[go: up one dir, main page]

JP2009168571A - Degradation diagnosis method for oil-filled transformers - Google Patents

Degradation diagnosis method for oil-filled transformers Download PDF

Info

Publication number
JP2009168571A
JP2009168571A JP2008005831A JP2008005831A JP2009168571A JP 2009168571 A JP2009168571 A JP 2009168571A JP 2008005831 A JP2008005831 A JP 2008005831A JP 2008005831 A JP2008005831 A JP 2008005831A JP 2009168571 A JP2009168571 A JP 2009168571A
Authority
JP
Japan
Prior art keywords
oil
filled transformer
average
insulating
polymerization degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008005831A
Other languages
Japanese (ja)
Inventor
Atsushi Iida
淳 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008005831A priority Critical patent/JP2009168571A/en
Publication of JP2009168571A publication Critical patent/JP2009168571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

【課題】油入変圧器における絶縁紙の平均重合度を十分に高い精度で推定し、かつ絶縁紙の平均重合度を推定するために要する作業量及びコストを低減する。
【解決手段】劣化診断方法では、絶縁油OLにおける油中ガス、全酸価及び耐電圧の各測定データを第1の入力因子群とし、油入変圧器20の使用開始時及び使用完了時にそれぞれ測定された平均重合度の測定データを第2の入力因子群とし、絶縁紙の平均重合度推定値を出力因子として、モデルの学習を行うことにより、平均重合度推定モデルを構築し、診断対象である油入変圧器20における複数種類の油中ガス、全酸価及び耐電圧の直近の測定データを平均重合度推定モデルに入力し、この平均重合度推定モデルにより油入変圧器20における絶縁紙の平均重合度推定値を推定する。
【選択図】図1
An object of the present invention is to estimate the average degree of polymerization of insulating paper in an oil-filled transformer with sufficiently high accuracy and reduce the amount of work and cost required to estimate the average degree of polymerization of insulating paper.
In the degradation diagnosis method, measured data of gas in oil, total acid number and withstand voltage in the insulating oil OL are set as a first input factor group, respectively, at the start of use and at the end of use of the oil-filled transformer 20. The average polymerization degree estimation model is constructed by learning the model using the measured average polymerization degree measurement data as the second input factor group and the average polymerization degree estimated value of the insulating paper as the output factor. The most recent measurement data of a plurality of types of oil-in-gas, total acid number, and withstand voltage in the oil-filled transformer 20 is input to the average polymerization degree estimation model, and the insulation in the oil-filled transformer 20 is determined by this average polymerization degree estimation model. Estimate the average degree of polymerization of the paper.
[Selection] Figure 1

Description

本発明は、油入変圧器における絶縁紙の平均重合度を推定するための油入変圧器の劣化診断方法に関するものである。   The present invention relates to an oil-filled transformer deterioration diagnosis method for estimating an average degree of polymerization of insulating paper in an oil-filled transformer.

一般に、油入変圧器に使われている材料には、以下のようなものがある。
(1)銅、アルミニウム等の導電材料
(2)絶縁油や絶縁紙、プレスボード等の絶縁材料
(3)けい素鋼帯等の鉄心材料
(4)鉄やステンレス鋼等の金属容器材料
これらの材料のうち、油入変圧器内で経年劣化が認められるのは、絶縁油や絶縁紙等の絶縁材料であると考えられている。絶縁油については、油劣化防止装置(開放型、空気密封型、窒素密封型等がある)の働きもあるため劣化は非常に緩慢であり、重要な特性である絶縁破壊電圧の低下度は小さい。
In general, the following materials are used for oil-filled transformers.
(1) Conductive materials such as copper and aluminum (2) Insulating materials such as insulating oil, insulating paper and press board (3) Iron core materials such as silicon steel strips (4) Metal container materials such as iron and stainless steel Among the materials, it is considered that insulating materials such as insulating oil and insulating paper are subject to deterioration over time in the oil-filled transformer. Insulating oil has a function of oil deterioration prevention device (open type, air-sealed type, nitrogen-sealed type, etc.), so the deterioration is very slow, and the breakdown voltage, which is an important characteristic, is low. .

一方、絶縁紙については、経年劣化による絶縁破壊電圧の低下度は小さいが、機械的強度の低下度は大きい(すなわち、紙がぼろぼろになる)。絶縁紙の劣化が進行すると、突入電流や外部短絡時に発生する電磁力による機械的ストレスによって絶縁紙に亀裂や損壊が発生し、絶縁破壊する危険性が増大する。
従って、油入変圧器の寿命は絶縁紙の機械的強度、特に巻線導体絶縁紙の劣化状態の影響を強く受ける。つまり、油入変圧器の余寿命とは、従来から、巻線導体絶縁紙の絶縁破壊、すなわち、絶縁紙の劣化(平均重合度の低下)状態によって決定付けられると考えられている。
On the other hand, for insulating paper, the degree of decrease in dielectric breakdown voltage due to deterioration over time is small, but the degree of decrease in mechanical strength is large (that is, the paper becomes shabby). As the deterioration of the insulating paper proceeds, the insulating paper is cracked or broken by mechanical stress due to inrush current or electromagnetic force generated at the time of external short circuit, and the risk of dielectric breakdown increases.
Therefore, the life of the oil-filled transformer is strongly influenced by the mechanical strength of the insulating paper, particularly the deterioration state of the winding conductor insulating paper. In other words, the remaining life of the oil-filled transformer is conventionally considered to be determined by the dielectric breakdown of the winding conductor insulating paper, that is, the state of deterioration of the insulating paper (decrease in average polymerization degree).

以下に、絶縁紙の平均重合度と、油入変圧器の余寿命及び劣化診断方法について考察する。
(1)絶縁紙の平均重合度
絶縁紙は、多数のセルロース分子が重合してできた重合体であり、このセルロースを構成する基本分子の数を重合度という。絶縁紙としての新品のクラフト紙の場合の平均重合度は、約1000である。この平均重合度は、絶縁紙が酸化劣化するとセルロース分子の鎖が切断されてセルロース分子の低分子量化、すなわち平均重合度の低下が起きる。例えば、30年使用した変圧器では、絶縁紙の平均重合度が初期値の約40〜60%(重合度400〜600)にまで減少すると言われている。
(2)油入変圧器の寿命
日本電機工業会規格JEM1463−1993では、1000[kVA]を超える油入変圧器の評価基準を定めており、一般的には、この規格に従い、平均重合度が450になると思われる時点が油入変圧器の寿命と定義されている。
Below, the average degree of polymerization of the insulating paper, the remaining life of the oil-filled transformer, and the deterioration diagnosis method will be discussed.
(1) Average degree of polymerization of insulating paper Insulating paper is a polymer obtained by polymerizing a large number of cellulose molecules, and the number of basic molecules constituting this cellulose is called the degree of polymerization. The average degree of polymerization in the case of new kraft paper as insulating paper is about 1000. As for this average polymerization degree, when the insulating paper is oxidized and deteriorated, the chain of cellulose molecules is cut and the molecular weight of the cellulose molecules is lowered, that is, the average polymerization degree is lowered. For example, in a transformer used for 30 years, the average polymerization degree of insulating paper is said to decrease to about 40 to 60% of the initial value (polymerization degree 400 to 600).
(2) Life of oil-filled transformer The Japan Electrical Manufacturers' Association standard JEM1463-1993 defines an evaluation standard for oil-filled transformers exceeding 1000 [kVA]. Generally, according to this standard, the average degree of polymerization is The point at which it is supposed to be 450 is defined as the life of the oil-filled transformer.

(3)現状の油入変圧器の劣化診断方法
変圧器の余寿命診断では、上記(2)の基準に従おうとすれば、コイル絶縁紙の平均重合度を測定または推定することが必要となる。しかし、稼動中の油入変圧器のコイル絶縁紙は簡単に採取することができないため、測定が困難である。従って、変圧器内部の採取可能な絶縁物(プレスボード、リード絶縁紙)の平均重合度や、絶縁紙の分解過程の生成物であるフルフラールやCO+CO量を測定し、その結果を用いた余寿命診断が行われている。これらの劣化診断方法は、例えば、非特許文献1や非特許文献2に記載されている。
(3) Degradation diagnosis method for current oil-filled transformer In the remaining life diagnosis of a transformer, if it is intended to follow the standard of (2) above, it is necessary to measure or estimate the average degree of polymerization of coil insulating paper . However, it is difficult to measure the coil insulation paper of the oil-filled transformer in operation because it cannot be easily collected. Therefore, the average polymerization degree of the insulating material (press board, lead insulating paper) that can be collected inside the transformer, and the amount of furfural and CO 2 + CO, which are products of the decomposition process of the insulating paper, were measured, and the results were used. Remaining life diagnosis is performed. These deterioration diagnosis methods are described in Non-Patent Document 1 and Non-Patent Document 2, for example.

以下、各種の劣化診断方法について略述する。
(イ)重合度法
運転停止中の点検時等に、変圧器内部から絶縁に影響が無い部分のプレスボードやリード絶縁紙を採取して、絶縁紙の劣化度を診断する方法を「重合度法」という。この重合度法は、採取した絶縁紙の平均重合度から巻線コイルの最も温度が高い箇所(ホットスポット部分)のコイル絶縁紙の劣化度を推定し、余寿命を予測する方法である。
Hereinafter, various deterioration diagnosis methods will be outlined.
(A) Degree of polymerization method During inspections such as when the operation is stopped, a method of diagnosing the degree of insulation paper deterioration by collecting the press board or lead insulation paper from the inside of the transformer that does not affect insulation is used. The law. This degree of polymerization method is a method for estimating the remaining life by estimating the degree of deterioration of the coil insulating paper at the hottest portion (hot spot portion) of the winding coil from the average degree of polymerization of the collected insulating paper.

(ロ)CO+CO法
絶縁紙は、劣化によって水やCO、CO等の種々の有機成分を生成する。劣化指標成分として有効なものとして、平均重合度とも相関性があるCO+CO、更にはフルフラールがある。このうちCO+CO法では、油中ガス分析を行い、絶縁紙の最終的な劣化生成物であるCO+CO量から平均重合度を推定して劣化診断を行う。
(B) CO 2 + CO method Insulating paper generates various organic components such as water, CO 2 , and CO due to deterioration. As effective deterioration index components, there are CO 2 + CO having a correlation with the average degree of polymerization, and further furfural. Among these, in the CO 2 + CO method, gas analysis in oil is performed, and deterioration diagnosis is performed by estimating the average degree of polymerization from the amount of CO 2 + CO that is the final deterioration product of the insulating paper.

(ハ)フルフラール法
セルロースの分解過程でアルデヒド成分のフルフラールが生成される。絶縁油の脱気処理を行ってもフルフラールは85%が油中に残り、気体中に拡散しない。このため、脱気処理の履歴がわかれば、脱気処理をしてあっても利用可能な方法である。
このフルフラール法では、測定したフルフラール量から、予め求められた相関関係に従って平均重合度を求めているが、フルフラール量に対して平均重合度にかなり幅があるため、劣化度合い(余寿命診断)の診断結果も大きな幅を持つこととなり、高精度での余寿命推定は非常に困難である。
(C) Furfural method The furfural aldehyde component is produced during the decomposition process of cellulose. Even when the insulating oil is deaerated, 85% of the furfural remains in the oil and does not diffuse into the gas. For this reason, if the history of the deaeration process is known, this method can be used even if the deaeration process is performed.
In this furfural method, the average degree of polymerization is obtained from the measured amount of furfural according to the correlation obtained in advance. However, the degree of deterioration (remaining life diagnosis) of the average degree of polymerization is considerably wide with respect to the amount of furfural. The diagnosis results also have a wide range, and it is very difficult to estimate the remaining life with high accuracy.

また、変圧器油の温度を測定してCO+CO濃度を予測し、その予測値と実際値との差が一定値以上になったときに絶縁劣化を検出するようにした油入電気機器の絶縁診断装置が、特許文献1に記載されている。
また、静止誘導電器の絶縁媒体(絶縁油)中のガス量を測定し、分解生成物の種類や生成量、生成比の変化から局部過熱、アーク放電等の異常を検出する静止誘導電器の異常診断方法において、分解生成物であるアセチレンの生成量を入力データとし、アーク放電等の異常現象を教師データとして学習させたニューラルネットワークを用いて静止誘導電器の異常を診断する方法が、特許文献2に記載されている。
Also, by measuring the temperature of the transformer oil predicts CO 2 + CO concentration, the oil-filled electrical apparatus to detect the insulation deterioration when the difference between the actual value and the predicted value is a certain value or more An insulation diagnostic apparatus is described in Patent Document 1.
Also, measure the amount of gas in the insulation medium (insulating oil) of the static induction device, and detect abnormalities such as local overheating and arc discharge from changes in the type, generation amount, and generation ratio of decomposition products. In the diagnosis method, Patent Document 2 discloses a method of diagnosing abnormality of a static induction appliance using a neural network in which an amount of generation of acetylene as a decomposition product is input data and an abnormal phenomenon such as arc discharge is learned as teacher data. It is described in.

また、油入変圧器に対する一般的な保守作業として、絶縁油自体の劣化進行度を把握するために、油入変圧器からの絶縁油の定期的なサンプリングが行われ、このサンプリングされた絶縁油に対するガス測定、耐電圧測定及び全酸価の測定が行われる。ガス測定時には、例えば、水素、酸素、窒素、二酸化炭素、一酸化炭素、メタン、エタン、エチレン及びアセチレンが測定され、あるいは、このガス群から選択された2種類以上の油中ガスが測定される。   In addition, as a general maintenance work for oil-filled transformers, in order to grasp the degree of deterioration of the insulation oil itself, periodic sampling of the insulation oil from the oil-filled transformer is performed. Gas measurement, withstand voltage measurement and total acid value measurement are performed. At the time of gas measurement, for example, hydrogen, oxygen, nitrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene, and acetylene are measured, or two or more kinds of gas in oil selected from this gas group are measured. .

ところで、油入変圧器の余寿命を精度良く推定しようとする場合には、例えば、設備を一定期間以上に亘って休止する時期に、重合度法により絶縁紙の平均重合度を測定すると共に、定期的に絶縁油中のフルフラール量を測定する。そして、油入変圧器の余寿命を判断する際には、直近のフルフラール量測定値から得られた絶縁紙の平均重合度推定値を、重合度法による平均重合度測定値により補正し、この補正された平均重合度推定値に基づいて油入変圧器の余寿命を判断する。
「経年変圧器の信頼性維持技術の現状と動向」,経年変圧器の信頼性維持技術調査専門委員会,社団法人電気学会技術報告,平成15年3月10日,第922号,p.22−27 「第IV編 油入変圧器劣化診断」,電気協同研究,社団法人電気協同研究会,平成11年2月25日,第54巻,第5号(その1),p.158−168 特開昭63−52071号公報(第2頁左下欄第14行〜第3頁右上欄第13行、第5図等) 特開平6−82405号公報(段落[0025]〜[0036]、図1、図2等)
By the way, when trying to accurately estimate the remaining life of the oil-filled transformer, for example, when measuring the average polymerization degree of the insulating paper by the polymerization degree method at the time when the equipment is stopped for a certain period or more, Periodically measure the amount of furfural in insulating oil. When determining the remaining life of the oil-filled transformer, the estimated average polymerization degree of the insulating paper obtained from the most recent furfural amount measurement value is corrected by the average polymerization degree measurement value obtained by the polymerization degree method. The remaining life of the oil-filled transformer is determined based on the corrected average polymerization degree estimate.
“Current Status and Trends of Aging Transformer Reliability Maintenance Technology”, Aging Transformer Reliability Maintenance Technology Investigation Technical Committee, Institute of Electrical Engineers of Japan, March 10, 2003, No. 922, p. 22-27 "Part IV Oil-immersed Transformer Degradation Diagnosis", Electric Cooperative Research, Electric Cooperative Research Society, February 25, 1999, Vol. 54, No. 5 (Part 1), p. 158-168 JP-A-63-52071 (page 2, lower left column, line 14 to page 3, upper right column, line 13, line 5, etc.) JP-A-6-82405 (paragraphs [0025] to [0036], FIG. 1, FIG. 2, etc.)

しかしながら、設備(油入変圧器)の休止時期でなければ、重合度法により絶縁紙の平均重合度を測定することができず、また絶縁油のフルフラール量を測定するには、油入変圧器から一定量以上の絶縁油を抜き取らなければならない。このため、油入変圧器の使用開始から使用終了(廃棄)までの長期間に亘り、上記のような方法で、絶縁紙の平均重合度を高い精度で推定し続けるには、その作業量及びコストが累積的に膨大なものになる。一方、多数の油入変圧器が設置されている大規模な製鉄所等の施設では、絶縁紙の平均重合度を効率的に推定することが強く求められている。
本発明の目的は、上記事実を考慮し、油入変圧器における絶縁紙の平均重合度を十分に高い精度で推定でき、しかも絶縁紙の平均重合度を推定するために要する作業量及びコストを低減できる油入変圧器の劣化診断方法を提供することにある。
However, the average degree of polymerization of insulating paper cannot be measured by the polymerization degree method unless the equipment (oil-filled transformer) is not in operation, and the oil-filled transformer is used to measure the furfural amount of insulating oil. A certain amount of insulating oil must be extracted from the tank. For this reason, in order to continue to estimate the average degree of polymerization of insulating paper with high accuracy over a long period from the start of use of the oil-filled transformer to the end of use (disposal), the amount of work and The cost will be cumulative. On the other hand, in facilities such as large-scale steelworks where a large number of oil-filled transformers are installed, it is strongly required to efficiently estimate the average degree of polymerization of insulating paper.
The object of the present invention is to take into account the above facts, and to estimate the average degree of polymerization of insulating paper in an oil-filled transformer with sufficiently high accuracy, and to reduce the amount of work and cost required to estimate the average degree of polymerization of insulating paper. An object of the present invention is to provide a method for diagnosing deterioration of an oil-filled transformer that can be reduced.

上記課題を解決するため、本発明の請求項1に係る油入変圧器の劣化診断方法は、容器及び、該容器内に蓄えられた絶縁油中に浸漬されるコイルを有する油入変圧器の劣化診断方法であって、所定の検査周期ごとに測定された絶縁油に対する油中ガス、全酸価及び耐電圧の測定値を第1の入力因子群とし、少なくとも油入変圧器の使用開始時及び使用完了時にそれぞれ測定された前記コイルの絶縁紙の平均重合度の測定値を第2の入力因子群とし、前記絶縁紙の平均重合度を出力因子として、モデルの同定または学習を行うことにより、絶縁紙の平均重合度推定モデルを構築し、診断対象である油入変圧器における絶縁油から測定された絶縁油に対する油中ガス、全酸価及び耐電圧の測定値を前記平均重合度推定モデルに入力し、前記平均重合度推定モデルにより平均重合度の推定値を得ることを特徴とする。   In order to solve the above-mentioned problem, a deterioration diagnosis method for an oil-filled transformer according to claim 1 of the present invention is an oil-filled transformer having a container and a coil immersed in insulating oil stored in the container. A degradation diagnosis method, in which measured values of gas in oil, total acid number and withstand voltage for insulating oil measured at predetermined inspection intervals are set as a first input factor group, and at least when an oil-filled transformer is used And measuring or measuring the average degree of polymerization of the insulating paper of the coil measured at the completion of use as a second input factor group and using the average degree of polymerization of the insulating paper as an output factor Establish an average polymerization degree estimation model of insulating paper, and estimate the average polymerization degree of measured values of gas in oil, total acid value and withstand voltage for insulating oil measured from insulating oil in oil-filled transformer as diagnosis target Enter the model and the average weight Characterized in that the degree estimation model obtain an estimate of the average polymerization degree.

また本発明の請求項2に係る油入変圧器の劣化診断方法は、請求項1記載の油入変圧器の劣化診断方法において、絶縁油に対する油中ガスの測定時には、水素、酸素、窒素、二酸化炭素、一酸化炭素、メタン、エタン、エチレン及びアセチレンからなる群から選択された2種類以上の油中ガスを測定することを特徴とする。
また本発明の請求項3に係る油入変圧器の劣化診断方法は、請求項1又は2記載の油入変圧器の劣化診断方法において、前記平均重合度推定モデルを、ニューラルネットワークを用いて構築することを特徴とする。
また本発明の請求項4に係る油入変圧器の劣化診断方法は、請求項1又は2記載の油入変圧器の劣化診断方法において、前記平均重合度推定モデルを、重回帰式を用いて構築することを特徴とする。
The deterioration diagnosis method for an oil-filled transformer according to claim 2 of the present invention is the deterioration diagnosis method for an oil-filled transformer according to claim 1, wherein when measuring the gas in oil relative to the insulating oil, hydrogen, oxygen, nitrogen, Two or more kinds of oil-in-gas selected from the group consisting of carbon dioxide, carbon monoxide, methane, ethane, ethylene and acetylene are measured.
According to a third aspect of the present invention, there is provided a method for diagnosing deterioration of an oil-filled transformer, wherein the average polymerization degree estimation model is constructed using a neural network. It is characterized by doing.
According to a fourth aspect of the present invention, there is provided a method for diagnosing deterioration of an oil-filled transformer according to the first or second aspect of the present invention, wherein the average polymerization degree estimation model is determined using a multiple regression equation. It is characterized by building.

上記のように構成された本発明の油入変圧器の劣化診断方法によれば、油入変圧器における絶縁紙の平均重合度を十分に高い精度で推定でき、しかも絶縁紙の平均重合度を推定するために要する作業量及びコストを低減できる。   According to the deterioration diagnosis method for an oil-filled transformer of the present invention configured as described above, the average degree of polymerization of insulating paper in the oil-filled transformer can be estimated with sufficiently high accuracy, and the average degree of polymerization of insulating paper can be calculated. The amount of work and cost required for estimation can be reduced.

以下、本発明の実施形態に係る油入変圧器の劣化診断方法について図面を参照して説明する。
図1には本発明の実施形態に係る劣化診断方法が適用可能な油入変圧器の一例が示されており、図2には本発明の実施形態に係る油入変圧器の劣化診断方法がフローチャートとして示されている。
図1に示されるように、油入変圧器20は、内部に絶縁油OLを貯留した略円筒状の金属容器22と、この金属容器22内にそれぞれ配置され、絶縁油OL中に浸漬されたコイル24及びタップチェンジャ26とを備えている。金属容器22には、その頂板部23に円形の点検窓30が開口しており、この点検窓30は蓋28により閉止されている。ここで、金属容器22及び蓋28は、ステンレス、炭素鋼等の金属材料により形成されており、必要に応じて表面部分に対し防錆処理等の表面処理がなされている。
Hereinafter, an oil-filled transformer deterioration diagnosis method according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of an oil-filled transformer to which the deterioration diagnosis method according to the embodiment of the present invention can be applied, and FIG. 2 shows a deterioration diagnosis method of the oil-filled transformer according to the embodiment of the present invention. It is shown as a flowchart.
As shown in FIG. 1, the oil-filled transformer 20 is disposed in the substantially cylindrical metal container 22 storing the insulating oil OL therein, and immersed in the insulating oil OL. A coil 24 and a tap changer 26 are provided. A circular inspection window 30 is opened in the top plate portion 23 of the metal container 22, and the inspection window 30 is closed by a lid 28. Here, the metal container 22 and the lid 28 are made of a metal material such as stainless steel or carbon steel, and surface treatment such as rust prevention treatment is performed on the surface portion as necessary.

金属容器22の頂板部23には、点検窓30の外周側に1次側のブッシング32及び2次側のブッシング34が固定されている。ブッシング32、34は、それぞれセラミック等の絶縁材により円筒状に形成されており、下端側が頂板部23を貫通した状態で固定されている。ブッシング32、34の中心部には、導電性金属からなる端子部材36、38が貫通している。1次側の端子部材36は、金属容器22内で接続ケーブル40及びタップチェンジャ26を介してコイル24の入力端子(図示省略)に接続されている。また2次側の端子部材38は、金属容器22内で中間に接続ケーブル42を介してコイル24の出力端子(図示省略)に接続されている。
ここで、コイル24は、けい素鋼帯等からなる鉄心と、この鉄心の帯層間を絶縁する絶縁紙とを備えている(それぞれ図示省略)。またタップチェンジャ26内には絶縁紙からなるタップボード(図示省略)が配置されており、このタップボードは複数のタップ間を絶縁している。
A primary side bushing 32 and a secondary side bushing 34 are fixed to the outer peripheral side of the inspection window 30 on the top plate portion 23 of the metal container 22. The bushings 32 and 34 are each formed in a cylindrical shape by an insulating material such as ceramic, and are fixed in a state where the lower end side penetrates the top plate portion 23. Terminal members 36 and 38 made of conductive metal pass through the central portions of the bushings 32 and 34. The primary side terminal member 36 is connected to an input terminal (not shown) of the coil 24 through the connection cable 40 and the tap changer 26 in the metal container 22. Further, the secondary side terminal member 38 is connected to an output terminal (not shown) of the coil 24 via a connection cable 42 in the middle of the metal container 22.
Here, the coil 24 includes an iron core made of a silicon steel strip or the like, and insulating paper that insulates the band between the cores (not shown). A tap board (not shown) made of insulating paper is disposed in the tap changer 26, and this tap board insulates a plurality of taps.

金属容器22には、頂板部23の上側に未使用の絶縁油OLを蓄えたバッファタンク44が配置されており、このバッファタンク44は、給油パイプ46を通して金属容器22内に連通している。油入変圧器20は、金属容器22内の絶縁油OLが何らかの原因で減少すると、その減少量と等しい絶縁油OLがバッファタンク44から金属容器22内へ補充されるようになっている。また金属容器22の周壁部には、その下端側に採油配管48を通してサンプリングバルブ50が接続されており、油入変圧器20では、サンプリングバルブ50を開くことにより金属容器22内の絶縁油OLを採取できる。   In the metal container 22, a buffer tank 44 storing unused insulating oil OL is disposed on the upper side of the top plate portion 23, and this buffer tank 44 communicates with the inside of the metal container 22 through an oil supply pipe 46. In the oil-filled transformer 20, when the insulating oil OL in the metal container 22 decreases for some reason, the insulating oil OL equal to the decrease amount is replenished from the buffer tank 44 into the metal container 22. Further, a sampling valve 50 is connected to the peripheral wall portion of the metal container 22 through an oil collection pipe 48 on the lower end side thereof. In the oil-filled transformer 20, the insulating oil OL in the metal container 22 is removed by opening the sampling valve 50. Can be collected.

次に、上記のように構成された油入変圧器20に対する本実施形態に係る劣化診断方法について説明する。
本実施形態に係る劣化診断方法は、絶縁油OL中の油中ガス、全酸価及び耐電圧に関する過去の測定データ入力ステップ(S1)、少なくとも油入変圧器20の使用開始時及び使用完了時にそれぞれ測定された平均重合度の測定データの入力ステップ(S2)、絶縁紙の重合度(平均重合度)推定モデル構築ステップ(S3)、診断対象となる油入変圧器20の測定データの入力ステップ(S4)及び平均重合度の推定ステップ(S5)から構成されている。
Next, a deterioration diagnosis method according to this embodiment for the oil-filled transformer 20 configured as described above will be described.
The deterioration diagnosis method according to the present embodiment includes a past measurement data input step (S1) relating to the gas in oil in the insulating oil OL, the total acid value, and the withstand voltage, at least when the use of the oil-filled transformer 20 is started and when the use is completed. Measurement data input step (S2) of each measured average polymerization degree, insulation paper polymerization degree (average polymerization degree) estimation model construction step (S3), measurement data input step of oil-filled transformer 20 to be diagnosed (S4) and an average polymerization degree estimation step (S5).

以下、上記各ステップの内容を順次説明する。
(1)絶縁油OL中の油中ガス、全酸価及び耐電圧に関する過去の測定データ入力ステップ(S1)
油入変圧器20の絶縁紙の平均重合度推定モデルをニューラルネットワークにより構築するために、推定モデルの第1の学習データ(第1の入力因子群)として、過去に所定の検査周期毎に測定された絶縁油OLの油中ガスの測定データ、全酸価の測定データ及び耐電圧の測定データをそれぞれニューラルネットワーク(現実には、当該ニューラルネットワークがプログラミングされた演算装置等)に入力する。
Hereinafter, the contents of the above steps will be described sequentially.
(1) Past measurement data input step concerning oil-in-oil gas, total acid value and withstand voltage in insulating oil OL (S1)
In order to construct a model for estimating the average degree of polymerization of insulating paper of the oil-filled transformer 20 by a neural network, measurement is performed at a predetermined inspection cycle in the past as first learning data (first input factor group) of the estimation model. The measurement data of the gas in the oil of the insulating oil OL, the measurement data of the total acid number, and the measurement data of the withstand voltage are respectively input to a neural network (actually, an arithmetic device or the like programmed with the neural network).

ここで、油中ガスの測定時には、基本的には、絶縁油OL中における水素、酸素、窒素、二酸化炭素、一酸化炭素、メタン、エタン、エチレン及びアセチレンの量がそれぞれ測定される。但し、必ずしも、ここに挙げた全種類の油中ガスを測定する必要はなく、平均重合度の推定値に求められる精度等に応じて、上記ガス群から2種類以上のガスを適宜選択し、選択された2種類以上の油中ガスのみを測定するようにしても良い。
また、絶縁油OLの全酸価の測定方法としては、例えば、メチルレッドまたはニュートラルレッドを含む、アルカリでpHを一定に調節した低級アルコール溶液へヘキサンを添加した二層式試験液を用いる方法等を用いることができる。また絶縁油OLの耐電圧は、絶縁油に対する公知の耐電圧試験法により測定される。
Here, when measuring the gas in oil, the amounts of hydrogen, oxygen, nitrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene, and acetylene in the insulating oil OL are basically measured. However, it is not always necessary to measure all types of gas in oil listed here, depending on the accuracy required for the estimated value of the average degree of polymerization, appropriately select two or more types of gas from the above gas group, Only two or more selected gases in oil may be measured.
In addition, as a method for measuring the total acid value of the insulating oil OL, for example, a method using a two-layer test solution in which hexane is added to a lower alcohol solution containing methyl red or neutral red and whose pH is constantly adjusted with an alkali, etc. Can be used. The withstand voltage of the insulating oil OL is measured by a known withstand voltage test method for the insulating oil.

(2)少なくとも油入変圧器20の使用開始時及び使用完了時にそれぞれ測定された平均重合度の測定データの入力ステップ(S2)
油入変圧器20の絶縁紙の平均重合度推定モデルをニューラルネットワークにより構築するために、推定モデルの第2の学習データ(第2の入力因子群)として、少なくとも油入変圧器20の使用開始時及び使用完了時にそれぞれ測定された平均重合度の測定データをニューラルネットワークに入力する。
ここで、絶縁紙の平均重合度は、平均重合度推定モデルによる推定値の精度を高めるためには、油入変圧器20の使用開始時と使用完了時(一般には、廃棄時)に加え、使用開始時と使用完了との間に1回乃至複数回、測定することが好ましい。但し、絶縁紙の平均重合度の測定は、油入変圧器20の休止時しか行えないことから、このような機会が存在しない場合には、最低限、油入変圧器20の使用開始時と使用完了時にのみ絶縁紙の平均重合度を測定すれば、基本的には、平均重合度推定モデルによる推定値に対して必要な精度を確保できる。
(2) Step of inputting measurement data of average polymerization degree measured at least at the start of use and at the end of use of oil-filled transformer 20 (S2)
In order to construct an average polymerization degree estimation model of insulating paper of the oil-filled transformer 20 using a neural network, at least the oil-filled transformer 20 is used as second learning data (second input factor group) of the estimation model. Measurement data of the average degree of polymerization measured at the time of use and when the use is completed is input to the neural network.
Here, in order to increase the accuracy of the estimated value based on the average polymerization degree estimation model, the average polymerization degree of the insulating paper is not only when the oil-filled transformer 20 starts to be used and when the use is completed (generally, when discarded), The measurement is preferably performed once to several times between the start of use and the end of use. However, since the average degree of polymerization of the insulating paper can be measured only when the oil-filled transformer 20 is stopped, if such an opportunity does not exist, at least when the oil-filled transformer 20 is used. If the average degree of polymerization of the insulating paper is measured only when the use is completed, the required accuracy can be basically secured for the estimated value based on the average degree of polymerization estimation model.

(3)平均重合度推定モデル構築ステップ(S3)
絶縁油OL中の油中ガス、全酸価及び耐電圧に関する過去の測定データ入力ステップ(S1)及び、絶縁紙の平均重合度の測定データの入力ステップ(S2)にて入力した各測定データを用いて、平均重合度推定モデルをニューラルネットワークにより構築する。このニューラルネットワークでは、前述した測定データのうち、平均重合度を出力因子として用いる。
(3) Average polymerization degree estimation model construction step (S3)
Each measurement data input in the past measurement data input step (S1) regarding the gas in oil in the insulating oil OL, the total acid value and the withstand voltage and the input step (S2) of the measurement data of the average degree of polymerization of the insulating paper The average polymerization degree estimation model is constructed using a neural network. In this neural network, the average degree of polymerization is used as an output factor among the measurement data described above.

(4)診断対象となる油入変圧器20の測定データの入力ステップ(S4)
次に、診断対象の油入変圧器20について、第1の入力因子群を平均重合度推定モデル(学習済みのニューラルネットワーク)に入力する。具体的には、絶縁油OLを分析して得られた各種の油中ガス、全酸価及び耐電圧に関する直近の測定データを、それぞれ平均重合度推定モデルにそれぞれ入力する。
(5)平均重合度推定ステップ(S5)
上記入力ステップ(S4)により入力した測定データに対応する平均重合度を平均重合度推定モデルによって算出する。
(4) Step of inputting measurement data of oil-filled transformer 20 to be diagnosed (S4)
Next, the first input factor group is input to the average polymerization degree estimation model (learned neural network) for the oil-filled transformer 20 to be diagnosed. Specifically, the latest measurement data relating to various gases in oil, total acid number, and withstand voltage obtained by analyzing the insulating oil OL are respectively input to the average polymerization degree estimation model.
(5) Average polymerization degree estimation step (S5)
The average degree of polymerization corresponding to the measurement data input in the input step (S4) is calculated using an average degree of polymerization estimation model.

次に、本実施形態に係るニューラルネットワークによる劣化診断方法を、図3を参照しつつ具体的に説明する。
平均重合度推定モデルとしては、3階層型のニューラルネットワークを用い、重み結合の初期値を適宜設定することによって平均重合度推定モデルを構築(第1層〜第3層)した。本実施形態に係る劣化診断方法では、絶縁油OL中における複数種類の油中ガス(本実施形態では、水素、酸素、窒素、二酸化炭素、一酸化炭素、メタン、エタン、エチレン及びアセチレン)の各測定データ、絶縁油OLの全酸価の測定データ及び絶縁油OLの耐電圧の測定データをそれぞれ第1の入力因子群とし、少なくとも油入変圧器20の使用開始時及び使用完了時にそれぞれ測定された平均重合度の測定データを第2の入力因子群とし、コイル24における絶縁紙の平均重合度推定値を出力因子として、モデルの学習を行うことにより、平均重合度推定モデルを構築する。この平均重合度推定モデルに、診断対象である油入変圧器20における複数種類の油中ガス、全酸価及び耐電圧の直近の測定データを平均重合度推定モデルに入力し、この平均重合度推定モデルにより油入変圧器20における絶縁紙の平均重合度推定値を推定する。
Next, the degradation diagnosis method using the neural network according to the present embodiment will be specifically described with reference to FIG.
As an average polymerization degree estimation model, a three-layer neural network was used, and an average polymerization degree estimation model was constructed (first to third layers) by appropriately setting initial values of weight coupling. In the degradation diagnosis method according to the present embodiment, each of a plurality of types of oil-in-gas (in this embodiment, hydrogen, oxygen, nitrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene, and acetylene) in the insulating oil OL. The measurement data, the measurement data of the total acid value of the insulation oil OL, and the measurement data of the withstand voltage of the insulation oil OL are set as the first input factor group, and are measured at least when the oil-filled transformer 20 is used and when the use is completed. The average polymerization degree estimation model is constructed by learning the model using the measured data of the average polymerization degree as the second input factor group and the average polymerization degree estimated value of the insulating paper in the coil 24 as the output factor. In this average polymerization degree estimation model, the latest measurement data of a plurality of types of oil-in-gas, total acid number and withstand voltage in the oil-filled transformer 20 to be diagnosed are input to the average polymerization degree estimation model. The estimated average polymerization degree of insulating paper in the oil-filled transformer 20 is estimated by the estimation model.

これにより、油入変圧器20における絶縁油OLの油中ガス、全酸価の耐電圧の測定データをそれぞれ平均重合度推定モデルに入力するだけで、絶縁紙の平均重合度を十分に高い精度で推定できるようになるので、この平均重合度の推定値に基づいて油入変圧器20の余寿命を十分な精度で予測することが可能になる。
以上説明した本実施形態に係る劣化診断方法によれば、油入変圧器20に対する保守作業の一環として定期的に測定される絶縁油OLの油中ガス、全酸価の耐電圧の測定データをそれぞれ平均重合度推定モデルに入力すれば、絶縁紙の平均重合度を十分に高い精度で推定できるようになるので、重合法による絶縁紙の平均重合度の測定及び、フルフラール法による絶縁油OLのフルフラール量の測定をそれぞれ行う従来の劣化診断方法と比較し、絶縁紙の平均重合度を推定するために要する作業量及びコストを効果的に低減できる。
Accordingly, the average polymerization degree of the insulating paper can be sufficiently high enough to input the measurement data of the in-oil gas of the insulating oil OL and the withstand voltage of the total acid value in the oil-filled transformer 20 to the average polymerization degree estimation model. Therefore, the remaining life of the oil-filled transformer 20 can be predicted with sufficient accuracy based on the estimated value of the average degree of polymerization.
According to the deterioration diagnosis method according to the present embodiment described above, the measurement data of the withstand voltage of the in-oil gas and the total acid value of the insulating oil OL, which are periodically measured as part of the maintenance work for the oil-filled transformer 20, are obtained. If each is input to the average polymerization degree estimation model, the average polymerization degree of the insulating paper can be estimated with sufficiently high accuracy, so the measurement of the average polymerization degree of the insulating paper by the polymerization method and the insulation oil OL of the furfural method can be estimated. Compared with the conventional degradation diagnosis method that measures the amount of furfural, the amount of work and cost required to estimate the average degree of polymerization of the insulating paper can be effectively reduced.

なお、本実施形態の劣化診断方法では、フルフラール法により測定された絶縁油OLのフルフラール量をニューラルネットワークへの入力因子として用いていないが、上述した第1の入力因子及び第2の入力因子に加え、第3の入力因子としてフルフラールの測定データをニューラルネットワークへ入力し、平均重合度推定モデルを構築するようにしても良い。これにより、絶縁紙の平均重合度に対する推定精度を更に向上することが可能になる。   In the degradation diagnosis method of the present embodiment, the amount of furfural of the insulating oil OL measured by the furfural method is not used as an input factor to the neural network, but the first input factor and the second input factor described above are used. In addition, the measurement data of furfural as a third input factor may be input to the neural network to construct an average polymerization degree estimation model. Thereby, it is possible to further improve the estimation accuracy for the average degree of polymerization of the insulating paper.

また本実施形態の劣化診断方法では、ニューラルネットワークの手法を用いて平均重合度推定モデルを構築したが、絶縁油OL中における複数種類の油中ガスの各測定データ、絶縁油OLの全酸価の測定データ及び絶縁油OLの耐電圧の測定データ並びに、少なくとも油入変圧器20の使用開始時及び使用完了時にそれぞれ測定された平均重合度の測定データを多変数重回帰分析により処理して平均重合度推定モデルを構築することによっても、ニューラルネットワークを用いた場合と近似した結果が得られることは言うまでもない。   In the deterioration diagnosis method of the present embodiment, an average polymerization degree estimation model is constructed using a neural network technique. However, each measurement data of a plurality of types of oil-in-gas in the insulating oil OL, the total acid value of the insulating oil OL. Of the insulation oil OL and the withstand voltage of the insulating oil OL, and at least the average polymerization degree measurement data measured at the start of use and at the end of use of the oil-filled transformer 20, respectively, are processed by multivariate multiple regression analysis and averaged. It goes without saying that the result approximated to the case of using the neural network can be obtained by constructing the polymerization degree estimation model.

本発明の実施形態に係る劣化診断方法が適用可能な油入変圧器の一例を示す側面断面図である。It is side surface sectional drawing which shows an example of the oil-filled transformer which can apply the degradation diagnostic method which concerns on embodiment of this invention. 本発明の実施形態に係る劣化診断方法示すフローチャートである。It is a flowchart which shows the deterioration diagnostic method which concerns on embodiment of this invention. 平均重合度推定モデルをニューラルネットワークにより構築する場合の入力因子及び出力因子の説明図である。It is explanatory drawing of the input factor and output factor in the case of constructing an average polymerization degree estimation model by a neural network.

符号の説明Explanation of symbols

20 油入変圧器
22 金属容器
23 頂板部
24 コイル
26 タップチェンジャ
28 蓋
30 点検窓
32、34 ブッシング
36、38 端子部材
40、42 接続ケーブル
44 バッファタンク
46 給油パイプ
48 採油配管
50 サンプリングバルブ
OL 絶縁油
20 Oil-filled transformer 22 Metal container 23 Top plate portion 24 Coil 26 Tap changer 28 Lid 30 Inspection window 32, 34 Bushing 36, 38 Terminal member 40, 42 Connection cable 44 Buffer tank 46 Oil supply pipe 48 Oil sampling piping 50 Sampling valve OL Insulating oil

Claims (4)

容器及び、該容器内に蓄えられた絶縁油中に浸漬されるコイルを有する油入変圧器の劣化診断方法であって、
所定の検査周期ごとに測定された絶縁油に対する油中ガス、全酸価及び耐電圧の測定値を第1の入力因子群とし、
少なくとも油入変圧器の使用開始時及び使用完了時にそれぞれ測定された前記コイルの絶縁紙の平均重合度の測定値を第2の入力因子群とし、
前記絶縁紙の平均重合度を出力因子として、モデルの同定または学習を行うことにより、絶縁紙の平均重合度推定モデルを構築し、
診断対象である油入変圧器における絶縁油から測定された絶縁油に対する油中ガス、全酸価及び耐電圧の測定値を前記平均重合度推定モデルに入力し、前記平均重合度推定モデルにより平均重合度の推定値を得ることを特徴とする油入変圧器の劣化診断方法。
A deterioration diagnosis method for an oil-filled transformer having a container and a coil immersed in insulating oil stored in the container,
The measured values of the oil-in-gas, total acid number and withstand voltage for the insulating oil measured at each predetermined inspection cycle are set as the first input factor group,
The measured value of the average degree of polymerization of the insulating paper of the coil measured at the start of use and at the end of use of at least the oil-filled transformer as a second input factor group,
By using the average polymerization degree of the insulating paper as an output factor, identifying or learning the model, a model for estimating the average polymerization degree of the insulating paper is constructed,
The measured values of gas in oil, total acid value and withstand voltage for insulating oil measured from insulating oil in oil-filled transformer to be diagnosed are input to the average polymerization degree estimation model, and averaged by the average polymerization degree estimation model A method for diagnosing deterioration of an oil-filled transformer, wherein an estimated value of a degree of polymerization is obtained.
絶縁油に対する油中ガスの測定時には、水素、酸素、窒素、二酸化炭素、一酸化炭素、メタン、エタン、エチレン及びアセチレンからなる群から選択された2種類以上の油中ガスを測定することを特徴とする請求項1記載の油入変圧器の劣化診断方法。   When measuring gas in oil for insulating oil, it is characterized by measuring two or more kinds of gas in oil selected from the group consisting of hydrogen, oxygen, nitrogen, carbon dioxide, carbon monoxide, methane, ethane, ethylene and acetylene. The deterioration diagnosis method for an oil-filled transformer according to claim 1. 前記平均重合度推定モデルを、ニューラルネットワークを用いて構築することを特徴とする請求項1又は2項記載の油入変圧器の劣化診断方法。   The deterioration diagnosis method for an oil-filled transformer according to claim 1, wherein the average polymerization degree estimation model is constructed using a neural network. 前記平均重合度推定モデルを、重回帰分析を用いて構築することを特徴とする請求項1又は2記載の油入変圧器の劣化診断方法。   The deterioration diagnosis method for an oil-filled transformer according to claim 1, wherein the average polymerization degree estimation model is constructed using multiple regression analysis.
JP2008005831A 2008-01-15 2008-01-15 Degradation diagnosis method for oil-filled transformers Pending JP2009168571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008005831A JP2009168571A (en) 2008-01-15 2008-01-15 Degradation diagnosis method for oil-filled transformers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008005831A JP2009168571A (en) 2008-01-15 2008-01-15 Degradation diagnosis method for oil-filled transformers

Publications (1)

Publication Number Publication Date
JP2009168571A true JP2009168571A (en) 2009-07-30

Family

ID=40969913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008005831A Pending JP2009168571A (en) 2008-01-15 2008-01-15 Degradation diagnosis method for oil-filled transformers

Country Status (1)

Country Link
JP (1) JP2009168571A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185880A (en) * 2010-03-10 2011-09-22 Fuji Electric Co Ltd Reliability evaluation device, and program and method of the same
KR101438158B1 (en) 2013-03-21 2014-09-05 연세대학교 산학협력단 Method and apparatus for predicting life time of transformer
CN112461942A (en) * 2020-10-10 2021-03-09 广西电网有限责任公司电力科学研究院 High-voltage bushing capacitor core fault diagnosis method and system
CN115575612A (en) * 2021-09-15 2023-01-06 国网福建省电力有限公司 Method for evaluating corrosion degree of oil-immersed power transformer
CN116316429A (en) * 2023-01-10 2023-06-23 广东电网有限责任公司佛山供电局 Distribution transformer relay protection method and device based on insulating oil on-line monitoring
CN117984333A (en) * 2024-04-03 2024-05-07 广东电网有限责任公司东莞供电局 Inspection method, device and equipment for oil immersed transformer and storage medium
CN118624961A (en) * 2024-08-09 2024-09-10 碧陆斯光电(山东)有限公司 A field oscillation impulse withstand voltage test device for power transformers

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185880A (en) * 2010-03-10 2011-09-22 Fuji Electric Co Ltd Reliability evaluation device, and program and method of the same
KR101438158B1 (en) 2013-03-21 2014-09-05 연세대학교 산학협력단 Method and apparatus for predicting life time of transformer
CN112461942A (en) * 2020-10-10 2021-03-09 广西电网有限责任公司电力科学研究院 High-voltage bushing capacitor core fault diagnosis method and system
CN115575612A (en) * 2021-09-15 2023-01-06 国网福建省电力有限公司 Method for evaluating corrosion degree of oil-immersed power transformer
CN116316429A (en) * 2023-01-10 2023-06-23 广东电网有限责任公司佛山供电局 Distribution transformer relay protection method and device based on insulating oil on-line monitoring
CN116316429B (en) * 2023-01-10 2023-12-19 广东电网有限责任公司佛山供电局 Distribution transformer relay protection method and device based on insulating oil on-line monitoring
CN117984333A (en) * 2024-04-03 2024-05-07 广东电网有限责任公司东莞供电局 Inspection method, device and equipment for oil immersed transformer and storage medium
CN118624961A (en) * 2024-08-09 2024-09-10 碧陆斯光电(山东)有限公司 A field oscillation impulse withstand voltage test device for power transformers

Similar Documents

Publication Publication Date Title
Martin et al. An updated model to determine the life remaining of transformer insulation
Fofana et al. Characterization of aging transformer oil–pressboard insulation using some modern diagnostic techniques
JP5234440B2 (en) Oil-filled electrical equipment life diagnosis device, oil-filled electrical equipment life diagnosis method, oil-filled electrical equipment deterioration suppression device, and oil-filled electrical equipment deterioration control method
Hadjadj et al. Assessing insulating oil degradation by means of turbidity and UV/VIS spectrophotometry measurements
JP2009168571A (en) Degradation diagnosis method for oil-filled transformers
McNutt Insulation thermal life considerations for transformer loading guides
CN103149452B (en) Method for evaluating ageing state of paper oil insulation
Hillary et al. A tool for estimating remaining life time of a power transformer
JP5494034B2 (en) Reliability evaluation apparatus, reliability evaluation program, and reliability evaluation method
JP4888402B2 (en) Remaining life diagnosis method for oil-filled transformers
JP2010256208A (en) Aging deterioration diagnosis method for insulating oil in electrical equipment
JP4857597B2 (en) Degradation diagnosis method for oil-filled electrical equipment
Wada et al. Method to evaluate the degradation condition of transformer insulating oil-establishment of the evaluation method and application to field transformer oil
JP5387877B2 (en) Method for estimating the remaining life of oil-filled electrical equipment
Ghazali et al. TNB experience in condition assessment and life management of distribution power transformers
Bhumiwat Identification of overheating in transformer solid insulation by polarization depolarization current analysis
JP5337303B2 (en) Diagnostic method and apparatus for oil-filled electrical equipment
Fofana et al. Early stage detection of insulating oil decaying
JP6609134B2 (en) Estimation method of copper sulfide generation status of oil-filled cable by insulation oil analysis, risk diagnosis method
RU2751453C1 (en) METHOD FOR CONTROLLING TECHNICAL CONDITION OF POWER TRANSFORMERS WITH VOLTAGE OF 35 kV AND OVER
JP5516601B2 (en) Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of abnormality
JP5233021B2 (en) Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of occurrence of abnormality
JP5079936B1 (en) Diagnostic method for oil-filled electrical equipment
Agarwal et al. Implementation of remaining useful lifetime transformer models in the fleet-wide prognostic and health management suite
Gray Evaluation of transformer solid insulation