[go: up one dir, main page]

JP4873291B2 - Method for producing high-strength oxide ion conductor - Google Patents

Method for producing high-strength oxide ion conductor Download PDF

Info

Publication number
JP4873291B2
JP4873291B2 JP2006065354A JP2006065354A JP4873291B2 JP 4873291 B2 JP4873291 B2 JP 4873291B2 JP 2006065354 A JP2006065354 A JP 2006065354A JP 2006065354 A JP2006065354 A JP 2006065354A JP 4873291 B2 JP4873291 B2 JP 4873291B2
Authority
JP
Japan
Prior art keywords
oxide powder
acetate
powder
oxide
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006065354A
Other languages
Japanese (ja)
Other versions
JP2006310270A (en
Inventor
喬 山田
雅治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006065354A priority Critical patent/JP4873291B2/en
Publication of JP2006310270A publication Critical patent/JP2006310270A/en
Application granted granted Critical
Publication of JP4873291B2 publication Critical patent/JP4873291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Fuel Cell (AREA)

Description

この発明は、高強度酸化物イオン伝導体、特に不純物相の少ない単相の高強度酸化物イオン伝導体を製造する方法に関するものである。   The present invention relates to a method for producing a high-strength oxide ion conductor, particularly a single-phase high-strength oxide ion conductor with few impurity phases.

酸化物イオン伝導体は、一般に、固体電解質形燃料電池の電解質または空気極、酸素センサーなどのガスセンサー、電気化学式酸素ポンプなどの酸素分離膜などに使用されることは知られており、この酸化物イオン伝導体は、
Ln:La,Ce,Pr,Nd、Smなどの希土類元素の内の1種または2種以上、
A:Sr,Ca,Baの内の1種または2種以上、
B1:Mg,Al,Inの内の1種または2種以上、
B2:Co,Fe,Ni,Cuの内の1種または2種以上、
とすると、一般式:Ln1-X X Ga1-Y-Z B1Y B2Z 3(ただし、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表されることは知られている。
これら一般式で表される酸化物イオン伝導体の内でも一般式:La1-X SrX Ga1-Y-Z MgY B2Z 3(式中、B2=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表されるランタンガレート系酸化物イオン伝導体が低温タイプの固体電解質形燃料電池の発電セルを構成する固体電解質として広く使用されており、この中でもB2=CoであるLa1-X SrX Ga1-Y-Z MgY CoZ 3(式中、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表されるランタンガレート系酸化物イオン伝導体が低温タイプの固体電解質形燃料電池の発電セルを構成する固体電解質として使用されている。このLa1-X SrX Ga1-Y-Z MgY CoZ 3(式中、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表されるランタンガレート系酸化物イオン伝導体の中でも(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oが固体電解質形燃料電池の発電セルを構成する電解質として最も広く使用されている。
Oxide ion conductors are generally known to be used in electrolytes or air electrodes of solid oxide fuel cells, gas sensors such as oxygen sensors, oxygen separation membranes such as electrochemical oxygen pumps, etc. The ionic conductor is
Ln: one or more of rare earth elements such as La, Ce, Pr, Nd, Sm,
A: One or more of Sr, Ca and Ba,
B1: One or more of Mg, Al, and In,
B2: one or more of Co, Fe, Ni and Cu,
When the general formula: Ln 1-X A X Ga 1-YZ B1 Y B2 Z O 3 ( provided that, X = 0.05~0.3, Y = 0~0.29 , Z = 0.01~0 .3, Y + Z = 0.025 to 0.3).
Among the oxide ion conductors represented by these general formulas, a general formula: La 1-X Sr X Ga 1-YZ Mg Y B 2 Z O 3 (wherein B 2 = Co, Fe, Ni, Cu, one type) Or two or more, lanthanum gallate system represented by X = 0.05 to 0.3, Y = 0 to 0.29, Z = 0.01 to 0.3, Y + Z = 0.025 to 0.3) An oxide ion conductor is widely used as a solid electrolyte constituting a power generation cell of a low-temperature type solid oxide fuel cell. Among these, La 1-X Sr X Ga 1-YZ Mg Y Co Z where B2 = Co is used. Lanthanum gallate represented by O 3 (wherein X = 0.05 to 0.3, Y = 0 to 0.29, Z = 0.01 to 0.3, Y + Z = 0.025 to 0.3) Oxide oxide conductors are used as solid electrolytes constituting power generation cells of low-temperature type solid oxide fuel cells . The La 1-X Sr X Ga 1 -YZ Mg Y Co Z O 3 ( where, X = 0.05~0.3, Y = 0~0.29 , Z = 0.01~0.3, Y + Z = among lanthanum gallate-based oxide ion conductor represented by 0.025~0.3) (La 0.8 Sr 0.2) is (Ga 0.8 Mg 0.15 Co 0.05) O 3 It is most widely used as an electrolyte constituting a power generation cell of a solid electrolyte fuel cell.

前記一般式:Ln1-X X Ga1-Y-Z B1Y B2Z 3(ただし、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体の薄板は、原料粉末として、Lnの酸化物粉末、Aの炭酸塩粉末、Gaの酸化物粉末、B1の酸化物粉末、B2の酸化物粉末を用意し、これら原料粉末を混合し、仮焼したのち解砕してLn1-X X Ga1-Y-Z B1Y B2Z 3(ただし、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体粉末を作製し、この酸化物イオン伝導体粉末をドクターブレード法により成膜し乾燥することによりグリーン体膜を作製し、得られたグリーン体膜を焼結することにより酸化物イオン伝導体の薄板を作製していた。
したがって、(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oからなる酸化物イオン伝導体の薄板を作製するには、原料粉末として、La粉末、SrCO粉末、Ga粉末、MgO粉末、CoO粉末を用意し、これら原料粉末を混合し、仮焼したのち(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O粉末を作製し、この(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)O粉末をドクターブレード法により成膜し乾燥することによりグリーン体膜を作製し、得られたグリーン体膜を焼結することにより(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oの薄板を作製していた(特許文献1参照)。
特開平11−335164号公報
General formula: Ln 1-X A X Ga 1-YZ B1 Y B2 Z O 3 (where X = 0.05 to 0.3, Y = 0 to 0.29, Z = 0.01 to 0.3) , Y + Z = 0.025 to 0.3), the oxide ion conductor thin plate is made of Ln oxide powder, A carbonate powder, Ga oxide powder, and B1 oxide as raw material powder. A powder and an oxide powder of B2 are prepared, these raw material powders are mixed, calcined and then pulverized to obtain Ln 1-X A X Ga 1-YZ B1 Y B2 Z O 3 (where X = 0.05) To 0.3, Y = 0 to 0.29, Z = 0.01 to 0.3, and Y + Z = 0.025 to 0.3). The ion conductor powder is formed into a film by a doctor blade method and dried to produce a green body film, and the obtained green body film is sintered to obtain an oxide ion. A thin plate of a conductor was produced.
Accordingly, in order to produce a thin plate of an oxide ion conductor made of (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3 , La 2 O is used as a raw material powder. 3 powders, SrCO 3 powders, Ga 2 O 3 powders, MgO powders, CoO powders are prepared, these raw material powders are mixed and calcined (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0 .15 Co 0.05 ) O 3 powder was prepared, and this (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3 powder was deposited by the doctor blade method. A green body film is produced by drying, and the obtained green body film is sintered to obtain (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3 . A thin plate was produced (see Patent Document 1).
Japanese Patent Laid-Open No. 11-335164

かかる従来の方法で作製した酸化物イオン伝導体の薄板、例えば、(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oの薄板の組織は、(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oからなる母結晶粒の粒径が10μm程度で大きく、さらに母結晶粒の粒界および粒内に、図2の組織図に示されるように、組成ずれした(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)OまたはLaSrGaOなどの不純物相粒が多く分散して生成しており、この不純物相が生成しかつ粒径の大きな母結晶粒からなる組織を有する(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oの薄板は強度が十分でない。
近年、前記酸化物イオン伝導体を固体電解質形燃料電池の電解質として使用する場合、酸化物イオン伝導体を厚さのより一層薄い板に成形し、この厚さのより一層薄い酸化物イオン伝導体の板を固体電解質形燃料電池の電解質として使用することが多いが、前記従来の母結晶粒径が大きくかつ母結晶粒の粒界および粒内に不純物相粒が多く生成している酸化物イオン伝導体をより一層薄く成形して固体電解質形燃料電池の電解質として使用すると、強度が小さいためにその取扱いが難しいという課題があった。
The structure of a thin plate of an oxide ion conductor produced by such a conventional method, for example, a thin plate of (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3 is ( La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3 has a large crystal grain size of about 10 μm, and is larger in the grain boundaries and in the grains of the master crystal grain. 2, an impurity phase such as (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3 or LaSrGa 3 O 7 having a composition shift, as shown in the structural diagram of FIG. (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co) having a structure in which a large number of grains are dispersed and this impurity phase is generated and has a large grain size. 0.05 ) O 3 thin plate is not strong enough.
In recent years, when the oxide ion conductor is used as an electrolyte of a solid electrolyte fuel cell, the oxide ion conductor is formed into a thinner plate, and the thinner oxide ion conductor. In many cases, the above-mentioned plate is used as an electrolyte of a solid oxide fuel cell. However, the above-described conventional oxide ions have a large mother crystal grain size and a large amount of impurity phase grains are formed in the grain boundaries and grains of the mother crystal grains. When a conductor is formed to be thinner and used as an electrolyte of a solid oxide fuel cell, there is a problem that it is difficult to handle due to its low strength.

そこで、本発明者等は、上述のような観点から、一層高強度の酸化物イオン伝導体を作製し、この高強度の酸化物イオン伝導体をより一層薄い板に成形して固体電解質形燃料電池の電解質として使用すべく研究を行った。その結果、
(イ)原料として硝酸ガリウムにエチレングリコールおよび水を混合して混合溶液(以下、この混合溶液を混合溶液Aという)を作製し、さらに酢酸ランタン、酢酸ストロンチウム、酢酸マグネシウムおよび酢酸コバルトを水に溶かした混合溶液(以下、この混合溶液を混合液Bという)を作製し、この混合溶液Aと混合溶液Bをさらに混合して混合溶液を作製し、この混合溶液を加熱して脱水しさらに結晶水が蒸発して酸化物粉末になるまで加熱(以下、この加熱を脱水仮焼という)すると一層微細なLa酸化物粉末、Sr酸化物粉末、Ga酸化物粉末、Mg酸化物粉末およびCo酸化物粉末が集合した集合体粉末あるいはLaSrGaMgCo酸化物粉末が生成され、この脱水仮焼して得られた酸化物粉末の集合体粉末あるいはLaSrGaMgCo酸化物粉末をドクターブレード法により成膜し乾燥することによりグリーン体膜を作製し、得られたグリーン体膜を焼結することにより得られた(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oの薄板は、図1の(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oの薄板の組織を示す模式図に示されるように、母結晶粒径が従来の母結晶粒径の半分以下の大きさの微細な粒径を有し、さらに前記不純物相が生成しないかまたは生成しても極めて少ないために粒界割れが少なくなり、高強度の酸化物イオン伝導体の薄板が得られ、これを使用して一層高強度の電解質板を作製することができる、
(ロ)前記(イ)記載の方法で作製した一般式:Ln1-X X Ga1-Y-Z B1Y B2Z 3(ただし、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表される酸化物イオン伝導体、一般式:La1-X SrX Ga1-Y-Z MgY B2Z 3(式中、B2=Co、Fe、Ni、Cuの1種または2種以上、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表されるランタンガレート系酸化物イオン伝導体、および一般式:La1-X SrX Ga1-Y-Z MgY CoZ 3(式中、X=0.05〜0.3、Y=0〜0.29、Z=0.01〜0.3、Y+Z=0.025〜0.3)で表されるランタンガレート系酸化物イオン伝導体についても同様の効果を有する、という研究結果が得られたのである。
In view of the above, the present inventors made a higher strength oxide ion conductor, and formed this high strength oxide ion conductor into a thinner plate to produce a solid electrolyte fuel. Research was conducted to use it as an electrolyte for batteries. as a result,
(A) Mixing ethylene glycol and water as raw materials with ethylene glycol and water to produce a mixed solution (hereinafter, this mixed solution is referred to as mixed solution A), and further dissolving lanthanum acetate, strontium acetate, magnesium acetate and cobalt acetate in water. The mixed solution (hereinafter, this mixed solution is referred to as “mixed solution B”), this mixed solution A and the mixed solution B are further mixed to prepare a mixed solution, and this mixed solution is heated to dehydrate and further crystallized water. Is heated until it evaporates into oxide powder (hereinafter, this heating is referred to as dehydration calcination). Finer La oxide powder, Sr oxide powder, Ga oxide powder, Mg oxide powder and Co oxide powder Aggregated powder or LaSrGaMgCo oxide powder is produced, and the aggregated powder or LaSr of the oxide powder obtained by dehydration calcining The aMgCo oxide powder to prepare a green film by forming dried by a doctor blade method, the obtained green film was obtained by sintering (La 0.8 Sr 0.2) (Ga The thin plate of 0.8 Mg 0.15 Co 0.05 ) O 3 corresponds to the thin plate of (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0.15 Co 0.05 ) O 3 in FIG. As shown in the schematic diagram showing the structure, the mother crystal grain size has a fine grain size that is half or less than the conventional mother crystal grain size, and the impurity phase is not generated or generated Because there are very few grain boundary cracks, a high-strength oxide ion conductor thin plate can be obtained, which can be used to produce a higher-strength electrolyte plate.
(B) General formula prepared by the method described in (a): Ln 1-X A X Ga 1-YZ B1 Y B2 Z O 3 (where X = 0.05 to 0.3, Y = 0 to 0 .29, Z = 0.01~0.3, oxide ion conductor represented by Y + Z = 0.025~0.3), the general formula: La 1-X Sr X Ga 1-YZ Mg Y B2 Z O 3 (wherein B2 = Co, Fe, Ni, Cu, one or more, X = 0.05 to 0.3, Y = 0 to 0.29, Z = 0.01 to 0.3) , Y + Z = 0.025 to 0.3), and a lanthanum gallate-based oxide ion conductor and a general formula: La 1-X Sr X Ga 1-YZ Mg Y Co Z O 3 (where X = 0.05-0.3, Y = 0-0.29, Z = 0.01-0.3, Y + Z = 0.025-0.3) Similar effect With, is the research results that were obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)Ln:La,Ce,Pr,Nd、Smなどの希土類元素の内の1種または2種以上、
A:Sr,Ca,Baの内の1種または2種以上、
B1:Mg,Al,Inの内の1種または2種以上、
B2:Co,Fe,Ni,Cuの内の1種または2種以上、
とすると、ガリウムの硝酸塩にエチレングリコールおよび水を混合してガリウムの硝酸塩溶液を作製し、さらにLnの酢酸塩、Aの酢酸塩、B1の酢酸塩およびB2の酢酸塩を水に溶かした酢酸塩溶液を作製し、この硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を脱水仮焼することにより微細なLn酸化物粉末、A酸化物粉末、Ga酸化物粉末、B1酸化物粉末およびB2酸化物粉末が集合した集合体粉末あるいはLnAGaB1B2酸化物粉末を作製し、この脱水仮焼して得られた酸化物粉末の集合体粉末あるいはLnAGaB1B2酸化物粉末をドクターブレード法により成膜し乾燥することによりグリーン体膜を作製し、得られたグリーン体膜を焼結する高強度酸化物イオン伝導体の製造方法、
(2)ガリウムの硝酸塩にエチレングリコールおよび水を混合してガリウムの硝酸塩溶液を作製し、さらに酢酸ランタン、酢酸ストロンチウム、酢酸マグネシウムおよびB2の酢酸塩を水に溶かした酢酸塩溶液を作製し、この硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を脱水仮焼することにより微細なLa酸化物粉末、Sr酸化物粉末、Ga酸化物粉末、Mg酸化物粉末およびB1酸化物粉末が集合した集合体粉末あるいはLaSrGaMgB2酸化物粉末を作製し、この脱水仮焼して得られた酸化物粉末の集合体粉末あるいはLaSrGaMgB2酸化物粉末をドクターブレード法により成膜し乾燥することによりグリーン体膜を作製し、得られたグリーン体膜を焼結する高強度酸化物イオン伝導体の製造方法、
(3)ガリウムの硝酸塩にエチレングリコールおよび水を混合してガリウムの硝酸塩溶液を作製し、さらに酢酸ランタン、酢酸ストロンチウム、酢酸マグネシウムおよび酢酸コバルトを水に溶かした酢酸塩溶液を作製し、この硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を脱水仮焼することにより微細なLa酸化物粉末、Sr酸化物粉末、Ga酸化物粉末、Mg酸化物粉末およびCo酸化物粉末が集合した集合体粉末あるいはLaSrGaMgCo酸化物粉末を作製し、この脱水仮焼して得られた酸化物粉末の集合体粉末あるいはLaSrGaMgCo酸化物粉末をドクターブレード法により成膜し乾燥することによりグリーン体膜を作製し、得られたグリーン体膜を焼結することを特徴とする高強度酸化物イオン伝導体の製造方法、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) Ln: one or more of rare earth elements such as La, Ce, Pr, Nd, Sm,
A: One or more of Sr, Ca and Ba,
B1: One or more of Mg, Al, and In,
B2: one or more of Co, Fe, Ni and Cu,
Then, ethylene glycol and water are mixed with gallium nitrate to prepare a gallium nitrate solution, and further, acetate obtained by dissolving Ln acetate, A acetate, B1 acetate and B2 acetate in water. A solution is prepared, the nitrate solution and the acetate solution are mixed to prepare a mixed solution, and this mixed solution is dehydrated and calcined to obtain fine Ln oxide powder, A oxide powder, Ga oxide powder, B1 An aggregate powder or LnAGaB1B2 oxide powder in which oxide powder and B2 oxide powder are aggregated is prepared, and the aggregate powder or LnAGaB1B2 oxide powder obtained by dehydration calcining is formed by a doctor blade method. A method for producing a high-strength oxide ion conductor for producing a green body film by film-forming and drying, and sintering the obtained green body film,
(2) A gallium nitrate solution is prepared by mixing ethylene glycol and water with gallium nitrate, and further an acetate solution is prepared by dissolving lanthanum acetate, strontium acetate, magnesium acetate and B2 acetate in water. A mixed solution is prepared by mixing a nitrate solution and an acetate solution, and the mixed solution is dehydrated and calcined to obtain fine La oxide powder, Sr oxide powder, Ga oxide powder, Mg oxide powder and B1 oxidation. An aggregate powder or LaSrGaMgB2 oxide powder in which product powder is aggregated is prepared, and the aggregate powder or LaSrGaMgB2 oxide powder of the oxide powder obtained by dehydration calcining is formed by a doctor blade method and dried. A method for producing a high-strength oxide ion conductor for producing a green body film and sintering the obtained green body film,
(3) A gallium nitrate solution is prepared by mixing ethylene glycol and water with gallium nitrate, and further an acetate solution is prepared by dissolving lanthanum acetate, strontium acetate, magnesium acetate and cobalt acetate in water. A mixed solution is prepared by mixing the solution with an acetate solution, and the mixed solution is dehydrated and calcined to obtain fine La oxide powder, Sr oxide powder, Ga oxide powder, Mg oxide powder, and Co oxide powder. An aggregate powder or a LaSrGaMgCo oxide powder in which the particles are aggregated is produced, and the aggregate powder of the oxide powder or LaSrGaMgCo oxide powder obtained by dehydration and calcination is formed into a film by a doctor blade method and dried to obtain a green body. A high-strength oxide ion transfer characterized by producing a film and sintering the resulting green body film Method for producing a body, and it has the characteristics to.

この発明は、前記(1)、(2)または(3)記載の方法で作製した酸化物イオン伝導体を組込んで作製した固体電解質形燃料電池用発電セルを含むものである。したがって、この発明は、
(4)前記(1)、(2)または(3)記載の方法で作製した酸化物イオン伝導体からなる電解質と、前記電解質の一方の面に多孔質の空気極が形成され、他方の面に多孔質の燃料極が成形されている固体電解質形燃料電池用発電セル、に特徴を有するものである。
The present invention includes a power generation cell for a solid oxide fuel cell produced by incorporating an oxide ion conductor produced by the method described in (1), (2) or (3) above. Therefore, the present invention
(4) An electrolyte comprising an oxide ion conductor produced by the method described in (1), (2) or (3) above, and a porous air electrode formed on one surface of the electrolyte, and the other surface This is characterized by a power generation cell for a solid oxide fuel cell in which a porous fuel electrode is formed.

さらに、この発明は、前記(4)記載の固体電解質形燃料電池用発電セルを組込んだ固体電解質形燃料電池も含むものである。したがって、この発明は、
(5)前記(4)記載の固体電解質形燃料電池用発電セルを組込んだ固体電解質形燃料電池、に特徴を有するものである。
Furthermore, the present invention includes a solid oxide fuel cell in which the power generation cell for a solid oxide fuel cell described in the above (4) is incorporated. Therefore, the present invention
(5) The present invention is characterized by a solid electrolyte fuel cell incorporating the power generation cell for a solid oxide fuel cell according to (4).

この発明の高強度酸化物イオン伝導体の製造方法において行われる脱水仮焼は、大気雰囲気などの酸化雰囲気中、温度:800〜1200℃に保持する条件で行われ、さらにドクターブレードして得られたグリーンシートの焼結は大気雰囲気などの酸化雰囲気中、温度:1200〜1600℃に保持する条件で行われる。   The dehydration calcining performed in the method for producing a high-strength oxide ion conductor according to the present invention is performed under an oxidizing atmosphere such as an air atmosphere at a temperature of 800 to 1200 ° C., and further obtained by a doctor blade. The green sheet is sintered in an oxidizing atmosphere such as an air atmosphere at a temperature of 1200 to 1600 ° C.

この発明の方法で製造した酸化物イオン伝導体は、母結晶の平均粒径が1〜5μmと従来の半分以下で微細な粒径を有し、さらに素地中に前記不純物相が生成しないかまたは生成しても極めて少ないために粒界割れが少なくなり、そのために酸化物イオン伝導体の薄板の高強度が向上する。   The oxide ion conductor produced by the method of the present invention has an average particle size of the mother crystal of 1 to 5 μm and a fine particle size that is less than half that of the prior art, and the impurity phase does not form in the substrate or Even if it is generated, it is extremely small, so that there are few intergranular cracks. Therefore, the high strength of the oxide ion conductor sheet is improved.

実施例1
硝酸ガリウムにエチレングリコールおよび水を、硝酸ガリウム:45質量%、エチレングリコール:5質量%、残部:水の割合になるように混合してガリウムの硝酸塩溶液を作製し、さらに酢酸ランタン、酢酸ストロンチウム、酢酸マグネシウムおよび酢酸コバルトを水に溶解して酢酸ランタン:28質量%、酢酸ストロンチウム:13質量%、酢酸マグネシウム:5質量%、酢酸コバルト:2質量%、残部:水からなる酢酸塩溶液を作製し、この硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を加熱して温度:1000℃で6時間保持することにより脱水仮焼し、微細なLa酸化物粉末、Sr酸化物粉末、Ga酸化物粉末、Mg酸化物粉末およびCo酸化物粉末が集合した集合体粉末あるいはLaSrGaMgCo酸化物粉末を作製した。
この脱水仮焼して得られた酸化物粉末の集合体粉末あるいはLaSrGaMgCo酸化物粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状にグリーン体膜を作製し、得られたグリーン体膜を空気中、1450℃に6時間加熱保持して焼結することにより、厚さ200μmを有しかつ(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oで示される組成を有する酸化物イオン伝導体薄板を作製し、本発明法1を実施した。
この本発明法1により作製した酸化物イオン伝導体薄板の組織を観察し、その母結晶の平均粒径を求め、さらに50μm×50μmの素地中に不純物相粒の分散している数を求め、その結果を表1に示した。さらに本発明法1により作製した酸化物イオン伝導体薄板の抗折強度をJISR1601に規定される方法で測定し、この結果を表1に示した。
Example 1
Gallium nitrate and ethylene glycol and water are mixed in a ratio of gallium nitrate: 45% by mass, ethylene glycol: 5% by mass, and the balance: water to prepare a gallium nitrate solution. Further, lanthanum acetate, strontium acetate, Magnesium acetate and cobalt acetate are dissolved in water to prepare an acetate solution comprising lanthanum acetate: 28% by mass, strontium acetate: 13% by mass, magnesium acetate: 5% by mass, cobalt acetate: 2% by mass, and the balance: water. The nitrate solution and the acetate solution are mixed to prepare a mixed solution. The mixed solution is heated and held at a temperature of 1000 ° C. for 6 hours for dehydration calcining, fine La oxide powder, and Sr oxidation. Powder, Ga oxide powder, Mg oxide powder and Co oxide powder aggregate powder or LaSrGaMgCo acid To produce an object powder.
The aggregate powder of the oxide powder or LaSrGaMgCo oxide powder obtained by dehydration calcining is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry. A green body film was produced in a thin plate shape by a blade method, and the obtained green body film was heated and held in air at 1450 ° C. for 6 hours to sinter, thereby having a thickness of 200 μm and (La 0.8 sr 0.2) (Ga 0.8 Mg 0.15 Co 0.05) and forming the oxide ion conductor sheet having a composition represented by O 3, embodying the present invention method 1.
Observe the structure of the oxide ion conductor thin plate produced by the method 1 of the present invention, determine the average particle size of the mother crystal, further determine the number of impurity phase grains dispersed in the 50 μm × 50 μm substrate, The results are shown in Table 1. Further, the bending strength of the oxide ion conductor thin plate produced by the method 1 of the present invention was measured by the method defined in JIS R1601, and the results are shown in Table 1.

従来例1
平均粒径:10μmの酸化ランタン粉末、平均粒径:1.0μmの炭酸ストロンチウム粉末、平均粒径:1.0μmの酸化ガリウム粉末、平均粒径:0.2μmの酸化マグネシウム粉末、平均粒径:1.0μmの酸化コバルト粉末を用意し、これら原料粉末を酸化ランタン粉末:53.3質量%、炭酸ストロンチウム粉末:12.1質量%、酸化ガリウム粉末:30.7質量%、酸化マグネシウム粉末:2.5質量%、酸化コバルト粉末:1.5質量%となるように秤量し、ボールミルにて混合した後、空気中、1300℃に3時間加熱保持の条件の仮焼処理を行った。この仮焼処理により得られた塊状仮焼体をハンマーミルで粗粉砕の後、ボールミルで微粉砕してランタンガレート系電解質原料粉末を製造した。得られたランタンガレート系電解質原料粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状にグリーン体膜を作製し、得られたグリーン体膜を空気中、1450℃に4時間加熱保持して焼結することにより、厚さ200μmを有しかつ(La0.8Sr0.2)(Ga0.8Mg0.15Co0.05)Oで示される組成を有する酸化物イオン伝導体薄板を作製し、従来法1を実施した。
この従来法1により作製した酸化物イオン伝導体薄板の組織を観察し、その母結晶の平均粒径を求め、さらに50μm×50μmの素地中に不純物相粒の分散している数を求め、その結果を表1に示した。さらに従来法1により得られた酸化物イオン伝導体薄板の抗折強度をJISR1601に規定される方法で測定し、この結果を表1に示した。
Conventional Example 1
Average particle size: 10 μm lanthanum oxide powder, average particle size: 1.0 μm strontium carbonate powder, average particle size: 1.0 μm gallium oxide powder, average particle size: 0.2 μm magnesium oxide powder, average particle size: A cobalt oxide powder of 1.0 μm was prepared, and these raw material powders were lanthanum oxide powder: 53.3 mass%, strontium carbonate powder: 12.1 mass%, gallium oxide powder: 30.7 mass%, magnesium oxide powder: 2 0.5% by mass, cobalt oxide powder: Weighed to 1.5% by mass, mixed with a ball mill, and then calcined in air at 1300 ° C. for 3 hours. The bulk calcined body obtained by this calcining treatment was coarsely pulverized with a hammer mill and then finely pulverized with a ball mill to produce a lanthanum gallate electrolyte raw material powder. The obtained lanthanum gallate electrolyte raw material powder is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry, and a green body film is prepared in a thin plate shape by the doctor blade method. The obtained green body film was heated and held in air at 1450 ° C. for 4 hours to sinter, thereby having a thickness of 200 μm and (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0 An oxide ion conductor thin plate having a composition represented by .15 Co 0.05 ) O 3 was prepared and the conventional method 1 was carried out.
The structure of the oxide ion conductor thin plate produced by the conventional method 1 is observed, the average particle size of the mother crystal is obtained, and the number of impurity phase grains dispersed in the 50 μm × 50 μm substrate is obtained. The results are shown in Table 1. Furthermore, the bending strength of the oxide ion conductor thin plate obtained by the conventional method 1 was measured by the method prescribed in JIS R1601, and the results are shown in Table 1.

Figure 0004873291
Figure 0004873291

表1に示される結果から、本発明法1により得られた酸化物イオン伝導体薄板は、従来法1により得られた酸化物イオン伝導体薄板に比べて母結晶の平均粒径が微細であり、不純物相粒の数が少なく、さらに本発明法1により得られた酸化物イオン伝導体薄板は従来法1により得られた酸化物イオン伝導体薄板に比べて強度が格段に優れていることが分かる。
From the results shown in Table 1, the oxide ion conductor thin plate obtained by the method 1 of the present invention has a smaller average grain size of the mother crystal than the oxide ion conductor thin plate obtained by the conventional method 1. The number of impurity phase grains is small, and the oxide ion conductor thin plate obtained by the method 1 of the present invention is significantly superior in strength to the oxide ion conductor thin plate obtained by the conventional method 1. I understand.

実施例2
硝酸ガリウムにエチレングリコールおよび水を、硝酸ガリウム:45質量%、エチレングリコール:5質量%、残部:水の割合になるように混合してガリウムの硝酸塩溶液を作製し、さらに酢酸ランタン、酢酸ストロンチウム、酢酸マグネシウムおよび酢酸ニッケル四水和物を水に溶解して酢酸ランタン:28質量%、酢酸ストロンチウム:13質量%、酢酸マグネシウム:5質量%、酢酸ニッケル四水和物:2質量%、残部:水からなる酢酸塩溶液を作製し、この硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を加熱して温度:1000℃で6時間保持することにより脱水仮焼し、微細なLa酸化物粉末、Sr酸化物粉末、Ga酸化物粉末、Mg酸化物粉末およびNi酸化物粉末が集合した集合体粉末あるいはLaSrGaMgNi酸化物粉末を作製した。
この脱水仮焼して得られた酸化物粉末の集合体粉末あるいはLaSrGaMgNi酸化物粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状にグリーン体膜を作製し、得られたグリーン体膜を空気中、1450℃に6時間加熱保持して焼結することにより、厚さ200μmを有しかつ(La0.8Sr0.2)(Ga0.8Mg0.15Ni0.05)Oで示される組成を有する酸化物イオン伝導体薄板を作製し、本発明法2を実施した。
この本発明法2により作製した酸化物イオン伝導体薄板の組織を観察し、その母結晶の平均粒径を求め、さらに50μm×50μmの素地中に不純物相粒の分散している数を求め、その結果を表2に示した。さらに得られたこの本発明法2により作製した酸化物イオン伝導体薄板の抗折強度をJISR1601に規定される方法で測定し、この結果を表2に示した。
Example 2
Gallium nitrate and ethylene glycol and water are mixed in a ratio of gallium nitrate: 45% by mass, ethylene glycol: 5% by mass, and the balance: water to prepare a gallium nitrate solution. Further, lanthanum acetate, strontium acetate, Magnesium acetate and nickel acetate tetrahydrate dissolved in water, lanthanum acetate: 28% by mass, strontium acetate: 13% by mass, magnesium acetate: 5% by mass, nickel acetate tetrahydrate: 2% by mass, balance: water A mixed solution is prepared by mixing the nitrate solution and the acetate solution. The mixed solution is heated and held at a temperature of 1000 ° C. for 6 hours, and then dehydrated and calcined. La oxide powder, Sr oxide powder, Ga oxide powder, Mg oxide powder and aggregated powder of Ni oxide powder or LaS It was prepared GaMgNi oxide powder.
The aggregate powder or LaSrGaMgNi oxide powder obtained by dehydration calcining is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry. A green body film was produced in a thin plate shape by a blade method, and the obtained green body film was heated and held in air at 1450 ° C. for 6 hours to sinter, thereby having a thickness of 200 μm and (La 0.8 An oxide ion conductor thin plate having a composition represented by Sr 0.2 ) (Ga 0.8 Mg 0.15 Ni 0.05 ) O 3 was produced, and the present method 2 was carried out.
Observe the structure of the oxide ion conductor thin plate prepared by the method 2 of the present invention, determine the average particle size of the mother crystal, further determine the number of impurity phase grains dispersed in the 50 μm × 50 μm substrate, The results are shown in Table 2. Further, the bending strength of the obtained oxide ion conductor thin plate produced by the method 2 of the present invention was measured by the method defined in JIS R1601, and the results are shown in Table 2.

従来例2
平均粒径:10μmの酸化ランタン粉末、平均粒径:1.0μmの炭酸ストロンチウム粉末、平均粒径:1.0μmの酸化ガリウム粉末、平均粒径:0.2μmの酸化マグネシウム粉末、平均粒径:1.0μmの酸化ニッケル粉末を用意し、これら原料粉末を酸化ランタン粉末:53.3質量%、炭酸ストロンチウム粉末:12.1質量%、酸化ガリウム粉末:30.7質量%、酸化マグネシウム粉末:2.5質量%、酸化ニッケル粉末:1.5質量%となるように秤量し、ボールミルにて混合した後、空気中、1300℃に3時間加熱保持の条件の仮焼処理を行った。この仮焼処理により得られた塊状仮焼体をハンマーミルで粗粉砕の後、ボールミルで微粉砕してランタンガレート系電解質原料粉末を製造した。得られたランタンガレート系電解質原料粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状にグリーン体膜を作製し、得られたグリーン体膜を空気中、1450℃に4時間加熱保持して焼結することにより、厚さ200μmを有しかつ(La0.8Sr0.2)(Ga0.8Mg0.15Ni0.05)Oで示される組成を有する酸化物イオン伝導体薄板を作製し、従来法2を実施した。
この従来法2により作製した酸化物イオン伝導体薄板の組織を観察し、その母結晶の平均粒径を求め、さらに50μm×50μmの素地中に不純物相粒の分散している数を求め、その結果を表2に示した。さらに従来法2により得られた酸化物イオン伝導体薄板の抗折強度をJISR1601に規定される方法で測定し、この結果を表2に示した。
Conventional example 2
Average particle size: 10 μm lanthanum oxide powder, average particle size: 1.0 μm strontium carbonate powder, average particle size: 1.0 μm gallium oxide powder, average particle size: 0.2 μm magnesium oxide powder, average particle size: A nickel oxide powder of 1.0 μm is prepared, and these raw material powders are lanthanum oxide powder: 53.3 mass%, strontium carbonate powder: 12.1 mass%, gallium oxide powder: 30.7 mass%, magnesium oxide powder: 2 0.5% by mass, nickel oxide powder: Weighed to 1.5% by mass, mixed with a ball mill, and then calcined in air at 1300 ° C. for 3 hours. The bulk calcined body obtained by this calcining treatment was coarsely pulverized with a hammer mill and then finely pulverized with a ball mill to produce a lanthanum gallate electrolyte raw material powder. The obtained lanthanum gallate electrolyte raw material powder is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry, and a green body film is prepared in a thin plate shape by the doctor blade method. The obtained green body film was heated and held in air at 1450 ° C. for 4 hours to sinter, thereby having a thickness of 200 μm and (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0 .15 Ni 0.05 ) O 3 was prepared as an oxide ion conductor thin plate, and the conventional method 2 was carried out.
The structure of the oxide ion conductor thin plate produced by the conventional method 2 is observed, the average particle size of the mother crystal is obtained, and the number of impurity phase grains dispersed in the 50 μm × 50 μm substrate is obtained. The results are shown in Table 2. Further, the bending strength of the oxide ion conductor thin plate obtained by the conventional method 2 was measured by the method defined in JIS R1601, and the results are shown in Table 2.

Figure 0004873291
Figure 0004873291

表2に示される結果から、本発明法2により得られた酸化物イオン伝導体薄板は、従来法2により得られた酸化物イオン伝導体薄板に比べて母結晶の平均粒径が微細であり、不純物相粒の数が少なく、さらに本発明法2により得られた酸化物イオン伝導体薄板は従来法2により得られた酸化物イオン伝導体薄板に比べて強度が格段に優れていることが分かる。 From the results shown in Table 2, the oxide ion conductor thin plate obtained by the method 2 of the present invention has an average particle size of the mother crystal smaller than that of the oxide ion conductor thin plate obtained by the conventional method 2. The number of impurity phase grains is small, and the oxide ion conductor thin plate obtained by the method 2 of the present invention is significantly superior in strength to the oxide ion conductor thin plate obtained by the conventional method 2. I understand.

実施例3
硝酸ガリウムにエチレングリコールおよび水を、硝酸ガリウム:45質量%、エチレングリコール:5質量%、残部:水の割合になるように混合してガリウムの硝酸塩溶液を作製し、さらに酢酸ランタン、酢酸ストロンチウム、酢酸マグネシウムおよび酢酸第一銅を水に溶解して酢酸ランタン:28質量%、酢酸ストロンチウム:13質量%、酢酸マグネシウム:5質量%、酢酸第一銅:2質量%、残部:水からなる酢酸塩溶液を作製し、この硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を加熱して温度:1000℃で6時間保持することにより脱水仮焼し、微細なLa酸化物粉末、Sr酸化物粉末、Ga酸化物粉末、Mg酸化物粉末およびCu酸化物粉末が集合した集合体粉末あるいはLaSrGaMgCu酸化物粉末を作製した。
この脱水仮焼して得られた酸化物粉末の集合体粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状にグリーン体膜を作製し、得られたグリーン体膜を空気中、1450℃に6時間加熱保持して焼結することにより、厚さ200μmを有しかつ(La0.8Sr0.2)(Ga0.8Mg0.15Cu0.05)Oで示される組成を有する酸化物イオン伝導体薄板を作製し、本発明法3を実施した。
この本発明法3により作製した酸化物イオン伝導体薄板の組織を観察し、その母結晶の平均粒径を求め、さらに50μm×50μmの素地中に不純物相粒の分散している数を求め、その結果を表3に示した。さらに得られたこの本発明法3により作製した酸化物イオン伝導体薄板の抗折強度をJISR1601に規定される方法で測定し、この結果を表3に示した。
Example 3
Gallium nitrate and ethylene glycol and water are mixed in a ratio of gallium nitrate: 45% by mass, ethylene glycol: 5% by mass, and the balance: water to prepare a gallium nitrate solution. Further, lanthanum acetate, strontium acetate, Magnesium acetate and cuprous acetate dissolved in water, lanthanum acetate: 28% by mass, strontium acetate: 13% by mass, magnesium acetate: 5% by mass, cuprous acetate: 2% by mass, balance: water acetate A solution is prepared, and the nitrate solution and the acetate solution are mixed to prepare a mixed solution. The mixed solution is heated and held at a temperature of 1000 ° C. for 6 hours for dehydration and calcining, and fine La oxide Powder, Sr oxide powder, Ga oxide powder, Mg oxide powder and aggregated powder of Cu oxide powder or LaSrGaMgCu oxide To prepare the end.
The aggregate powder of the oxide powder obtained by dehydration calcining is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry, which is formed into a thin plate by a doctor blade method. A green body film was prepared, and the obtained green body film was heated and sintered in air at 1450 ° C. for 6 hours to have a thickness of 200 μm and (La 0.8 Sr 0.2 ) An oxide ion conductor thin plate having a composition represented by (Ga 0.8 Mg 0.15 Cu 0.05 ) O 3 was prepared, and the present invention method 3 was carried out.
Observe the structure of the oxide ion conductor thin plate produced by the method 3 of the present invention, determine the average particle size of the mother crystal, further determine the number of impurity phase grains dispersed in the 50 μm × 50 μm substrate, The results are shown in Table 3. Further, the bending strength of the obtained oxide ion conductor thin plate produced by the method 3 of the present invention was measured by the method defined in JIS R1601, and the results are shown in Table 3.

従来例3
平均粒径:10μmの酸化ランタン粉末、平均粒径:1.0μmの炭酸ストロンチウム粉末、平均粒径:1.0μmの酸化ガリウム粉末、平均粒径:0.2μmの酸化マグネシウム粉末、平均粒径:1.0μmの酸化銅粉末を用意し、これら原料粉末を酸化ランタン粉末:53.3質量%、炭酸ストロンチウム粉末:12.1質量%、酸化ガリウム粉末:30.7質量%、酸化マグネシウム粉末:2.5質量%、酸化銅粉末:1.5質量%となるように秤量し、ボールミルにて混合した後、空気中、1300℃に3時間加熱保持の条件の仮焼処理を行った。この仮焼処理により得られた塊状仮焼体をハンマーミルで粗粉砕の後、ボールミルで微粉砕してランタンガレート系電解質原料粉末を製造した。得られたランタンガレート系電解質原料粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状にグリーン体膜を作製し、得られたグリーン体膜を空気中、1450℃に4時間加熱保持して焼結することにより、厚さ200μmを有しかつ(La0.8Sr0.2)(Ga0.8Mg0.15Cu0.05)Oで示される組成を有する酸化物イオン伝導体薄板を作製し、従来法3を実施した。
この従来法3により作製した酸化物イオン伝導体薄板の組織を観察し、その母結晶の平均粒径を求め、さらに50μm×50μmの素地中に不純物相粒の分散している数を求め、その結果を表3に示した。さらに従来法3により得られた酸化物イオン伝導体薄板の抗折強度をJISR1601に規定される方法で測定し、この結果を表3に示した。
Conventional example 3
Average particle size: 10 μm lanthanum oxide powder, average particle size: 1.0 μm strontium carbonate powder, average particle size: 1.0 μm gallium oxide powder, average particle size: 0.2 μm magnesium oxide powder, average particle size: A 1.0 μm copper oxide powder was prepared, and these raw material powders were lanthanum oxide powder: 53.3 mass%, strontium carbonate powder: 12.1 mass%, gallium oxide powder: 30.7 mass%, magnesium oxide powder: 2 0.5% by mass, copper oxide powder: Weighed so as to be 1.5% by mass, mixed with a ball mill, and then calcined in air at 1300 ° C. for 3 hours. The bulk calcined body obtained by this calcining treatment was coarsely pulverized with a hammer mill and then finely pulverized with a ball mill to produce a lanthanum gallate electrolyte raw material powder. The obtained lanthanum gallate electrolyte raw material powder is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry, and a green body film is prepared in a thin plate shape by the doctor blade method. The obtained green body film was heated and held in air at 1450 ° C. for 4 hours to sinter, thereby having a thickness of 200 μm and (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0 An oxide ion conductor thin plate having a composition represented by .15 Cu 0.05 ) O 3 was prepared and the conventional method 3 was performed.
The structure of the oxide ion conductor thin plate produced by the conventional method 3 is observed, the average grain size of the mother crystal is obtained, and the number of impurity phase grains dispersed in the 50 μm × 50 μm substrate is obtained. The results are shown in Table 3. Further, the bending strength of the oxide ion conductor thin plate obtained by the conventional method 3 was measured by the method defined in JIS R1601, and the results are shown in Table 3.

Figure 0004873291
Figure 0004873291

表3に示される結果から、本発明法3により得られた酸化物イオン伝導体薄板は、従来法3により得られた酸化物イオン伝導体薄板に比べて母結晶の平均粒径が微細であり、不純物相粒の数が少なく、さらに本発明法3により得られた酸化物イオン伝導体薄板は従来法3により得られた酸化物イオン伝導体薄板に比べて強度が格段に優れていることが分かる。 From the results shown in Table 3, the average particle diameter of the mother crystal of the oxide ion conductor thin plate obtained by the method 3 of the present invention is finer than that of the oxide ion conductor thin plate obtained by the conventional method 3. The number of impurity phase grains is small, and the oxide ion conductor thin plate obtained by the method 3 of the present invention is significantly superior in strength to the oxide ion conductor thin plate obtained by the conventional method 3. I understand.

実施例4
硝酸ガリウムにエチレングリコールおよび水を、硝酸ガリウム:45質量%、エチレングリコール:5質量%、残部:水の割合になるように混合してガリウムの硝酸塩溶液を作製し、さらに酢酸ランタン、酢酸ストロンチウム、酢酸マグネシウムおよび酢酸第一鉄を水に溶解して酢酸ランタン:28質量%、酢酸ストロンチウム:13質量%、酢酸マグネシウム:5質量%、酢酸第一鉄:2質量%、残部:水からなる酢酸塩溶液を作製し、この硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を加熱して温度:1000℃で6時間保持することにより脱水仮焼し、微細なLa酸化物粉末、Sr酸化物粉末、Ga酸化物粉末、Mg酸化物粉末およびFe酸化物粉末が集合した集合体粉末あるいはLaSrGaMgFe酸化物粉末を作製した。
この脱水仮焼して得られた酸化物粉末の集合体粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状にグリーン体膜を作製し、得られたグリーン体膜を空気中、1450℃に6時間加熱保持して焼結することにより、厚さ200μmを有しかつ(La0.8Sr0.2)(Ga0.8Mg0.15Fe0.05)Oで示される組成を有する酸化物イオン伝導体薄板を作製し、本発明法4を実施した。
この本発明法4により作製した酸化物イオン伝導体薄板の組織を観察し、その母結晶の平均粒径を求め、さらに50μm×50μmの素地中に不純物相粒の分散している数を求め、その結果を表4に示した。さらに得られたこの本発明法4により作製した酸化物イオン伝導体薄板の抗折強度をJISR1601に規定される方法で測定し、この結果を表4に示した。
Example 4
Gallium nitrate and ethylene glycol and water are mixed in a ratio of gallium nitrate: 45% by mass, ethylene glycol: 5% by mass, and the balance: water to prepare a gallium nitrate solution. Further, lanthanum acetate, strontium acetate, Magnesium acetate and ferrous acetate dissolved in water, lanthanum acetate: 28% by mass, strontium acetate: 13% by mass, magnesium acetate: 5% by mass, ferrous acetate: 2% by mass, balance: water acetate A solution is prepared, and the nitrate solution and the acetate solution are mixed to prepare a mixed solution. The mixed solution is heated and held at a temperature of 1000 ° C. for 6 hours for dehydration and calcining, and fine La oxide Powder, Sr oxide powder, Ga oxide powder, Mg oxide powder and aggregated powder of Fe oxide powder or LaSrGaMgFe oxide To prepare the end.
The aggregate powder of the oxide powder obtained by dehydration calcining is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry, which is formed into a thin plate by a doctor blade method. A green body film was prepared, and the obtained green body film was heated and sintered in air at 1450 ° C. for 6 hours to have a thickness of 200 μm and (La 0.8 Sr 0.2 ) An oxide ion conductor thin plate having a composition represented by (Ga 0.8 Mg 0.15 Fe 0.05 ) O 3 was prepared, and the present invention method 4 was carried out.
Observe the structure of the oxide ion conductor thin plate produced by the method 4 of the present invention, determine the average particle size of the mother crystal, further determine the number of impurity phase grains dispersed in the 50 μm × 50 μm substrate, The results are shown in Table 4. Further, the bending strength of the obtained oxide ion conductor thin plate produced by the method 4 of the present invention was measured by the method defined in JIS R1601, and the results are shown in Table 4.

従来例4
平均粒径:10μmの酸化ランタン粉末、平均粒径:1.0μmの炭酸ストロンチウム粉末、平均粒径:1.0μmの酸化ガリウム粉末、平均粒径:0.2μmの酸化マグネシウム粉末、平均粒径:1.0μmの酸化鉄粉末を用意し、これら原料粉末を酸化ランタン粉末:53.3質量%、炭酸ストロンチウム粉末:12.1質量%、酸化ガリウム粉末:30.7質量%、酸化マグネシウム粉末:2.5質量%、酸化鉄粉末:1.5質量%となるように秤量し、ボールミルにて混合した後、空気中、1300℃に3時間加熱保持の条件の仮焼処理を行った。この仮焼処理により得られた塊状仮焼体をハンマーミルで粗粉砕の後、ボールミルで微粉砕してランタンガレート系電解質原料粉末を製造した。得られたランタンガレート系電解質原料粉末をトルエン-エタノール混合溶媒にポリビニルブチラルとフタル酸Nジオクチルを溶解した有機バインダー溶液と混合してスラリーとし、ドクターブレード法で薄板状にグリーン体膜を作製し、得られたグリーン体膜を空気中、1450℃に4時間加熱保持して焼結することにより、厚さ200μmを有しかつ(La0.8Sr0.2)(Ga0.8Mg0.15Fe0.05)Oで示される組成を有する酸化物イオン伝導体薄板を作製し、従来法4を実施した。
この従来法4により作製した酸化物イオン伝導体薄板の組織を観察し、その母結晶の平均粒径を求め、さらに50μm×50μmの素地中に不純物相粒の分散している数を求め、その結果を表4に示した。さらに従来法4により得られた酸化物イオン伝導体薄板の抗折強度をJISR1601に規定される方法で測定し、この結果を表4に示した。
Conventional example 4
Average particle size: 10 μm lanthanum oxide powder, average particle size: 1.0 μm strontium carbonate powder, average particle size: 1.0 μm gallium oxide powder, average particle size: 0.2 μm magnesium oxide powder, average particle size: 1.0 μm iron oxide powder is prepared, and these raw material powders are lanthanum oxide powder: 53.3 mass%, strontium carbonate powder: 12.1 mass%, gallium oxide powder: 30.7 mass%, magnesium oxide powder: 2 0.5% by mass, iron oxide powder: Weighed to 1.5% by mass, mixed with a ball mill, and then calcined in air at 1300 ° C. for 3 hours. The bulk calcined body obtained by this calcining treatment was coarsely pulverized with a hammer mill and then finely pulverized with a ball mill to produce a lanthanum gallate electrolyte raw material powder. The obtained lanthanum gallate electrolyte raw material powder is mixed with an organic binder solution in which polyvinyl butyral and N-dioctyl phthalate are dissolved in a toluene-ethanol mixed solvent to form a slurry, and a green body film is prepared in a thin plate shape by the doctor blade method. The obtained green body film was heated and held in air at 1450 ° C. for 4 hours to sinter, thereby having a thickness of 200 μm and (La 0.8 Sr 0.2 ) (Ga 0.8 Mg 0 An oxide ion conductor thin plate having a composition represented by .15 Fe 0.05 ) O 3 was prepared, and the conventional method 4 was performed.
The structure of the oxide ion conductor thin plate produced by the conventional method 4 is observed, the average particle size of the mother crystal is obtained, and the number of impurity phase grains dispersed in the 50 μm × 50 μm substrate is obtained. The results are shown in Table 4. Furthermore, the bending strength of the oxide ion conductor thin plate obtained by the conventional method 4 was measured by the method prescribed in JIS R1601, and the results are shown in Table 4.

Figure 0004873291
Figure 0004873291

表4に示される結果から、本発明法4により得られた酸化物イオン伝導体薄板は、従来法4により得られた酸化物イオン伝導体薄板に比べて母結晶の平均粒径が微細であり、不純物相粒の数が少なく、さらに本発明法4により得られた酸化物イオン伝導体薄板は従来法4により得られた酸化物イオン伝導体薄板に比べて強度が格段に優れていることが分かる。 From the results shown in Table 4, the average particle diameter of the mother crystal of the oxide ion conductor thin plate obtained by the method 4 of the present invention is smaller than that of the oxide ion conductor thin plate obtained by the conventional method 4. The number of impurity phase grains is small, and the oxide ion conductor thin plate obtained by the method 4 of the present invention is significantly superior in strength to the oxide ion conductor thin plate obtained by the conventional method 4. I understand.

この発明の方法により得られた酸化物イオン伝導体薄板の組織を示す説明図である。It is explanatory drawing which shows the structure | tissue of the oxide ion conductor thin plate obtained by the method of this invention. 従来の方法により得られた酸化物イオン伝導体薄板の組織を示す説明図であるIt is explanatory drawing which shows the structure | tissue of the oxide ion conductor thin plate obtained by the conventional method.

Claims (3)

Ln:La,Ce,Pr,Nd、Smなどの希土類元素の内の1種または2種以上、
A:Sr,Ca,Baの内の1種または2種以上、
B1:Mg,Al,Inの内の1種または2種以上、
B2:Co,Fe,Ni,Cuの内の1種または2種以上、
とすると、ガリウムの硝酸塩にエチレングリコールおよび水を混合してガリウムの硝酸塩溶液を作製し、さらにLnの酢酸塩、Aの酢酸塩、B1の酢酸塩およびB2の酢酸塩を水に溶かした酢酸塩溶液を作製し、このガリウムの硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を加熱して脱水しさらに仮焼(以下、脱水仮焼という)することにより微細なLn酸化物粉末、A酸化物粉末、Ga酸化物粉末、B1酸化物粉末およびB2酸化物粉末が集合した集合体粉末あるいはLnAGaB1B2酸化物粉末を作製し、この脱水仮焼して得られた酸化物粉末の集合体粉末あるいはLnAGaB1B2酸化物粉末をドクターブレード法により成膜し乾燥することによりグリーン体膜を作製し、得られたグリーン体膜を焼結することを特徴とする高強度酸化物イオン伝導体の製造方法、
Ln: one or more of rare earth elements such as La, Ce, Pr, Nd, Sm,
A: One or more of Sr, Ca and Ba,
B1: One or more of Mg, Al, and In,
B2: one or more of Co, Fe, Ni and Cu,
Then, ethylene glycol and water are mixed with gallium nitrate to prepare a gallium nitrate solution, and further, acetate obtained by dissolving Ln acetate, A acetate, B1 acetate and B2 acetate in water. A solution is prepared, and a mixed solution is prepared by mixing the gallium nitrate solution and the acetate solution. The mixed solution is heated and dehydrated, and further calcined (hereinafter referred to as dehydrated calcining), thereby producing fine Ln. Oxide powder obtained by preparing an aggregate powder or LnAGaB1B2 oxide powder in which oxide powder, A oxide powder, Ga oxide powder, B1 oxide powder and B2 oxide powder are aggregated, and dehydrating and calcining this powder A green body film is prepared by forming an aggregate powder or LnAGaB1B2 oxide powder by a doctor blade method and drying it, and sintering the obtained green body film Method for producing a high-strength oxide ion conductor, wherein the door,
B2:Co,Fe,Ni,Cuの内の1種または2種以上とすると、ガリウムの硝酸塩にエチレングリコールおよび水を混合してガリウムの硝酸塩溶液を作製し、さらに酢酸ランタン、酢酸ストロンチウム、酢酸マグネシウムおよびB2の酢酸塩を水に溶かした酢酸塩溶液を作製し、この硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を加熱して脱水仮焼することにより微細なLa酸化物粉末、Sr酸化物粉末、Ga酸化物粉末、Mg酸化物粉末およびB2酸化物粉末が集合した集合体粉末あるいはLaSrGaMgB2酸化物粉末を作製し、この脱水仮焼して得られた酸化物粉末の集合体粉末あるいはLaSrGaMgB2酸化物粉末をドクターブレード法により成膜し乾燥することによりグリーン体膜を作製し、得られたグリーン体膜を焼結することを特徴とする高強度酸化物イオン伝導体の製造方法、 B2: Assuming that one or more of Co, Fe, Ni, and Cu are used, a gallium nitrate solution is prepared by mixing ethylene glycol and water with gallium nitrate, and further lanthanum acetate, strontium acetate, magnesium acetate And B2 acetate solution in water is prepared, this nitrate solution and acetate solution are mixed to prepare a mixed solution, and this mixed solution is heated and dehydrated and calcined to obtain fine La Oxide powder obtained by preparing aggregate powder or LaSrGaMgB2 oxide powder in which oxide powder, Sr oxide powder, Ga oxide powder, Mg oxide powder and B2 oxide powder are assembled, and dehydrating and calcining this powder A green body film is obtained by forming a film of an Ag powder or LaSrGaMgB2 oxide powder by the doctor blade method and drying it. Method for producing a high-strength oxide-ion conductor, characterized in sintering the green body film, ガリウムの硝酸塩にエチレングリコールおよび水を混合してガリウムの硝酸塩溶液を作製し、さらに酢酸ランタン、酢酸ストロンチウム、酢酸マグネシウムおよび酢酸コバルトを水に溶かした酢酸塩溶液を作製し、この硝酸塩溶液と酢酸塩溶液を混合して混合溶液を作製し、この混合溶液を加熱して脱水仮焼することにより微細なLa酸化物粉末、Sr酸化物粉末、Ga酸化物粉末、Mg酸化物粉末およびCo酸化物粉末が集合した集合体粉末あるいはLaSrGaMgCo酸化物粉末を作製し、この脱水仮焼して得られた酸化物粉末の集合体粉末あるいはLaSrGaMgCo酸化物粉末をドクターブレード法により成膜し乾燥することによりグリーン体膜を作製し、得られたグリーン体膜を焼結することを特徴とする高強度酸化物イオン伝導体の製造方法。





...)()()()()()
A gallium nitrate solution is prepared by mixing ethylene glycol and water with gallium nitrate, and then an acetate solution in which lanthanum acetate, strontium acetate, magnesium acetate and cobalt acetate are dissolved in water is prepared. A mixed solution is prepared by mixing the solution, and the mixed solution is heated and dehydrated and calcined to obtain fine La oxide powder, Sr oxide powder, Ga oxide powder, Mg oxide powder and Co oxide powder. An aggregate powder or an LaSrGaMgCo oxide powder in which the particles are aggregated is produced, and the aggregate powder of the oxide powder or LaSrGaMgCo oxide powder obtained by dehydration and calcination is formed into a film by a doctor blade method and dried to obtain a green body. A high-strength oxide ion characterized by producing a film and sintering the obtained green body film Method for producing a conductor.





(...) () () () () ()
JP2006065354A 2005-03-28 2006-03-10 Method for producing high-strength oxide ion conductor Active JP4873291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006065354A JP4873291B2 (en) 2005-03-28 2006-03-10 Method for producing high-strength oxide ion conductor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005090979 2005-03-28
JP2005090979 2005-03-28
JP2006065354A JP4873291B2 (en) 2005-03-28 2006-03-10 Method for producing high-strength oxide ion conductor

Publications (2)

Publication Number Publication Date
JP2006310270A JP2006310270A (en) 2006-11-09
JP4873291B2 true JP4873291B2 (en) 2012-02-08

Family

ID=37476897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006065354A Active JP4873291B2 (en) 2005-03-28 2006-03-10 Method for producing high-strength oxide ion conductor

Country Status (1)

Country Link
JP (1) JP4873291B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111484329B (en) * 2020-05-20 2022-06-21 中国科学院重庆绿色智能技术研究院 Liquid-phase synthesis of LaxSr1-xCoO3-δMethod for preparing composite oxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4487465B2 (en) * 2000-12-06 2010-06-23 三菱マテリアル株式会社 Solid oxide fuel cell
JP4211254B2 (en) * 2001-12-04 2009-01-21 関西電力株式会社 Solid oxide fuel cell

Also Published As

Publication number Publication date
JP2006310270A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP7294371B2 (en) Spinel material powder, interconnector protective film, and manufacturing method of spinel material powder
Dutta et al. Combustion synthesis and characterization of LSCF-based materials as cathode of intermediate temperature solid oxide fuel cells
CN104388972B (en) Cathode material and its application for electrolytic tank of solid oxide
CN102687324B (en) A kind of composite ceramic material and preparation method thereof
US10008731B2 (en) Ceria electrolyte for low-temperature sintering and solid oxide fuel cell using the same
KR101892909B1 (en) A method for manufacturing protonic ceramic fuel cells
CN108649235A (en) A kind of A laminated perovskite type electrode material and preparation method thereof
KR20170027242A (en) Ceria electrolyte for low temperature sintering and solid oxide fuel cells using the same
JP4995327B1 (en) Electrode material, fuel battery cell including the same, and method for manufacturing the same
JP6100050B2 (en) Air electrode for fuel cell
CN109650873B (en) A kind of preparation method of Ca-W mixed doped Bi2O3 solid electrolyte
JP5574881B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
CN104342716B (en) A kind of high-temperature solid oxide cathode of electrolytic tank material and preparation method thereof
JP2004288445A (en) Method for producing solid electrolyte
Norman et al. Influence of transition or lanthanide metal doping on the properties of Sr0. 6Ba0. 4Ce0. 9M0. 1O3-δ (M= In, Pr or Ga) electrolytes for proton-conducting solid oxide fuel cells
JP6805054B2 (en) Steam electrolysis cell
JP5543297B2 (en) Air electrode material powder for solid oxide fuel cell and method for producing the same
Cheng et al. Effects of Mg2+ addition on structure and electrical properties of gadolinium doped ceria electrolyte ceramics
JP6625855B2 (en) Cell for steam electrolysis and method for producing the same
JP4873291B2 (en) Method for producing high-strength oxide ion conductor
Polini et al. Sol–gel synthesis and characterization of Co-doped LSGM perovskites
KR101666713B1 (en) High ionic conductive and easily sinterable perovskite-type solid electrode for solid oxide fuel cell
JP3598956B2 (en) Gallate composite oxide solid electrolyte material and method for producing the same
KR101787811B1 (en) Method of manufacturing electrode, electrode manufactured by the method and fuel cell comprising the same
JP6524434B2 (en) Solid oxide fuel cell air electrode, solid oxide fuel cell, and method of manufacturing solid oxide fuel cell air electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141202

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4873291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150