JP4862221B2 - N-type silicon single crystal wafer and manufacturing method thereof - Google Patents
N-type silicon single crystal wafer and manufacturing method thereof Download PDFInfo
- Publication number
- JP4862221B2 JP4862221B2 JP2001105152A JP2001105152A JP4862221B2 JP 4862221 B2 JP4862221 B2 JP 4862221B2 JP 2001105152 A JP2001105152 A JP 2001105152A JP 2001105152 A JP2001105152 A JP 2001105152A JP 4862221 B2 JP4862221 B2 JP 4862221B2
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- single crystal
- silicon single
- group
- type silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910052710 silicon Inorganic materials 0.000 title claims description 38
- 239000010703 silicon Substances 0.000 title claims description 38
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims description 37
- 239000013078 crystal Substances 0.000 title claims description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 239000012535 impurity Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 22
- 229910021478 group 5 element Inorganic materials 0.000 claims description 12
- 239000000758 substrate Substances 0.000 claims description 8
- 235000012431 wafers Nutrition 0.000 description 62
- 239000001301 oxygen Substances 0.000 description 34
- 229910052760 oxygen Inorganic materials 0.000 description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 33
- 239000002244 precipitate Substances 0.000 description 23
- 229910052785 arsenic Inorganic materials 0.000 description 12
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 12
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 11
- 229910052796 boron Inorganic materials 0.000 description 11
- 238000005247 gettering Methods 0.000 description 11
- 238000001556 precipitation Methods 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002926 oxygen Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 150000003376 silicon Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 description 1
- 239000005052 trichlorosilane Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、チョクラルスキー法(CZ法)によってシリコン単結晶を引き上げ、このシリコン単結晶をウェーハに加工して得られる半導体デバイス用n型シリコン単結晶ウェーハ(基板)、その製造方法及びそのn型シリコン単結晶ウェーハを用いたエピタキシャルウェーハに関する。
【0002】
【関連技術】
半導体集積回路等のデバイスを作成するためのウェーハとしては、主にCZ法によって育成された、シリコン単結晶ウェーハが用いられている。このシリコン単結晶ウェーハとしてはICやLSIといった電子デバイスに応じて、p型、n型という電気抵抗率の区分がある。
【0003】
そのためp型ウェーハを得るには3族の元素、例えばホウ素、アルミニウム、ガリウムを電気的不純物として添加し、抵抗率を制御する。またn型の場合には5族の元素、例えば燐、アンチモン、ヒ素を適当に添加し、その抵抗率を制御している。
【0004】
特に最近では、抵抗率が20mΩcm以下の低抵抗率ウェーハを基板とし、その上に同じ伝導型のエピタキシャルシリコン層を堆積させて、電気デバイスの作製を行うことも多い。例えば高濃度ホウ素を添加し、20mΩcm以下の抵抗率であるp型ウェーハを基板とし(p+基板)、その基板上にエピタキシャル層として10Ωcm程度の抵抗率を得るようホウ素を添加したp-層を堆積した構造のp/p+エピエピタキシャルウェーハなどがその一例である。これらは電子デバイスの特性を鑑みて、構造的に動作効率の良いデバイスを作製するのに都合が良く、理想的なシリコンウェーハである。
【0005】
同様に5族元素不純物添加によるn/n+ウェーハも存在するが、これはp/p+に比して簡単ではない。というのは5族元素不純物のうち燐やアンチモンはCZ法に用いる溶融シリコンのるつぼに添加しても、引き上げ工程において昇華し、低抵抗率のウェーハを得るほど高濃度に添加できないからである。その点ヒ素は高濃度添加可能であるため、n/n+構造を得るためによく用いられる。
【0006】
一方、シリコンウェーハの特性として、重要なものにゲッタリング特性がある。ゲッタリングとはデバイス特性を悪化させる原因となる重金属不純物をデバイス動作領域外へ除去する方法の総称であり、例えば、シリコンウェーハの表面数十μmをデバイス動作領域とすれば、その領域より深いウェーハ位置、つまりバルクに不純物金属を捕獲しておけばよい。
【0007】
この方法の一つとして、最も頻繁に使用されるのが酸素析出物によるIG法(Internal Gettering)である。この方法はCZ法で作製されたシリコンウェーハには不可避的に含まれる過飽和な酸素原子を、デバイス動作領域より深いウェーハ位置に析出物として形成させ、その周りにできた格子の歪みに不純物を捕獲する方法である。その際、酸素析出物の密度、サイズ、形成位置を種々の方法によって制御することが必要である。
【0008】
この酸素析出物の形成制御について、電気抵抗率を支配するために添加した3族元素あるいは5族元素との関係が明らかになっている。3族元素添加不純物の代表であるホウ素の場合、p+の抵抗率領域まで添加すると、酸素析出が促進されることがよく知られている。従ってIGに酸素析出物を利用する場合、初期酸素濃度が低い結晶であっても効率的に酸素析出物を形成できるため、ゲッタリング能力は高まり、大変有利である。
【0009】
しかるに5族元素の抵抗率制御用不純物添加ウェーハの場合、酸素析出は抑制されることが知られている。特にn+ウェーハを得るために添加したヒ素は大幅に酸素析出を抑制するため、20ppma〔(JEIDA:日本電子工業振興協会)規格〕のような高酸素濃度ウェーハを用いても、酸素析出物形成によるゲッタリング効果を期待するのは極めて困難な場合がある。
【0010】
【発明が解決しようとする課題】
本発明は、このような問題点に鑑みてなされたもので、n/n+ウェーハにおいても酸素析出物によるゲッタリング能力を持たせることのできるn型シリコン単結晶ウェーハ、その製造方法、及びそのn型シリコン単結晶ウェーハを用いたエピタキシャルウェーハを提供することを目的とする。
【0011】
【課題を解決するための手段】
上記課題を解決するため、本発明のn型シリコン単結晶ウェーハは、チョクラルスキー法により引き上げられたシリコン単結晶棒をウェーハに加工して得られたn型シリコン単結晶ウェーハであって、5族元素と3族元素の電気的活性不純物を2種以上含有し、そのうち少なくとも3族元素の不純物濃度が1×1018cm-3以上であることを特徴とする。
【0012】
本発明のn型シリコン単結晶ウェーハの製造方法は、チョクラルスキー法により引き上げられたシリコン単結晶棒をウェーハに加工して得られたn型シリコン単結晶ウェーハの製造方法であって、単結晶製造の際、5族元素と3族元素の電気的活性不純物を2種以上混合し、そのうち少なくとも3族元素の不純物濃度を1×1018cm-3以上とすることを特徴とする。
【0013】
また、本発明のエピタキシャルウェーハは、上記したn型シリコン単結晶ウェーハを基板とし、その上にシリコンエピタキシャル層を形成したものである。
【0014】
【発明の実施の形態】
以下に本発明の実施の形態を説明するが、本発明の技術思想から逸脱しない限り、この実施の形態以外にも種々の変形が可能なことは勿論である。
【0015】
本発明においては、チョクラルスキー法によりシリコン単結晶を製造する際、5族元素と3族元素の電気抵抗率制御用不純物の2種以上を同時に添加するが、この場合シリコン単結晶の抵抗率はこの2種以上の添加不純物の絶対的な濃度及び混合割合で制御できる。
【0016】
これらの元素の添加にあたり、例えばn型シリコンウェーハを得たい場合、5族元素不純物の単独添加に比べて、3族元素及び5族元素の同時添加では、少なからず3族元素の電気抵抗率制御用不純物を添加したことになる。そのため、後の工程でゲッタリング効果を持たせるための酸素析出挙動が3族元素不純物の存在によって抑制されにくくなる。従って、高ゲッタリング能力を持ったn/n+エピタキシャルウェーハの作成が可能となる。
【0017】
この際、少なくとも3族元素の不純物濃度が1×1018cm-3以上のウェーハであれば酸素析出が促進されるため、そのウェーハがp型でもn型でも効率的に酸素析出物を形成できるため、ゲッタリング能力を高めることができる。
【0018】
3族元素の不純物濃度が1×1018cm-3に達しない場合は酸素析出物の形成が充分でなく、本発明の目的を達成することができない。この3族元素の不純物濃度が1×1018cm-3以上であれば限界固溶度まで特別の上限はないが、2×1019cm-3程度であれば充分である。
【0019】
【実施例】
以下、本発明の実施例を比較例とともに挙げて具体的に説明するが、これらの実施例は例示的に示されるもので、本発明はこれらに限定して解釈されるものでないことはいうまでもない。
【0020】
(実施例1)
CZ法により、直径6インチ、初期酸素濃度15ppma(JEIDA)、方位<100>の結晶棒を、通常の引き上げ速度(1.2mm/min)で引き上げた。その際、ホウ素を1018atoms/cm3、ヒ素を7×1017atoms/cm3含有するように引き上げた結晶では、電気伝導型がn型で抵抗率が0.01Ωcmになるように制御された。この結晶棒を加工して基板ウェーハとし、その表面にn型、10Ωcmのn-層エピタキシャル成長させた。このエピタキシャル成長は、原料ガスにトリクロルシランを用い、1130℃で3μm成長させた。
【0021】
このエピタキシャルウェーハに800℃、4hr+1000℃、16hrの酸素析出熱処理を窒素雰囲気にて施したのち、選択エッチングによって酸素析出物密度を測定した。
【0022】
酸素析出物密度の測定は、アングルポリッシュを行い、その面に特開平9−260449号公報に記載された技術(表面に銅を堆積させた後、アルカリ性水溶液でエッチングし、光学顕微鏡観察する方法)により行った。
【0023】
測定の結果、ホウ素とヒ素を同時添加したウェーハでは109cm-3の酸素析出物密度が検出された。
【0024】
この結果から本発明によるシリコン単結晶ウェーハでは、抵抗率を同一に制御でき、かつゲッタリング能力の優れたウェーハを作製可能である。特に、3族元素および5族元素の同時添加を行うことにより、酸素析出物を形成しにくいn型の場合に効果を発揮することがわかった。
【0025】
(比較例1)
ヒ素単独添加による同一抵抗率、つまり0.01Ωcmのウェーハとした以外は、実施例1と同様にエピタキシャルウェーハを製造し、その酸素析出密度を測定した。測定の結果、ヒ素の単独添加ウェーハでは、検出下限の106cm-3以下の酸素析出物密度であり、実施例1のウェーハとは酸素析出特性が格段に異なった。
【0026】
(実施例2)
ドープするホウ素を1×1018atoms/cm3、ヒ素を3×1017atoms/cm3とした以外は実施例1と同一条件でシリコンウェーハ(電気伝導型n-型、10Ωcm)を作製した後、実施例1と同一条件でエピタキシャル成長および酸素析出物密度の測定を行った。
【0027】
その結果、ホウ素とヒ素を同時添加したウェーハでは1×1018cm-3の酸素析出物密度が検出された。
【0028】
(比較例2)
ヒ素単独添加による同一抵抗率(10Ωcm)のウェーハとした以外は、実施例2と同様にエピタキシャルウェーハを製造し、その酸素析出密度を測定した。その結果、ヒ素の単独添加ウェーハの酸素析出物密度は1×106cm-3以下であった。
【0029】
(実験例1)
ドープするホウ素を2×1018atoms/cm3、ヒ素を6×1017atoms/cm3とした以外は実施例1と同一条件でシリコンウェーハ(電気伝導型p型、10Ωcm)を作製した後、実施例1と同一条件でエピタキシャル成長および酸素析出物密度の測定を行った。
【0030】
その結果、ホウ素とヒ素を同時添加したウェーハでは5×1018cm-3の酸素析出物密度が検出された。
【0031】
(比較例3)
ホウ素単独添加による同一抵抗率(10Ωcm)のウェーハとした以外は、実施例3と同様にエピタキシャルウェーハを製造し、その酸素析出物密度を測定した。その結果、ホウ素の単独添加ウェーハの酸素析出物密度は1×107cm-3であった。
【0032】
なお、本発明は上記実施の形態及び実施例に限定されるものではない。上記実施の形態及び実施例は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、かつ同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0033】
例えば、本発明において、3族元素および5族元素の不純物添加を行うに当たり、抵抗率の範囲は問われていないものであり、p型であるシリコンウェーハを作製しても、あるいはn/n-ウェーハを作製しても本発明の範囲に含まれる。
【0034】
【発明の効果】
以上述べたごとく、本発明によれば、従来困難とされていたn/n+ウェーハにおいても酸素析出物によるゲッタリング能力を持たせることのできるn型シリコン単結晶ウェーハを得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an n-type silicon single crystal wafer (substrate) for a semiconductor device obtained by pulling up a silicon single crystal by the Czochralski method (CZ method) and processing the silicon single crystal into a wafer, a manufacturing method thereof and the n The present invention relates to an epitaxial wafer using a silicon single crystal wafer.
[0002]
[Related technologies]
As a wafer for producing a device such as a semiconductor integrated circuit, a silicon single crystal wafer grown mainly by the CZ method is used. This silicon single crystal wafer has p-type and n-type electrical resistivity classifications according to electronic devices such as IC and LSI.
[0003]
Therefore, in order to obtain a p-type wafer, a Group 3 element such as boron, aluminum, or gallium is added as an electrical impurity to control the resistivity. In the case of n-type, group 5 elements such as phosphorus, antimony and arsenic are appropriately added to control the resistivity.
[0004]
In particular, recently, an electrical device is often manufactured by using a low resistivity wafer having a resistivity of 20 mΩcm or less as a substrate and depositing an epitaxial silicon layer of the same conductivity type thereon. For example, a high concentration boron is added, a p-type wafer having a resistivity of 20 mΩcm or less is used as a substrate (p + substrate), and a p − layer added with boron so as to obtain a resistivity of about 10 Ωcm as an epitaxial layer on the substrate is formed. One example is a p / p + epi epitaxial wafer having a deposited structure. These are ideal silicon wafers in view of the characteristics of electronic devices, which are convenient for manufacturing devices with structurally efficient operation.
[0005]
Similarly, there are n / n + wafers with addition of Group 5 element impurities, but this is not as simple as p / p + . This is because even if phosphorus and antimony among group 5 element impurities are added to the molten silicon crucible used in the CZ method, they cannot be added at such a high concentration that they sublime in the pulling process and a low resistivity wafer is obtained. Since arsenic can be added at a high concentration, it is often used to obtain an n / n + structure.
[0006]
On the other hand, an important characteristic of silicon wafers is gettering characteristics. Gettering is a general term for methods for removing heavy metal impurities that cause device characteristics to deteriorate outside the device operating area. For example, if the surface of a silicon wafer is several tens of micrometers as the device operating area, the wafer is deeper than that area. The impurity metal may be captured at the position, that is, in the bulk.
[0007]
One of the most frequently used methods is the IG method (internal gettering) using oxygen precipitates. In this method, supersaturated oxygen atoms inevitably contained in a silicon wafer produced by the CZ method are formed as precipitates at a wafer position deeper than the device operating region, and impurities are trapped in the lattice distortion created around the oxygen atoms. It is a method to do. At that time, it is necessary to control the density, size, and formation position of the oxygen precipitates by various methods.
[0008]
Regarding the formation control of this oxygen precipitate, the relationship with the Group 3 element or Group 5 element added to control the electrical resistivity has been clarified. In the case of boron, which is a typical group 3 element-added impurity, it is well known that oxygen precipitation is promoted when it is added up to the p + resistivity region. Therefore, when oxygen precipitates are used for the IG, even if the crystals have a low initial oxygen concentration, the oxygen precipitates can be formed efficiently, so that the gettering ability is enhanced, which is very advantageous.
[0009]
However, in the case of an impurity-added wafer for controlling the resistivity of Group 5 elements, it is known that oxygen precipitation is suppressed. In particular, arsenic added to obtain an n + wafer significantly suppresses oxygen precipitation, so that even when a high oxygen concentration wafer such as 20 ppma [(JEIDA: Japan Electronics Industry Promotion Association) standard] is used, oxygen precipitates are formed. It can be extremely difficult to expect a gettering effect due to.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of such a problem, and an n-type silicon single crystal wafer capable of providing gettering capability due to oxygen precipitates even in an n / n + wafer, a manufacturing method thereof, and the An object is to provide an epitaxial wafer using an n-type silicon single crystal wafer.
[0011]
[Means for Solving the Problems]
To solve the above problems, an n-type silicon single crystal wafer of the present invention is a n-type silicon single crystal wafer obtained by processing a silicon single crystal rod which is pulled by the Czochralski method on the wafer, 5 It contains two or more electrically active impurities of group elements and group 3 elements, and the impurity concentration of at least group 3 elements is 1 × 10 18 cm −3 or more.
[0012]
The method for producing an n-type silicon single crystal wafer according to the present invention is a method for producing an n-type silicon single crystal wafer obtained by processing a silicon single crystal rod pulled up by the Czochralski method into a wafer. In the production, two or more electrically active impurities of group 5 element and group 3 element are mixed, and the impurity concentration of at least group 3 element is 1 × 10 18 cm −3 or more.
[0013]
The epitaxial wafer of the present invention is obtained by using the above-described n-type silicon single crystal wafer as a substrate and forming a silicon epitaxial layer thereon.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below, but it goes without saying that various modifications other than the embodiments are possible without departing from the technical idea of the present invention.
[0015]
In the present invention, when a silicon single crystal is produced by the Czochralski method, two or more kinds of impurities for controlling electrical resistivity of group 5 elements and group 3 elements are added simultaneously. In this case, the resistivity of the silicon single crystal Can be controlled by the absolute concentration and mixing ratio of the two or more added impurities.
[0016]
When adding these elements, for example, when it is desired to obtain an n-type silicon wafer, the electrical resistivity control of the Group 3 element is not limited by the simultaneous addition of the Group 3 element and the Group 5 element compared to the group 5 element impurity added alone. Impurities have been added. For this reason, the oxygen precipitation behavior for providing a gettering effect in the subsequent process is hardly suppressed by the presence of the Group 3 element impurity. Therefore, an n / n + epitaxial wafer having a high gettering capability can be produced.
[0017]
At this time, if the wafer has an impurity concentration of at least a group 3 element of 1 × 10 18 cm −3 or more, oxygen precipitation is promoted, so that oxygen precipitates can be efficiently formed regardless of whether the wafer is p-type or n-type. Therefore, gettering ability can be enhanced.
[0018]
When the impurity concentration of the group 3 element does not reach 1 × 10 18 cm −3 , the formation of oxygen precipitates is not sufficient, and the object of the present invention cannot be achieved. If the impurity concentration of this group 3 element is 1 × 10 18 cm −3 or more, there is no particular upper limit to the limit solid solubility, but about 2 × 10 19 cm −3 is sufficient.
[0019]
【Example】
Examples of the present invention will be specifically described below with reference to comparative examples. However, these examples are shown by way of illustration, and it goes without saying that the present invention is not construed as being limited thereto. Nor.
[0020]
Example 1
A crystal rod having a diameter of 6 inches, an initial oxygen concentration of 15 ppma (JEIDA), and an orientation <100> was pulled at a normal pulling rate (1.2 mm / min) by the CZ method. At that time, in the crystal which is pulled up so as to contain 10 18 atoms / cm 3 of boron and 7 × 10 17 atoms / cm 3 of arsenic, the conductivity type is controlled to be n-type and the resistivity is 0.01 Ωcm. It was. This crystal rod was processed into a substrate wafer, and n-type, 10 Ωcm n − -layer epitaxial growth was performed on the surface. In this epitaxial growth, trichlorosilane was used as a source gas, and the film was grown at 1130 ° C. by 3 μm.
[0021]
The epitaxial wafer was subjected to oxygen precipitation heat treatment at 800 ° C., 4 hr + 1000 ° C., and 16 hr in a nitrogen atmosphere, and then the oxygen precipitate density was measured by selective etching.
[0022]
The oxygen precipitate density is measured by angle polishing, and the technique described in JP-A-9-260449 is applied to the surface (a method in which copper is deposited on the surface and then etched with an alkaline aqueous solution and observed with an optical microscope). It went by.
[0023]
As a result of the measurement, an oxygen precipitate density of 10 9 cm −3 was detected in the wafer to which boron and arsenic were added simultaneously.
[0024]
From this result, in the silicon single crystal wafer according to the present invention, it is possible to produce a wafer having the same resistivity and excellent gettering ability. In particular, it has been found that the simultaneous addition of the Group 3 element and the Group 5 element exerts an effect in the case of the n-type in which oxygen precipitates are difficult to form.
[0025]
(Comparative Example 1)
An epitaxial wafer was produced in the same manner as in Example 1 except that a wafer having the same resistivity by addition of arsenic alone, that is, a 0.01 Ωcm wafer, and its oxygen precipitation density was measured. As a result of the measurement, the arsenic single-added wafer had an oxygen precipitate density of 10 6 cm −3 or less, which was the lower limit of detection, and the oxygen precipitation characteristics were significantly different from the wafer of Example 1.
[0026]
(Example 2)
After producing a silicon wafer (electrically conductive n − type, 10 Ωcm) under the same conditions as in Example 1 except that boron to be doped is 1 × 10 18 atoms / cm 3 and arsenic is 3 × 10 17 atoms / cm 3. The epitaxial growth and oxygen precipitate density were measured under the same conditions as in Example 1.
[0027]
As a result, an oxygen precipitate density of 1 × 10 18 cm −3 was detected in the wafer to which boron and arsenic were added simultaneously.
[0028]
(Comparative Example 2)
An epitaxial wafer was manufactured in the same manner as in Example 2 except that the wafer had the same resistivity (10 Ωcm) by adding arsenic alone, and the oxygen precipitation density was measured. As a result, the oxygen precipitate density of the arsenic-added wafer was 1 × 10 6 cm −3 or less.
[0029]
( Experimental example 1 )
A silicon wafer (electrically conductive p-type, 10 Ωcm) was prepared under the same conditions as in Example 1 except that boron to be doped was 2 × 10 18 atoms / cm 3 and arsenic was 6 × 10 17 atoms / cm 3 . Epitaxial growth and oxygen precipitate density were measured under the same conditions as in Example 1.
[0030]
As a result, an oxygen precipitate density of 5 × 10 18 cm −3 was detected in the wafer to which boron and arsenic were added simultaneously.
[0031]
(Comparative Example 3)
An epitaxial wafer was produced in the same manner as in Example 3 except that the wafer had the same resistivity (10 Ωcm) by adding boron alone, and the oxygen precipitate density was measured. As a result, the oxygen precipitate density of the single boron-added wafer was 1 × 10 7 cm −3 .
[0032]
In addition, this invention is not limited to the said embodiment and Example. The above-described embodiments and examples are merely examples, and the ones having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same function and effect are any. Even within the technical scope of the present invention.
[0033]
For example, in the present invention, when adding impurities of Group 3 element and Group 5 element, the range of resistivity is not limited, and even if a p-type silicon wafer is manufactured, or n / n − Even if a wafer is produced, it is within the scope of the present invention.
[0034]
【Effect of the invention】
As described above, according to the present invention, it is possible to obtain an n-type silicon single crystal wafer capable of providing a gettering capability by oxygen precipitates even in an n / n + wafer, which has been conventionally difficult.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001105152A JP4862221B2 (en) | 2001-04-03 | 2001-04-03 | N-type silicon single crystal wafer and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001105152A JP4862221B2 (en) | 2001-04-03 | 2001-04-03 | N-type silicon single crystal wafer and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002299345A JP2002299345A (en) | 2002-10-11 |
JP4862221B2 true JP4862221B2 (en) | 2012-01-25 |
Family
ID=18957884
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001105152A Expired - Fee Related JP4862221B2 (en) | 2001-04-03 | 2001-04-03 | N-type silicon single crystal wafer and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4862221B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4403919B2 (en) | 2004-04-01 | 2010-01-27 | 株式会社Sumco | Durable silicon electrode plate for plasma etching |
KR100798585B1 (en) * | 2004-06-30 | 2008-01-28 | 가부시키가이샤 섬코 | Method for producing silicon wafer and silicon wafer manufactured by this method |
US7700394B2 (en) | 2004-06-30 | 2010-04-20 | Sumco Corporation | Method for manufacturing silicon wafer method |
JP4442446B2 (en) | 2005-01-27 | 2010-03-31 | 信越半導体株式会社 | Selective etching method |
JP5713182B2 (en) * | 2011-01-31 | 2015-05-07 | 三菱マテリアル株式会社 | Silicon electrode plate for plasma etching |
US9634098B2 (en) * | 2013-06-11 | 2017-04-25 | SunEdison Semiconductor Ltd. (UEN201334164H) | Oxygen precipitation in heavily doped silicon wafers sliced from ingots grown by the Czochralski method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1029894A (en) * | 1996-07-15 | 1998-02-03 | Hitachi Ltd | Method for adjusting specific resistance of single crystal silicon and single crystal silicon manufacturing apparatus |
JP3626364B2 (en) * | 1998-05-22 | 2005-03-09 | 信越半導体株式会社 | Epitaxial silicon single crystal wafer manufacturing method and epitaxial silicon single crystal wafer |
JP2002134518A (en) * | 2000-10-27 | 2002-05-10 | Mitsubishi Materials Silicon Corp | Resistibility-adjusted silicon wafer and its manufacturing method |
-
2001
- 2001-04-03 JP JP2001105152A patent/JP4862221B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002299345A (en) | 2002-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW526297B (en) | Silicon wafer and silicon epitaxial wafer and production methods thereof | |
US9634098B2 (en) | Oxygen precipitation in heavily doped silicon wafers sliced from ingots grown by the Czochralski method | |
US8449675B2 (en) | Semiconductor wafer with an epitaxially deposited layer, and process for producing the semiconductor wafer | |
JP2003124219A (en) | Silicon wafer and epitaxial silicon wafer | |
KR100753169B1 (en) | Epitaxial silicon wafer | |
JP4862221B2 (en) | N-type silicon single crystal wafer and manufacturing method thereof | |
US10861990B2 (en) | Epitaxial silicon wafer | |
KR102279113B1 (en) | Method of manufacturing epitaxial silicon wafer and epitaxial silicon wafer | |
KR101473787B1 (en) | Method for pulling silicon single crystal | |
KR100760736B1 (en) | Method of manufacturing silicon epitaxial wafer | |
JP2003151984A (en) | Silicon epitaxial wafer and manufacturing method thereof | |
KR100774070B1 (en) | Method of manufacturing silicon epitaxial wafer | |
JP4126879B2 (en) | Epitaxial wafer manufacturing method | |
JP5830215B2 (en) | Epitaxial wafer and method for manufacturing the same | |
WO2021037275A1 (en) | Monocrystalline silicon wafer containing germanium and nitrogen impurities, preparation method for monocrystalline silicon wafer, and integrated circuit comprising silicon wafer | |
JP3903643B2 (en) | Epitaxial wafer manufacturing method | |
KR100734615B1 (en) | N-type semiconductor ingot and its manufacturing method | |
JPS60234330A (en) | Improved semiconductor substrate | |
KR20040054015A (en) | A silicon wafer and a method for increasing resistivity of silicon wafer | |
KR20060077811A (en) | Epitaxial Silicon Wafers and Methods for Manufacturing the Same | |
Sadasivam | 40 Years of Advances in the Silicon Wafer Industry and the Evolution of an Engineered Wafer | |
JP2011054654A (en) | Method of manufacturing silicon wafer for thinned device element | |
JP2011134983A (en) | Method of manufacturing silicon semiconductor substrate | |
JP2005064406A (en) | Epitaxial silicon single crystal wafer and method of manufacturing the same | |
KR20070032336A (en) | Silicon Epitaxial Wafers and Manufacturing Method Thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110726 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110726 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110901 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111011 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111024 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4862221 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |