfural, the amount of CO 2 + CO, and the amount of acetylene in the insulating oil OL (S1)
In order to construct an average polymerization degree estimation model of insulating paper of the oil-filled
(2)平均重合度推定モデル構築ステップ(S2)
実測データ入力ステップ(S1)にて入力した実測データを用いて、平均重合度推定モデルをニューラルネットワークにより構築する。前述した実測データのうち、平均重合度を出力因子として用い、各種の劣化指標成分を入力因子として用いる。
(3)診断対象の入力データ入力ステップ(S3)
次に、診断対象の油入変圧器20について、該当する入力因子を平均重合度推定モデル(学習済みのニューラルネットワーク)に入力する。具体的には、絶縁油OLを分析して得られる劣化指標成分であるフルフラール量、CO2+CO量及びアセチレン量を平均重合度推定モデルにそれぞれ入力する。
(2) Average polymerization degree estimation model construction step (S2)
Using the actual measurement data input in the actual measurement data input step (S1), an average polymerization degree estimation model is constructed by a neural network. Of the measured data described above, the average degree of polymerization is used as an output factor, and various deterioration index components are used as input factors.
(3) Input data input step for diagnosis (S3)
Next, for the oil-filled
(4)平均重合度推定ステップ(S4)
上記入力ステップ(S3)により入力したデータに対応する平均重合度を平均重合度推定モデルによって算出する。
(5)金属容器の減肉量に関する過去の実測データ入力ステップ(S11)
油入変圧器20の金属容器22の余寿命推定モデルをニューラルネットワークにより構築するために、推定モデルの学習データとして、過去に測定した金属容器の減肉量の実測データを入力する。
(4) Average polymerization degree estimation step (S4)
An average degree of polymerization corresponding to the data input in the input step (S3) is calculated by an average degree of polymerization estimation model.
(5) Past actual measurement data input step (S11) regarding the amount of metal thinning
In order to construct a remaining life estimation model of the
(6)減肉量推定モデル構築ステップ(S12)
実測データ入力ステップ(S11)にて入力した実測データを用いて、余寿命推定モデルをニューラルネットワークにより構築する。前述した実測データのうち、余寿命推定値を出力因子として用い、減肉量の実測データを入力因子として用いる。このとき、余寿命推定モデルには、金属容器22の初期肉厚値及び限界残厚値がそれぞれ定数データとして予め設定されている。
(7)診断対象の入力データ入力ステップ(S13)
次に、診断対象の油入変圧器20について、該当する入力因子を余寿命推定モデル(学習済みのニューラルネットワーク)に入力する。具体的には、蓋28の浸漬部29を実測して得られる減肉量を余寿命推定モデルに入力する。
(6) Thinning amount estimation model construction step (S12)
A remaining life estimation model is constructed by a neural network using the actual measurement data input in the actual measurement data input step (S11). Among the measured data described above, the estimated remaining life value is used as an output factor, and the measured data of the thinning amount is used as an input factor. At this time, in the remaining life estimation model, the initial thickness value and the limit remaining thickness value of the
(7) Input data input step for diagnosis (S13)
Next, for the oil-filled
(8)減肉量推定ステップ(S14)
上記入力ステップ(S13)により入力したデータに対応する金属容器22の余寿命推定値を余寿命推定モデルにより算出する。このとき、金属容器22の肉厚が限界残圧値になるまでの時間が余寿命推定値として算出される。なお、本実施形態では、金属容器22の代表点として浸漬部29を用い、この浸漬部29を多点測定した場合の平均値を減肉量とし、これを余寿命推定モデルの入力因子としたが、金属容器22におけるホットスポット等の減肉が最も大きくなると推定される部位を代表点とし、この部位の減肉量を入力因子として採用しても良い。
(8) Thinning amount estimation step (S14)
The estimated remaining life value of the
(9)アンサンブル処理ステップ(S15)
平均重合度推定ステップ(S4)によって得られた平均重合度と減肉量推定ステップ(S14)によって得られた金属製容器22の余寿命推定値との組み合わせを加工(アンサンブル処理)して、最終的な油入変圧器20の余寿命を推定する。
アンサンブル処理の方法としては、例えば、平均重合度により得られえる余寿命L1と減肉量推定量と金属容器22の肉厚から算出される余寿命推定値により得られる余寿命L2とを比較し、短い方を最終的な推定余寿命Lとして採用する。
(9) Ensemble processing step (S15)
The combination of the average degree of polymerization obtained in the average degree of polymerization estimation step (S4) and the estimated remaining life value of the
As a method of ensemble processing, for example, the remaining life L1 that can be obtained by the average degree of polymerization, the estimated amount of thinning, and the remaining life L2 that is obtained from the estimated remaining life calculated from the thickness of the
次に、本実施形態に係るニューラルネットワークによる余寿命診断方法を、図3を参照しつつ具体的に説明する。
平均重合度推定モデルとしては、3階層型のニューラルネットワークを用い、重み結合の初期値を適宜設定することによって平均重合度推定モデルを構築(第1層〜第3層)した。また余寿命推定モデルとしては、2階層型のニューラルネットワークを用い、金属容器22の初期肉厚値及び限界残厚値がそれぞれ定数データを予め設定することによって余寿命推定モデルを構築(第1層〜第2層)した。本実施形態では、平均重合度推定モデルによって得られた平均重合度推定値と余寿命推定モデルによって得られた余寿命推定値を第4層にてアンサンブル処理することにより、最終的な余寿命の推定値を得る。
Next, the remaining life diagnosis method using the neural network according to the present embodiment will be specifically described with reference to FIG.
As an average polymerization degree estimation model, a three-layer neural network was used, and an average polymerization degree estimation model was constructed (first to third layers) by appropriately setting initial values of weight coupling. As the remaining life estimation model, a two-layer neural network is used, and an initial wall thickness estimation model is constructed by presetting constant data for the initial thickness value and the limit remaining thickness value of the metal container 22 (first layer). To the second layer). In this embodiment, the average degree of polymerization estimated value obtained by the average degree of polymerization estimation model and the remaining life estimation value obtained by the remaining life estimation model are subjected to ensemble processing in the fourth layer, so that the final remaining life Get an estimate.
本実施形態に係る余寿命診断方法では、絶縁油OL中における2以上の劣化指標成分(フルフラール量、CO2+CO量及びアセチレン量)の測定値並びに金属容器22における減肉量の測定値をそれぞれ入力因子群とし、コイル24における絶縁紙の平均重合度及び金属容器22の残肉量から推定される金属容器22の余寿命をそれぞれ出力因子として、モデルの学習を行うことにより、平均重合度推定モデル及び金属容器22の余寿命推定モデルをそれぞれ構築し、診断対象である油入変圧器20のフルフラール量、CO2+CO量及びアセチレン量の測定値を平均重合度推定モデルに入力すると共に、減肉量の測定値を余寿命推定モデルにそれぞれ入力して得られた平均重合度推定値と金属容器22の余寿命推定値との組み合わせをアンサンブル加工し、油入変圧器20の最終的な余寿命を推定する。
In the remaining life diagnosis method according to the present embodiment, measured values of two or more deterioration index components (furfural amount, CO 2 + CO amount and acetylene amount) in the insulating oil OL and measured values of the thickness reduction in the
これにより、例えば、設置場所に応じて温度的及び化学的環境が大きく変化する施設内に油入変圧器20が設置されており、コイル24における絶縁紙の劣化進行に対して金属容器22における減肉進行が早く、油入変圧器20の寿命が、金属容器22の減肉量(残厚量)に律速されることになる場合には、油入変圧器20の余寿命を金属容器22の余寿命推定値に基づいて精度良く推定でき、また金属容器22における減肉進行に対してコイル24の絶縁紙の劣化進行が早く、油入変圧器20の寿命が、絶縁紙の劣化に律速されることになる場合には、油入変圧器20の余寿命をコイル24における絶縁紙の平均重合度の推定値に基づいて精度良く推定できる。
Thus, for example, the oil-filled
この結果、本実施形態に係る余寿命診断方法によれば、設置場所に応じて温度的及び化学的環境が大きく変化する施設内に油入変圧器20が設置されている場合にも、この油入変圧器20の余寿命を精度良く診断できる。
なお、本実施形態の余寿命診断方法では、絶縁紙の劣化指標成分としてフルフラール量、CO2+CO量及びアセチレン量の測定値を用いていたが、劣化指標成分としてフルフラール量及びCO2+CO量の推定値のみを用いても、十分に高い精度で余寿命を推定できる。
As a result, according to the remaining life diagnosis method according to the present embodiment, even when the oil-filled
In the remaining life diagnosis method of the present embodiment, the measurement values of the furfural amount, the CO 2 + CO amount, and the acetylene amount are used as the deterioration index component of the insulating paper, but the furfural amount and the CO 2 + CO amount are used as the deterioration index component. Even if only the estimated value is used, the remaining life can be estimated with sufficiently high accuracy.
また本実施形態の余寿命診断方法では、ニューラルネットワークの手法を用いて平均重合度推定モデルを構築すると共に、余寿命推定モデルを構築したが、2以上の劣化指標成分(フルフラール量、CO2+CO量及びアセチレン量)の測定値を多変数重回帰分析により処理して平均重合度推定モデルを同定すると共に、減肉量の測定値を数重回帰分析により処理して余寿命推定モデルを同定することによっても、ニューラルネットワークを用いた場合と近似した結果が得られることは言うまでもない。 In the remaining life diagnosis method of the present embodiment, an average polymerization degree estimation model is constructed using a neural network technique, and a remaining life estimation model is constructed. However, two or more deterioration index components (furfural amount, CO 2 + CO The amount of acetylene and the amount of acetylene) are processed by multivariable multiple regression analysis to identify the average polymerization degree estimation model, and the measurement of the thinning amount is processed by multiple regression analysis to identify the remaining life estimation model It goes without saying that a result approximate to that obtained when a neural network is used can be obtained.
20 油入変圧器
22 金属容器
23 頂板部
24 コイル
26 タップチェンジャ
28 蓋
29 浸漬部
30 点検窓
32、34 ブッシング
36、38 端子部材
40、42 接続ケーブル
44 バッファタンク
46 給油パイプ
48 採油配管
50 サンプリングバルブ
OL 絶縁油
20 Oil-filled
Claims (5)
絶縁油中における2以上の劣化指標成分の測定値及び前記金属容器における減肉量の測定値をそれぞれ入力因子群とし、前記コイルにおける絶縁紙の平均重合度及び前記金属容器の残肉量から推定される金属容器の余寿命をそれぞれ出力因子として、モデルの同定または学習を行うことにより、平均重合度推定モデル及び金属容器の余寿命推定モデルをそれぞれ構築し、診断対象である油入変圧器の前記劣化指標成分の測定値を前記平均重合度推定モデルに入力すると共に、前記減肉量の測定値を前記余寿命推定モデルに入力し、前記平均重合度推定モデルと前記余寿命推定モデルとにより得られた平均重合度推定値と金属容器の余寿命推定値との組み合わせを加工し、前記油入変圧器の最終的な余寿命を推定することを特徴とする油入変圧器の余寿命診断方法。 A method for diagnosing the remaining life of an oil-filled transformer having a metal container storing insulating oil and a coil immersed in the insulating oil in the metal container,
Estimated from the average polymerization degree of insulating paper in the coil and the amount of remaining metal in the metal container, with the measured values of two or more deterioration index components in the insulating oil and the measured value of the thinning amount in the metal container as input factor groups, respectively. By identifying or learning the model using the remaining life of the metal container as an output factor, the average polymerization degree estimation model and the remaining life estimation model of the metal container are respectively constructed, and the oil-filled transformer to be diagnosed is constructed. The measurement value of the deterioration index component is input to the average polymerization degree estimation model, and the measurement value of the thinning amount is input to the remaining life estimation model, and the average polymerization degree estimation model and the remaining life estimation model An oil-filled transformer characterized by processing a combination of the estimated average degree of polymerization and the estimated remaining life of a metal container to estimate the final remaining life of the oil-filled transformer Remaining life assessment methods.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008005830A JP4888402B2 (en) | 2008-01-15 | 2008-01-15 | Remaining life diagnosis method for oil-filled transformers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008005830A JP4888402B2 (en) | 2008-01-15 | 2008-01-15 | Remaining life diagnosis method for oil-filled transformers |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009170594A JP2009170594A (en) | 2009-07-30 |
JP4888402B2 true JP4888402B2 (en) | 2012-02-29 |
Family
ID=40971458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008005830A Expired - Fee Related JP4888402B2 (en) | 2008-01-15 | 2008-01-15 | Remaining life diagnosis method for oil-filled transformers |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4888402B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5234440B2 (en) * | 2010-02-17 | 2013-07-10 | 三菱電機株式会社 | Oil-filled electrical equipment life diagnosis device, oil-filled electrical equipment life diagnosis method, oil-filled electrical equipment deterioration suppression device, and oil-filled electrical equipment deterioration control method |
KR101160775B1 (en) | 2011-05-17 | 2012-06-28 | 한국전력공사 | System and method for evaluating integrity of power transformer |
KR101942647B1 (en) | 2017-04-04 | 2019-01-25 | 한국전력공사 | Apparatus for asset management of power transformers |
CN110211772A (en) * | 2019-04-30 | 2019-09-06 | 国网山东省电力公司枣庄供电公司 | A kind of oil-immersed transformer mends jettison gear automatically |
CN117574782B (en) * | 2024-01-16 | 2024-04-02 | 国网湖北省电力有限公司电力科学研究院 | Method, device, system and medium for judging winding materials based on transformer parameters |
-
2008
- 2008-01-15 JP JP2008005830A patent/JP4888402B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009170594A (en) | 2009-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fofana et al. | Characterization of aging transformer oil–pressboard insulation using some modern diagnostic techniques | |
Forouhari et al. | Application of adaptive neuro fuzzy inference system to support power transformer life estimation and asset management decision | |
Meshkatoddini et al. | Aging study and lifetime estimation of transformer mineral oil | |
JP4888402B2 (en) | Remaining life diagnosis method for oil-filled transformers | |
Hillary et al. | A tool for estimating remaining life time of a power transformer | |
JP5494034B2 (en) | Reliability evaluation apparatus, reliability evaluation program, and reliability evaluation method | |
JP2009168571A (en) | Method for diagnosing degradation of oil-immersed transformer | |
JP4857597B2 (en) | Degradation diagnosis method for oil-filled electrical equipment | |
JP2010256208A (en) | Method for diagnosing secular deterioration of insulating oil in electric device | |
JP5344337B2 (en) | Oil-filled electrical equipment state analysis apparatus and oil-filled electrical equipment state analysis method | |
WO2010073748A1 (en) | Method for predicting the probability of abnormality occurrence in oil-filled electrical apparatus | |
Wada et al. | Method to evaluate the degradation condition of transformer insulating oil-establishment of the evaluation method and application to field transformer oil | |
WO2011077530A1 (en) | Method of predicting probability of abnormality occurrence in oil-filled electric appliance | |
CN112269105A (en) | A Moisture Prediction and Aging Evaluation Method for Oil-impregnated Cellulose Insulation of Field Bushings | |
JP5898597B2 (en) | Remaining life diagnosis method for oil-filled stationary induction devices | |
JP6832728B2 (en) | A method for estimating the production status of organic copper compounds and copper sulfide in oil-containing cables by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of oil-containing cables. | |
JP2010256207A (en) | Method for diagnosing deterioration of oil-containing electric device due to cumulated deteriorated matter in insulating oil | |
JP5337303B2 (en) | Diagnostic method and apparatus for oil-filled electrical equipment | |
Fofana et al. | Early stage detection of insulating oil decaying | |
Dessouky et al. | Study and examination of transformer oil while exposed to air during operation | |
JP2010230483A (en) | Insulation deterioration diagnosis method of insulating oil in electric apparatus | |
JP5079936B1 (en) | Diagnostic method for oil-filled electrical equipment | |
JP5329008B1 (en) | Diagnosis and maintenance methods for oil-filled electrical equipment | |
JP5233021B2 (en) | Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of occurrence of abnormality | |
WO2011080812A1 (en) | Method for predicting amount of copper sulfate produced in oil-filled electric derive, method for diagnosing occurrence of abnormal event, method for predicting initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing possibility of occurrence of abnormal event |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111115 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111128 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4888402 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141222 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |