[go: up one dir, main page]

JP4865291B2 - X-ray imaging device - Google Patents

X-ray imaging device Download PDF

Info

Publication number
JP4865291B2
JP4865291B2 JP2005296750A JP2005296750A JP4865291B2 JP 4865291 B2 JP4865291 B2 JP 4865291B2 JP 2005296750 A JP2005296750 A JP 2005296750A JP 2005296750 A JP2005296750 A JP 2005296750A JP 4865291 B2 JP4865291 B2 JP 4865291B2
Authority
JP
Japan
Prior art keywords
ray
signal
noise
extrinsic
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005296750A
Other languages
Japanese (ja)
Other versions
JP2007105112A5 (en
JP2007105112A (en
Inventor
康隆 昆野
健一 岡島
広則 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2005296750A priority Critical patent/JP4865291B2/en
Publication of JP2007105112A publication Critical patent/JP2007105112A/en
Publication of JP2007105112A5 publication Critical patent/JP2007105112A5/ja
Application granted granted Critical
Publication of JP4865291B2 publication Critical patent/JP4865291B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

本発明は,デジタルX線画像撮影装置,DR(Digital Radiography)装置,コーンビームCT装置,X線CT装置などのX線撮像装置に関し,特に,読み出しを行う検出素子を切り替えて信号取得する検出器を搭載するX線撮像装置に関する。   The present invention relates to an X-ray imaging apparatus such as a digital X-ray imaging apparatus, a DR (Digital Radiography) apparatus, a cone beam CT apparatus, and an X-ray CT apparatus, and more particularly, a detector that acquires signals by switching a detection element for reading. The present invention relates to an X-ray imaging apparatus equipped with

ここでは,X線撮像装置の一種であるX線CT装置について説明する。X線CT装置は,被写体の断層像を得ることができる装置であり,医療や非破壊検査の分野で広く用いられている。近年,撮影の広視野化,高速化,画像の高解像度化を実現するため,検出素子の微細化,スキャンの高速化,検出器の多列化(マルチスライス化)が進んでいる。   Here, an X-ray CT apparatus which is a kind of X-ray imaging apparatus will be described. The X-ray CT apparatus is an apparatus that can obtain a tomographic image of a subject, and is widely used in the fields of medical treatment and nondestructive inspection. In recent years, in order to realize a wider field of view, higher speed, and higher resolution of an image, miniaturization of detection elements, higher speed of scanning, and multi-row (multi-slice) detectors are progressing.

しかし,マルチスライス化のX線検出素子面積の低下に伴って,1つのX線検出素子あたりに入射するX線量子数が減少するため,発生する信号は,マルチスライスではシングルスライスの場合に比べて小さくなる。このためマルチスライスCTは,雑音の影響を受け,その検出器回路の有する回路雑音や,外部回路などによって発生した外因性雑音により,画質は著しく低下する。   However, the number of X-ray quanta incident per one X-ray detection element decreases as the area of the multi-slice X-ray detection element decreases. Become smaller. For this reason, the multi-slice CT is affected by noise, and the image quality is remarkably deteriorated due to circuit noise of the detector circuit and external noise generated by an external circuit.

このような外因性雑音を除去,低減できる方法として,X線検出器の一部のX線検出画素を参照画素として用い,その計測値からX線検出素子の外因性雑音を推測し,これを用いて外因性雑音を除去,低減する補正法がある。特開2000-33083号公報には,参照画素としてX線検出器の一部にX線が入射しないX線検出素子を設け,この参照画素で計測したライン相関性雑音補正用データを用いて,X線検出素子の出力データを補正する方法が提案されている。ライン相関性雑音の発生要因の一つは外因性雑音であり,外因性雑音の影響を低減できる。また,特開2002-158340号公報には,X線検出器の一部に,シンチレータからの光が光電変換素子に入射しない構造の参照画素を設け,この参照画素の出力データを用いて,同様の方法にてX線検出素子の出力データを補正する方法が提案されている。   As a method for removing and reducing such extrinsic noise, some X-ray detection pixels of the X-ray detector are used as reference pixels, and the extrinsic noise of the X-ray detection element is estimated from the measured values. There is a correction method that uses it to remove and reduce extrinsic noise. In Japanese Patent Laid-Open No. 2000-33083, an X-ray detection element in which X-rays are not incident on a part of the X-ray detector is provided as a reference pixel, and using the data for correcting the line correlation noise measured by this reference pixel, A method for correcting the output data of the X-ray detection element has been proposed. One of the causes of line-correlated noise is exogenous noise, which can reduce the influence of exogenous noise. Japanese Patent Laid-Open No. 2002-158340 provides a reference pixel having a structure in which light from a scintillator does not enter a photoelectric conversion element in a part of an X-ray detector, and the output data of the reference pixel is used in the same manner. There has been proposed a method of correcting the output data of the X-ray detection element by this method.

特開2000-33083号公報JP 2000-33083 A 特開2002-158340号公報JP 2002-158340 A

しかしながら,上記補正方法では、参照画素を用いてX線検出素子の外因性雑音を決める方法を,読み出しを行うX線検出素子を切り替えて信号読み出しを行うX線検出器に適用する際に,多数の参照画素が必要になるという問題があった。これをX線検出器の一部を用いて行う場合には,多数のX線検出素子を必要とするために,X線検出器の有効視野を狭めてしまうという問題があった。また,参照画素を減らすと,X線検出器のデータ取得と同時に参照画素データを取得できないために,外因性雑音補正の精度が低下するという問題があった。   However, in the above correction method, when applying the method of determining the extrinsic noise of the X-ray detection element using the reference pixel to the X-ray detector for switching the X-ray detection element for reading and reading the signal, There is a problem that the reference pixel is required. When this is performed by using a part of the X-ray detector, a large number of X-ray detection elements are required, so that the effective field of view of the X-ray detector is narrowed. Further, if the number of reference pixels is reduced, the reference pixel data cannot be acquired at the same time as the X-ray detector data acquisition, so that the accuracy of extrinsic noise correction is reduced.

本発明は,X線撮像装置において,画像への外因性雑音の影響を除去,低減することを目的とする。   An object of the present invention is to remove and reduce the influence of extrinsic noise on an image in an X-ray imaging apparatus.

前記の課題を解決するために,本発明のX線撮像装置は,X線を照射するX線源と,被検体を透過したX線を検出して電気信号に変換する複数のX線検出素子とX線検出素子から検出信号を読み出してデジタル信号に変換するX線信号読み出し回路とを具備するX線検出手段と,外因性雑音要因によって電気信号を生じる雑音計測素子と雑音計測素子から外因性雑音信号を読み出してデジタル信号に変換する雑音読み出し回路とを具備する雑音計測手段と,雑音計測手段のデジタル信号を用いてX線検出手段のデジタル信号に含まれる外因性雑音を演算する演算手段と,演算手段の演算結果を用いてX線検出手段のデジタル信号に補正処理を行う補正手段とを具備し,X線検出手段は,X線信号読み出し回路によって1個以上のX線検出素子から検出信号読み出しを同時に行う同時X線検出手段を複数配置した構成を有し,当該同時X線検出手段を複数回切り替えて1つのX線像分のデータを取得し,雑音計測手段は,雑音読み出し回路によって少なくとも一つの雑音計測素子から外因性雑音信号読み出しを同時に行う同時雑音計測手段を少なくとも一つ配置した構成を有し,同時雑音計測手段は同時X線検出手段による検出信号読み出しと同時に外因性雑音信号読み出しを行い,1つのX線像分のデータを取得する間に,少なくとも1つの同一の同時雑音計測手段が,異なる時刻の同時X線検出手段の検出信号読み出しと同時に外因性雑音信号読み出しを雑音読み出し回路から行い、演算手段に出力する。   In order to solve the above-described problems, an X-ray imaging apparatus according to the present invention includes an X-ray source that irradiates X-rays, and a plurality of X-ray detection elements that detect X-rays transmitted through a subject and convert them into electrical signals. And an X-ray detection means comprising an X-ray signal readout circuit for reading a detection signal from the X-ray detection element and converting it into a digital signal, a noise measuring element for generating an electric signal due to an extrinsic noise factor, and an extrinsic from the noise measuring element A noise measurement means comprising a noise readout circuit for reading out a noise signal and converting it into a digital signal; and an arithmetic means for calculating extrinsic noise contained in the digital signal of the X-ray detection means using the digital signal of the noise measurement means; Correction means for performing correction processing on the digital signal of the X-ray detection means using the calculation result of the calculation means, and the X-ray detection means includes one or more X-ray detection elements by an X-ray signal readout circuit. A plurality of simultaneous X-ray detection means for simultaneously reading out detection signals, and switching the simultaneous X-ray detection means a plurality of times to acquire data for one X-ray image. The readout circuit has a configuration in which at least one simultaneous noise measuring means for simultaneously reading out an extrinsic noise signal from at least one noise measuring element is arranged, and the simultaneous noise measuring means simultaneously detects the external signal simultaneously with the detection signal read out by the simultaneous X-ray detection means. At the same time, at least one identical simultaneous noise measuring means simultaneously reads the detection signal of the simultaneous X-ray detection means at different times and acquires an extrinsic noise signal. Reading is performed from the noise reading circuit and output to the calculation means.

このようなX線撮像装置により,例えば順次切り替え読み出し方式のように,1つのX線像を得るために,読み出しを行うX線検出素子を経時的に切り替えて信号読み出しするX線検出器を搭載したX線撮像装置において,X線検出素子の信号読み出し毎に別々に雑音検出素子を設けることなく,少数の雑音計測素子を用いて,X線検出手段の各読み出しと同時に外因性雑音信号を取得することができ,精度良く外因性雑音の推測が可能になり,精度の良い補正が可能になる。更に,各X線検出素子の信号読み出しと同時に外因性雑音の信号を取得でき,X線像中に一様な精度で外因性雑音の推測を行うことができ,補正精度が位置依存してしまうことに伴って生じるアーチファクトを除去,低減することができる。更に,X線検出器の一部を雑音計測手段として用いる際に生じる検出面積の低減を抑える,又は無くすことが出来る。更に,X線検出器の一部を雑音計測手段として用いる方法と比較して,高い自由度で雑音計測手段の設置場所を選択できる。更に従来の方法に比べて,参照画素を少数に抑えることができるため,価格的に有利である。   In order to obtain one X-ray image by such an X-ray imaging apparatus, for example, a sequential switching readout system, an X-ray detector that switches signals over time and reads out signals is mounted. In the X-ray imaging device, an exogenous noise signal is acquired simultaneously with each readout of the X-ray detection means using a small number of noise measurement elements without providing a separate noise detection element for each signal readout of the X-ray detection element. This makes it possible to accurately estimate the extrinsic noise, and to perform accurate correction. Furthermore, the signal of the extrinsic noise can be acquired simultaneously with the signal reading of each X-ray detection element, the extrinsic noise can be estimated with uniform accuracy in the X-ray image, and the correction accuracy is position-dependent. The artifacts that accompany it can be removed and reduced. Furthermore, it is possible to suppress or eliminate a reduction in detection area that occurs when a part of the X-ray detector is used as a noise measurement means. Furthermore, the installation location of the noise measuring means can be selected with a high degree of freedom compared with a method in which a part of the X-ray detector is used as the noise measuring means. Furthermore, compared with the conventional method, the number of reference pixels can be reduced, and this is advantageous in price.

推定手段が,X線検出信号読み出しと同時に外因性雑音信号読み出しを行った同時雑音計測手段のデジタル信号から,X線検出素子の外因性雑音を推定するように構成すると,時刻で変動する非積分型の外因性雑音を精度良く推測することが可能になり,精度の良い補正が可能になる。更に,同時に計測した雑音信号から外因性雑音を推定することで,高速な処理が可能になる。   When the estimation means is configured to estimate the extrinsic noise of the X-ray detection element from the digital signal of the simultaneous noise measurement means that has read out the extrinsic noise signal simultaneously with the X-ray detection signal read-out, the non-integral that varies with time This makes it possible to accurately estimate the extrinsic noise of the mold and to perform accurate correction. Furthermore, high-speed processing is possible by estimating the extrinsic noise from the simultaneously measured noise signal.

推定手段が,X線検出素子の外因性雑音推定を,X線検出素子のX線検出信号読み出しと同時に外因性雑音信号読み出しを行った1個以上の雑音計測素子と,X線検出素子との外因性雑音要因に対する相関を用いて行うように構成すると,雑音計測手段の信号から,各X線検出素子の外因性雑音を精度良く求めることができる。更に,外因性雑音に対する応答のX線検出素子ごとのばらつきを補正することができ,応答のばらつきによって生じるアーチファクトを低減,除去できる。   The estimation means performs the estimation of the extrinsic noise of the X-ray detection element, the X-ray detection element and at least one noise measurement element that has read out the extrinsic noise signal simultaneously with the X-ray detection signal readout. If it is configured to use the correlation with the extrinsic noise factor, the extrinsic noise of each X-ray detection element can be accurately obtained from the signal of the noise measuring means. Furthermore, it is possible to correct the variation in response to the extrinsic noise for each X-ray detection element, and to reduce and eliminate artifacts caused by the variation in response.

また,推定手段が,X線検出素子の検出信号読み出しと同時に雑音信号読み出しを行った同時雑音計測手段のデジタル信号と,非同時に雑音信号読み出しを行った1つ以上の同時雑音計測手段のデジタル信号を用いて,X線検出素子の外因性雑音を推定するように構成すると,非積分型の外因性雑音だけでなく,積分型の外因性雑音も推定でき,一層精度良く外因性雑音を補正できる。または,1つのX線検出素子の外因性雑音を,多数の時刻で計測した雑音計測手段のデータを用いて推測することで,高精度に外因性雑音を推測して補正することが可能になる。   In addition, the estimation means reads the detection signal of the X-ray detection element simultaneously with the noise signal readout simultaneously with the digital signal of the simultaneous noise measurement means, and the digital signal of one or more simultaneous noise measurement means with the noise signal readout non-simultaneously. If the X-ray detector is configured to estimate the extrinsic noise using, it can estimate not only the non-integral extrinsic noise but also the integral extrinsic noise, and correct the extrinsic noise more accurately. . Alternatively, by estimating the extrinsic noise of one X-ray detection element using data of noise measuring means measured at a number of times, it becomes possible to estimate and correct the extrinsic noise with high accuracy. .

X線検出手段がフレーム毎にX線像分の信号読み出しを周期的に複数回行い,推定手段が,X線検出素子の検出信号読み出しと同時に雑音信号読み出しを行った同時雑音計測手段のデジタル信号と,X線検出素子の検出信号読み出しと異なるフレームにて雑音信号読み出しを行った1つ以上の同時雑音計測手段のデジタル信号を用いて,X線検出素子の外因性雑音を推定するように構成すると,X線像を連続して取得するX線DR装置,X線CT装置,X線DR装置などのX線撮像装置においても,外因性雑音の補正効果を実現することが出来る。更に,雑音計測信号が1フレームを超えて得られるため,外因性雑音を推定に使用する雑音データの選択の自由度を,高めることができる。更に,雑音計測信号が1フレームを超えて得られるため,多くのデータを用いて高精度な補正を実現できる。   The digital signal of the simultaneous noise measuring means in which the X-ray detection means periodically reads out the signal for the X-ray image for each frame a plurality of times, and the estimation means reads out the noise signal simultaneously with the detection signal reading of the X-ray detection element. And the extrinsic noise of the X-ray detector using the digital signal of one or more simultaneous noise measuring means that read the noise signal in a frame different from the detection signal readout of the X-ray detector. Then, even in an X-ray imaging apparatus such as an X-ray DR apparatus, an X-ray CT apparatus, and an X-ray DR apparatus that continuously acquire X-ray images, an extrinsic noise correction effect can be realized. Furthermore, since the noise measurement signal can be obtained in excess of one frame, the degree of freedom in selecting noise data that uses extrinsic noise for estimation can be increased. Furthermore, since the noise measurement signal can be obtained over one frame, high-precision correction can be realized using a large amount of data.

推定手段が,外因性雑音推定を行うX線検出素子の検出信号読み出し時刻を含む時間帯に雑音信号読み出しを行った同時雑音計測手段の複数のデジタル信号に対して重み付け加算した信号と,該同時雑音計測手段と該X線検出素子との相関係数とを用いて外因性雑音の推定を行うように構成すると,外因性雑音の補正を,更に高速に高精度に行うことが可能になる。   A signal obtained by weighting and adding the plurality of digital signals of the simultaneous noise measuring means that read out the noise signal in a time zone including the detection signal reading time of the X-ray detection element that performs the extrinsic noise estimation; If the configuration is such that the extrinsic noise is estimated using the correlation coefficient between the noise measuring means and the X-ray detection element, the extrinsic noise can be corrected at higher speed and with higher accuracy.

その際,重み付けの重みが各同時雑音計測手段のデジタル信号に対して,ある時間帯で一様であり,該時間帯以外でゼロであるようにすると,補正を,更に高速に行うことが可能になる。更に連続的に取得したX線像に補正を行う場合,前のフレームのX線像の重み付け信号から,少ない信号処理で次のフレームの重み付け信号を算出でき,高速な処理を実現できる。更に,時間帯の長さを変更する変更手段を具備すると,時間帯を変えることで,雑音計測信号に含まれる外因性雑音の周波数が変わり,さまざまな周期の外因性雑音の推定が可能になる。これにより,画質に影響する外因性雑音を選択的に補正することが可能になる。更に,それぞれの環境で最適な時間帯を用いることが可能になり,処理量を最適化できる。   At that time, if the weighting weight is uniform for a digital signal of each simultaneous noise measuring means in a certain time zone and zero in other time zones, the correction can be performed at higher speed. become. Further, when correcting X-ray images acquired continuously, the weighting signal of the next frame can be calculated with a small amount of signal processing from the weighting signal of the X-ray image of the previous frame, and high-speed processing can be realized. In addition, by providing a change means that changes the length of the time zone, changing the time zone changes the frequency of the extrinsic noise contained in the noise measurement signal, enabling estimation of the extrinsic noise in various periods. . This makes it possible to selectively correct external noise that affects the image quality. Furthermore, it becomes possible to use the optimal time zone in each environment, and the processing amount can be optimized.

また,推定手段が,X線検出素子の検出信号読み出し時刻T1と,次フレームのX線像で同一X線検出素子の検出信号読み出し時刻T2との間に読み出した信号をデジタル信号に変換した信号のうち,時刻T1に読み出した信号を含まず,時刻T2に読み出した信号を含む一連の信号を用いて,時刻T2にX線検出信号を読み出した前記X線検出手段の外因性雑音を推定するように構成すると,特に1フレーム間でX線検出素子に生じた積分型の外因性雑音要因の影響を反映した雑音計測信号を得ることができ,これはX線検出素子と強い相関があるため,高い精度で外因性補正を行うことが可能になる。   Further, the estimation means converts the signal read between the detection signal reading time T1 of the X-ray detection element and the detection signal reading time T2 of the same X-ray detection element in the X-ray image of the next frame into a digital signal. Among these, the extrinsic noise of the X-ray detection means that read out the X-ray detection signal at time T2 is estimated using a series of signals that do not include the signal read out at time T1 but includes the signal read out at time T2. With this configuration, it is possible to obtain a noise measurement signal that reflects the influence of an integral type extrinsic noise factor generated in the X-ray detection element particularly during one frame, and this has a strong correlation with the X-ray detection element. , Exogenous correction can be performed with high accuracy.

本発明によれば,画質劣化要因になる外因性雑音を,補正によって除去,低減することが可能になる。   According to the present invention, it is possible to remove and reduce extrinsic noise that causes image quality degradation by correction.

以下,図面を参照して本発明の実施の形態について説明する。以下では,主にX線撮像装置の一種であるX線CT装置を例にとって説明するが,本発明はもちろんX線CT装置以外のX線撮像装置に適用することもできる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Hereinafter, an X-ray CT apparatus, which is a kind of X-ray imaging apparatus, will be mainly described as an example. However, the present invention can be applied to an X-ray imaging apparatus other than the X-ray CT apparatus.

(実施例1)
図1は,本発明によるX線CT装置の一例を示す説明図である。
Example 1
FIG. 1 is an explanatory view showing an example of an X-ray CT apparatus according to the present invention.

図1に示すように,本実施例のX線CT装置は,基本構成として,X線を照射するX線管100,X線を検出して電気信号に変換するX線検出器104,外因性雑音を検出して電気信号に変換する外因性雑音検出器184,X線検出器104と外因性雑音検出器184からの信号を収集する信号収集手段118,信号収集手段118からのデータを記憶して画像処理を行う中央処理手段105,画像処理の結果を表示する表示手段106,撮影開始やパラメータの設定や入力を行う入力手段119,X線管100とX線検出器104と外因性雑音検出器184と回転体101を制御する制御手段117を備える。ここで,図1には8個のX線検出器104を図示してあるが,8個としたのは説明を簡単にするためであり,本発明を限定するものではない。また,8個の外因性雑音検出器184が,各X線検出器104の背面に設置されているが,この数及び設置位置は実施の一例であり,本発明はこれに限定するものではない。   As shown in FIG. 1, the X-ray CT apparatus of the present embodiment has, as a basic configuration, an X-ray tube 100 that irradiates X-rays, an X-ray detector 104 that detects X-rays and converts them into electrical signals, and extrinsic. The extrinsic noise detector 184 that detects noise and converts it into an electrical signal, the signal collecting means 118 that collects signals from the X-ray detector 104 and the extrinsic noise detector 184, and the data from the signal collecting means 118 are stored. Central processing means 105 for performing image processing, display means 106 for displaying the results of image processing, input means 119 for starting imaging, setting and inputting parameters, X-ray tube 100 and X-ray detector 104, and detection of extrinsic noise And a control means 117 for controlling the device 184 and the rotating body 101. Here, although eight X-ray detectors 104 are shown in FIG. 1, the number of X-ray detectors is eight for the sake of simplicity, and does not limit the present invention. In addition, although eight extrinsic noise detectors 184 are installed on the back surface of each X-ray detector 104, this number and installation position are examples of implementation, and the present invention is not limited to this. .

図1を用いて撮影の手順を説明する。入力手段119から撮影開始の入力を行うと,X線源100から寝台天板103に載った被写体102に向けて,X線を照射する。このX線の一部は被写体102を透過し,X線検出器104のX線検出素子に検出され,X線量に応じた電気信号を出力する。この電気信号は,信号収集回路118にてアナログ−デジタル変換(AD変換)されてデジタル信号になる。この撮影で,X線検出器104を構成する複数のX線検出素子(図2参照)から得られたデジタル信号の集まりが,1つの投影像を構成する。このX線信号読み出しと同期して,外因性雑音検出器184を用いて信号を読み出す。このとき,外因性雑音要因によって生じた外因性雑音信号を取得する。この信号も信号収集回路118にてアナログ−デジタル変換(AD変換)されて,デジタル信号になる。   The shooting procedure will be described with reference to FIG. When the start of imaging is input from the input unit 119, X-rays are emitted from the X-ray source 100 toward the subject 102 placed on the bed top plate 103. Part of this X-ray passes through the subject 102, is detected by the X-ray detection element of the X-ray detector 104, and outputs an electrical signal corresponding to the X-ray dose. This electrical signal is analog-digital converted (AD converted) by the signal collecting circuit 118 to become a digital signal. In this imaging, a collection of digital signals obtained from a plurality of X-ray detection elements (see FIG. 2) constituting the X-ray detector 104 constitutes one projection image. In synchronization with this X-ray signal readout, the signal is read out using the extrinsic noise detector 184. At this time, the extrinsic noise signal generated by the extrinsic noise factor is acquired. This signal is also subjected to analog-digital conversion (AD conversion) by the signal collection circuit 118 to become a digital signal.

断層像の撮影では,X線管100,X線検出器104,外因性雑音検出器184が搭載された回転体101を回転方向108に回転することで,被写体に対するX線の照射角度を変化させて,投影像をプロジェクション毎に,360度分取得する。この取得は,例えば0.4度ごとに行う。この間,制御手段117は,回転体101の回転と,X線検出器104及び外因性雑音検出器184の読み出しを制御する。取得された投影像に対して,中央処理手段105にて画像補正処理や再構成演算を実施する。その結果を表示手段106にて表示する。   In tomographic imaging, the rotating body 101 on which the X-ray tube 100, the X-ray detector 104, and the extrinsic noise detector 184 are mounted is rotated in the rotation direction 108, thereby changing the X-ray irradiation angle on the subject. Thus, a projection image for 360 degrees is acquired for each projection. This acquisition is performed, for example, every 0.4 degrees. During this time, the control means 117 controls the rotation of the rotating body 101 and the reading of the X-ray detector 104 and the extrinsic noise detector 184. The central processing unit 105 performs image correction processing and reconstruction calculation on the acquired projection image. The result is displayed on the display means 106.

図2を用いて,本発明のX線CT装置に用いられるX線検出器104の一例を説明する。このX線検出器104は,X線が方向406から入射するように,図1に示すように円弧状に複数並び,X線管100と対向して配置されており,図2の方向107及び108が,図1の回転軸方向107及び回転方向108に対応するように配置されている。X線検出器104は,X線を光に変換するシンチレータ素子112,光を電気信号に変換するフォトダイオード(図示せず)と信号読み出しのON/OFFを切り替えるスイッチング素子(図示せず)を複数有する光電変換基板111,信号の入出力を行うための電極パッド120,これらの信号を導く配線とを有する配線基板113を有する。シンチレータ素子112と光電変換基板111とは,光学的に透明な接着剤310で接着され,セパレータ130によって分割された1つのシンチレータ素子112と,1対のフォトダイオードとスイッチング素子とが,1つのX線検出素子を形成する。ここで,図2に示したX線検出器104のX線検出素子の数を8個としたのは説明を簡単にするためであり,本発明を限定するものではない。   An example of the X-ray detector 104 used in the X-ray CT apparatus of the present invention will be described with reference to FIG. The X-ray detector 104 is arranged in a plurality of arcs as shown in FIG. 1 so as to make X-rays enter from the direction 406 and is arranged to face the X-ray tube 100. 108 are arranged so as to correspond to the rotation axis direction 107 and the rotation direction 108 of FIG. The X-ray detector 104 includes a plurality of scintillator elements 112 that convert X-rays into light, a photodiode (not shown) that converts light into an electrical signal, and a switching element (not shown) that switches ON / OFF of signal readout. It has a wiring substrate 113 having a photoelectric conversion substrate 111, an electrode pad 120 for inputting and outputting signals, and wirings for guiding these signals. The scintillator element 112 and the photoelectric conversion substrate 111 are bonded with an optically transparent adhesive 310, and one scintillator element 112 divided by a separator 130, a pair of photodiodes, and a switching element constitute one X A line detection element is formed. Here, the number of X-ray detection elements of the X-ray detector 104 shown in FIG. 2 is eight in order to simplify the description, and does not limit the present invention.

図3は,図2のX線検出器104をX線入射方向406から見た回路図の一例であり,これを用いて,X線検出器104の回路構成を説明する。ここでi(=1,2)はX線検出素子のチャネル方向の番号とし,j(=1,2,3,4)はスライス方向の番号し,X線検出素子110を110−i−jと表すことにする。他の構成要素も同様に記す。   FIG. 3 is an example of a circuit diagram of the X-ray detector 104 of FIG. 2 viewed from the X-ray incident direction 406, and the circuit configuration of the X-ray detector 104 will be described using this. Here, i (= 1, 2) is the number in the channel direction of the X-ray detection element, j (= 1, 2, 3, 4) is the number in the slice direction, and the X-ray detection element 110 is 110-i-j. It will be expressed as Other components are also described in the same manner.

図3に示すフォトダイオード140−i−j とスイッチング素子134−i−jは,図2に示した光電変換基板111上に作製されている。ここで,図3のフォトダイオード140−i−jは電気容量を有する。容量はフォトダイオードの寄生容量の場合も,別途容量を設けた場合もあり得る。このフォトダイオード140−i−jに,図2に示したシンチレータ素子112−i−jが接着されて,X線検出素子110−i−jを構成する。この同一光電変換基板111上のX線検出素子110−i−jの電極の一方は,共通のグランド線141により,グランド電極パッド135と電気的に接続している。もう一方の電極は,スイッチング素子134−i−jのドレイン電極に接続している。スイッチング素子134−i−jのソース電極は,同じチャネルiに位置するフォトダイオード140−i−j毎に,共通の信号線142−iにて,電流信号を電圧信号に変換する電流電圧変換器124を経て,信号用パッド120−iと電気的に接続している。スイッチング素子134−i−jのゲート電極は,同じスライスjに位置するフォトダイオード140−i−j毎に,共通の制御線143−jにて,制御用パッド133−jと電気的に接続している。このような構造により,制御用のON信号を制御用パッド133−jに入力すると,同じスライスjに位置するX線検出素子110−i−jの信号を,信号用パッド120−iから,同時に読み出すことが出来る。更に,この制御信号を入力する制御用パッド133−jをj=1,2,3,4と順次切り替えていくと,信号用パッド120−iから同じチャネルiに属するX線検出素子110−i−jの電気信号を,順次に読み出すことができる。   The photodiode 140-i-j and the switching element 134-i-j shown in FIG. 3 are fabricated on the photoelectric conversion substrate 111 shown in FIG. Here, the photodiode 140-i-j in FIG. 3 has a capacitance. The capacitance may be a parasitic capacitance of the photodiode or may be provided separately. The scintillator element 112-i-j shown in FIG. 2 is adhered to the photodiode 140-i-j to constitute the X-ray detection element 110-i-j. One of the electrodes of the X-ray detection element 110-i-j on the same photoelectric conversion substrate 111 is electrically connected to the ground electrode pad 135 by a common ground line 141. The other electrode is connected to the drain electrode of the switching element 134-i-j. The source electrode of the switching element 134-i-j is a current-voltage converter that converts a current signal into a voltage signal through a common signal line 142-i for each photodiode 140-i-j located in the same channel i. Via 124, the signal pad 120-i is electrically connected. The gate electrode of the switching element 134-i-j is electrically connected to the control pad 133-j through the common control line 143-j for each photodiode 140-i-j located in the same slice j. ing. With this structure, when a control ON signal is input to the control pad 133-j, the signals of the X-ray detection elements 110-i-j located in the same slice j are simultaneously transmitted from the signal pad 120-i. Can be read. Further, when the control pad 133-j for inputting this control signal is sequentially switched to j = 1, 2, 3 and 4, the X-ray detection element 110-i belonging to the same channel i from the signal pad 120-i. -J electrical signals can be read sequentially.

図4は,X線検出器と外因性雑音検出器184の配置の一例を示す図である。X線検出器104や外因性雑音検出器184は,可視光などによっても雑音を生じるため,暗箱189内に設置する。本実施例では,X線検出器104の背面側(X線入射面の反対側)に,外因性雑音検出器184を配置する。ただし,この配置は実施の一例であり,本発明はこれに限定するものではない。X線検出器104と外因性雑音検出器184の間には,外因性雑音検出器としてフォトダイオード(図4に図示せず)が形成される光電変換基板180に,X線が入射しないようにX線遮蔽板183を設ける。X線遮蔽板183はX線が透過しにくく,更に外因性雑音要因に対して影響の小さなものを用いる。これは,外因性雑音要因への外因性雑音検出器184とX線検出器104の相関を下げないようにするため,外因性雑音要因の位置的な分布に影響を及ぼさないようにするためである。例えば,外因性雑音の発生源としてはX線発生系が考えられ,その放射性の磁場が大きな外因性雑音要因と考えられるので,鉄などの強磁性体(鉄など)は使用しない方が良く,例えばアルミニウムやアルミニウム合金製の金属板などを用いる。X線遮蔽板183を用いることにより,雑音検出器184として,X線検出器104と同様の検出器を使用することが可能になる。更に,雑音検出器をX線検出器の近くに配置することが可能になり,外因性雑音要因に対してX線検出器と強い相関を持った信号を,雑音検出器にて得ることができ,高精度の補正が実現できる。   4 is a diagram showing an example of the arrangement of the X-ray detector and the extrinsic noise detector 184. As shown in FIG. Since the X-ray detector 104 and the extrinsic noise detector 184 generate noise even by visible light or the like, they are installed in the dark box 189. In the present embodiment, the extrinsic noise detector 184 is disposed on the back side of the X-ray detector 104 (the side opposite to the X-ray incident surface). However, this arrangement is an example of implementation, and the present invention is not limited to this. Between the X-ray detector 104 and the extrinsic noise detector 184, X-rays are prevented from entering a photoelectric conversion substrate 180 on which a photodiode (not shown in FIG. 4) is formed as an extrinsic noise detector. An X-ray shielding plate 183 is provided. As the X-ray shielding plate 183, a X-ray shielding plate 183 that does not easily transmit X-rays and that has little influence on external noise factors is used. This is in order not to lower the correlation between the extrinsic noise detector 184 and the X-ray detector 104 to the extrinsic noise factor, so that the positional distribution of the extrinsic noise factor is not affected. is there. For example, an X-ray generation system can be considered as a source of extrinsic noise, and its radioactive magnetic field is considered to be a major extrinsic noise factor, so it is better not to use a ferromagnetic material such as iron (such as iron) For example, a metal plate made of aluminum or aluminum alloy is used. By using the X-ray shielding plate 183, a detector similar to the X-ray detector 104 can be used as the noise detector 184. Furthermore, the noise detector can be arranged near the X-ray detector, and a signal having a strong correlation with the X-ray detector with respect to the extrinsic noise factor can be obtained by the noise detector. , High-precision correction can be realized.

X線検出器104や外因性雑音検出器184は,外因性雑音要因に対する感度が方向によって異なる場合がある。例えば,本実施例のX線検出器104や外因性雑音検出器184は,X線入射方向406又はその逆方向に対して,広い断面積を有するため,その方向からの影響を受けやすい。X線検出器104の外因性雑音を精度良く推測するためには,外因性雑音検出器184がX線検出器104と同一方向に感度を有するように,例えば外因性雑音検出器184の感度が,最も高い感度の10%以上になる範囲,又は最も感度が高い方向の±45度以内の範囲になるように配置することが望ましい。   The X-ray detector 104 and the extrinsic noise detector 184 may differ in sensitivity to the extrinsic noise factor depending on the direction. For example, since the X-ray detector 104 and the extrinsic noise detector 184 of this embodiment have a wide cross-sectional area with respect to the X-ray incident direction 406 or the opposite direction, the X-ray detector 104 and the extrinsic noise detector 184 are easily affected by the direction. In order to accurately estimate the extrinsic noise of the X-ray detector 104, for example, the sensitivity of the exogenous noise detector 184 is set so that the extrinsic noise detector 184 has sensitivity in the same direction as the X-ray detector 104. It is desirable to arrange them so that they are within a range of 10% or more of the highest sensitivity, or within a range of ± 45 degrees in the direction of highest sensitivity.

図5は,図4に示した外因性雑音検出器184を,X線入射方向406から見た回路図の一例である。外因性雑音検出器184は,外因性雑音要因の影響によって電気信号を出力するフォトダイオード190と,フォトダイオード190からの信号のON/OFFを制御するスイッチング素子191とから成る外因性雑音検出素子181が作製された光電変換基板180と,その信号を読み出すための配線を有する配線基板182とを有する。配線基板182は,スイッチング素子191へ制御信号を供給する制御用パッド188と,フォトダイオード190からの信号を電圧信号に変換するする電流電圧変換器186と,その信号を出力する電極パッド185と,フォトダイオード190のグランド電位と電気的に接続されたグランド電極187を有している。このような構造にて,フォトダイオード190が外因性雑音要因によって生じた電荷を蓄積し,信号読み出しのON信号を制御用パッド188からスイッチング素子191へ入力すると,この電荷量に依存した電圧信号が電極パッド185から得られる。   FIG. 5 is an example of a circuit diagram of the extrinsic noise detector 184 shown in FIG. The extrinsic noise detector 184 includes an exogenous noise detecting element 181 that includes a photodiode 190 that outputs an electric signal due to the influence of the extrinsic noise factor, and a switching element 191 that controls ON / OFF of the signal from the photodiode 190. And a wiring board 182 having wiring for reading out the signal. The wiring board 182 includes a control pad 188 that supplies a control signal to the switching element 191, a current-voltage converter 186 that converts a signal from the photodiode 190 into a voltage signal, an electrode pad 185 that outputs the signal, A ground electrode 187 electrically connected to the ground potential of the photodiode 190 is included. With such a structure, when the photodiode 190 accumulates the charge generated by the extrinsic noise factor and inputs a signal readout ON signal from the control pad 188 to the switching element 191, a voltage signal depending on the charge amount is generated. Obtained from electrode pad 185.

図6を用いて,X線検出器104と外因性雑音検出器184の信号読み出しタイミングの一例を説明する。図6の信号150−j(j=1,2,3,4)は,X線検出器104のj行目に属するX線検出素子に生じた信号を読み出すタイミング信号であり,図3に示す制御用パッド133−j(j=1,2,3,4)に,それぞれ入力する。信号151は,外因性雑音検出器184にて外因性雑音要因によって生じた信号を読み出すタイミング信号であり,図5に示す制御用パッド188に入力する。これらの信号は,ハイレベル(図6において,信号が立ち上がり後に安定したときの信号レベル)のときが信号を読み出すとき(ON)であり,ローレベル(図6において,信号が立ち下がり後に安定したときの信号レベル)のときが信号を読み出していないとき(OFF)である。ここで図6では,2フレームのみの読み出しタイミングを説明するが,このフレーム数は説明を簡単にするためであり,本発明を限定するものではない。   An example of signal readout timings of the X-ray detector 104 and the extrinsic noise detector 184 will be described with reference to FIG. A signal 150-j (j = 1, 2, 3, 4) in FIG. 6 is a timing signal for reading a signal generated in the X-ray detection element belonging to the j-th row of the X-ray detector 104, and is shown in FIG. Each is input to the control pad 133-j (j = 1, 2, 3, 4). A signal 151 is a timing signal for reading a signal generated by the extrinsic noise factor in the extrinsic noise detector 184, and is input to the control pad 188 shown in FIG. These signals are at a high level (in FIG. 6, the signal level when the signal is stabilized after rising) (ON) when the signal is read (ON), and at a low level (in FIG. 6, the signal is stabilized after falling) Is the time when the signal is not read (OFF). Here, FIG. 6 illustrates the read timing of only two frames, but this number of frames is for the sake of simplicity and does not limit the present invention.

図6において,時間152は1フレーム時間であり,1フレームの間に1スライス目(j=1)から4スライス目(j=4)までのX線検出素子を,順次切り替えて信号を読み出す。外因性雑音検出器184は,j=1,2,3,4の全てのスライスで,X線検出素子110の信号読み出しと同時に,外因性雑音検出器184の信号読み出しを行う。ここで信号読み出しとは,X線によってX線検出素子110に生じた電気信号や,外因性雑音要因によって外因性雑音検出器184に生じた電気信号を読み出すことである。本実施例では,X線検出素子110のフォトダイオード140や,外因性雑音検出器184のフォトダイオード190に生じて電気容量に蓄積した電荷を読み出すことであり,スイッチング素子134(図3参照),191(図5参照)をONすることで実行される。またX線検出素子110と外因性雑音検出器184の信号読み出しが同時とは,信号読み出ししている時間に重なった時間があることを意味し,本実施例では,スイッチング素子134とスイッチング素子191をONしている時間に重なりがあることを意味する。すなわち,図6に示す信号読み出し時間160と信号読み出し時間164とが,信号読み出し時間161と信号読み出し時間165とが,信号読み出し時間162と信号読み出し時間166とが,信号読み出し時間210と信号読み出し時間214とが,信号読み出し時間211と信号読み出し時間215とが,信号読み出し時間212と信号読み出し時間216とがそれぞれ同時であり,信号読み出し時間163と信号読み出し時間167,信号読み出し時間213と信号読み出し時間217のそれぞれも信号読み出しに重なり時間168が存在するため,それぞれ同時である。   In FIG. 6, time 152 is one frame time, and signals are read by sequentially switching the X-ray detection elements from the first slice (j = 1) to the fourth slice (j = 4) during one frame. The extrinsic noise detector 184 reads the signal of the extrinsic noise detector 184 simultaneously with the signal reading of the X-ray detection element 110 in all slices of j = 1, 2, 3 and 4. Here, the signal reading is to read out an electric signal generated in the X-ray detection element 110 by X-rays or an electric signal generated in the extrinsic noise detector 184 due to an extrinsic noise factor. In this embodiment, the charge generated in the photodiode 140 of the X-ray detection element 110 and the photodiode 190 of the extrinsic noise detector 184 is read out, and the switching element 134 (see FIG. 3), This is executed by turning ON 191 (see FIG. 5). The simultaneous signal readout of the X-ray detection element 110 and the extrinsic noise detector 184 means that there is a time that overlaps the time of signal readout. In this embodiment, the switching element 134 and the switching element 191 It means that there is an overlap in the time when is turned on. That is, the signal readout time 160 and the signal readout time 164 shown in FIG. 6 are the signal readout time 161 and the signal readout time 165, the signal readout time 162 and the signal readout time 166 are the signal readout time 210 and the signal readout time. 214, signal readout time 211 and signal readout time 215, signal readout time 212 and signal readout time 216, respectively, signal readout time 163 and signal readout time 167, signal readout time 213 and signal readout time. Since each of 217 has an overlap time 168 in signal readout, it is at the same time.

このように,例えば図6に示すタイミングで外因性雑音検出器184を制御することで,1つの外因性雑音検出器184を用いて,X線検出器104の全信号読み出しと,それぞれ同時に外因性雑音の信号読み出しを行うことが出来る。   In this way, for example, by controlling the extrinsic noise detector 184 at the timing shown in FIG. 6, using one extrinsic noise detector 184, all signals are read out simultaneously with the X-ray detector 104, respectively. Noise signal readout can be performed.

図7を用いて,図1に示すX線CT装置の中央処理手段105の処理の一例を説明する。この処理には,X線検出器104の特性を事前に抽出して記憶する事前処理と,実際の撮影中に得た信号に対して,記憶した検出器特性を用いて補正を行うリアルタイム処理とがある。図7において,点線の矢印が事前処理を表し,実線の矢印がリアルタイム処理を表す。   An example of processing of the central processing unit 105 of the X-ray CT apparatus shown in FIG. 1 will be described with reference to FIG. This processing includes pre-processing for extracting and storing the characteristics of the X-ray detector 104 in advance, real-time processing for correcting a signal obtained during actual imaging using the stored detector characteristics, and There is. In FIG. 7, dotted arrows represent pre-processing, and solid arrows represent real-time processing.

図7の点線の矢印で示すように,事前処理では,信号収集手段118に集めたX線検出器104の信号を用いて,検出器特性抽出手段407が検出器やシステムの特性を抽出する。この処理は,例えば事前に被写体を配置しないときにX線を照射して投影像を取得し,X線の分布やX線検出器104の感度特性を得る処理や,事前にX線を照射しないときの投影像を取得して,X線検出器104やその読み出し回路のゼロレベル(オフセットレベル)を得る処理などである。取得した特性は,検出器特性記憶手段303に記憶する。   As indicated by the dotted arrows in FIG. 7, in the preprocessing, the detector characteristic extraction unit 407 extracts the characteristics of the detector and the system using the signals of the X-ray detector 104 collected in the signal collection unit 118. In this process, for example, a projection image is obtained by irradiating X-rays when an object is not previously arranged, and a process for obtaining the X-ray distribution and the sensitivity characteristics of the X-ray detector 104, or no X-ray irradiation in advance. Processing to obtain a zero level (offset level) of the X-ray detector 104 and its readout circuit. The acquired characteristic is stored in the detector characteristic storage means 303.

外因性雑音補正のための事前処理として,補正に用いる外因性雑音検出器184とX線検出素子110との外因性雑音要因に対する応答の相関を決定し,検出器特性記憶手段303に記憶する。これは外因性雑音検出器184の出力値から,X線検出素子110の外因性雑音を算出する際に使用する。この相関は,例えばX線検出素子110にはX線が入射しないように,例えばX線遮蔽体をX線検出器の直前に設けた状態にて,X線を照射して撮影を行ったときのX線検出素子110の出力と外因性雑音検出器184の出力から求めることができる。このとき例えば,X線検出素子110と外因性雑音検出器184とに生じた雑音の比率(相関係数)を,X線検出素子110ごとに算出する。   As pre-processing for extrinsic noise correction, the correlation of the response to the extrinsic noise factor between the extrinsic noise detector 184 and the X-ray detection element 110 used for correction is determined and stored in the detector characteristic storage means 303. This is used when the extrinsic noise of the X-ray detection element 110 is calculated from the output value of the extrinsic noise detector 184. This correlation is obtained when, for example, imaging is performed by irradiating X-rays with an X-ray shield provided immediately in front of the X-ray detector so that X-rays do not enter the X-ray detection element 110. It can be obtained from the output of the X-ray detection element 110 and the output of the extrinsic noise detector 184. At this time, for example, the ratio (correlation coefficient) of noise generated between the X-ray detection element 110 and the extrinsic noise detector 184 is calculated for each X-ray detection element 110.

図7の実線の矢印で示すように,リアルタイム処理では,検出器特性記憶手段303に記憶された検出器特性やシステム特性を用いて,補正手段301において,実撮影で取得した投影像に対して補正を行う。このとき行う処理は,例えば,X線の分布やX線検出器104の感度特性を用いて実画像を補正する感度補正処理や,オフセットレベルの特性を用いて,X線検出器104の暗電流分の出力を除くオフセット補正処理である。ここで外因性雑音のリアルタイム処理内容については,以下で,図8を用いて説明する。   As indicated by the solid line arrows in FIG. 7, in the real-time processing, the correction unit 301 uses the detector characteristics and system characteristics stored in the detector characteristic storage unit 303 to correct the projection image acquired by actual photographing. Make corrections. The processing performed at this time includes, for example, sensitivity correction processing for correcting an actual image using the X-ray distribution and sensitivity characteristics of the X-ray detector 104, and dark current of the X-ray detector 104 using offset level characteristics. This is an offset correction process that excludes the output of minutes. Here, the contents of real-time processing of extrinsic noise will be described below with reference to FIG.

補正手段301にて補正処理を実施した後に,再構成手段302でコンボルーション(畳み込み)やバックプロジェクション(逆投影)の処理を行い,被写体のX線吸収係数分布の断面像を再構成する。この断面像を表示手段106にて表示する。   After the correction process is performed by the correction unit 301, a convolution (convolution) or back projection (back projection) process is performed by the reconstruction unit 302 to reconstruct a cross-sectional image of the X-ray absorption coefficient distribution of the subject. This cross-sectional image is displayed on the display means 106.

図8を用いて,図7の補正処理手段301にて行う外因性雑音補正処理の一例について説明する。本実施例の外因性雑音補正は,1つのX線検出器104に対して,その背面に配置された1つの外因性雑音検出器184の信号を用いて行う。   An example of extrinsic noise correction processing performed by the correction processing unit 301 in FIG. 7 will be described with reference to FIG. The extrinsic noise correction of this embodiment is performed for one X-ray detector 104 using the signal of one extrinsic noise detector 184 arranged on the back surface thereof.

補正手段301は,まず信号収集手段118から出力される1スライス分のX線検出器104のデジタル信号をX線検出器信号記憶手段411に,同時に信号を読み出した外因性雑音検出器184のデジタル信号を外因性雑音計測値記憶手段410に,それぞれ記憶する。次に,外因性雑音計測値記憶手段410に保存したデータと,補正を行うX線検出素子110と外因性雑音検出器184との相関関係を用いて,X線検出素子110毎の外因性雑音を推定し,この結果を推定結果記憶手段412に記憶する。相関は,前述したように事前に得たものであり,外因性雑音推定手段408で記憶している。次に補正処理手段409にて,推定結果記憶手段412に記憶した推定結果を,X線検出器信号記憶手段411に記憶したデータから差分することで,外因性雑音を除去する。このように外因性雑音を補正したデータは,再構成手段302に出力される。この処理はスライス毎に実施し,以後のフレームでも同様に行う。   The correction unit 301 first outputs the digital signal of the X-ray detector 104 for one slice output from the signal acquisition unit 118 to the X-ray detector signal storage unit 411 and simultaneously reads the digital signal of the extrinsic noise detector 184. The signals are stored in the extrinsic noise measurement value storage means 410, respectively. Next, the extrinsic noise for each X-ray detection element 110 is calculated using the data stored in the extrinsic noise measurement value storage means 410 and the correlation between the X-ray detection element 110 and the extrinsic noise detector 184 for correction. And the result is stored in the estimation result storage means 412. The correlation is obtained in advance as described above, and is stored in the extrinsic noise estimation means 408. Next, the correction processing means 409 subtracts the estimation result stored in the estimation result storage means 412 from the data stored in the X-ray detector signal storage means 411 to remove the extrinsic noise. The data corrected for extrinsic noise in this way is output to the reconstruction means 302. This process is performed for each slice, and is similarly performed for the subsequent frames.

このようにして,X線検出器104の出力に含まれる外因性雑音を,そのX線検出器104と同時に読み出しを行った外因性雑音検出器184の信号を用いて補正する。以上のようなX線CT装置にて,X線検出器104の外因性雑音を,特に非積分型の外因性雑音を除去することが可能になる。   In this manner, the extrinsic noise included in the output of the X-ray detector 104 is corrected using the signal of the extrinsic noise detector 184 that has been read simultaneously with the X-ray detector 104. With the X-ray CT apparatus as described above, it is possible to remove the extrinsic noise of the X-ray detector 104, in particular, the non-integrating external noise.

本実施例で用いた読み出し方式及び回路構成は,X線検出器104の信号を順次に読み出す方式の一例であり,本発明はこれに限るものではない。本実施例では,チャネル方向に同時に,スライス方向に順次に,読み出しを実現したが,スライス方向に同時に,チャネル方向に順次に読み出しを実現した回路構成もあり得る。この場合は,本実施例のスライスとチャネルを入れ替えた構造及び制御にて,外因性雑音補正が実現できる。また,1つ又は複数のX線検出素子110から成る集合毎に,順次切り替えて読み出していく読み出し方式及び回路構成もあり得る。このときも本実施例と同様に,X線検出素子110の集合の信号読み出しと同時に,外因性雑音検出器184の信号を読み出すように制御すればよい。   The readout method and circuit configuration used in this embodiment are an example of a method of sequentially reading out signals from the X-ray detector 104, and the present invention is not limited to this. In the present embodiment, reading is realized simultaneously in the channel direction and sequentially in the slice direction, but there may be a circuit configuration in which reading is simultaneously performed in the slice direction and sequentially in the channel direction. In this case, extrinsic noise correction can be realized by the structure and control in which the slice and the channel are replaced in the present embodiment. Further, there may be a reading method and a circuit configuration in which reading is performed by sequentially switching for each set of one or a plurality of X-ray detection elements 110. At this time, similarly to the present embodiment, it may be controlled to read the signal of the extrinsic noise detector 184 simultaneously with the signal reading of the set of the X-ray detection elements 110.

本実施例では,X線検出器104の信号読み出し時間幅と,外因性雑音推定手段408の信号読み出しの時間幅(例えば,図6の時間160の幅と時間164の幅)が同じであったが,本発明はこれに限るものではない。外因性雑音推定手段408の信号読み出しの時間が,X線検出器104の信号読み出しの時間よりも短い場合や,その逆の場合などもあり得る。   In this embodiment, the signal reading time width of the X-ray detector 104 and the signal reading time width of the extrinsic noise estimation means 408 (for example, the width of time 160 and the time 164 in FIG. 6) are the same. However, the present invention is not limited to this. There may be cases where the signal readout time of the extrinsic noise estimation means 408 is shorter than the signal readout time of the X-ray detector 104 or vice versa.

本実施例では,X線検出器104として,X線を変換した光を電気信号に変換するX線検出器を用いたが,これは実施の一例であり,本発明はこれに限定するものではない。例えば,X線を直接電気信号に変換するX線検出器を用いてもよい。   In this embodiment, an X-ray detector that converts light converted from X-rays into an electrical signal is used as the X-ray detector 104. However, this is an example of the embodiment, and the present invention is not limited to this. Absent. For example, an X-ray detector that directly converts X-rays into electrical signals may be used.

本実施例では,外因性雑音検出器184をX線検出器104毎に,X線検出器104の背面(X線入射面の反対面)に配置したが,本発明は,このような配置に限定されるものでない。外因性雑音検出器184の配置場所としては,X線検出器104の前面や,スライス方向(図2の107の方向)の端部位置(図2に示すX線検出器104の上部と下部)で,その一方や両方に配置する場合,X線検出器104の回転方向108(図1参照)の端部位置(図1に示す円弧状に配置されたX線検出器104の円弧の端部)に配置する場合もあり得る。またX線検出器104の数と無関係な数の外因性雑音検出器184を用いても良い。また,あるX線検出器104の外因性雑音補正のために,どの外因性雑音検出器184の信号を用いても良い。更に,複数の外因性雑音検出器184から算出した信号を用いて,外因性雑音補正を行っても良い。例えば,本実施例のように8個の外因性雑音検出器184の同時に計測を行った信号を加算平均して,それと同時に計測した全てのX線検出素子101に対して,この加算平均信号を用いて補正を行っても良い。   In this embodiment, the extrinsic noise detector 184 is arranged for each X-ray detector 104 on the back surface of the X-ray detector 104 (opposite surface to the X-ray incident surface). It is not limited. The location of the extrinsic noise detector 184 includes the front surface of the X-ray detector 104 and the end position in the slice direction (direction 107 in FIG. 2) (upper and lower portions of the X-ray detector 104 shown in FIG. 2). In the case of being arranged on one or both of them, the end position of the X-ray detector 104 in the rotation direction 108 (see FIG. 1) (the end of the arc of the X-ray detector 104 arranged in the arc shown in FIG. 1) ) May be arranged. A number of extrinsic noise detectors 184 irrelevant to the number of X-ray detectors 104 may be used. Further, the signal of any extrinsic noise detector 184 may be used to correct the extrinsic noise of an X-ray detector 104. Further, extrinsic noise correction may be performed using signals calculated from a plurality of extrinsic noise detectors 184. For example, as in the present embodiment, signals obtained by simultaneous measurement of eight extrinsic noise detectors 184 are added and averaged, and this added average signal is applied to all X-ray detection elements 101 measured at the same time. It may be used to correct.

本実施例では外因性雑音検出器184として,フォトダイオードを用いた場合を説明したが,これは実施の一例であり,本発明はこれに限定するものではない。フォトダイオード以外にも,電場,磁場,電磁波,熱,加速度の少なくとも1つを検出して電気信号を得ることができる,さまざまな検出器を用いることができる。また,その電気信号が,電場,磁場,電磁波,熱,位置,速度の少なくとも1つの絶対量に応じて信号が生じる検出器や,その変化量に応じて信号が生じる検出器など,さまざまな検出器を用いることができる。これにより例えば,熱の変化によって生じる外因性雑音や,振動などによって生じる加速度の変化によって生じる外因性雑音を計測することが可能になる。また,一度以上他の物理量に変換されてから電気信号に変換される,例えば光を熱に変換した後に電気信号に変換するような検出器を用いることもできる。また,これらの検出器を複数種類用いてもよい。例えば,電磁波によって生じる外因性雑音を検出する外因性雑音検出器と,熱によって生じる外因性雑音を検出する外因性雑音検出器とを併用する場合などもあり得る。   In this embodiment, the case where a photodiode is used as the extrinsic noise detector 184 has been described. However, this is an example of the embodiment, and the present invention is not limited to this. In addition to photodiodes, various detectors that can detect an electric field, a magnetic field, an electromagnetic wave, heat, and acceleration to obtain an electrical signal can be used. In addition, various detections such as a detector that generates a signal according to the absolute amount of at least one of electric field, magnetic field, electromagnetic wave, heat, position, and velocity, and a detector that generates a signal according to the amount of change. Can be used. As a result, for example, it is possible to measure extrinsic noise caused by a change in heat and extrinsic noise caused by a change in acceleration caused by vibration or the like. It is also possible to use a detector that is converted into another physical quantity and then converted into an electrical signal. For example, a detector that converts light into heat and then converts it into an electrical signal can be used. A plurality of these detectors may be used. For example, an extrinsic noise detector that detects extrinsic noise caused by electromagnetic waves may be used in combination with an extrinsic noise detector that detects extrinsic noise caused by heat.

本実施例では,外因性雑音検出器184とX線検出素子110の相関を比例式で近似し,その相関係数を基に,外因性雑音検出器184の信号からX線検出素子110の外因性雑音を推定したが,これは実施の一例であり,本発明はこれに限定するものではない。多項式関数や,さまざまな非線形の関数で相関を求めても良い。更に,関数の使用に関わらず,どのような方法で外因性雑音検出器184の信号からX線検出素子110の外因性雑音を推定しても良い。また1つの外因性雑音環境だけでなく,例えばX線管電流を変えるなどして外因性雑音要因の強さ(量)を変えた結果を用いて,推定を行っても良い。また本実施例では,X線検出素子毎に外因性雑音検出器184との相関を求めたが,これは実施の一例であり,本発明はこれに限定するものではない。同時に読み出しを行う複数のX線検出素子110毎の場合や,X線検出器104毎の場合でも良い。また全てのX線検出素子で同一であっても良い。更に,相関係数が全てのX線検出素子で1の場合,すなわち,外因性雑音検出器184から得た計測値そのものを,X線検出素子110の外因性雑音として用いる場合もあり得る。   In this embodiment, the correlation between the extrinsic noise detector 184 and the X-ray detection element 110 is approximated by a proportional expression, and the extrinsic factor of the X-ray detection element 110 is determined from the signal of the extrinsic noise detector 184 based on the correlation coefficient. However, the present invention is not limited to this. The correlation may be obtained by a polynomial function or various nonlinear functions. Further, the extrinsic noise of the X-ray detection element 110 may be estimated from the signal of the extrinsic noise detector 184 by any method regardless of the use of the function. The estimation may be performed using not only one extrinsic noise environment but also the result of changing the strength (amount) of the extrinsic noise factor by, for example, changing the X-ray tube current. Further, in this embodiment, the correlation with the extrinsic noise detector 184 is obtained for each X-ray detection element, but this is an example of the embodiment, and the present invention is not limited to this. The case may be the case of each of a plurality of X-ray detection elements 110 that perform reading simultaneously, or the case of each X-ray detector 104. Further, it may be the same for all X-ray detection elements. Further, when the correlation coefficient is 1 for all X-ray detection elements, that is, the measurement value obtained from the extrinsic noise detector 184 may be used as the extrinsic noise of the X-ray detection element 110.

本実施例では,外因性雑音検出器184として,外因性雑音によって生じた電荷をサンプリングとサンプリングの時間幅だけ蓄積して,すなわち電気信号を積分して出力信号を生じる検出器を用いた場合を記したが,これは実施の一例であり,本発明はこれに限定するものではない。例えば,磁場の変化によって電圧を生じるコイルから成り,その信号を蓄積するコンデンサを有さないような,信号を蓄積しない検出器を用いてもかまわない。   In this embodiment, as the extrinsic noise detector 184, a case is used in which the charge generated by the extrinsic noise is accumulated for sampling and the sampling time width, that is, a detector that integrates the electrical signal and generates an output signal. Although described, this is an example of implementation and the present invention is not limited to this. For example, a detector that does not accumulate a signal, such as a coil that generates a voltage due to a change in the magnetic field and does not have a capacitor that accumulates the signal, may be used.

本実施例では,外因性雑音検出器184の前面にX線遮蔽板183を設けたが,これは実施の一例であり,本発明はこれに限定するものではない。X線検出器104にてX線が十分に遮蔽される場合は,X線検出器104がX線遮蔽板183の機能を兼ね,別途X線遮蔽板183を設ける必要がない場合もあり得る。また別の実施例として,X線検出器104の一部が,X線遮蔽板183の機能を兼ねる構造などもあり得る。また,X線によって信号を生じない検出器の場合には,X線遮蔽板183を設けずに,X線が照射される空間,例えばX線検出器の前面などに配置してもよい。   In the present embodiment, the X-ray shielding plate 183 is provided in front of the extrinsic noise detector 184, but this is an example of the embodiment, and the present invention is not limited to this. When X-rays are sufficiently shielded by the X-ray detector 104, the X-ray detector 104 may also function as the X-ray shielding plate 183, and it may not be necessary to separately provide the X-ray shielding plate 183. As another embodiment, there may be a structure in which a part of the X-ray detector 104 also functions as the X-ray shielding plate 183. In the case of a detector that does not generate a signal due to X-rays, the X-ray shielding plate 183 may not be provided, and the detector may be disposed in a space irradiated with X-rays, for example, the front surface of the X-ray detector.

本実施例では,外因性雑音補正処理をスライス毎に行ったが,本発明はこれに限定するものではない。例えば,1フレーム分のデータを取得し,X線検出器出力記憶手段411及び外因性雑音計測値記憶手段410に記憶した後,各X線検出素子110の外因性雑音を推定し、その結果を用いて外因性雑音補正を行っても良い。また外因性雑音補正を他の補正処理と組み合わせて行ってもよい。例えば,外因性雑音の推定値を、実データのゼロレベル(オフセットレベル)データに加え、これを実データから差分することで、外因性雑音補正とオフセット補正を同時に行っても良い。   In this embodiment, the extrinsic noise correction processing is performed for each slice, but the present invention is not limited to this. For example, after acquiring data for one frame and storing it in the X-ray detector output storage means 411 and the extrinsic noise measurement value storage means 410, the extrinsic noise of each X-ray detection element 110 is estimated, and the result is obtained. It may be used to perform extrinsic noise correction. Further, extrinsic noise correction may be performed in combination with other correction processing. For example, the extrinsic noise correction and the offset correction may be performed simultaneously by adding the estimated value of the extrinsic noise to the zero level (offset level) data of the actual data and subtracting this from the actual data.

本実施例では,外因性雑音検出器184の回路構成の一例として,図5の回路図を示したが,本発明はこれに限定するものではない。例えば,スイッチング素子191を素子毎に設けることなく,外部にて読み出しを,離散的に行う場合もあり得る。このとき,図6に示したタイミングのように,電極パッド185からの信号読み出しを行えばよい。   In the present embodiment, the circuit diagram of FIG. 5 is shown as an example of the circuit configuration of the extrinsic noise detector 184, but the present invention is not limited to this. For example, there is a case where reading is performed discretely outside without providing the switching element 191 for each element. At this time, the signal reading from the electrode pad 185 may be performed as in the timing shown in FIG.

(実施例2)
実施例1では,非積分型の外因性雑音の除去について説明した。実施例2では,積分型の外因性雑音の除去について説明する。
(Example 2)
In the first embodiment, the removal of non-integral extrinsic noise has been described. In the second embodiment, the integration-type exogenous noise removal will be described.

図9は,本実施例の補正処理手段301において行われる外因性雑音補正処理の一例を説明する図である。最初に,信号収集手段118から出力される外因性雑音検出器184のデジタル信号を,外因性雑音計測値記憶手段410に記憶し,X線検出器104のデジタル信号を,X線検出器信号記憶手段411に記憶する。このとき,最初の1フレーム目を除き,1フレーム分(一投影像分)のデータを記憶しておく。次に,この外因性雑音計測値記憶手段410に記憶した複数のデータから,重み付け信号を作成する。例えば,図6に示す時刻210の外因性雑音補正用の重み付け信号は,時刻165,時刻166,時刻167,時刻214に読み出した外因性雑音検出器184の信号に対して,加算手段413である重み付けを行って加算して算出する。この信号は,1列目のX線検出素子110が,前回の読み出しから蓄積した外因性雑音要因の影響,すなわち,1フレーム間の外因性雑音要因の影響を反映し,その間に生じた外因性雑音を積分した信号であるため,X線検出素子の積分型の外因性雑音を強く反映する。次に,重み付け信号と,補正を行うX線検出素子110と外因性雑音検出器184との相関関係を用いて,X線検出素子110毎に外因性雑音を推定する。この相関は事前に求めておき,外因性雑音推定手段408に記憶しておく。この推定結果を,推定結果記憶手段412に記憶する。   FIG. 9 is a diagram for explaining an example of extrinsic noise correction processing performed in the correction processing unit 301 of the present embodiment. First, the digital signal of the extrinsic noise detector 184 output from the signal collecting means 118 is stored in the extrinsic noise measurement value storage means 410, and the digital signal of the X-ray detector 104 is stored in the X-ray detector signal. Store in means 411. At this time, except for the first frame, data for one frame (one projection image) is stored. Next, a weighting signal is created from a plurality of data stored in the extrinsic noise measurement value storage means 410. For example, the weighting signal for extrinsic noise correction at time 210 shown in FIG. 6 is the adding means 413 for the signal of the extrinsic noise detector 184 read at time 165, time 166, time 167, and time 214. Calculate by weighting and adding. This signal reflects the influence of the extrinsic noise factor accumulated from the previous reading by the X-ray detection element 110 in the first column, that is, the influence of the extrinsic noise factor for one frame, and the extrinsic factor generated during that time. Since the signal is obtained by integrating the noise, the integral type extrinsic noise of the X-ray detection element is strongly reflected. Next, the extrinsic noise is estimated for each X-ray detection element 110 using the correlation between the weighted signal and the X-ray detection element 110 to be corrected and the extrinsic noise detector 184. This correlation is obtained in advance and stored in the extrinsic noise estimation means 408. This estimation result is stored in the estimation result storage means 412.

この重み付けの重みは,例えば,ある時間で一様であり,その他の時間ではゼロである。このとき重み付け信号は,外因性雑音検出器184のデジタル信号の加算平均信号になる。具体的には,例えば,図6の読み出し時間210のX線検出素子101で用いる重み付け信号P(210)は,読み出し時間165,166,167,214における外因性雑音検出器184の信号(それぞれO(165),O(166),O(167),O(214)と記す)を用いて,P(161)=O(165)/4+O(166)/4+O(167)/4+O(214)/4の加算平均処理にて算出できる。更に,次の読み出し時間211のX線検出素子101で用いる重み付け信号P(211)を,前時刻の重み付け信号P(210)を用いて,P(211)=P(210)-O(165)/4+O(215)/4の処理にて算出することができる。このように,前の重み付け信号から次の重み付け信号を算出する処理の処理量は,スライス数に依存しないため,スライス数が大きな検出器,例えば4スライス以上の検出器のときに有利であり,高速な処理を実現できる。   This weighting weight is, for example, uniform at a certain time and zero at other times. At this time, the weighted signal is an averaged signal of the digital signals of the extrinsic noise detector 184. Specifically, for example, the weighting signal P (210) used in the X-ray detection element 101 at the readout time 210 in FIG. 6 is the signal of the extrinsic noise detector 184 at the readout times 165, 166, 167, and 214 (each O (165), O (166), O (167), O (214)), P (161) = O (165) / 4 + O (166) / 4 + O (167) / 4 It can be calculated by the averaging process of + O (214) / 4. Further, the weighting signal P (211) used in the X-ray detection element 101 at the next readout time 211 is set to P (211) = P (210) −O (165) using the weighting signal P (210) at the previous time. / 4 + O (215) / 4 can be calculated. Thus, since the processing amount of the process of calculating the next weighting signal from the previous weighting signal does not depend on the number of slices, it is advantageous for a detector having a large number of slices, for example, a detector having four or more slices, High-speed processing can be realized.

次に補正処理手段409にて,X線検出器信号記憶手段411に記憶したデータから,推定結果記憶手段412に記憶した外因性雑音を差分することで,外因性雑音補正を実施する。この外因性雑音の後,データは再構成手段302に出力される。   Next, the correction processing means 409 performs the extrinsic noise correction by subtracting the extrinsic noise stored in the estimation result storage means 412 from the data stored in the X-ray detector signal storage means 411. After this extrinsic noise, the data is output to the reconstruction means 302.

以上のような処理にて,X線検出器104の外因性雑音を,特に積分型の外因性雑音を,除去,低減することが可能になる。   Through the processing as described above, it is possible to remove and reduce the extrinsic noise of the X-ray detector 104, particularly the integral-type exogenous noise.

本実施例で説明した重みは一例であり,本発明はこれに限定するものではない。例えば,時間に依存した重み付けや,外因性雑音検出器184の出力に応じて重みを変化させる重み付けなど,さまざまな重み付けの方法があり得る。また閾値を設け,閾値との比較にて重みを変える場合などもあり得る。   The weight described in the present embodiment is an example, and the present invention is not limited to this. For example, there can be various weighting methods such as weighting depending on time and weighting in which the weight is changed according to the output of the extrinsic noise detector 184. There may also be a case where a threshold is provided and the weight is changed by comparison with the threshold.

本実施例では,1フレーム分の外因性雑音検出器184の信号から,重み付け信号を求めた場合について説明したが,本発明は,これに限定するものではない。例えば,数スライス毎や,1フレームよりも長い区間の信号を用いて,重み付け信号を求める場合もあり得る。この場合,重み付け加算を行う区間によって,重み付け信号に含まれる外因性雑音の周波数域が変化する。例えば,区間が短くなるにつれて,重み付け信号には,高周波数の外因性雑音成分まで含まれるようになる。従って,特に投影像に影響の大きい成分を抽出し得る区間で,重み付け信号を算出することで,効率的に,積分型の外因性雑音の除去を行うことも可能である。この区間を最適化することで,データ量を抑えることも可能である。更に,この区間を変更する機能を具備してもよい。これにより,例えば投影像を確認しながら,この区間を変更することで,外因性雑音補正の効果を調整することができる。また,例えば,投影像のSNRが最大になるように,自動的にこの区間を調整することで,外因性雑音要因が異なる環境でも,効果的な外因性雑音を行うことが可能になる。   In the present embodiment, the case where the weighted signal is obtained from the signal of the extrinsic noise detector 184 for one frame has been described, but the present invention is not limited to this. For example, the weighted signal may be obtained by using a signal of several slices or a section longer than one frame. In this case, the frequency range of the extrinsic noise included in the weighted signal changes depending on the section in which the weighted addition is performed. For example, as the interval becomes shorter, the weighting signal includes even high-frequency extrinsic noise components. Therefore, it is possible to efficiently remove the integral-type extrinsic noise by calculating the weighting signal in a section where a component having a large influence on the projection image can be extracted. By optimizing this section, it is possible to reduce the amount of data. Furthermore, a function of changing this section may be provided. Thereby, for example, the effect of the extrinsic noise correction can be adjusted by changing this section while confirming the projected image. In addition, for example, by automatically adjusting this section so that the SNR of the projection image is maximized, it is possible to perform effective extrinsic noise even in an environment where the extrinsic noise factors are different.

本実施例では,外因性雑音検出器184として,外因性雑音によって生じた電荷を,サンプリングとサンプリングの時間幅だけ蓄積して,すなわち電気信号を積分して,出力信号を生じる検出器を用いた場合について説明したが,これは実施の一例であり,本発明はこれに限定するものではない。例えば,磁場の変化によって電圧を生じるコイルのように,信号を蓄積する機能を有さない検出器を用いても良い。ただし,電気信号を積分して出力信号を生じる検出器の場合は,例えば,T1からT2までの間に,多数回サンプリングした外因性雑音検出器184の信号の加算値Paddは,T1とT2のみにサンプリングした場合のT2のサンプリング信号PT2と,ほぼ同じになるが,信号を蓄積する機能を有さない検出器を用いた場合には,信号Paddは信号とPT2が差異を生じる場合がある。   In the present embodiment, as the extrinsic noise detector 184, a detector that accumulates the charge generated by the extrinsic noise for the duration of sampling and sampling, that is, integrates the electric signal to generate an output signal is used. Although the case has been described, this is an example of implementation, and the present invention is not limited to this. For example, a detector that does not have a function of accumulating signals, such as a coil that generates a voltage by a change in a magnetic field, may be used. However, in the case of a detector that integrates an electric signal to generate an output signal, for example, the added value Padd of the signal of the extrinsic noise detector 184 sampled many times between T1 and T2 is only T1 and T2. However, when using a detector that does not have a function for accumulating signals, the signal Pad may have a difference between the signal and PT2.

本実施例では,積分型の外因性雑音を補正する場合のみを記したが,これは実施の一例であり,本発明はこれに限定するものではない。サンプリングの際の電圧変動によって生じる非積分型の外因性雑音を補正する実施例1の方法を共に用いることで,積分型と非積分型の双方の外因性雑音を補正することもできる。すなわち,例えば時刻211のX線検出素子110の外因性雑音を推定する場合に,時刻166,167,214,215に取得した外因性雑音検出器184の信号に対して重み付け加算して求めた加算信号を用いて,積分型の外因性雑音を推定し,時刻215に取得した外因性雑音検出器184の信号を用いて非積分型の外因性雑音を推定する。このとき例えば,外因性雑音検出器184とX線検出素子110との相関関係を用いる。これは,事前に計測して決定しておく必要がある。この決定で,積分型の相関関係を決定する際には,加算信号とX線検出素子110の信号とを用い,非積分型の推定の際には,同時に取得した外因性雑音検出器184の信号とX線検出素子110の信号とを用いるが、この加算信号には非積分型の外因性雑音も含まれるため,積分型の外因性雑音に推定値に,非積分型の外因性雑音の一部が含まれることになる。この場合は,積分型と非積分型との外因性雑音の推定値に対して重み付けを行って加算した値を、全外因性雑音の推定値として用いればよい。この重み付けの値は、X線像の外因性雑音の影響が最小となるように、具体的には、例えばX線像のSNRが最小になるように決定すれば良い。ただし、上記の積分型と非積分型の外因性雑音の推定方法は,実施例の一例であり,本発明を限定するものではない。   In the present embodiment, only the case of correcting the integral type extrinsic noise is described, but this is an example of the embodiment, and the present invention is not limited to this. By using both the method of the first embodiment for correcting non-integral extrinsic noise caused by voltage fluctuation during sampling, both the integral and non-integral extrinsic noise can be corrected. That is, for example, when estimating the extrinsic noise of the X-ray detection element 110 at time 211, the addition obtained by weighted addition to the signal of the extrinsic noise detector 184 acquired at times 166, 167, 214, and 215 The integration type extrinsic noise is estimated using the signal, and the non-integration type extrinsic noise is estimated using the signal of the extrinsic noise detector 184 acquired at time 215. At this time, for example, the correlation between the extrinsic noise detector 184 and the X-ray detection element 110 is used. This needs to be measured and determined in advance. In this determination, when the integral type correlation is determined, the addition signal and the signal of the X-ray detection element 110 are used, and in the non-integration type estimation, the extrinsic noise detector 184 obtained at the same time is used. The signal and the signal of the X-ray detection element 110 are used. Since this sum signal also includes non-integral extrinsic noise, the integral extrinsic noise is estimated and the non-integral extrinsic noise is Some will be included. In this case, a value obtained by weighting and adding the estimated values of the extrinsic noise of the integral type and the non-integral type may be used as the estimated value of the total extrinsic noise. The weighting value may be determined so that the influence of the extrinsic noise of the X-ray image is minimized, specifically, for example, the SNR of the X-ray image is minimized. However, the integration type and non-integration type extrinsic noise estimation methods described above are examples of the embodiments and do not limit the present invention.

(実施例3)
本発明の実施例3のX線CT装置は,フィッティング関数を用いて外因性雑音を推定する点で,実施例1又は実施例2と異なる。
(Example 3)
The X-ray CT apparatus according to the third embodiment of the present invention is different from the first or second embodiment in that the extrinsic noise is estimated using a fitting function.

本実施例における推定方法の一例を,図10を用いて説明する。図10の縦軸270は外因性雑音検出器184の出力値を表し,横軸271は経過時刻を表す。図6の読み出し時間164,165,166,163,167,214,215,216,213,217における信号読み出しが終了する時刻を,各信号の取得時刻として点線で記す。各時間で取得した外因性雑音検出器184の出力値を黒丸で,これに対するフィッティングした結果を曲線201に示す。このフィッティング曲線201は,例えば多項式で記すことができる。   An example of the estimation method in the present embodiment will be described with reference to FIG. 10, the vertical axis 270 represents the output value of the extrinsic noise detector 184, and the horizontal axis 271 represents the elapsed time. The time at which signal readout ends at the readout times 164, 165, 166, 163, 167, 214, 215, 216, 213, and 217 in FIG. 6 is indicated by dotted lines as the acquisition time of each signal. The output value of the extrinsic noise detector 184 acquired at each time is indicated by a black circle, and the result of fitting to this is indicated by a curve 201. This fitting curve 201 can be described by a polynomial, for example.

X線検出素子110の信号読み出しが,外因性雑音検出器184の信号読み出しとほぼ一致する場合,例えば,時間214での外因性雑音を求める場合は,例えば時間165から時間167までに取得した外因性雑音検出器184の出力値からフィッティング曲線201を推定し,この曲線201の時間210の時の値を用いて,外因性雑音を推測する。このとき更に,各X線検出素子110と外因性雑音検出器184との相関のバラツキを補正するために,それらの相関を用いても良い。同様に,時間214の積分型の外因性雑音を求める場合には,例えば,曲線201を時間164から時間214までの区間で積分した値を用いる。   When the signal readout of the X-ray detection element 110 substantially coincides with the signal readout of the extrinsic noise detector 184, for example, when obtaining the extrinsic noise at time 214, the extrinsic factor acquired from time 165 to time 167, for example. The fitting curve 201 is estimated from the output value of the characteristic noise detector 184, and the extrinsic noise is estimated using the value at the time 210 of the curve 201. At this time, in order to correct the variation in the correlation between each X-ray detection element 110 and the extrinsic noise detector 184, the correlation may be used. Similarly, when obtaining the integral type exogenous noise at time 214, for example, a value obtained by integrating the curve 201 in the section from time 164 to time 214 is used.

一方,X線検出素子110の信号読み出しが,外因性雑音検出器184の信号読み出しと完全には一致しない場合,例えば,時刻213での外因性雑音を求める場合は,例えば時刻214から時刻217までに取得した外因性雑音検出器184の出力値から,フィッティング曲線201を推定し,この関数201の時刻213の時の値を用いて,外因性雑音を推測する。同様に積分型の外因性雑音を求める場合には,例えば,曲線201を時刻214から時刻213までの区間で,積分した値を用いる。このようにして,X線検出素子110の信号読み出しが,外因性雑音検出器184の信号読み出しと完全には一致しない場合でも,精度良く積分型及び非積分型の外因性雑音を推定できる。   On the other hand, when the signal readout of the X-ray detection element 110 does not completely match the signal readout of the extrinsic noise detector 184, for example, when obtaining the extrinsic noise at time 213, for example, from time 214 to time 217 The fitting curve 201 is estimated from the output value of the extrinsic noise detector 184 acquired in the above step, and the extrinsic noise is estimated using the value at the time 213 of the function 201. Similarly, when obtaining the integral type extrinsic noise, for example, a value obtained by integrating the curve 201 in a section from time 214 to time 213 is used. In this way, even when the signal readout of the X-ray detection element 110 does not completely coincide with the signal readout of the extrinsic noise detector 184, the integral and non-integral extrinsic noise can be accurately estimated.

このように,フィッティング曲線を用いることで,外因性雑音検出器184における熱雑音などの信号揺らぎの影響を抑えた外因性雑音の推定が可能になる。   Thus, by using the fitting curve, it is possible to estimate the extrinsic noise while suppressing the influence of signal fluctuation such as thermal noise in the extrinsic noise detector 184.

本実施例では,フィッティング曲線の算出には,1フレーム分の外因性雑音検出器184の信号を用いたが,本発明はこれに限るものではなく,1フレームよりも長い区間の信号を用いる場合や,1フレーム分未満の信号を用いる場合もあり得る。また,外因性雑音を求める時刻が,フィッティング曲線を決めるデータを取得した区間の中になる場合を示したが,本発明はこれに限定するものではなく,フィッティング曲線を用いて,外因性雑音を外挿して求める場合もあり得る。   In this embodiment, the signal of the extrinsic noise detector 184 for one frame is used for calculating the fitting curve. However, the present invention is not limited to this, and a signal having a section longer than one frame is used. Or, a signal of less than one frame may be used. In addition, although the case where the time for obtaining the extrinsic noise falls within the interval in which the data for determining the fitting curve is acquired has been shown, the present invention is not limited to this, and the extrinsic noise is reduced using the fitting curve. It may be obtained by extrapolation.

(実施例4)
本発明の実施例4のX線CT装置は,複数の外因性掲出素子からなる外因性雑音検出器184を用いる。本実施例を,外因性雑音検出器184の一例を示す図11と,外因性雑音補正処理の一例を示す図12を用いて説明する。
Example 4
The X-ray CT apparatus according to the fourth embodiment of the present invention uses an extrinsic noise detector 184 composed of a plurality of exogenous display elements. This embodiment will be described with reference to FIG. 11 showing an example of the extrinsic noise detector 184 and FIG. 12 showing an example of the extrinsic noise correction process.

図5に示した実施例1では,外因性雑音検出器184は1つの外因性雑音検出素子から構成されていたのに対して,本実施例の外因性雑音検出器184は,図11に示すように,チャネル方向に3個の外因性雑音検出素子181から構成される。ここで,図11に示す外因性雑音検出素子181の数を3個にしたのは,説明を簡単にするためであり,本発明を限定するものではない。この外因性雑音検出素子181は,フォトダイオード190とスイッチング素子191とから構成され,光電変換基板180上に形成されている。iチャネル目に属する外因性雑音検出素子を181−iと記す。他に,フォトダイオード190,スイッチング素子191,電流電圧変換器186,電極パッド185も同様に記す。   In the first embodiment shown in FIG. 5, the extrinsic noise detector 184 is composed of one extrinsic noise detecting element, whereas the exogenous noise detector 184 of the present embodiment is shown in FIG. Thus, it is comprised of three extrinsic noise detection elements 181 in the channel direction. Here, the reason why the number of the extrinsic noise detection elements 181 shown in FIG. 11 is three is to simplify the explanation, and does not limit the present invention. The extrinsic noise detection element 181 is composed of a photodiode 190 and a switching element 191, and is formed on the photoelectric conversion substrate 180. The extrinsic noise detecting element belonging to the i channel is denoted as 181-i. In addition, the photodiode 190, the switching element 191, the current-voltage converter 186, and the electrode pad 185 are similarly described.

外因性雑音検出素子181−iのスイッチング素子191−iは,共通の制御用パッド188に電気的に接続され,制御用パッド188に読み出しONの制御信号を入力すると,各チャネルの外因性雑音検出素子181−iから信号が同時に出力される。この制御用パッド188には,例えば実施例1と同じように,図6の信号151を入力する。このとき出力される信号は,各チャネルi毎に電流電圧変換器186−iを経て,電極185−iから出力される。   The switching element 191-i of the extrinsic noise detection element 181-i is electrically connected to the common control pad 188. When a read-on control signal is input to the control pad 188, the extrinsic noise detection of each channel is performed. Signals are simultaneously output from the element 181-i. The signal 151 shown in FIG. 6 is input to the control pad 188, for example, as in the first embodiment. The signal output at this time is output from the electrode 185-i via the current-voltage converter 186-i for each channel i.

次に,本実施例の外因性雑音検出素子出力信号処理の実施形態の一例を,図12を用いて説明する。補正処理手段301は,まず信号収集手段118から出力される外因性雑音検出器184のデジタル信号を,外因性雑音計測値記憶手段410に記憶し,X線検出器104のデジタル信号を,X線検出器信号記憶手段411に記憶する。次に感度・オフセット補正手段415にて,外因性雑音検出素子181のデジタル信号に対して感度・オフセット補正を行う。この感度補正は,各外因性雑音検出素子181の感度を規格化する補正であり,オフセット補正は,X線が入射しないときのゼロレベルを合わせる補正である。これらの補正は,事前に取得して検出器特性記憶手段303に記憶した,感度補正用データとオフセット補正用データを用いる。感度補正用データは,例えば,X線駆動系を動作させることで生じた外因性雑音信号から,各外因性雑音検出素子181の感度を算出することで作成できる。オフセット補正用データは,外因性雑音要因が無視できる程度小さい状況で計測した検出器信号から,各外因性雑音検出素子181のゼロレベルを算出することで作成できる。   Next, an example of an embodiment of the extrinsic noise detection element output signal processing of this example will be described with reference to FIG. First, the correction processing means 301 stores the digital signal of the extrinsic noise detector 184 output from the signal collecting means 118 in the extrinsic noise measurement value storage means 410, and the digital signal of the X-ray detector 104 is stored in the X-ray. The data is stored in the detector signal storage means 411. Next, sensitivity / offset correction means 415 performs sensitivity / offset correction on the digital signal of the extrinsic noise detection element 181. This sensitivity correction is a correction that normalizes the sensitivity of each extrinsic noise detection element 181, and the offset correction is a correction that matches the zero level when no X-rays are incident. For these corrections, sensitivity correction data and offset correction data acquired in advance and stored in the detector characteristic storage means 303 are used. The sensitivity correction data can be created, for example, by calculating the sensitivity of each extrinsic noise detection element 181 from the extrinsic noise signal generated by operating the X-ray drive system. The offset correction data can be created by calculating the zero level of each extrinsic noise detection element 181 from the detector signal measured in a situation where the extrinsic noise factor is small enough to be ignored.

次に加算平均手段414にて,外因性雑音検出素子181−iの信号を加算平均処理する。本実施例では,例えば,3チャネル分の全信号を加算平均する。外因性雑音検出素子181−i(i=1,2,3)は同時に計測を行っているため,3つの素子で1つの外因性雑音検出素子181を形成し,算出した加算平均信号は,実施例1における1つの外因性雑音検出素子181がある時刻に計測した信号と同様に見なせる。そのため,加算平均手段414以降の処理は,実施例1と同じ処理を行うことで,X線検出器信号記憶手段411の外因性雑音を推定し,外因性雑音補正を行うことができる。   Next, the averaging means 414 performs an averaging process on the signal from the extrinsic noise detection element 181-i. In this embodiment, for example, all signals for three channels are added and averaged. Since the extrinsic noise detection element 181-i (i = 1, 2, 3) is simultaneously measuring, one extrinsic noise detection element 181 is formed by three elements, and the calculated addition average signal is One exogenous noise detection element 181 in Example 1 can be regarded as a signal measured at a certain time. Therefore, the processing after the addition averaging means 414 is the same as that in the first embodiment, so that the extrinsic noise in the X-ray detector signal storage means 411 can be estimated and extrinsic noise correction can be performed.

このように複数の外因性雑音検出素子181の信号を用いることで,外因性雑音の推定精度が向上する。これは,外因性雑音検出素子181の熱雑音などは,各素子で相関がないために,加算平均されることでゼロに近づくのに対して,外因性雑音は,同一の要因によって生じているために相関があり,加算平均されることで計測バラツキが小さくなって真値に近づくため,1つの素子で計測するよりも,SNRの良い信号が得られるためである。   By using the signals of the plurality of extrinsic noise detection elements 181 in this way, the estimation accuracy of the extrinsic noise is improved. This is because the thermal noise of the extrinsic noise detection element 181 has no correlation in each element, so that it is close to zero by averaging, whereas the extrinsic noise is caused by the same factor. This is because there is a correlation, and the average of the addition reduces the measurement variation and approaches the true value, so that a signal with a better SNR can be obtained than when measuring with one element.

本実施例では,外因性雑音検出素子181の感度補正とオフセット補正の両方を行ったが,本発明はこれに限るものではなく,一方の補正のみを行う場合や,両方とも行わない場合もあり得る。特に,感度ばらつきが小さい場合や,オフセットレベルがほぼゼロと見なせる場合は,それぞれの補正処理を省いても良い。   In this embodiment, both the sensitivity correction and the offset correction of the extrinsic noise detection element 181 are performed. However, the present invention is not limited to this, and only one of the corrections or both may not be performed. obtain. In particular, when the sensitivity variation is small or the offset level can be regarded as almost zero, the respective correction processes may be omitted.

本実施例では,チャネル方向108に複数の外因性雑音検出素子181を配置したが,本発明はこれに限るものではなく,スライス方向に複数の外因性雑音検出素子181を配置する場合や,チャネル方向とある角度を成して,斜めに配置する場合もあり得る。   In the present embodiment, a plurality of extrinsic noise detection elements 181 are arranged in the channel direction 108, but the present invention is not limited to this, and when a plurality of exogenous noise detection elements 181 are arranged in the slice direction, It may be arranged at an angle with respect to the direction.

本実施例では,1つの外因性雑音検出器184に配置された外因性雑音検出素子181の信号を用いて加算平均を行ったが,本発明はこれに限るものではなく,複数の外因性雑音検出器184に配置された外因性雑音検出素子181の信号を用いても良い。   In this embodiment, the averaging is performed using the signals of the extrinsic noise detection element 181 arranged in one extrinsic noise detector 184, but the present invention is not limited to this, and a plurality of extrinsic noises are used. A signal from the extrinsic noise detection element 181 disposed in the detector 184 may be used.

(実施例5)
実施例4のX線CT装置では,外因性雑音検出素子181が1次元的に配置された外因性雑音検出器184を用いたのに対し,実施例5のX線CT装置は,外因性雑音検出素子181が2次元的に配置された外因性雑音検出器184を用いる。本実施例の外因性雑音検出器184の一例を図13に,図13の外因性雑音検出器184の制御タイミングの一例を図14,図15に,それぞれ示す。
(Example 5)
The X-ray CT apparatus according to the fourth embodiment uses the extrinsic noise detector 184 in which the extrinsic noise detection elements 181 are arranged one-dimensionally, whereas the X-ray CT apparatus according to the fifth embodiment uses the external noise. An extrinsic noise detector 184 in which detection elements 181 are two-dimensionally arranged is used. An example of the extrinsic noise detector 184 of this embodiment is shown in FIG. 13, and an example of the control timing of the exogenous noise detector 184 of FIG. 13 is shown in FIGS.

図13に示すように,本実施例の外因性雑音検出器184は,3チャネル×2スライスの2次元的に外因性雑音検出素子181が配置された構成を有する。ここで,図13に示した外因性雑音検出素子181のチャネル数及びスライス数は単なる例示であり,本発明を限定するものではない。外因性雑音検出素子181は,フォトダイオード190とスイッチング素子191とから成り,光電変換基板180上に形成されている。iチャネルjスライス目に属する外因性雑音検出素子を181−i−jと記す。他に,フォトダイオード190,スイッチング素子191も同様に記す。同様に,iチャネル目に属する電流電圧変換器を186−i,電極パッド185−iと記す。同様に,jスライス目の制御を行うための制御用パッド188−jと記す。   As shown in FIG. 13, the extrinsic noise detector 184 of the present embodiment has a configuration in which the extrinsic noise detecting elements 181 are arranged two-dimensionally in 3 channels × 2 slices. Here, the number of channels and the number of slices of the extrinsic noise detection element 181 shown in FIG. 13 are merely examples, and do not limit the present invention. The extrinsic noise detection element 181 includes a photodiode 190 and a switching element 191, and is formed on the photoelectric conversion substrate 180. The extrinsic noise detecting element belonging to the i channel j slice is denoted as 181-i-j. In addition, the photodiode 190 and the switching element 191 are similarly described. Similarly, current-voltage converters belonging to the i-th channel are referred to as 186-i and electrode pads 185-i. Similarly, a control pad 188-j for controlling the jth slice is described.

外因性雑音検出器184は,例えば図14の制御タイミングのように読み出しを行う。この読み出しは,図14に示す制御信号151−j(j=1,2)を,図12に記す制御用パッド188−j(j=1,2)に,それぞれ入力することで実現し,X線検出素子110−i−j(j=1,2,3,4)は,制御信号150−j(j=1,2,3,4)を図3に示す制御用パッド133−j(j=1,2,3,4)に,それぞれ入力することで制御する。この制御により,X線検出素子110と同時に,全ての外因性雑音検出素子181の外因性雑音の信号を読み出す。このとき同時に読み出された信号は,図12に示す加算処理414において加算平均される。このように制御及び処理される場合,実施例4と同じように,3チャネル×2スライスの外因性雑音検出素子181を,1つの外因性雑音検出素子181と見なして,外因性雑音補正に用いることが出来る。以上のように,加算平均に用いる外因性雑音検出素子181を増やすことで,信号のSNRが向上し,外因性雑音の推定精度が向上する。   The extrinsic noise detector 184 reads out, for example, as shown in the control timing of FIG. This reading is realized by inputting the control signal 151-j (j = 1, 2) shown in FIG. 14 to the control pad 188-j (j = 1, 2) shown in FIG. The line detection element 110-i-j (j = 1, 2, 3, 4) sends a control signal 150-j (j = 1, 2, 3, 4) to the control pad 133-j (j = 1, 2, 3 and 4), respectively, to control. With this control, the extrinsic noise signals of all the extrinsic noise detecting elements 181 are read out simultaneously with the X-ray detecting element 110. The signals read simultaneously at this time are added and averaged in the adding process 414 shown in FIG. When being controlled and processed in this way, as in the fourth embodiment, the extrinsic noise detecting element 181 of 3 channels × 2 slices is regarded as one extrinsic noise detecting element 181 and used for extrinsic noise correction. I can do it. As described above, by increasing the number of extrinsic noise detection elements 181 used for the averaging, the SNR of the signal is improved and the estimation accuracy of the extrinsic noise is improved.

ただし,外因性雑音検出器184の制御方法は,これに限るものではない。例えば,図15に示すように制御を行ってもよい。図15に示した制御信号151−j(j=1,2)は,図12に記す制御用パッド188−j(j=1,2)に,それぞれ入力する。このとき,1スライス目の外因性雑音検出素子181−i−1は,1及び2スライスのX線検出素子110−i−jと同時に信号読み出しを行い,2スライス目の外因性雑音検出素子181−i−2は,3及び4スライスのX線検出素子101−i−jと同時に信号読み出しを行う。同時に取得された信号は,図12に示す加算処理414において加算平均されることで,3チャネル×1スライスの外因性雑音検出素子181を,1つの外因性雑音検出素子181と見なして外因性雑音補正に用いることが出来る。このように外因性雑音検出器184を分割して用いることで,外因性雑音補正を行いたいX線検出素子110に近い位置の外因性雑音検出素子181や相関の強い外因性雑音検出素子181を用いて,補正が出来るようになるため,相関の強い信号を,外因性雑音検出器184から取得することが可能になる。   However, the control method of the extrinsic noise detector 184 is not limited to this. For example, the control may be performed as shown in FIG. Control signals 151-j (j = 1, 2) shown in FIG. 15 are respectively input to control pads 188-j (j = 1, 2) shown in FIG. At this time, the extrinsic noise detection element 181-i-1 in the first slice reads out signals simultaneously with the X-ray detection elements 110-i-j in the first and second slices, and the extrinsic noise detection element 181 in the second slice. -I-2 performs signal readout simultaneously with the 3 and 4 slice X-ray detection elements 101-i-j. The signals acquired at the same time are added and averaged in the addition process 414 shown in FIG. 12, so that the extrinsic noise detecting element 181 of 3 channels × 1 slice is regarded as one extrinsic noise detecting element 181 and extrinsic noise is detected. It can be used for correction. By dividing the extrinsic noise detector 184 in this way, the extrinsic noise detecting element 181 located close to the X-ray detecting element 110 to be corrected for extrinsic noise or the extrinsic noise detecting element 181 having a strong correlation can be obtained. As a result, the signal can be corrected, so that a highly correlated signal can be acquired from the extrinsic noise detector 184.

(実施例6)
実施例1又は実施例2のX線CT装置では,外因性雑音検出素子181の信号読み出しとX線検出素子110の信号読み出しが同周期だったのに対し,実施例6のX線CT装置は,X線検出素子110の信号読み出しの間にも,外因性雑音検出素子181の信号読み出しを行う。
(Example 6)
In the X-ray CT apparatus of Example 1 or Example 2, the signal readout of the extrinsic noise detection element 181 and the signal readout of the X-ray detection element 110 were in the same period, whereas the X-ray CT apparatus of Example 6 The signal reading of the extrinsic noise detection element 181 is also performed during the signal reading of the X-ray detection element 110.

図16を用いて,本実施例の外因性雑音検出器184の制御タイミングの一例を説明する。外因性雑音検出器184の読み出しは,図14に記す制御信号151を,図5の制御用パッド188に,それぞれ入力することで制御する。X線検出素子110−i−j(j=1,2,3,4)の読み出しは,制御信号150−j(j=1,2,3,4)を図3の制御用パッド133−j(j=1,2,3,4)に,それぞれ入力することで制御する。外因性雑音検出器184は,X線検出素子110の信号読み出し時間160,161,162,163と同時に取得する他に,時間244,245,246,247においても,信号読み出しを行う。ここで本実施例では,X線検出素子110の信号読み出し間に,外因性雑音検出素子181が1回だけ非同時に信号を読み出す場合を示すが,この数は説明を簡単にするためであり,本発明を限定するものではない。   An example of the control timing of the extrinsic noise detector 184 of this embodiment will be described with reference to FIG. Reading of the extrinsic noise detector 184 is controlled by inputting the control signal 151 shown in FIG. 14 to the control pad 188 shown in FIG. Reading of the X-ray detection element 110-i-j (j = 1, 2, 3, 4) is performed by using the control signal 150-j (j = 1, 2, 3, 4) as the control pad 133-j in FIG. (J = 1, 2, 3, 4) is controlled by inputting it respectively. The extrinsic noise detector 184 performs signal readout at times 244, 245, 246, and 247 in addition to acquiring simultaneously with the signal readout times 160, 161, 162, and 163 of the X-ray detection element 110. Here, in this embodiment, during the signal readout of the X-ray detection element 110, the case where the extrinsic noise detection element 181 reads a signal only once non-simultaneously is shown, but this number is for simplifying the explanation. It is not intended to limit the invention.

本実施例において,非積分性の外因性雑音を推定するためには,X線検出素子110の信号読み出し時間と同時に読み出した外因性雑音検出素子181の信号と,非同時に読み出した信号とを加算して用いる。例えば,時間160のX線検出素子110の外因性雑音の推定には,時間244と時間164に読み出した信号とを加算して用いる。この加算信号を用いると,例えば実施例1と同じ信号処理にて,非積分性の外因性雑音を補正できる。積分性の外因性雑音を推定するためには,実施例2と同様に,1フレーム間に信号読み出しされた外因性雑音検出器184の信号を加算した信号を作成するが,実施例2の場合と異なり,X線検出素子110の信号読み出し時間と同時に読み出した外因性雑音検出器184の信号のみでなく,非同時に読み出した信号も加算する。例えば,読み出し時間210に信号読み出しするX線検出素子110の積分型外因性雑音推定に用いる加算信号は,読み出し時間164,245,165,246,166,247,167,248,214に取得した信号を全て加算して求める。この加算値を用いることで,例えば実施例2と同じ処理を行うことで,積分型の外因性雑音を補正できる。   In this embodiment, in order to estimate non-integral extrinsic noise, the signal of the extrinsic noise detecting element 181 read simultaneously with the signal reading time of the X-ray detecting element 110 and the signal read non-simultaneously are added. And use. For example, for estimation of the extrinsic noise of the X-ray detection element 110 at time 160, the signals read at time 244 and time 164 are added and used. By using this addition signal, non-integral extrinsic noise can be corrected by the same signal processing as in the first embodiment, for example. In order to estimate the integral extrinsic noise, a signal obtained by adding the signals of the extrinsic noise detector 184 read out during one frame is created as in the second embodiment. Unlike the signal of the extrinsic noise detector 184 read at the same time as the signal reading time of the X-ray detection element 110, the signals read non-simultaneously are also added. For example, the addition signal used for the integral type extrinsic noise estimation of the X-ray detection element 110 that reads out the signal at the readout time 210 is the signal acquired at the readout times 164, 245, 165, 246, 166, 247, 167, 248, 214. Is obtained by adding all of the above. By using this added value, for example, by performing the same processing as in the second embodiment, the integral type exogenous noise can be corrected.

更に実施例3のように,外因性雑音信号に対してフィッティングを行って近似関数を求め,この関数を用いて,非積分型や積分型の外因性雑音を推定して補正しても良い。このとき本実施例の読み出しでは、実施例3に比べて外因性雑音信号の読み出し回数を増やすことが出来るため,フィッティング関数のSNRを向上でき,外因性雑音の推定精度を向上できる。   Further, as in the third embodiment, fitting may be performed on the extrinsic noise signal to obtain an approximate function, and non-integral or integral extrinsic noise may be estimated and corrected using this function. At this time, in the reading of the present embodiment, the number of readings of the extrinsic noise signal can be increased as compared with the third embodiment, so that the SNR of the fitting function can be improved and the estimation accuracy of the extrinsic noise can be improved.

本実施例では,非積分性の外因性雑音を推定するために,加算信号を用いたが,本発明はこれに限るものでない。実施例1と同様に,同じ時間に読み出した外因性雑音検出素子181の信号のみを用いて,X線検出素子110の外因性雑音を推定しても良い。   In this embodiment, the addition signal is used to estimate non-integral extrinsic noise, but the present invention is not limited to this. As in the first embodiment, the extrinsic noise of the X-ray detection element 110 may be estimated using only the signal of the extrinsic noise detection element 181 read out at the same time.

(実施例7)
実施例7のX線CT装置は,X線検出器の素子構造が実施例1又は実施例2のX線検出器104の素子構造と異なり,発生した電荷量を増幅する機能をX線検出素子110毎に有する。このようなX線検出器104の一例の回路図を図17に,このX線検出器104と外因性雑音検出器184との制御タイミングを説明する説明図を図18に,それぞれ示す。ただし,この回路構成,制御タイミングは一例であり,本発明を限定するものではない。
(Example 7)
The X-ray CT apparatus of the seventh embodiment differs from the element structure of the X-ray detector 104 of the first or second embodiment in that the element structure of the X-ray detector is different from that of the X-ray detector 104 in that the function of amplifying the generated charge amount Have every 110. FIG. 17 is a circuit diagram of an example of such an X-ray detector 104, and FIG. 18 is an explanatory diagram for explaining the control timing of the X-ray detector 104 and the extrinsic noise detector 184. However, this circuit configuration and control timing are merely examples, and do not limit the present invention.

図17に示すX線検出器104は,実施例1(図3)と比較して,リセット電位供給のON/OFFを行うリセットスイッチ250と,フォトダイオード140の出力電位に依存した電流が流れるMOSデバイス251と,リセット電位を供給するリセット電力パッド341と,jスライス目のリセットスイッチ250−jのON/OFFを制御するリセット制御用パッド252−jとを具備し,X線検出素子110は,フォトダイオード140とリセットスイッチ250とMOSデバイス251とスイッチング素子134から構成される。   Compared to the first embodiment (FIG. 3), the X-ray detector 104 shown in FIG. 17 includes a reset switch 250 for turning on / off the reset potential supply and a MOS in which a current depending on the output potential of the photodiode 140 flows. A device 251; a reset power pad 341 for supplying a reset potential; and a reset control pad 252-j for controlling ON / OFF of a reset switch 250-j of the j-th slice. A photodiode 140, a reset switch 250, a MOS device 251, and a switching element 134 are included.

このような構成により,X線によって生じた信号を読み出すことができる。X線がX線検出素子110に入射すると,フォトダイオード140で電荷が生じ,これを容量に蓄積することで電圧が生じる。スイッチング素子がONのとき,この電圧に依存した電流が,電流電圧変換器124に供給される。電流電圧変換器124の積分時間を適当に取ると,フォトダイオード140に蓄えられた電荷よりも,多くの電荷を電流電圧変換器124に蓄えることができ,この電荷に応じた電圧信号を信号用パッド120から得ることができる。従って,入射したX線量に依存した信号を得ることができる。   With such a configuration, a signal generated by X-rays can be read out. When X-rays enter the X-ray detection element 110, charges are generated in the photodiode 140, and a voltage is generated by accumulating this in the capacitor. When the switching element is ON, a current dependent on this voltage is supplied to the current-voltage converter 124. If the integration time of the current-voltage converter 124 is appropriately set, more charge than the charge stored in the photodiode 140 can be stored in the current-voltage converter 124, and a voltage signal corresponding to this charge is used for the signal. It can be obtained from the pad 120. Therefore, a signal depending on the incident X-ray dose can be obtained.

次に図18を用いて,本実施例の一例のX線検出器104と外因性雑音検出器184の読み出しタイミングを説明する。図18の信号150−iは,図17の制御用パッド133−jに供給し,信号259−jはリセット制御用パッド252−jに供給し,信号151は図5に示す外因性雑音検出器184の制御用パッド188に供給する。   Next, read timings of the X-ray detector 104 and the extrinsic noise detector 184 of an example of this embodiment will be described with reference to FIG. The signal 150-i in FIG. 18 is supplied to the control pad 133-j in FIG. 17, the signal 259-j is supplied to the reset control pad 252-j, and the signal 151 is the extrinsic noise detector shown in FIG. 184 control pads 188 are supplied.

X線検出器104の読み出しは,スライス毎に行われる。例えば,時刻160に1スライス目の読み出しを行った後,時刻161に2スライス目の読み出しを行う。この読み出しと同時に,外因性雑音検出器184の読み出しを行う。例えば,1スライス目のX線検出素子110−i−1の読み出し(時刻160)と同時に,外因性雑音検出器184の読み出し(時刻164)を行う。このX線検出器104の読み出しの直後に,フォトダイオード140に蓄積された電荷をリセットするために,リセットスイッチ250をONして,リセット電力パッド341への印加電位を,フォトダイオード140に印加する。例えば,時刻160に1スライス目のX線検出素子110−i−1の読み出しを行った直後に,時刻260にリセットスイッチ250−1をONして,フォトダイオード140−i−1の電荷のリセットを行う。   Reading of the X-ray detector 104 is performed for each slice. For example, after the first slice is read at time 160, the second slice is read at time 161. Simultaneously with this reading, the external noise detector 184 is read. For example, the reading of the extrinsic noise detector 184 (time 164) is performed simultaneously with the reading of the X-ray detection element 110-i-1 in the first slice (time 160). Immediately after the readout of the X-ray detector 104, the reset switch 250 is turned on to apply the potential applied to the reset power pad 341 to the photodiode 140 in order to reset the charge accumulated in the photodiode 140. . For example, immediately after reading the X-ray detection element 110-i-1 in the first slice at time 160, the reset switch 250-1 is turned on at time 260 to reset the charge of the photodiode 140-i-1. I do.

このように読み出した外因性雑音検出器184の信号を用いて,X線検出器104の信号を,例えば実施例1及び/又は実施例2に示した方法にて補正することで,外因性雑音補正を実現する。   By using the signal of the extrinsic noise detector 184 thus read out, the signal of the X-ray detector 104 is corrected by the method shown in the first embodiment and / or the second embodiment, for example. Realize the correction.

本実施例では,外因性雑音検出器184として増幅機能の無い検出器を用いたが,本発明はこれに限るものでなく,増幅機能を有する検出器を用いてもよい。この場合,例えば図19に示すように,X線検出器104と同様の回路にて増幅機能を有する外因性雑音検出器184を用いてもよい。ここで,図19に示した外因性雑音検出器184は,図5に示した外因性雑音検出器184と比較して,リセット電位供給のON/OFFを行うリセットスイッチ255と,フォトダイオード190の出力電位に依存した電流が流れるMOSデバイス256と,リセット電位を供給するリセット電力パッド257と,リセットスイッチ255のON/OFFを制御するリセット制御用パッド258とを具備し,外因性雑音検出素子181が,フォトダイオード190とリセットスイッチ255とMOSデバイス256とスイッチング素子191から構成される。   In the present embodiment, a detector without an amplification function is used as the extrinsic noise detector 184, but the present invention is not limited to this, and a detector having an amplification function may be used. In this case, for example, as shown in FIG. 19, an extrinsic noise detector 184 having an amplification function may be used in the same circuit as the X-ray detector 104. Here, the extrinsic noise detector 184 shown in FIG. 19 has a reset switch 255 for turning ON / OFF the reset potential supply and a photodiode 190 as compared with the extrinsic noise detector 184 shown in FIG. The extrinsic noise detecting element 181 includes a MOS device 256 in which a current depending on the output potential flows, a reset power pad 257 for supplying a reset potential, and a reset control pad 258 for controlling ON / OFF of the reset switch 255. 1 includes a photodiode 190, a reset switch 255, a MOS device 256, and a switching element 191.

図19に示した外因性雑音検出素子181は,例えば図20のタイミングにて制御できる。ここで信号320は,制御用パッド258に入力する制御信号である。図19に示すように,フォトダイオード190を,X線検出素子のフォトダイオード140のリセットと同時にリセットする。このようにリセットも同時に行うことで,リセット電力の変動などによって生じる外因性雑音を,X線検出器104と外因性雑音検出器184で同様に計測できるようになり,外因性雑音要因に対して相関の強い信号を得ることが出来るようになる。   The extrinsic noise detecting element 181 shown in FIG. 19 can be controlled, for example, at the timing shown in FIG. Here, the signal 320 is a control signal input to the control pad 258. As shown in FIG. 19, the photodiode 190 is reset simultaneously with the resetting of the photodiode 140 of the X-ray detection element. By performing resetting at the same time, the extrinsic noise caused by fluctuations in reset power and the like can be measured in the same manner by the X-ray detector 104 and the extrinsic noise detector 184. A signal having a strong correlation can be obtained.

本実施例では,X線検出器104及び/又は外因性雑音検出器184として,電荷量を増幅する機能を画素毎に有する検出器を用いたが,本発明はこれに限るものでなく,画素に生じた電圧を増幅する増幅機能を画素毎に有する場合もあり得る。また,複数の画素単位で増幅機能を有する場合もあり得る。   In this embodiment, the X-ray detector 104 and / or the extrinsic noise detector 184 is a detector having a function of amplifying the charge amount for each pixel. However, the present invention is not limited to this, and the pixel In some cases, each pixel has an amplifying function for amplifying the voltage generated in the pixel. In addition, there may be an amplification function in units of a plurality of pixels.

(実施例8)
実施例8のX線CT装置は,実施例1又は実施例2のX線CT装置と外因性雑音検出器184が異なり,外因性雑音検出器184が,ディフェクト素子を有するX線検出器を用いて実現される。ここでディフェクト素子とは,X線感度や,ゼロレベル(オフセットレベル)などが他の素子とは著しく異なる場合や,又はX線などの入力に対する出力特性において,一部の線量で,他の素子と比較して大きな歪みを有する場合など,その物理特性などを理由として使用を不適と判断された素子のことである。このようなディフェクト素子を有する検出器は,製造段階,移動中,使用中などに生じ,そのような検出器は廃棄される場合が多い。外因性雑音検出器として,X線検出器と同じ検出器で,ディフェクトがあるためにX線検出器として使用しない検出器を用いることにより,価格の点で有利になる。
(Example 8)
The X-ray CT apparatus of the eighth embodiment is different from the X-ray CT apparatus of the first or second embodiment in the extrinsic noise detector 184, and the extrinsic noise detector 184 uses an X-ray detector having a defect element. Realized. Here, the defect element means that the X-ray sensitivity, the zero level (offset level), etc. are significantly different from other elements, or the output characteristics with respect to the input of X-rays, etc. This is an element that has been determined to be inappropriate for use because of its physical characteristics, etc. Detectors having such defect elements occur during the manufacturing stage, during movement, during use, etc., and such detectors are often discarded. Using an external noise detector that is the same detector as the X-ray detector and that is not used as an X-ray detector due to defects is advantageous in terms of price.

図21は本実施例の外因性雑音検出器184の一例を示す図であり,ディフェクト素子を有するX線検出器で実現される。ここでディフェクト素子は,斜線330で表される位置の素子であり,具体的には,外因性雑音検出素子181−1−1,181−1−2,181−1−3,181−2−3がディフェクト素子である。この外因性雑音検出器184は,X線照射野の外やX線が遮蔽された場所に配置されるか,検出面の前面にX線遮蔽体を有する。   FIG. 21 is a diagram showing an example of the extrinsic noise detector 184 of the present embodiment, which is realized by an X-ray detector having a defect element. Here, the defect element is an element at a position represented by the oblique line 330. Specifically, the exogenous noise detection elements 181-1-1, 181-1-2, 181-1-3, 181-2- 3 is a defect element. The extrinsic noise detector 184 is disposed outside the X-ray irradiation field or in a place where X-rays are shielded, or has an X-ray shield in front of the detection surface.

外因性雑音の推測は,例えばこの外因性雑音検出器184のディフェクト素子以外の信号を用いて行う。例えば,この検出器の正常な素子の一部を用いて,外因性雑音計測を行う。この場合,例えば図21の制御用パッド188−4にのみに図6の信号151を入力し,電極パッド185−1と電極パッド185−2から,外因性雑音検出素子181−1−4と181−2−4の信号を読み出す。この信号をアナログ−デジタル変換した信号を用いて,例えばその加算平均した信号を用いることで,実施例1又は実施例2に示した外因性雑音補正を実現できる。   The estimation of the extrinsic noise is performed using a signal other than the defect element of the extrinsic noise detector 184, for example. For example, extrinsic noise measurement is performed using some of the normal elements of the detector. In this case, for example, the signal 151 of FIG. 6 is input only to the control pad 188-4 of FIG. 21, and the extrinsic noise detection elements 181-1-4 and 181 are transmitted from the electrode pad 185-1 and the electrode pad 185-2. Reads the signal of -2-4. The extrinsic noise correction shown in the first or second embodiment can be realized by using a signal obtained by analog-digital conversion of this signal and using, for example, a signal obtained by averaging the signals.

本実施例では,同一スライスの素子のみを用いたが,本発明はこれに限るものでない。例えば,同一チャネル素子の信号を用いても良い。この場合,例えば制御用パッド188-1と制御用パッド188−2に同じ信号を入力し,電極パッド185−2から,外因性雑音検出素子181−2−1と181−2−2とに生じた信号の加算信号を用いても良い。また,信号151を制御用パッド188−1と制御用パッド188−2の一方に,かつ切り替えて入力することで,外因性雑音検出素子181−2−1か181−2−2で,それぞれ読み出された信号を用いても良い。更に,チャネルとスライスにかかわらずに,素子を選んでも構わない。例えば,制御用パッド188−1と制御用パッド188−2と制御用パッド188−4に信号155を入力し,電極パッド185−1と電極パッド185−2から信号を得る。このとき,電極パッド185−2からは,外因性雑音検出素子181−2−1と181−2−2と181−2−4の加算信号が得られる。電極パッド185−1からも,外因性雑音検出素子181−1−1と181−1−2と181−1−4の加算信号が得られるが,ディフェクト素子の信号を用いないように,外因性雑音検出素子181−1−1と181−1−2の出力線を切断するなどして,同時に出力しないようにしておく。このときの電極パッド185−1と電極パッド185−2との信号を,アナログ−デジタル変換した信号を加算して素子数で割った信号を,外因性雑音補正に用いても良い。   In the present embodiment, only elements of the same slice are used, but the present invention is not limited to this. For example, a signal of the same channel element may be used. In this case, for example, the same signal is input to the control pad 188-1 and the control pad 188-1, and is generated from the electrode pad 185-2 to the extrinsic noise detection elements 181-2-1 and 181-2-2. An addition signal of the obtained signals may be used. In addition, by switching the signal 151 to one of the control pad 188-1 and the control pad 188-1 and switching it, the external noise detection element 181-2-1 or 181-2-2 reads the signal 151, respectively. The output signal may be used. Furthermore, elements may be selected regardless of the channel and slice. For example, the signal 155 is input to the control pad 188-1, the control pad 188-1, and the control pad 188-4, and the signal is obtained from the electrode pad 185-1 and the electrode pad 185-2. At this time, addition signals of the extrinsic noise detection elements 181-2-1, 181-2-2, and 181-2-4 are obtained from the electrode pad 185-2. The added signal of the extrinsic noise detection elements 181-1-1, 181-1-2, and 181-1-4 can also be obtained from the electrode pad 185-1, but the extrinsic noise detection elements should not be used. The output lines of the noise detection elements 181-1-1 and 181-1-2 are disconnected so that they are not output simultaneously. A signal obtained by adding the analog-digital converted signal and dividing the signal of the electrode pad 185-1 and the electrode pad 185-2 at this time by the number of elements may be used for extrinsic noise correction.

更に,可能な場合はX線検出器104の読み出しを行うスライスと同じスライスの外因性雑音検出素子181を用いて信号取得し,実質的に使用できる外因性雑音検出素子181がないスライスでは,他のスライスの外因性雑音検出素子181を用いて得た信号を用いて信号取得し,外因性雑音補正を行っても良い。これを説明するための一例として,図21の外因性雑音検出器184を用い,2チャネル目からの出力である電極パッド185−2からの出力を用いて,外因性雑音補正を行う場合について記す。   Further, if possible, signals are acquired using the extrinsic noise detection element 181 of the same slice as the slice from which the X-ray detector 104 is read, and other slices in which there is no usable extrinsic noise detection element 181 Signals obtained using the extrinsic noise detection element 181 of the slices may be acquired and extrinsic noise correction may be performed. As an example for explaining this, the case where the extrinsic noise correction is performed using the extrinsic noise detector 184 of FIG. 21 and the output from the electrode pad 185-2 as the output from the second channel will be described. .

図28は制御タイミングの一例であり,1,2,4スライス目は,外因性雑音検出器184とX線検出器104との同じスライスの信号が,同時に取得されている。すなわち,1スライス目のX線検出素子110を読み出しを行う時刻160と,1スライス目の外因性雑音検出素子181を読み出しを行う時刻164は同時であり,同様に,時刻161と時刻165,時刻163と時刻167がそれぞれ同時である。しかし,3スライス目の外因性雑音検出素子181-1-3がディフェクト素子のため,X線検出器104と同じスライスの外因性雑音検出素子181を用いて,外因性雑音を信号取得できない。このため3スライス目の外因性雑音信号は,他のスライスを用いて取得する。図28では,例えば4スライス目の外因性雑音検出素子181を用いて,3スライス目のX線検出素子110の外因性雑音を取得しており,時刻162と時刻166は同時である。このように制御を行うことにより,外因性雑音計測を行う外因性雑音検出素子181を,X線検出器104と同じ読み出しスライスを用いる場合と,異なるスライスを用いる場合を切り替えて,外因性雑音を取得することができる。   FIG. 28 shows an example of control timing. In the first, second, and fourth slices, signals of the same slice of the extrinsic noise detector 184 and the X-ray detector 104 are acquired simultaneously. That is, the time 160 for reading the X-ray detection element 110 in the first slice and the time 164 for reading the extrinsic noise detection element 181 in the first slice are the same. Similarly, the time 161, the time 165, the time 163 and time 167 are simultaneous. However, since the extrinsic noise detection element 181-1-3 in the third slice is a defect element, the extrinsic noise cannot be acquired using the extrinsic noise detection element 181 in the same slice as the X-ray detector 104. For this reason, the extrinsic noise signal of the third slice is acquired using another slice. In FIG. 28, for example, the extrinsic noise of the X-ray detection element 110 of the third slice is acquired using the extrinsic noise detection element 181 of the fourth slice, and the time 162 and the time 166 are the same. By performing the control in this way, the extrinsic noise detection element 181 for measuring the extrinsic noise is switched between using the same readout slice as the X-ray detector 104 and using a different slice to reduce the extrinsic noise. Can be acquired.

本実施例では,ディフェクト素子の出力を用いずに外因性雑音補正を行ったが,本発明はこれに限るものでない。X線検出器104と外因性雑音検出器184では必要な特性や精度が異なるため,X線検出素子110としては使用できない場合でも,外因性雑音検出素子181として使用可能な場合があり得る。例えば,X線検出素子110では広いダイナミックレンジを必要するのに対して,外因性雑音検出素子181ではほぼオフセットレベル(ゼロレベル)の計測になり,広いダイナミックレンジを必要としない。従って,X線検出素子として,ダイナミックレンジが狭いためにディフェクト素子と判断された素子や,入力X線に対する出力の特性が原因でディフェクト素子と判断されたものでも,外因性雑音検出素子181として使用可能な素子もあり得る。   In this embodiment, extrinsic noise correction is performed without using the output of the defect element, but the present invention is not limited to this. Since the X-ray detector 104 and the extrinsic noise detector 184 have different characteristics and accuracy, the X-ray detector 104 and the extrinsic noise detector 184 may be usable as the extrinsic noise detecting element 181 even when the X-ray detecting element 110 cannot be used. For example, while the X-ray detection element 110 requires a wide dynamic range, the extrinsic noise detection element 181 measures almost an offset level (zero level) and does not require a wide dynamic range. Therefore, an X-ray detection element can be used as the extrinsic noise detection element 181 even if it is determined to be a defect element due to a narrow dynamic range, or an element determined to be a defect element due to output characteristics with respect to an input X-ray. There may be possible elements.

(実施例9)
実施例9のX線CT装置は,実施例1又は実施例2のX線CT装置と外因性雑音検出器が異なり,X線検出器104の読み出しを制御するスイッチング素子191の制御信号を用いて,外因性雑音検出器184のスイッチング素子191を制御する。本実施例のX線検出器104と外因性雑音検出器を説明するための説明図を,図22に示す。
Example 9
The X-ray CT apparatus according to the ninth embodiment is different from the X-ray CT apparatus according to the first or second embodiment in that the extrinsic noise detector is used, and the control signal of the switching element 191 that controls the reading of the X-ray detector 104 is used. , The switching element 191 of the extrinsic noise detector 184 is controlled. An explanatory diagram for explaining the X-ray detector 104 and the extrinsic noise detector of this embodiment is shown in FIG.

本実施例の外因性雑音検出素子181は,図22に示すように,X線検出器104の背面に形成される。ここで図22には,X線入射方向から見たときのX線検出器104の回路図104−fと,その背面の回路図104−bとを示す。外因性雑音検出素子181のスイッチング素子191の制御線は,切り替えスイッチ350−jを経て,スライスjのX線検出素子110の制御線と接続する。切り替えスイッチ350−jのゲート電極は,制御用パッド351−jと電気的に接続している。従って,切り替えスイッチ350−jにONの制御信号を入力すると,ON信号があったスライスjのX線検出素子110の制御線と,外因性雑音検出素子181の制御線が電気的に接続する。   The extrinsic noise detecting element 181 of the present embodiment is formed on the back surface of the X-ray detector 104 as shown in FIG. Here, FIG. 22 shows a circuit diagram 104-f of the X-ray detector 104 viewed from the X-ray incident direction and a circuit diagram 104-b on the back thereof. The control line of the switching element 191 of the extrinsic noise detection element 181 is connected to the control line of the X-ray detection element 110 of slice j via the changeover switch 350-j. The gate electrode of the changeover switch 350-j is electrically connected to the control pad 351-j. Accordingly, when an ON control signal is input to the changeover switch 350-j, the control line of the X-ray detection element 110 of the slice j where the ON signal is present and the control line of the extrinsic noise detection element 181 are electrically connected.

外因性雑音検出素子181をX線検出器104の背面に形成することで,外因性雑音検出素子181をX線検出器104の近くに配置することが可能になり,外因性雑音要因に対してX線検出器と強い相関を持った信号を,外因性雑音検出素子にて得ることができ,高精度の補正が実現できる。更に,X線検出器がX線遮蔽体として作用するため,別途X線遮蔽体を設ける必要がない。   By forming the extrinsic noise detecting element 181 on the back surface of the X-ray detector 104, it becomes possible to arrange the exogenous noise detecting element 181 near the X-ray detector 104. A signal having a strong correlation with the X-ray detector can be obtained by the extrinsic noise detection element, and high-precision correction can be realized. Furthermore, since the X-ray detector acts as an X-ray shield, it is not necessary to provide a separate X-ray shield.

このような構成を用いて,外因性雑音検出素子181の読み出しを,X線検出器104が読み出しを行うスライスの制御信号を用いて制御する。すなわち,jスライス目のX線検出素子110を読み出すとき,制御用パッド351−jにONの制御信号を入力するようにする。このような制御により,読み出しを行うX線検出素子110と同じ制御信号を用いて,外因性雑音検出素子181の読み出しを行うことができる。そのため,外因性雑音要因によって制御線に変動が生じ,これによってX線検出素子110に外因性雑音が生じる場合でも,外因性雑音検出素子181でも同様に外因性雑音を計測することができ,外因性雑音補正を行うことができる。従って,X線検出素子110の制御線の変動による外因性雑音を,精度良く補正することが可能になる。   Using such a configuration, the reading of the extrinsic noise detection element 181 is controlled using the control signal of the slice from which the X-ray detector 104 reads. That is, when reading the X-ray detection element 110 in the jth slice, an ON control signal is input to the control pad 351-j. By such control, the extrinsic noise detection element 181 can be read using the same control signal as the X-ray detection element 110 that performs reading. Therefore, even when the control line fluctuates due to the extrinsic noise factor and this causes the extrinsic noise in the X-ray detection element 110, the extrinsic noise detection element 181 can measure the extrinsic noise in the same manner. Noise correction can be performed. Therefore, it is possible to accurately correct the extrinsic noise due to the fluctuation of the control line of the X-ray detection element 110.

本実施例では,図22の回路構成の切り替えスイッチ350にて,外因性雑音検出素子181への入力制御信号を切り替えたが,本発明はこれに限るものでなく,さまざまな回路構成があり得る。例えば,実施例10に記すような,切り替えスイッチ350の回路構成もあり得る。   In this embodiment, the input control signal to the extrinsic noise detecting element 181 is switched by the circuit configuration changeover switch 350 in FIG. 22, but the present invention is not limited to this, and various circuit configurations are possible. . For example, there may be a circuit configuration of the changeover switch 350 as described in the tenth embodiment.

本実施例では,X線検出器104の背面に外因性雑音検出素子181を搭載した構造を有したが,本発明はこれに限るものでない。例えば,X線検出器104の前面に外因性雑音検出素子181を有する場合や,X線検出器104と外因性雑音検出器184が別基板になっている場合などもあり得る。   In this embodiment, the X-ray detector 104 has a structure in which the exogenous noise detection element 181 is mounted on the back surface, but the present invention is not limited to this. For example, there may be a case where the extrinsic noise detection element 181 is provided in front of the X-ray detector 104, or a case where the X-ray detector 104 and the extrinsic noise detector 184 are provided on different substrates.

(実施例10)
実施例10のX線撮像装置は,フラットパネル検出器を搭載したX線DR装置における本発明の実施例である。図23は,本実施例のX線DR装置の実施形態の一例を示す説明図である。図24は,本実施例のフラットパネル検出器104と外因性雑音検出器184の一例を示す説明図である。図25及び図26は,動画撮影時の読み出しタイミングの一例を説明する説明図である。図27は,静止画撮影時の読み出しタイミングの一例を説明する説明図である。
(Example 10)
The X-ray imaging apparatus of Embodiment 10 is an embodiment of the present invention in an X-ray DR apparatus equipped with a flat panel detector. FIG. 23 is an explanatory diagram illustrating an example of an embodiment of the X-ray DR apparatus according to the present embodiment. FIG. 24 is an explanatory diagram showing an example of the flat panel detector 104 and the extrinsic noise detector 184 of the present embodiment. 25 and 26 are explanatory diagrams for explaining an example of read timing at the time of moving image shooting. FIG. 27 is an explanatory diagram for explaining an example of read timing at the time of still image shooting.

図23に示すように,本実施例のX線DR装置の基本構成として,X線を照射するX線管100,X線を検出して電気信号に変換するX線検出器(フラットパネル検出器)104,外因性雑音を検出して電気信号に変換する外因性雑音検出器184,フラットパネル検出器104と外因性雑音検出器184からの信号を収集する信号収集手段118,信号収集手段118からのデータを記憶して画像処理を行う中央処理手段105,画像処理の結果を表示する表示手段106,撮影開始やパラメータの設定や入力を行う入力手段119,X線管100,フラットパネル検出器104,外因性雑音検出器184を制御する制御手段117から成る。   As shown in FIG. 23, as the basic configuration of the X-ray DR apparatus of the present embodiment, an X-ray tube 100 that irradiates X-rays, an X-ray detector that detects X-rays and converts them into electrical signals (flat panel detector) 104) From the extrinsic noise detector 184 that detects the extrinsic noise and converts it into an electrical signal, from the signal collecting means 118 that collects signals from the flat panel detector 104 and the extrinsic noise detector 184, from the signal collecting means 118 Central processing means 105 for storing image data and performing image processing, display means 106 for displaying the results of image processing, input means 119 for starting imaging, setting parameters, and inputting, X-ray tube 100, flat panel detector 104 , Control means 117 for controlling the extrinsic noise detector 184.

撮影ではまず,入力手段119から撮影開始の入力を行い,X線源100から被写体102に向けて,X線を照射する。このX線の一部は被写体102を透過し,X線検出器104に検出され,X線量に依存した電気信号を生じる。この電気信号は,信号収集回路118にてAD変換されて,デジタル信号になる。この撮影で,X線検出器104の多数のX線検出素子から得られたデジタル信号の集まりが,1つの投影像を構成する。このX線検出信号の取得と同期して,外因性雑音検出器184を用いて信号を読み出す。このとき,外因性雑音要因によって生じた外因性雑音信号を取得する。この信号も信号収集回路118にて,アナログ−デジタル変換(AD変換)されてデジタル信号になる。次に,X線検出信号のデジタル信号に対して,中央収集回路105にて画像補正処理を実施する。補正処理は,例えば,実施例1で説明した感度補正処理やオフセット補正処理,実施例1及び実施例2で説明した外因性雑音補正である。その結果を,表示手段106にて表示する。   In imaging, first, imaging start is input from the input means 119, and X-rays are emitted from the X-ray source 100 toward the subject 102. A part of this X-ray passes through the object 102 and is detected by the X-ray detector 104 to generate an electric signal depending on the X-ray dose. This electric signal is AD converted by the signal collecting circuit 118 to become a digital signal. In this imaging, a collection of digital signals obtained from a large number of X-ray detection elements of the X-ray detector 104 constitutes one projection image. In synchronization with the acquisition of the X-ray detection signal, the signal is read using the extrinsic noise detector 184. At this time, the extrinsic noise signal generated by the extrinsic noise factor is acquired. This signal is also converted into a digital signal by analog-digital conversion (AD conversion) by the signal collecting circuit 118. Next, the central correction circuit 105 performs image correction processing on the digital signal of the X-ray detection signal. The correction process is, for example, the sensitivity correction process or the offset correction process described in the first embodiment, or the extrinsic noise correction described in the first and second embodiments. The result is displayed on the display means 106.

図24を用いて,本発明の実施例の一例のフラットパネル検出器104及び外因性雑音検出器184の回路構成を説明する。ここでフラットパネル検出器104は,6行4列のマトリックス状のX線検出素子110が設置されているが,これらの数は実施の一例であり,本発明はこれに限定するものではない。また外因性雑音検出器184として1つの外因性雑音検出素子181が設置されているが,この数は実施の一例であり,本発明はこれに限定するものではない。   A circuit configuration of the flat panel detector 104 and the extrinsic noise detector 184 as an example of the embodiment of the present invention will be described with reference to FIG. Here, the flat panel detector 104 is provided with an X-ray detection element 110 in a matrix of 6 rows and 4 columns. However, these numbers are merely examples, and the present invention is not limited thereto. One extrinsic noise detection element 181 is installed as the extrinsic noise detector 184, but this number is an example of implementation, and the present invention is not limited to this.

本実施例のフラットパネル検出器104のX線検出素子110は,フォトダイオード140とスイッチング素子134とから構成される。スイッチング素子のゲート電極は,行毎に共通の制御線で,垂直シフトレジスタ334に接続されている。そのため,垂直シフトレジスタ334からスイッチング素子へON信号を出力すると,同一の行に属するX線検出素子110の電気信号が,同時に読み出される。出力信号は,電流電圧変換器124に入力して電圧信号になり,パラレルシリアル変換器335に入力される。パラレルシリアル変換器335では,全列の信号をホールドしながら,1列ごとに順に,例えば1列目,2列目,3列目,4列目と順に信号収集手段118に出力する。信号収集手段118では,各列の信号をデジタル信号に変換する。   The X-ray detection element 110 of the flat panel detector 104 of this embodiment is composed of a photodiode 140 and a switching element 134. The gate electrode of the switching element is connected to the vertical shift register 334 by a common control line for each row. Therefore, when an ON signal is output from the vertical shift register 334 to the switching element, the electrical signals of the X-ray detection elements 110 belonging to the same row are read out simultaneously. The output signal is input to the current-voltage converter 124 to become a voltage signal and input to the parallel-serial converter 335. The parallel-serial converter 335 outputs the signals to the signal collecting unit 118 in order for each column, for example, the first column, the second column, the third column, and the fourth column while holding the signals of all columns. The signal collecting means 118 converts the signals in each column into digital signals.

この垂直シフトレジスタ334の制御信号は,切り替えスイッチ350を経て,外因性雑音検出素子181にも入力する。外因性雑音検出素子181は,外因性雑音信号を生じてそれを蓄積するフォトダイオード190と,この蓄積信号の読み出しのON/OFFを行うスイッチング素子191から構成され,垂直シフトレジスタ334から出力される制御信号によって,読み出しが制御される。切り替えスイッチ350は,ON信号が入力された行の制御信号を,外因性雑音検出素子181に入力する。従って外因性雑音検出素子181は,各行のX線検出素子110の信号読み出しと同時に,信号が読み出される。読み出された信号は,X線検出器104と同様に,電流電圧変換器にて電圧信号になり,信号収集手段118に出力される。   The control signal of the vertical shift register 334 is also input to the extrinsic noise detection element 181 via the changeover switch 350. The extrinsic noise detection element 181 includes a photodiode 190 that generates and stores an extrinsic noise signal, and a switching element 191 that turns ON / OFF reading of the stored signal, and is output from the vertical shift register 334. Reading is controlled by the control signal. The changeover switch 350 inputs the control signal of the row to which the ON signal is input to the extrinsic noise detection element 181. Therefore, the extrinsic noise detection element 181 reads the signal simultaneously with the signal reading of the X-ray detection element 110 in each row. Similar to the X-ray detector 104, the read signal is converted into a voltage signal by the current-voltage converter and output to the signal collecting means 118.

次に,垂直シフトレジスタ334が異なる行のX線検出素子110へON信号を出力し,同様の読み出しを行う。以降,順次読み出しを行う行を切り替えることで,フラットパネル検出器104の全X線検出素子110を読み出すことができ,その各信号読み出しと同期して,外因性雑音検出素子181の信号読み出しを行う。   Next, the vertical shift register 334 outputs an ON signal to the X-ray detection elements 110 in different rows and performs the same reading. Thereafter, all the X-ray detection elements 110 of the flat panel detector 104 can be read by switching the rows to be read sequentially, and the signals of the extrinsic noise detection elements 181 are read in synchronization with the respective signal readings. .

本実施例の切り替えスイッチ350は,スイッチングを行うMOSトランジスタが飽和領域と成るような電力量が,電圧源337から供給され,電流源回路338を有することでソースフォロア回路を構成する。従って,ゲート電極に入力した電圧が,ほぼそのまま(しきい値電圧だけ下がる)ソース電極に出力できる。ただし,これは一実施例であり,本発明はこれに限るものでない。例えば,実施例9に示す回路構成などもあり得る。   The changeover switch 350 according to the present embodiment is supplied with a power amount from the voltage source 337 and has a current source circuit 338 so that the MOS transistor that performs switching is in a saturation region, thereby forming a source follower circuit. Therefore, the voltage input to the gate electrode can be output to the source electrode almost as it is (lowered by the threshold voltage). However, this is an example, and the present invention is not limited to this. For example, there may be a circuit configuration shown in the ninth embodiment.

本実施例では,X線検出器104と外因性雑音検出器184が,別基板に設けられている場合を記したが,本発明はこれに限るものでない。両者が一体の基板に設けられる場合や,実施例9のように,外因性雑音検出器184がX線検出器104の基板の背面に設けられる場合もあり得る。また,X線検出器104の横に隣接して,外因性雑音検出器184を配置したが,本発明はこれに限るものでなく,上下左右に隣接,近接して配置する場合や,前背面などに配置する場合もあり得る。また本実施例では,外因性雑音検出器184が1つの場合を示したが,本発明はこれに限るものでない。複数の外因性雑音検出器184を1ヶ所にも受ける場合や,複数箇所に設ける場合などもあり得る。   In this embodiment, the case where the X-ray detector 104 and the extrinsic noise detector 184 are provided on separate substrates is described, but the present invention is not limited to this. In some cases, both may be provided on an integrated substrate, or as in the ninth embodiment, the extrinsic noise detector 184 may be provided on the back surface of the X-ray detector 104 substrate. Further, although the exogenous noise detector 184 is disposed adjacent to the side of the X-ray detector 104, the present invention is not limited to this. In some cases, it may be arranged. In the present embodiment, the case where there is one extrinsic noise detector 184 is shown, but the present invention is not limited to this. There may be a case where a plurality of exogenous noise detectors 184 are received at one place, or a case where they are provided at a plurality of places.

X線DR装置では一般に,動画撮影(透視撮影)と静止画撮影(一般撮影,単純撮影)の双方の撮影機能を有する。図25から図27を用いて,各撮影のシーケンスの一例を説明する。各図において,信号150−jはスライスjのX線検出素子110の信号読み出しを制御する制御信号であり,信号151は外因性雑音検出素子181の信号読み出しを制御する制御信号であり,信号331はX線管100(図1に示す)のX線照射を制御する信号であり,時刻365は撮影開始時刻であり,時間152は1フレーム間の長さである。ここで,図25及び図26で示す撮影フレーム数は,説明を簡単にするためのものであり,本発明を限定するものではない。   In general, an X-ray DR apparatus has imaging functions for both moving image shooting (perspective shooting) and still image shooting (general shooting, simple shooting). An example of each photographing sequence will be described with reference to FIGS. In each figure, a signal 150-j is a control signal for controlling the signal readout of the X-ray detection element 110 in slice j, a signal 151 is a control signal for controlling the signal readout of the extrinsic noise detection element 181, and a signal 331 Is a signal for controlling X-ray irradiation of the X-ray tube 100 (shown in FIG. 1), time 365 is the imaging start time, and time 152 is the length of one frame. Here, the number of shooting frames shown in FIGS. 25 and 26 is for simplifying the description, and does not limit the present invention.

動画撮影では,連続X線を用いる連続透視撮影と,パルス状のX線を用いるパルス透視撮影がある。連続透視撮影は図25に示すように,撮影開始入力の後,撮影開始時刻365よりX線照射を開始して複数フレーム間連続して照射し,発生した信号の読み出しをフレーム毎に行う撮影である。パルス透視撮影は図26に示すように,撮影開始入力の後,各フレームで読み出しを終了して次のフレームに入る前のブランキング時間332中に,X線照射をON及びOFFしてパルス状のX線照射し,照射後のフレームで,発生した信号を順次読み出す動作を繰り返す撮影である。この信号読み出しと同期して外因性雑音読み出しを行い,その信号を用いて中央処理手段105がX線検出信号のデジタル信号に対して,例えば実施例1及び/又は実施例2に記した外因性雑音補正を行い,その結果を表示手段106に連続的に表示する。   In moving image shooting, there are continuous fluoroscopic imaging using continuous X-rays and pulsed fluoroscopic imaging using pulsed X-rays. As shown in FIG. 25, the continuous fluoroscopic imaging is an imaging in which, after an imaging start input, X-ray irradiation is started from an imaging start time 365, irradiation is continuously performed for a plurality of frames, and a generated signal is read out for each frame. is there. As shown in FIG. 26, the pulse fluoroscopy is performed in such a manner that the X-ray irradiation is turned on and off during the blanking time 332 before the reading is finished in each frame after entering the imaging start and before entering the next frame. X-ray irradiation, and the operation of sequentially reading the generated signals in the post-irradiation frame is repeated. The extrinsic noise is read out in synchronism with this signal reading, and the central processing means 105 uses the signal to read the digital signal of the X-ray detection signal, for example, the extrinsic described in the first and / or the second embodiment. Noise correction is performed, and the result is continuously displayed on the display means 106.

静止画の撮影では図27に示すように,撮影開始入力の後,撮影開始時刻365よりX線照射を開始し,発生した信号を読み出す。この信号読み出しと同期して,外因性雑音読み出しを行い,中央処理手段105がその信号を用いて,X線検出データに対して,例えば実施例1及び/又は実施例2に記した外因性雑音補正を行い,その結果を保存する。補正後の画像は,表示手段106にて表示される。   In still image shooting, as shown in FIG. 27, after input of imaging start, X-ray irradiation is started from imaging start time 365, and the generated signal is read out. In synchronization with this signal readout, the extrinsic noise is read out, and the central processing unit 105 uses the signal to detect the extrinsic noise described in the first and / or second embodiments, for example, for the X-ray detection data. Make corrections and save the results. The corrected image is displayed on the display means 106.

本実施例で示したアナログ信号処理は,実施形態の一例であり,本発明はこれに限るものでない。例えば,本実施例ではアナログ信号をパラレルシリアル変換した後にアナログ−デジタル変換を行う構成であるが,アナログ−デジタル変換後にパラレルシリアル変換する場合もあり得る。   The analog signal processing shown in this embodiment is an example of the embodiment, and the present invention is not limited to this. For example, in this embodiment, the analog signal is converted from analog to digital after parallel-serial conversion, but parallel-serial conversion may be performed after analog-to-digital conversion.

本実施例では,フラットパネル検出器のX線検出素子110を,行毎に同時に読み出しを行う場合を記したが,本発明はこれに限るものでない。列毎に同時に読み出す
の場合や,複数行の列の場合,複数列や複数行を同時に読み出す場合もあり得る。また,本実施例に示したフラットパネル検出器のX線検出素子110の構造は一例であり,本発明はこれに限るものでない。例えば,実施例7に示したように増幅機能を有する構造など,さまざまな構造があり得る。
In the present embodiment, the case where the X-ray detection element 110 of the flat panel detector is simultaneously read for each row is described, but the present invention is not limited to this. In the case of simultaneous reading for each column, or in the case of multiple rows of columns, multiple columns or multiple rows may be read simultaneously. Further, the structure of the X-ray detection element 110 of the flat panel detector shown in this embodiment is an example, and the present invention is not limited to this. For example, there may be various structures such as a structure having an amplification function as shown in the seventh embodiment.

本実施例では,動画における外因性雑音補正をX線DR装置に適用した場合について説明したが,本発明はこれに限るものでない。読み出しを行う検出素子を切り替えて信号取得する検出器を搭載し,動画撮影可能なさまざまな装置へ適用し得る。例えば,動画を中央処理手段105に保存しないさまざまな装置や,コーンビームCT装置のように動画を連続した保存する装置などのさまざまな装置があり得る。あるいは,静止画撮影可能なさまざまな装置,例えばデジタルX線画像撮影装置などへも適用し得る。   In the present embodiment, the case where the extrinsic noise correction in the moving image is applied to the X-ray DR apparatus has been described, but the present invention is not limited to this. It can be applied to various devices capable of capturing moving images, equipped with a detector that acquires signals by switching the detection element that performs reading. For example, there may be various devices such as various devices that do not store moving images in the central processing unit 105, and devices that store moving images continuously, such as a cone beam CT device. Alternatively, the present invention can be applied to various devices capable of taking still images, such as digital X-ray image taking devices.

本発明は,上記した実施例に限定されるものではなく,その要旨を逸脱しない範囲でさまざまに変形して実施することが可能である。更に,上記実施例にはさまざまな段階が含まれており,開示される複数の構成要素における適宜な組み合わせにより,さまざまな発明が抽出され得る。例えば,実施形態に示される全構成要素から幾つかの構成要素が,削除されても良い。   The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the invention. Further, the above embodiment includes various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed components. For example, some components may be deleted from all the components shown in the embodiment.

本発明によるX線CT装置の一例を示す説明図。BRIEF DESCRIPTION OF THE DRAWINGS Explanatory drawing which shows an example of the X-ray CT apparatus by this invention. 本発明のX線CT装置に用いられるX線検出器の一例の説明図。Explanatory drawing of an example of the X-ray detector used for the X-ray CT apparatus of this invention. X線検出器の回路の一例の説明図。Explanatory drawing of an example of the circuit of an X-ray detector. X線検出器と外因性雑音検出器の配置の一例を説明する図。The figure explaining an example of arrangement | positioning of an X-ray detector and an extrinsic noise detector. 外因性雑音検出器の一例を示す回路図。The circuit diagram which shows an example of an extrinsic noise detector. X線検出器と外因性雑音検出器の信号読み出しタイミングを説明する図。The figure explaining the signal read-out timing of an X-ray detector and an extrinsic noise detector. 中央処理手段の処理の一例を説明する図。The figure explaining an example of a process of a central processing means. 外因性雑音除去処理の一例を説明する図。The figure explaining an example of an exogenous noise removal process. 外因性雑音除去処理の一例を説明する図。The figure explaining an example of an exogenous noise removal process. 外因性雑音推定方法の一例を説明する図。The figure explaining an example of the exogenous noise estimation method. 外因性雑音検出器の一例を示す説明図。Explanatory drawing which shows an example of an extrinsic noise detector. 外因性雑音補正処理の一例を示す説明図。Explanatory drawing which shows an example of an extrinsic noise correction process. 外因性雑音検出器の一例を示す説明図。Explanatory drawing which shows an example of an extrinsic noise detector. 外因性雑音検出器の制御タイミングの一例を説明する図。The figure explaining an example of the control timing of an exogenous noise detector. 外因性雑音検出器の制御タイミングの一例を説明する図。The figure explaining an example of the control timing of an exogenous noise detector. 外因性雑音検出器の制御タイミングの一例を説明する図。The figure explaining an example of the control timing of an exogenous noise detector. X線検出器の一例の回路図。The circuit diagram of an example of an X-ray detector. 外因性雑音検出器の制御タイミングの一例を説明する図。The figure explaining an example of the control timing of an exogenous noise detector. 外因性雑音検出器の一例の回路図。The circuit diagram of an example of an exogenous noise detector. 外因性雑音検出器の制御タイミングの一例を説明する図。The figure explaining an example of the control timing of an exogenous noise detector. 外因性雑音検出器の一例の回路図。The circuit diagram of an example of an exogenous noise detector. X線検出器と外因性雑音検出器の説明図。Explanatory drawing of an X-ray detector and an extrinsic noise detector. X線DR装置の一例を示す説明図。Explanatory drawing which shows an example of an X-ray DR apparatus. フラットパネル検出器と外因性雑音検出器の一例を示す説明図。Explanatory drawing which shows an example of a flat panel detector and an extrinsic noise detector. X線DR装置における信号読み出しタイミングの一例を説明する図。The figure explaining an example of the signal read-out timing in a X-ray DR apparatus. X線DR装置における信号読み出しタイミングの一例を説明する図。The figure explaining an example of the signal read-out timing in a X-ray DR apparatus. X線DR装置における信号読み出しタイミングの一例を説明する図。The figure explaining an example of the signal read-out timing in a X-ray DR apparatus. 外因性雑音検出器の制御タイミングの一例を説明する図。The figure explaining an example of the control timing of an exogenous noise detector.

符号の説明Explanation of symbols

100…X線源,101…回転体,102…被写体,103…寝台天板,104…X線検出器,105…中央処理手段,106…表示手段,107…回転軸方向(スライス方向),108…回転方向(チャネル方向),110…X線検出素子,111…光電変換基板,112…シンチレータ素子,113…配線基板,117…制御手段,118…信号収集手段,119…入力手段,120…電極パッド,124…電流電圧変換器,130…セパレータ,133…制御用パッド,134…スイッチング素子,135…グランド電極パッド,140…フォトダイオード,141…グランド線,142…信号線,143…制御線,150…X線検出器の制御信号,151…外因性検出器の制御信号,152…1フレームの時間,160〜167,210〜217,224〜227,234〜237,244〜248,260〜267,310〜317…時間,時刻,168…重なり時間,180…光電変換基板,181…外因性雑音検出素子,182…配線基板,183…X線遮蔽板,184…外因性雑音検出器,185…電極パッド,186…電流電圧変換器,187…グランド電極,188…制御用パッド,189…暗箱,190…フォトダイオード,191…スイッチング素子,201…フィッティング曲線,250…リセットスイッチ,251…MOSデバイス,252…制御用パッド,255…リセットスイッチ,256…MOSデバイス,257…リセット電力パッド,258…リセット制御用パッド,259…リセット制御信号,270…外因性雑音検出器出力値,271…経過時刻,301…補正手段,302…再構成手段,303…検出器特性記憶手段,310…接着剤,320…リセット制御信号,330…ディフェクト素子(斜線),331…X線制御信号,332…ブランキング時間,334…垂直シフトレジスタ,335…パラレルシリアル変換器,337…電圧源,338…電流源回路,341…リセット電力パッド,350…切り替えスイッチ,351…制御用パッド,365…撮影開始時刻,406…X線入射方向,407…検出器特性抽出手段,408…外因性雑音推定手段,409…補正処理手段,410…外因性雑音計測値記憶手段,411…X線検出器出力記憶手段,412…推定結果記憶手段,413…加算手段,414…加算平均手段,415…感度・オフセット補正手段 DESCRIPTION OF SYMBOLS 100 ... X-ray source, 101 ... Rotating body, 102 ... Subject, 103 ... Bed top plate, 104 ... X-ray detector, 105 ... Central processing means, 106 ... Display means, 107 ... Rotation axis direction (slice direction), 108 Rotational direction (channel direction), 110 X-ray detection element, 111 Photoelectric conversion substrate, 112 Scintillator element, 113 Wiring substrate, 117 Control unit, 118 Signal collection unit, 119 Input unit, 120 Electrode Pad, 124 ... Current-voltage converter, 130 ... Separator, 133 ... Control pad, 134 ... Switching element, 135 ... Ground electrode pad, 140 ... Photodiode, 141 ... Ground line, 142 ... Signal line, 143 ... Control line, 150 ... X-ray detector control signal, 151 ... extrinsic detector control signal, 152 ... time of one frame, 160 to 167, 2 0 to 217, 224 to 227, 234 to 237, 244 to 248, 260 to 267, 310 to 317 ... time, time, 168 ... overlap time, 180 ... photoelectric conversion substrate, 181 ... extrinsic noise detection element, 182 ... wiring Substrate, 183 ... X-ray shielding plate, 184 ... extrinsic noise detector, 185 ... electrode pad, 186 ... current-voltage converter, 187 ... ground electrode, 188 ... control pad, 189 ... dark box, 190 ... photodiode, 191 ... switching element, 201 ... fitting curve, 250 ... reset switch, 251 ... MOS device, 252 ... control pad, 255 ... reset switch, 256 ... MOS device, 257 ... reset power pad, 258 ... reset control pad, 259 ... Reset control signal, 270 ... extrinsic noise detector output value, 271 Elapsed time 301... Correction means 302. Reconstruction means 303. Detector characteristic storage means 310. Blanking time, 334 ... Vertical shift register, 335 ... Parallel serial converter, 337 ... Voltage source, 338 ... Current source circuit, 341 ... Reset power pad, 350 ... Changeover switch, 351 ... Control pad, 365 ... Shooting start time , 406 ... X-ray incident direction, 407 ... Detector characteristic extraction means, 408 ... Exogenous noise estimation means, 409 ... Correction processing means, 410 ... Exogenous noise measurement value storage means, 411 ... X-ray detector output storage means, 412 ... Estimation result storage means, 413 ... Addition means, 414 ... Addition averaging means, 415 ... Sensitivity / offset correction means

Claims (13)

X線を照射するX線源と,
被検体を透過したX線を検出して電気信号に変換する複数のX線検出素子と前記X線検出素子から検出信号を読み出してデジタル信号に変換するX線信号読み出し回路とを具備するX線検出手段と,
外因性雑音要因によって電気信号を生じる雑音計測素子と前記雑音計測素子から外因性雑音信号を読み出してデジタル信号に変換する雑音読み出し回路とを具備する雑音計測手段と,
前記雑音計測手段のデジタル信号を用いて前記X線検出手段のデジタル信号に含まれる外因性雑音を演算する演算手段と,
前記演算手段の演算結果を用いて前記X線検出手段のデジタル信号に補正処理を行う補正手段とを具備し,
前記X線検出手段は,前記X線信号読み出し回路によって,検出信号読み出しを行う前記X線検出素子を複数回切り替えて1つのX線像分のデータを取得し,
前記雑音計測手段は,1つのX線像分のデータを取得する間に,少なくとも1つの同一の前記雑音計測素子の外因性雑音信号読み出しを,異なる時刻の前記X線検出素子の検出信号読み出しのそれぞれと同時に前記雑音読み出し回路から行い,前記演算手段に出力することを特徴とするX線撮像装置。
An X-ray source that emits X-rays;
An X-ray comprising a plurality of X-ray detection elements that detect X-rays transmitted through the subject and convert them into electrical signals, and an X-ray signal readout circuit that reads detection signals from the X-ray detection elements and converts them into digital signals. Detection means;
Noise measuring means comprising a noise measuring element that generates an electric signal due to an extrinsic noise factor, and a noise readout circuit that reads the extrinsic noise signal from the noise measuring element and converts it into a digital signal;
Computing means for computing extrinsic noise contained in the digital signal of the X-ray detection means using the digital signal of the noise measuring means;
Correction means for performing correction processing on the digital signal of the X-ray detection means using the calculation result of the calculation means;
The X-ray detection means switches the X-ray detection element that performs detection signal readout a plurality of times by the X-ray signal readout circuit, and acquires data for one X-ray image,
The noise measuring means reads out the extrinsic noise signal of at least one identical noise measuring element while acquiring the data for one X-ray image, and reads out the detection signal of the X-ray detecting element at different times. An X-ray imaging apparatus, wherein the X-ray imaging apparatus performs the same from the noise readout circuit simultaneously and outputs the same to the arithmetic means.
請求項1記載のX線撮像装置において,前記X線検出手段は,前記X線信号読み出し回路によって複数のX線検出素子から検出信号読み出しを同時に行う同時X線検出手段を複数配置した構成を有し,当該同時X線検出手段をM回(Mは2以上の整数)切り替えて1つのX線像分のデータを取得し,
前記雑音計測手段は前記同時X線検出手段による検出信号読み出しと同時に外因性雑音信号読み出しを行い,1つのX線像分のデータを取得する間に,少なくとも1つの同一の前記雑音計測手段が,異なる時刻の前記同時X線検出手段の検出信号読み出しと同時に外因性雑音信号読み出しを前記雑音読み出し回路から行うことを特徴とするX線撮像装置。
2. The X-ray imaging apparatus according to claim 1, wherein the X-ray detection means includes a plurality of simultaneous X-ray detection means for simultaneously reading detection signals from a plurality of X-ray detection elements by the X-ray signal readout circuit. Then, the simultaneous X-ray detection means is switched M times (M is an integer of 2 or more) to acquire data for one X-ray image,
While the noise measuring means reads out the extrinsic noise signal simultaneously with the detection signal reading by the simultaneous X-ray detecting means and acquires data for one X-ray image, at least one identical noise measuring means includes: An X-ray imaging apparatus, wherein an external noise signal is read from the noise readout circuit simultaneously with detection signal readout of the simultaneous X-ray detection means at different times.
請求項1記載のX線撮像装置において,前記雑音計測手段は,前記雑音読み出し回路によって複数の雑音計測素子から外因性雑音信号読み出しを同時に行う同時雑音計測手段を1個以上M個(Mは2以上の整数)未満配置した構成を有し,
前記同時雑音計測手段は前記X線検出手段による検出信号読み出しと同時に外因性雑音信号読み出しを行い,1つのX線像分のデータを取得する間に,少なくとも1つの同一の前記同時雑音計測手段が,異なる時刻の前記X線検出手段の検出信号読み出しと同時に外因性雑音信号読み出しを前記雑音読み出し回路から行うことを特徴とするX線撮像装置。
2. The X-ray imaging apparatus according to claim 1, wherein the noise measuring means includes one or more M simultaneous noise measuring means for simultaneously reading extrinsic noise signals from a plurality of noise measuring elements by the noise reading circuit (M is 2). Have an arrangement less than an integer),
The simultaneous noise measurement means reads out the extrinsic noise signal simultaneously with the detection signal read by the X-ray detection means, and acquires at least one identical simultaneous noise measurement means while acquiring data for one X-ray image. An X-ray imaging apparatus characterized in that the exogenous noise signal is read from the noise readout circuit simultaneously with the detection signal readout of the X-ray detection means at different times.
請求項1記載のX線撮像装置において,前記X線検出手段は,前記X線信号読み出し回路によって複数のX線検出素子から検出信号読み出しを同時に行う同時X線検出手段を複数配置した構成を有し,当該同時X線検出手段をM回(Mは2以上の整数)切り替えて1つのX線像分のデータを取得し,
前記雑音計測手段は,前記雑音読み出し回路によって複数の雑音計測素子から外因性雑音信号読み出しを同時に行う同時雑音計測手段を1個以上M個未満配置した構成を有し,
前記同時雑音計測手段は前記同時X線検出手段による検出信号読み出しと同時に外因性雑音信号読み出しを行い,1つのX線像分のデータを取得する間に,少なくとも1つの同一の前記同時雑音計測手段が,異なる時刻の前記同時X線検出手段の検出信号読み出しと同時に外因性雑音信号読み出しを前記雑音読み出し回路から行うことを特徴とするX線撮像装置。
2. The X-ray imaging apparatus according to claim 1, wherein the X-ray detection means includes a plurality of simultaneous X-ray detection means for simultaneously reading detection signals from a plurality of X-ray detection elements by the X-ray signal readout circuit. Then, the simultaneous X-ray detection means is switched M times (M is an integer of 2 or more) to acquire data for one X-ray image,
The noise measuring means has a configuration in which one or more and less than M simultaneous noise measuring means for simultaneously reading out extrinsic noise signals from a plurality of noise measuring elements by the noise reading circuit are arranged,
The simultaneous noise measuring means reads the extrinsic noise signal simultaneously with the detection signal reading by the simultaneous X-ray detecting means, and acquires at least one same simultaneous noise measuring means while acquiring data for one X-ray image. However, the X-ray imaging apparatus reads out the extrinsic noise signal simultaneously from the detection signal of the simultaneous X-ray detection means at different times from the noise readout circuit.
請求項1記載のX線撮像装置において,前記演算手段は,前記X線検出手段による検出信号読み出しと同時に外因性雑音信号読み出しを行った前記雑音計測素子のデジタル信号をもとに,前記外因性雑音を演算することを特徴とするX線撮像装置。   2. The X-ray imaging apparatus according to claim 1, wherein the computing means is based on a digital signal of the noise measuring element that has read out an extrinsic noise signal simultaneously with reading out a detection signal by the X-ray detecting means. An X-ray imaging apparatus characterized by calculating noise. 請求項1記載のX線撮像装置において,前記演算手段は,前記X線検出素子の外因性雑音演算を,当該X線検出素子の検出信号読み出しと同時に外因性雑音信号読み出しを行った前記雑音計測素子と,当該X線検出素子との前記外因性雑音要因に対する相関を用いて行うことを特徴とするX線撮像装置。   2. The X-ray imaging apparatus according to claim 1, wherein the calculating means performs the extrinsic noise calculation of the X-ray detection element, and reads the extrinsic noise signal simultaneously with the detection signal reading of the X-ray detection element. An X-ray imaging apparatus characterized by performing a correlation between an element and the X-ray detection element with respect to the extrinsic noise factor. 請求項1記載のX線撮像装置において,前記演算手段は,前記X線検出素子の検出信号読み出しと同時に外因性雑音信号読み出しを行った前記雑音計測素子のデジタル信号と,非同時に外因性雑音信号読み出しを行った1つ以上の前記雑音計測素子のデジタル信号を用いて,当該X線検出素子の外因性雑音を演算することを特徴とするX線撮像装置。   2. The X-ray imaging apparatus according to claim 1, wherein the calculation means includes a digital signal of the noise measuring element that has read out the extrinsic noise signal simultaneously with reading of a detection signal of the X-ray detecting element and an extrinsic noise signal not simultaneously. An X-ray imaging apparatus, wherein extrinsic noise of the X-ray detection element is calculated using digital signals of one or more noise measurement elements that have been read. 請求項1記載のX線撮像装置において,前記X線検出手段はフレーム毎に前記X線像分の信号読み出しを周期的に複数回行い,前記演算手段は,前記X線検出素子の検出信号読み出しと同時に外因性雑音信号読み出しを行った前記雑音計測素子のデジタル信号と,当該X線検出素子の検出信号読み出しと異なるフレームにて外因性雑音信号読み出しを行った1つ以上の前記雑音計測素子のデジタル信号を用いて,当該X線検出素子の外因性雑音を演算することを特徴とするX線撮像装置。   2. The X-ray imaging apparatus according to claim 1, wherein the X-ray detection means periodically reads out signals for the X-ray image for each frame a plurality of times, and the calculation means reads out detection signals of the X-ray detection element. At the same time, the digital signal of the noise measurement element that has read out the extrinsic noise signal and the one or more noise measurement elements that have read out the extrinsic noise signal in a frame different from the detection signal read-out of the X-ray detection element. An X-ray imaging apparatus characterized by calculating extrinsic noise of the X-ray detection element using a digital signal. 請求項1記載のX線撮像装置において,前記雑音計測手段は,前記雑音計測素子にX線が入射するのを防ぐX線遮蔽手段を具備することを特徴とするX線撮像装置。   2. The X-ray imaging apparatus according to claim 1, wherein the noise measuring means includes X-ray shielding means for preventing X-rays from entering the noise measuring element. 請求項1記載のX線撮像装置において,前記雑音計測手段は,前記X線検出手段のX線入射面の反対面に隣接又は近接して配置されていることを特徴とするX線撮像装置。   2. The X-ray imaging apparatus according to claim 1, wherein the noise measuring means is arranged adjacent to or close to a surface opposite to the X-ray incident surface of the X-ray detecting means. 請求項1記載のX線撮像装置において,前記X線検出手段は,前記X線検出素子の信号読み出しの0N/OFF切り替えを制御するスイッチング素子と,該スイッチング素子へ制御信号を入力する制御線とを具備し,前記雑音計測手段は,前記雑音計測素子の信号読み出しのON/OFF切り替えを制御するスイッチング素子と,該スイッチング素子へ制御信号を入力する制御線と,前記雑音計測素子の制御線と前記X線検出素子の制御線とを選択的に接続する制御線切り替え手段とを具備し,前記制御線切り替え手段は,信号読み出しを行う前記X線検出素子の制御線と,当該X線検出素子と同時に読み出しを行う前記雑音計測素子の制御線とを接続し,前記X線検出素子の制御信号を用いて前記雑音計測素子のスイッチング制御を行うことを特徴とするX線撮像装置。   2. The X-ray imaging apparatus according to claim 1, wherein the X-ray detection means includes a switching element that controls 0N / OFF switching of signal readout of the X-ray detection element, and a control line that inputs a control signal to the switching element. The noise measuring means includes a switching element for controlling ON / OFF switching of signal readout of the noise measuring element, a control line for inputting a control signal to the switching element, a control line for the noise measuring element, Control line switching means for selectively connecting a control line of the X-ray detection element, the control line switching means comprising: a control line of the X-ray detection element for reading a signal; and the X-ray detection element At the same time, the control line of the noise measuring element that performs reading is connected, and switching control of the noise measuring element is performed using the control signal of the X-ray detecting element. X-ray imaging apparatus according to claim. 請求項1記載のX線撮像装置において,前記X線検出手段は複数のX線検出素子から構成されるX線検出モジュールが複数配置された構造を有し,前記雑音計測手段はディフェクトX線検出素子を有する前記X線検出モジュールから構成されていることを特徴とするX線撮像装置。   2. The X-ray imaging apparatus according to claim 1, wherein the X-ray detection means has a structure in which a plurality of X-ray detection modules each composed of a plurality of X-ray detection elements are arranged, and the noise measurement means is a defect X-ray detection. An X-ray imaging apparatus comprising the X-ray detection module having an element. 請求項1記載のX線撮像装置において,前記補正手段から得た信号に再構成演算処理を行って断層像を作成する演算処理手段を具備することを特徴とするX線撮像装置。   2. The X-ray imaging apparatus according to claim 1, further comprising arithmetic processing means for generating a tomographic image by performing reconstruction arithmetic processing on the signal obtained from the correcting means.
JP2005296750A 2005-10-11 2005-10-11 X-ray imaging device Expired - Fee Related JP4865291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005296750A JP4865291B2 (en) 2005-10-11 2005-10-11 X-ray imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005296750A JP4865291B2 (en) 2005-10-11 2005-10-11 X-ray imaging device

Publications (3)

Publication Number Publication Date
JP2007105112A JP2007105112A (en) 2007-04-26
JP2007105112A5 JP2007105112A5 (en) 2008-05-15
JP4865291B2 true JP4865291B2 (en) 2012-02-01

Family

ID=38031456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005296750A Expired - Fee Related JP4865291B2 (en) 2005-10-11 2005-10-11 X-ray imaging device

Country Status (1)

Country Link
JP (1) JP4865291B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009141439A (en) * 2007-12-03 2009-06-25 Canon Inc Radiation imaging apparatus, driving method thereof, and program
JP5895504B2 (en) 2011-12-15 2016-03-30 ソニー株式会社 Imaging panel and imaging processing system
JP5872936B2 (en) * 2012-03-19 2016-03-01 シャープ株式会社 Portable electronic devices
JP6139821B2 (en) * 2012-03-22 2017-05-31 東芝メディカルシステムズ株式会社 X-ray CT system
JP5270790B1 (en) 2012-05-30 2013-08-21 富士フイルム株式会社 Radiation image capturing apparatus, radiation image capturing system, control program for radiation image capturing apparatus, and control method for radiation image capturing apparatus
JP6129517B2 (en) * 2012-11-06 2017-05-17 東芝メディカルシステムズ株式会社 X-ray diagnostic apparatus and control program
JP6166821B2 (en) * 2016-05-09 2017-07-19 キヤノン株式会社 Radiation imaging apparatus and radiation imaging system
JP2018059724A (en) * 2016-10-03 2018-04-12 東芝電子管デバイス株式会社 Radiation detector

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55162077A (en) * 1979-06-04 1980-12-17 Toshiba Corp Radiation detector
JPH0716485B2 (en) * 1989-09-01 1995-03-01 株式会社日立製作所 X-ray CT system
US6031891A (en) * 1998-04-30 2000-02-29 Picker International, Inc. Dual reference blacklevel clamping device and method for video line noise removal
JP2002158340A (en) * 2000-11-16 2002-05-31 Canon Inc Radiation imaging device, photoelectric converter and radiation imaging system
JP2001340324A (en) * 2001-03-16 2001-12-11 Toshiba Medical System Co Ltd X-ray detector and X-ray diagnostic apparatus using the same
JP4280024B2 (en) * 2001-04-23 2009-06-17 株式会社東芝 X-ray flat panel detector
JP4723767B2 (en) * 2001-09-13 2011-07-13 株式会社東芝 X-ray diagnostic imaging equipment
JP4082056B2 (en) * 2002-03-28 2008-04-30 コニカミノルタホールディングス株式会社 Solid-state imaging device
JP4082284B2 (en) * 2003-06-13 2008-04-30 株式会社島津製作所 Noise removal method for flat panel detector
JP4532949B2 (en) * 2004-03-24 2010-08-25 キヤノン株式会社 Radiation CT imaging apparatus, radiation CT imaging system, and radiation CT imaging method using the same

Also Published As

Publication number Publication date
JP2007105112A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
US7310404B2 (en) Radiation CT radiographing device, radiation CT radiographing system, and radiation CT radiographing method using the same
KR101919619B1 (en) Radiographic detector including trap occupancy change monitor and feedback, imaging apparatus and methods using the same
US8558929B2 (en) Imaging array for multiple frame capture
WO2017130552A1 (en) Radiation image capturing device, control method for same, and program
KR20160057398A (en) Digital radiography detector image readout process
US20060188061A1 (en) Radiography apparatus, radiography system, and control method thereof
WO2015069972A1 (en) Digital radiography detector image readout system and process
US7659518B2 (en) Light or radiation image pickup apparatus
US7810997B2 (en) Radiographic apparatus and radiation detection signal processing method
US8178846B2 (en) Light or radiation image pickup apparatus
US10921466B2 (en) Radiation imaging apparatus and radiation imaging system
JP4739060B2 (en) Radiation imaging apparatus, radiation imaging system, and control method thereof
JP4865291B2 (en) X-ray imaging device
US20070036270A1 (en) Radiographic apparatus and radiation detection signal processing method
EP1001665A2 (en) Exposure control for a matrix-addressed imaging panel
US20150110248A1 (en) Radiation detection and method for non-destructive modification of signals
JP4532949B2 (en) Radiation CT imaging apparatus, radiation CT imaging system, and radiation CT imaging method using the same
US7415097B2 (en) Method for recording correction frames for high energy images
JP7190360B2 (en) Radiation imaging device and radiation imaging system
JP2006110126A (en) X-ray ct apparatus
JP4007607B2 (en) Radiation CT imaging apparatus, radiation CT imaging system, and radiation CT imaging method using the same
JP2005245507A (en) X-ray ct apparatus
JP7190913B2 (en) Radiation imaging device and radiation imaging system
KR20090053796A (en) Radiographic Imager and Radiation Detection Signal Processing Method
JP2020089656A (en) Radiation imaging apparatus and control method therefor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080402

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees