[go: up one dir, main page]

JP4859436B2 - Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask for exposure, and manufacturing method of glass member for lithography - Google Patents

Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask for exposure, and manufacturing method of glass member for lithography Download PDF

Info

Publication number
JP4859436B2
JP4859436B2 JP2005303563A JP2005303563A JP4859436B2 JP 4859436 B2 JP4859436 B2 JP 4859436B2 JP 2005303563 A JP2005303563 A JP 2005303563A JP 2005303563 A JP2005303563 A JP 2005303563A JP 4859436 B2 JP4859436 B2 JP 4859436B2
Authority
JP
Japan
Prior art keywords
glass substrate
defect
mask blank
manufacturing
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005303563A
Other languages
Japanese (ja)
Other versions
JP2007113962A (en
Inventor
勝 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2005303563A priority Critical patent/JP4859436B2/en
Publication of JP2007113962A publication Critical patent/JP2007113962A/en
Application granted granted Critical
Publication of JP4859436B2 publication Critical patent/JP4859436B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

本発明は、マスクブランク用ガラス基板の内部欠陥を検査した後にマスクブランク用ガラス基板を製造するマスクブランク用ガラス基板の製造方法、このマスクブランク用ガラス基板を用いるマスクブランクの製造方法、このマスクブランクを用いる露光用マスクの製造方法、及びリソグラフィー技術で使用するステッパーなどに使われるレンズなどの光学部品としてのガラス部材(リソグラフィー用ガラス部材)の製造方法に関する。   The present invention relates to a method for manufacturing a glass substrate for mask blank, which manufactures a glass substrate for mask blank after inspecting an internal defect of the glass substrate for mask blank, a method for manufacturing a mask blank using the glass substrate for mask blank, and the mask blank. The present invention relates to a method for manufacturing a mask for exposure using, and a method for manufacturing a glass member (lithographic glass member) as an optical component such as a lens used in a stepper used in lithography technology.

近年では、半導体デバイスの微細化に対応して、光リソグラフィー技術において使用される露光光はArFエキシマレーザー(露光波長193nm)、F2エキシマレーザー(露光波長157nm)へと短波長化が進んでいる。上記光リソグラフィー技術において使用される露光用マスクや、この露光用マスクを製造するマスクブランクにおいても、マスクブランク用ガラス基板上に形成される、上述の露光光の露光波長に対して光を遮断する遮光膜や、位相を変化させる位相シフト膜の開発が急速に行われ、様々な膜材料が提案されている。   In recent years, in response to miniaturization of semiconductor devices, the exposure light used in the photolithography technique has been shortened to ArF excimer laser (exposure wavelength 193 nm) and F2 excimer laser (exposure wavelength 157 nm). Even in an exposure mask used in the photolithography technique and a mask blank for manufacturing the exposure mask, light is blocked with respect to the exposure wavelength of the exposure light formed on the mask blank glass substrate. Development of a light-shielding film and a phase shift film for changing the phase has been rapidly carried out, and various film materials have been proposed.

また、上記マスクブランク用ガラス基板や、このマスクブランク用ガラス基板を製造するための合成石英ガラス基板の内部には、異物や気泡などの欠陥が存在しないことが要求されている。特許文献1には、ガラス基板に対し、He‐Neレーザーを入射し、ガラス基板に存在する内部欠陥(異物や気泡など)により散乱された散乱光を検出することで、上記内部欠陥を検出する欠陥検出装置が開示されている。
特開平8‐261953号公報
Further, it is required that defects such as foreign matters and bubbles do not exist inside the mask blank glass substrate or the synthetic quartz glass substrate for manufacturing the mask blank glass substrate. In Patent Document 1, a He—Ne laser is incident on a glass substrate, and the internal defects are detected by detecting scattered light scattered by internal defects (foreign matter, bubbles, etc.) present on the glass substrate. A defect detection apparatus is disclosed.
Japanese Patent Application Laid-Open No. 8-261951

ところが、上述のような欠陥検出装置によって内部欠陥が存在しないと判定された合成石英ガラス基板、マスクブランク用ガラス基板から製造される露光用マスクであっても、露光光であるArFエキシマレーザーを用いて半導体基板に露光用マスクのマスクパターンを転写するパターン転写時に、後述のガラス基板起因による転写パターン欠陥が生じて転写精度が低下する場合がある。   However, an ArF excimer laser as exposure light is used even for an exposure mask manufactured from a synthetic quartz glass substrate or a mask blank glass substrate that has been determined to have no internal defects by the defect detection apparatus as described above. At the time of pattern transfer for transferring the mask pattern of the exposure mask to the semiconductor substrate, a transfer pattern defect due to the glass substrate described later may occur and transfer accuracy may be lowered.

この原因は、He‐Neレーザーなどの可視光レーザーを露光光としたときには散乱などが発生しなかったが、ArFエキシマレーザーやF2エキシマレーザーなどの高エネルギーの光を露光光としたときに、局所的に光学特性を変化(例えば透過率を低下)させる内部欠陥(局所脈理、内容物、異質物)が、ガラス基板中に存在しているからであると考えられる。   The cause is that scattering was not generated when a visible light laser such as a He-Ne laser was used as the exposure light. However, when high-energy light such as an ArF excimer laser or F2 excimer laser was used as the exposure light, This is probably because internal defects (local striae, contents, and foreign substances) that change the optical characteristics (for example, decrease the transmittance) exist in the glass substrate.

また、特許文献1に記載の欠陥検出方法及び装置では、CCDカメラによって散乱光を検出する際に、被検査体である個々のガラス基板の表面状態にばらつきがあると、欠陥の検出精度を確保できない場合がある。   Further, in the defect detection method and apparatus described in Patent Document 1, when the scattered light is detected by the CCD camera, if the surface state of each glass substrate that is an object to be inspected varies, the defect detection accuracy is ensured. There are cases where it is not possible.

本発明の目的は、上述の事情を考慮してなされたものであり、被検査体である個々の合成石英ガラス基板の表面状態にばらつきがある場合にも、これらのガラス基板に存在し、波長が200nm以下の短波長光を露光光としたときのパターン転写に影響の大きな内部欠陥を簡単且つ確実に検出できるマスクブランク用ガラス基板の製造方法、上記マスクブランク用ガラス基板からマスクブランクを製造するマスクブランクの製造方法、及び上記マスクブランクから転写精度が良好な露光用マスクを製造する露光用マスクの製造方法を提供することにある。   The object of the present invention has been made in consideration of the above-mentioned circumstances, and even when there is variation in the surface state of each synthetic quartz glass substrate which is an object to be inspected, A method for manufacturing a mask blank glass substrate that can easily and reliably detect internal defects that have a large effect on pattern transfer when short-wavelength light having a wavelength of 200 nm or less is used as exposure light, and manufacturing a mask blank from the mask blank glass substrate It is providing the manufacturing method of a mask blank, and the manufacturing method of the mask for exposure which manufactures the mask for exposure with favorable transcription | transfer precision from the said mask blank.

請求項1に記載の発明に係るマスクブランク用ガラス基板の製造方法は、波長が200nm以下の短波長光を導入する一端面を含む表面を有するガラス基板を準備する準備工程と、この準備されたガラス基板の内部欠陥を検出する検出工程とを有し、前記検出工程でパターン転写に影響する内部欠陥が存在しない前記ガラス基板を用いてマスクブランク用ガラス基板を製造するマスクブランク用ガラス基板の製造方法であって、前記検出工程は、前記ガラス基板の前記内部欠陥が変質するエネルギーを有する前記短波長光を当該ガラス基板に導入して、前記内部欠陥を変質させる欠陥変質工程を有し、前記ガラス基板は、合成石英からなり、前記短波長光は、1パルス当たりのエネルギーが10〜100mJ/cm であることを特徴とするものである。 The manufacturing method of the glass substrate for mask blanks according to the first aspect of the present invention includes a preparation step of preparing a glass substrate having a surface including one end face for introducing a short wavelength light having a wavelength of 200 nm or less, and the preparation. and a detecting step of detecting an internal defect of a glass substrate, manufacturing a glass substrate for mask blank for manufacturing a glass substrate for a mask blank using the glass substrate that internal defects are not present to affect the pattern transfer in the detection step a method, said detecting step, the short-wavelength light having an energy that the internal defects of the glass substrate is deteriorated by introducing into the glass substrate, have a defect alteration step of alteration of the internal defects, the glass substrate is made of synthetic quartz, the short wavelength light, the energy per pulse is characterized by a 10 to 100 mJ / cm 2 Is.

請求項2に記載の発明に係るマスクブランク用ガラス基板の製造方法は、請求項1に記載の発明において、前記短波長光は、パルス幅が2〜15nsecであることを特徴とするものである。
請求項3に記載の発明に係るマスクブランク用ガラス基板の製造方法は、請求項1または2に記載の発明において、前記内部欠陥は、波長が200nm超の露光光源に対して局所的な光学特性の変化が生じず、波長が200nm以下の露光光源に対して局所的な光学特性の変化が生じる欠陥である局所脈理、内容物、または異質物の少なくともいずれかであることを特徴とするものである。
Method of manufacturing a glass substrate for a mask blank according to the invention of claim 2 is the invention according to claim 1, wherein the short wavelength light, in which the pulse width is characterized in that it is a 2~15Nse c is there.
According to a third aspect of the present invention, there is provided the mask blank glass substrate manufacturing method according to the first or second aspect, wherein the internal defect has a local optical characteristic with respect to an exposure light source having a wavelength of more than 200 nm. Characterized in that it is at least one of local striae, contents, or extraneous matter that is a defect in which local optical property changes occur with respect to an exposure light source having a wavelength of 200 nm or less. It is.

請求項に記載の発明に係るマスクブランク用ガラス基板の製造方法は、請求項1乃至3のいずれかに記載の発明において、前記検出工程は、波長が200nm以下の短波長光をガラス基板に導入して内部欠陥を変質させる欠陥変質工程の後または当該欠陥変質工程と同時に、可視域の光を前記ガラス基板に導入して、変質した前記内部欠陥により散乱する光を検出することで、当該内部欠陥を特定する欠陥特定工程を有することを特徴とするものである。 According to a fourth aspect of the present invention, there is provided the method for manufacturing a mask blank glass substrate according to any one of the first to third aspects, wherein the detecting step uses short wavelength light having a wavelength of 200 nm or less to the glass substrate. introduced at the same time as or the defective alteration process after the defect alteration step of alteration of the internal defects, by introducing a light in the visible region on the glass substrate, by detecting the light scattered by the altered the internal defects, the It has a defect specifying step for specifying an internal defect.

請求項に記載の発明に係るマスクブランク用ガラス基板の製造方法は、請求項に記載の発明において、前記欠陥特定工程における可視域の光のガラス基板への導入は、当該ガラス基板の両主表面と側面との間で全反射条件を満たす条件で実施することを特徴とするものである。 According to a fifth aspect of the present invention, there is provided a method for manufacturing a glass substrate for a mask blank according to the fourth aspect , wherein the introduction of visible light into the glass substrate in the defect identification step is performed on both of the glass substrates. It is characterized in that it is carried out under conditions that satisfy the total reflection condition between the main surface and the side surface.

請求項に記載の発明に係るマスクブランク用ガラス基板の製造方法は、請求項1乃至のいずれかに記載の発明において、前記検出工程で、波長が200nm以下の短波長光を導入するガラス基板は、主表面が鏡面研磨される前の状態であることを特徴とするものである。 The method for producing a mask blank glass substrate according to claim 6 is the glass according to any one of claims 1 to 5 , wherein in the detection step, short wavelength light having a wavelength of 200 nm or less is introduced. The substrate is characterized in that the main surface is in a state before being mirror-polished.

請求項に記載の発明に係るマスクブランクの製造方法は、請求項1乃至のいずれかに記載のマスクブランク用ガラス基板の製造方法によって得られたマスクブランク用ガラス基板の主表面上に、マスクパターンとなる薄膜を形成してマスクブランクを製造することを特徴とするものである。 The manufacturing method of the mask blank which concerns on invention of Claim 7 is on the main surface of the glass substrate for mask blanks obtained by the manufacturing method of the glass substrate for mask blanks in any one of Claims 1 thru | or 6 . A mask blank is manufactured by forming a thin film to be a mask pattern.

請求項に記載の発明に係る露光用マスクの製造方法は、請求項に記載のマスクブランクにおける薄膜をパターニングして、マスクブランク用ガラス基板の主表面上にマスクパターンを形成し、露光用マスクを製造することを特徴とするものである。 A method for manufacturing an exposure mask according to an eighth aspect of the invention comprises patterning a thin film in the mask blank according to the seventh aspect , forming a mask pattern on the main surface of the glass substrate for mask blank, and for exposure. A mask is manufactured.

請求項に記載の発明に係るリソグラフィー用ガラス部材の製造方法は、波長が200nm以下の短波長光を導入する導入面を有するガラス材料を準備する準備工程と、この準備されたガラス材料の内部欠陥を検出する検出工程とを有し、前記検出工程で内部欠陥が存在しない前記ガラス材料を用いてリソグラフィー用ガラス部材を製造するリソグラフィー用ガラス部材の製造方法であって、前記検出工程は、前記ガラス材料の前記内部欠陥が変質するエネルギーを有する前記短波長光を当該ガラス材料に導入して、前記内部欠陥を変質させる欠陥変質工程を有し、前記ガラス基板は、合成石英からなり、前記短波長光は、1パルス当たりのエネルギーが10〜100mJ/cm であることを特徴とするものである。
請求項10に記載の発明に係るリソグラフィー用ガラス部材の製造方法は、請求項9に記載の発明において、前記短波長光は、パルス幅が2〜15nsecであることを特徴とするものである。
請求項11に記載の発明に係るリソグラフィー用ガラス部材の製造方法は、請求項9または10に記載の発明において、前記内部欠陥は、波長が200nm超の露光光源に対して局所的な光学特性の変化が生じず、波長が200nm以下の露光光源に対して局所的な光学特性の変化が生じる欠陥である局所脈理、内容物、または異質物の少なくともいずれかであることを特徴とするものである。
The method for producing a glass member for lithography according to the invention described in claim 9 includes a preparation step of preparing a glass material having an introduction surface for introducing short-wavelength light having a wavelength of 200 nm or less, and the inside of the prepared glass material. and a detection step of detecting a defect, a method for producing a lithographic glass member to produce a glass member for lithography using the glass material whose internal defect does not exist in the detection step, the detection step, the the short-wavelength light having an energy that the internal defects of the glass material is altered by introducing into the glass material, have a defect alteration step of alteration of the internal defects, the glass substrate is made of synthetic quartz, the short wavelength light are those energy per pulse is characterized by a 10 to 100 mJ / cm 2.
The method for producing a glass member for lithography according to the invention described in claim 10 is characterized in that, in the invention described in claim 9, the short wavelength light has a pulse width of 2 to 15 nsec.
The method for producing a glass member for lithography according to the invention described in claim 11 is the invention according to claim 9 or 10, wherein the internal defect has a local optical characteristic with respect to an exposure light source having a wavelength of more than 200 nm. It is characterized by at least one of local striae, contents, and foreign substances that are defects in which no change occurs and local optical characteristics change with respect to an exposure light source having a wavelength of 200 nm or less. is there.

請求項1乃至3のいずれかに記載の発明によれば、ガラス基板の内部欠陥を検出する検出工程では、上記内部欠陥が変質するエネルギーを有する、波長が200nm以下の短波長光を当該ガラス基板に導入して上記内部欠陥を変質させることから、この変質により上記内部欠陥を顕在化させることができる。この結果、被検査体である個々のガラス基板の表面状態にばらつきがある場合にも、これらのガラス基板に存在する上記内部欠陥(波長が200nm以下の短波長光を露光光としたときのパターン転写に影響の大きな内部欠陥)を簡単且つ確実に検出できる。 According to the invention described in any one of claims 1 to 3, in the detection step of detecting an internal defect of the glass substrate, short-wavelength light having a wavelength of 200 nm or less having energy that alters the internal defect is applied to the glass substrate. Since the internal defect is introduced into the material to alter the internal defect, the internal defect can be revealed by the alteration. As a result, even when there are variations in the surface state of individual glass substrates that are inspected objects, the internal defects (patterns when exposure is performed using short wavelength light having a wavelength of 200 nm or less as exposure light). It is possible to easily and reliably detect an internal defect that greatly affects the transfer.

請求項に記載の発明によれば、波長が200nm以下の短波長光をガラス基板に導入して、当該ガラス基板の内部欠陥を変質させた後または当該内部欠陥を変質させると同時に、当該ガラス基板に可視域の光を導入して、変質した上記内部欠陥により散乱する光を検出することで当該内部欠陥を特定する。このことから、波長が200nm以下の短波長光を露光波長としてパターン転写を実施する際に生ずる転写パターン欠陥の原因となるガラス基板の内部欠陥を、可視域の光を用いることで簡単に検出することができる。 According to the invention described in claim 4 , after introducing short wavelength light having a wavelength of 200 nm or less into the glass substrate and altering the internal defect of the glass substrate, or simultaneously modifying the internal defect, the glass The internal defect is specified by introducing light in the visible range into the substrate and detecting light scattered by the altered internal defect. From this, it is possible to easily detect internal defects in the glass substrate that cause transfer pattern defects that occur when pattern transfer is performed using short-wavelength light having a wavelength of 200 nm or less as an exposure wavelength by using visible light. be able to.

請求項に記載の発明によれば、ガラス基板の両主表面と側面との間で全反射条件を満たす条件で、当該ガラス基板へ可視域の光を導入することから、この可視域の光を当該ガラス基板内に閉じ込めることができるので、変質した内部欠陥を漏れなく確実に検出することができる。 According to the invention described in claim 5 , since visible light is introduced into the glass substrate under the condition that satisfies the total reflection condition between the main surface and the side surface of the glass substrate, Can be confined in the glass substrate, so that a modified internal defect can be reliably detected without leakage.

請求項に記載の発明によれば、主表面が鏡面研磨される前の状態のガラス基板に、波長が200nm以下の短波長光を導入して、当該ガラス基板の内部欠陥を変質させ顕在化することから、内部欠陥が検出されないガラス基板のみの主表面を鏡面研磨することができ、内部欠陥が検出されたガラス基板の主表面を鏡面研磨する無駄を省くことができる。 According to the invention described in claim 6 , short wavelength light having a wavelength of 200 nm or less is introduced into the glass substrate in a state where the main surface is not mirror-polished, thereby altering and revealing internal defects of the glass substrate. Therefore, the main surface of only the glass substrate in which no internal defect is detected can be mirror-polished, and the waste of mirror-polishing the main surface of the glass substrate in which the internal defect is detected can be eliminated.

請求項またはに記載の発明によれば、請求項1乃至のいずれかに記載のマスクブランク用ガラス基板の製造方法によって得られたマスクブランク用ガラス基板を用いてマスクブランクを製造し、このマスクブランクにおける薄膜をパターニングして露光用マスクを製造する。従って、この露光用マスクを用いて被転写体に当該露光用マスクのマスクパターンを転写するパターン転写時に、この露光用マスクには、内部欠陥が存在しないガラス基板が用いられているので、上記内部欠陥に起因して局所的に光学特性が変化(例えば透過率が低下)する領域が存在せず、パターン転写に悪影響を及ぼして転写パターン欠陥が生ずることがなく、転写精度を向上させることができる。 According to invention of Claim 7 or 8 , a mask blank is manufactured using the glass substrate for mask blanks obtained by the manufacturing method of the glass substrate for mask blanks in any one of Claims 1 thru | or 6 , An exposure mask is manufactured by patterning the thin film in the mask blank. Accordingly, when transferring the mask pattern of the exposure mask to the transfer object using the exposure mask, a glass substrate having no internal defects is used for the exposure mask. There is no region where the optical characteristics are locally changed (for example, the transmittance is reduced) due to the defect, the pattern transfer is not adversely affected and the transfer pattern defect does not occur, and the transfer accuracy can be improved. .

請求項9乃至11のいずれかに記載の発明によれば、ガラス材料の内部欠陥を検出する検出工程では、上記内部欠陥が変質するエネルギーを有する、波長が200nm以下の短波長光を当該ガラス材料に導入して上記内部欠陥を変質させることから、この変質により上記内部欠陥を顕在化させることができる。この結果、被検査体である個々のガラス材料の表面状態にばらつきがある場合にも、これらのガラス材料に存在する上記内部欠陥(波長が200nm以下の短波長光を光源としたときの透過率低下や上記短波長光の吸収による温度上昇などに影響の大きな内部欠陥)を簡単且つ確実に検出できる。 According to the invention of any one of claims 9 to 11, in the detection step of detecting an internal defect of the glass material, the short-wavelength light having a wavelength of 200 nm or less having energy that alters the internal defect is applied to the glass material. Since the internal defect is introduced into the material to alter the internal defect, the internal defect can be revealed by the alteration. As a result, even when there is a variation in the surface state of each glass material that is an object to be inspected, the internal defects (transmittance when a short wavelength light having a wavelength of 200 nm or less is used as a light source) exist in these glass materials. It is possible to easily and reliably detect an internal defect that has a large influence on a decrease or a temperature increase due to absorption of the short wavelength light.

以下、マスクブランク用ガラス基板の製造方法、マスクブランクの製造方法、露光用マスクの製造方法について最良の形態を、図面に基づき説明する。尚、以下、露光光を、露光波長が200nm以下のArFエキシマレーザー光(露光波長:193nm)として説明する。   Hereinafter, the best mode of a method for manufacturing a mask blank glass substrate, a method for manufacturing a mask blank, and a method for manufacturing an exposure mask will be described with reference to the drawings. Hereinafter, the exposure light will be described as ArF excimer laser light (exposure wavelength: 193 nm) having an exposure wavelength of 200 nm or less.

〔A〕マスクブランク用ガラス基板の製造方法
特開平8−31723号公報や特開2003−81654号公報に記載された製造方法により作製された合成石英ガラスインゴットから、約152.4mm×約152.4mm×約6.35mmに切り出して得られた合成石英ガラス板1(図1(a))に面取り加工を施す。次に、この合成石英ガラス板1の表面のうち、少なくとも、波長が200nm以下の短波長光(本実施の形態では露光波長の光(ArFエキシマレーザー光)))を導入する側の端面2と、この端面2に隣接し、後述の内部欠陥16により散乱される散乱光15(図3)を受光する側の端面3とを、上記露光波長の光を導入できる程度に鏡面研磨して、合成石英ガラス基板4を準備する(図1(b))。
[A] Method for Producing Mask Blank Glass Substrate From a synthetic quartz glass ingot produced by a production method described in JP-A-8-31723 and JP-A-2003-81654, about 152.4 mm × about 152. A synthetic quartz glass plate 1 (FIG. 1 (a)) obtained by cutting to 4 mm × about 6.35 mm is chamfered. Next, among the surfaces of the synthetic quartz glass plate 1, at least an end face 2 on the side where a short wavelength light having a wavelength of 200 nm or less (in this embodiment, light having an exposure wavelength (ArF excimer laser light)) is introduced; Then, the end surface 3 adjacent to the end surface 2 and receiving the scattered light 15 (FIG. 3) scattered by the internal defect 16 described later is mirror-polished to such an extent that the light having the exposure wavelength can be introduced, and then synthesized. A quartz glass substrate 4 is prepared (FIG. 1B).

この準備工程においては、合成石英ガラス基板4の表面のうちの残りの端面18及び19と、互いに対向する主表面5及び6とは鏡面研磨されず、その表面粗さは約0.5μm程度であるが、上記端面2及び3の表面粗さは約0.03μm以下とされる。   In this preparation step, the remaining end surfaces 18 and 19 of the surface of the synthetic quartz glass substrate 4 and the main surfaces 5 and 6 facing each other are not mirror-polished, and the surface roughness is about 0.5 μm. However, the surface roughness of the end faces 2 and 3 is about 0.03 μm or less.

次に、上記準備工程において準備された合成石英ガラス基板4に内部欠陥16が存在するか否かを検出する検出工程を実施する。この検出工程は、図2に示す欠陥変質装置20を用いて内部欠陥16を変質させる欠陥変質工程と、この欠陥変質工程の後に実施し、図3に示す欠陥検査装置40を用いて、変質された内部欠陥16を特定して検出する欠陥特定工程とを有する。   Next, a detection step of detecting whether or not the internal defect 16 exists in the synthetic quartz glass substrate 4 prepared in the above preparation step is performed. This detection process is performed after the defect alteration process for altering the internal defect 16 using the defect alteration apparatus 20 shown in FIG. 2, and after the defect alteration process, and is altered using the defect inspection apparatus 40 shown in FIG. And a defect identification step for identifying and detecting the internal defect 16.

ここで、合成石英ガラス基板4に存在する内部欠陥16のうち、波長が200nm超の露光光源(例えば、KrFエキシマレーザー(波長:248nm))の場合には問題とならないが、ArFエキシマレーザーのように波長が200nm以下の露光光源の場合に問題となる内部欠陥16として局所脈理、内容物、異質物等がある。これらの内部欠陥16は、合成石英ガラス基板4からマスクブランク用ガラス基板7及びマスクブランク9を経て製造された露光用マスク14と、波長が200nm以下の上記露光光とを用いて、当該露光用マスク14のマスクパターンを被転写体に転写するパターン転写時に、いずれも局所的な光学特性の変化(例えば透過率の低下)を生じさせ、パターン転写に悪影響を及ぼして転写精度を低下させるものとなる。   Here, among the internal defects 16 existing in the synthetic quartz glass substrate 4, there is no problem in the case of an exposure light source (for example, KrF excimer laser (wavelength: 248 nm)) having a wavelength of more than 200 nm. In particular, there are local striae, contents, and foreign substances as internal defects 16 which are problematic when the exposure light source has a wavelength of 200 nm or less. These internal defects 16 are produced by using the exposure mask 14 manufactured from the synthetic quartz glass substrate 4 through the mask blank glass substrate 7 and the mask blank 9 and the exposure light having a wavelength of 200 nm or less. Any pattern transfer that transfers the mask pattern of the mask 14 to the transfer object causes a local change in optical characteristics (for example, a decrease in transmittance), adversely affects the pattern transfer, and decreases the transfer accuracy. Become.

上記「局所脈理」は、合成石英ガラスの合成時に金属元素が不純物として合成石英ガラス中に微量に混入された領域である。露光用マスク14のマスクブランク用ガラス基板7に当該局所脈理が存在すると、パターン転写時に約20〜40%の透過率低下が生じ、転写精度を低下させる。また、上記「内容物」は、金属元素が不純物として合成石英ガラス中に、局所脈理の場合よりも多く混入された領域である。露光用マスク14のマスクブランク用ガラス基板7に当該内容物が存在すると、パターン転写時に約40〜60%の透過率低下が生じる。更に、「異質物」は、合成石英ガラス中に酸素が過剰に混入された酸素過剰領域であり、高エネルギーの光が照射された後は回復しない。露光用マスク14のマスクブランク用ガラス基板7に当該異質物が存在すると、パターン転写時に約5〜15%の透過率の低下が生じる。   The “local striae” is a region in which a metal element is mixed in the synthetic quartz glass as an impurity during the synthesis of the synthetic quartz glass. If the local striae are present in the mask blank glass substrate 7 of the exposure mask 14, a transmittance decrease of about 20 to 40% occurs at the time of pattern transfer, and transfer accuracy is lowered. In addition, the “content” is a region in which a metal element is mixed in the synthetic quartz glass as an impurity more than in the case of local striae. If the contents are present on the mask blank glass substrate 7 of the exposure mask 14, a transmittance decrease of about 40 to 60% occurs during pattern transfer. Furthermore, the “foreign matter” is an oxygen-excess region in which oxygen is excessively mixed in the synthetic quartz glass and does not recover after being irradiated with high-energy light. If the extraneous material is present on the mask blank glass substrate 7 of the exposure mask 14, the transmittance is reduced by about 5 to 15% during pattern transfer.

前記欠陥変質工程を実施する欠陥変質装置20は、図2に示すように、主表面5、6が鏡面研磨される前の合成石英ガラス基板4に存在する上述の内部欠陥16(パターン転写時に局所的な光学特性の変化を生じさせる局所脈理、内容物、異質物など)を、ArFエキシマレーザー光25を用いて変質させるものである。つまり、この欠陥変質装置20は、短波長光としての露光波長の光(つまり、露光波長と同一波長の光)であるArFエキシマレーザー光25を合成石英ガラス基板4の端面2から導入する第1レーザー照射装置21と、合成石英ガラス基板4を載置し、第1レーザー照射装置21から照射されるArFエキシマレーザー光25に対して合成石英ガラス基板4をX方向、Y方向、Z方向にそれぞれ移動させるXYZステージ22とを有して構成される。上記第1レーザー照射装置21は、XYZステージ22が合成石英ガラス基板4をY方向に移動させている間に、ArFエキシマレーザー光25を合成石英ガラス基板4の端面2におけるY方向(つまり、端面2の長手方向)の各位置から順次導入する。   As shown in FIG. 2, the defect alteration apparatus 20 that performs the defect alteration process includes the above-described internal defect 16 (local pattern transfer during pattern transfer) that exists in the synthetic quartz glass substrate 4 before the main surfaces 5 and 6 are mirror-polished. The local striae, contents, and foreign matters that cause a change in the optical characteristics are altered using the ArF excimer laser beam 25. That is, this defect alteration device 20 introduces ArF excimer laser light 25, which is light having an exposure wavelength as short-wavelength light (that is, light having the same wavelength as the exposure wavelength), from the end face 2 of the synthetic quartz glass substrate 4. The laser irradiation device 21 and the synthetic quartz glass substrate 4 are placed, and the synthetic quartz glass substrate 4 is respectively arranged in the X direction, the Y direction, and the Z direction with respect to the ArF excimer laser light 25 irradiated from the first laser irradiation device 21. And an XYZ stage 22 to be moved. While the XYZ stage 22 moves the synthetic quartz glass substrate 4 in the Y direction, the first laser irradiation device 21 emits ArF excimer laser light 25 in the Y direction (that is, the end surface) of the end face 2 of the synthetic quartz glass substrate 4. 2 in the longitudinal direction).

この第1レーザー照射装置21から照射されるArFエキシマレーザー光25は、合成石英ガラス基板4の内部欠陥16が変質するエネルギーを有するものであり、具体的には、パルス幅が2〜15nsecで、1パルス当たりのエネルギーが10〜100mJ/cmである。このArFエキシマレーザー光25のパルス幅は12nsecが好ましい。また、ArFエキシマレーザー光25の1パルス当たりのエネルギーは好ましくは20〜50mJ/cmである。尚、ArFエキシマレーザー光25の1パルス当たりのエネルギーが100mJ/cmを越えると、プラズマが発生して合成石英ガラス基板4にダメージが発生したり、安全性の点で好ましくない。従って、第1レーザー照射装置21から照射されるArFエキシマレーザー光25は、合成石英ガラス基板4の端面2の長手方向に走査されることによって、この合成石英ガラス基板4に上記内部欠陥16が存在する場合に、この内部欠陥16を変質させて顕在化させる。 The ArF excimer laser beam 25 irradiated from the first laser irradiation device 21 has energy that alters the internal defect 16 of the synthetic quartz glass substrate 4, and specifically has a pulse width of 2 to 15 nsec, The energy per pulse is 10 to 100 mJ / cm 2 . The pulse width of the ArF excimer laser beam 25 is preferably 12 nsec. The energy per pulse of the ArF excimer laser beam 25 is preferably 20 to 50 mJ / cm 2 . If the energy per pulse of the ArF excimer laser beam 25 exceeds 100 mJ / cm 2 , plasma is generated and the synthetic quartz glass substrate 4 is damaged, which is not preferable in terms of safety. Therefore, the ArF excimer laser beam 25 emitted from the first laser irradiation device 21 is scanned in the longitudinal direction of the end face 2 of the synthetic quartz glass substrate 4, so that the internal defect 16 exists in the synthetic quartz glass substrate 4. In this case, the internal defect 16 is altered and made apparent.

前記欠陥特定工程を実施する欠陥検査装置40は、図3に示すように、可視域の光、例えばHe‐Neレーザー光のような可視レーザー光26を照射する第2レーザー照射装置42と、この第2レーザー照射装置42から照射された可視レーザー光の光路を変更して合成石英ガラス基板4の端面2の面取り面49(後述)へ導入する光路調整手段としてのミラー41A及び41Bと、合成石英ガラス基板4を載置し、第2レーザー照射装置42から照射された可視レーザー光26に対して合成石英ガラス基板4をX方向、Y方向、Z方向にそれぞれ移動させるXYZステージ43と、このXYZステージ43に載置された合成石英ガラス基板4の端面3側に設置され、CCD素子とこのCCD素子の検出範囲を広げるためのレンズ(ともに図示せず)とを備え、合成石英ガラス基板4の幅方向(つまり端面3の長手方向)の略全域にわたって検出視野44を有するCCDカメラ(ラインセンサカメラ)45と、このCCDカメラ45にUSBケーブル46を用いて接続されたコンピュータ47とを有して構成される。   As shown in FIG. 3, a defect inspection apparatus 40 that performs the defect identification step includes a second laser irradiation apparatus 42 that irradiates visible laser light 26 such as visible light, for example, He-Ne laser light, and the like. Mirrors 41A and 41B as optical path adjusting means for changing the optical path of the visible laser light emitted from the second laser irradiation device 42 and introducing it into a chamfered surface 49 (described later) of the end face 2 of the synthetic quartz glass substrate 4, and synthetic quartz An XYZ stage 43 for placing the glass substrate 4 and moving the synthetic quartz glass substrate 4 in the X direction, the Y direction, and the Z direction with respect to the visible laser light 26 irradiated from the second laser irradiation device 42, and the XYZ A CCD element and a lens for expanding the detection range of the CCD element (both shown) are installed on the end face 3 side of the synthetic quartz glass substrate 4 placed on the stage 43. And a CCD camera (line sensor camera) 45 having a detection visual field 44 over substantially the entire width direction of the synthetic quartz glass substrate 4 (that is, the longitudinal direction of the end face 3), and a USB cable 46 to the CCD camera 45 And a computer 47 connected by use.

ここで、合成石英ガラス基板4の端面2、3、18及び19は、図4に示すように、マスクパターンとなる薄膜(後述のハーフトーン膜8)が形成される合成石英ガラス基板4の主表面5及び6に直交する側面48と、この側面48と上記主表面5、6との間の面取り面49、50とを有して構成される。本実施形態では、端面2及び3の側面48、面取り面49及び50が鏡面研磨されている。   Here, as shown in FIG. 4, the end surfaces 2, 3, 18 and 19 of the synthetic quartz glass substrate 4 are the main surfaces of the synthetic quartz glass substrate 4 on which a thin film (halftone film 8 to be described later) serving as a mask pattern is formed. A side surface 48 orthogonal to the surfaces 5 and 6, and chamfered surfaces 49, 50 between the side surface 48 and the main surfaces 5, 6 are configured. In the present embodiment, the side surfaces 48 and the chamfered surfaces 49 and 50 of the end surfaces 2 and 3 are mirror-polished.

上記ミラー41A及び41Bは、図3に示すように、第2レーザー照射装置42から照射された可視レーザー光26を合成石英ガラス基板4の端面2における一方の面取り面49に導入するが、このとき、導入された可視レーザー光26が合成石英ガラス基板4の主表面5、6と端面2、18の側面48との間で全反射条件を満たす、つまり全反射を繰り返して合成石英ガラス基板4内に閉じ込められるように、可視レーザー光26の面取り面49への入射角度を調整する。具体的には、端面2の面取り面49から合成石英ガラス基板4内に導入(入射)された可視レーザー光26が主表面5、6に当たる入射角θiが臨界角θcよりも大きくなり、且つ可視レーザー光26が端面2、18の側面48に当たる入射角度(90°−θi)が臨界角θcよりも大きくなるように、ミラー41A及び41Bは可視レーザー光26の面取り面49への入射角度を調整する。   As shown in FIG. 3, the mirrors 41 </ b> A and 41 </ b> B introduce the visible laser beam 26 irradiated from the second laser irradiation device 42 into one chamfered surface 49 of the end surface 2 of the synthetic quartz glass substrate 4. The introduced visible laser beam 26 satisfies the total reflection condition between the main surfaces 5 and 6 of the synthetic quartz glass substrate 4 and the side surfaces 48 of the end faces 2 and 18, that is, the total reflection is repeated and the inside of the synthetic quartz glass substrate 4 is repeated. The incident angle of the visible laser beam 26 to the chamfered surface 49 is adjusted so as to be confined to the chamfered surface. Specifically, the incident angle θi at which the visible laser light 26 introduced (incident) into the synthetic quartz glass substrate 4 from the chamfered surface 49 of the end face 2 hits the main surfaces 5 and 6 becomes larger than the critical angle θc and is visible. The mirrors 41A and 41B adjust the incident angle of the visible laser beam 26 on the chamfered surface 49 so that the incident angle (90 ° −θi) at which the laser beam 26 strikes the side surfaces 48 of the end surfaces 2 and 18 is larger than the critical angle θc. To do.

第2レーザー照射装置42、ミラー41A及び41Bは、XYZステージ43が合成石英ガラス基板4をY方向に移動させている間に、可視レーザー光26を合成石英ガラス基板4の端面2の面取り面49におけるY方向(つまり端面2の面取り面49における長手方向)の各位置から順次導入する。従って、可視レーザー光26は、合成石英ガラス基板4の端面2における面取り面49の長手方向に走査されることになり、合成石英ガラス基板4の全領域に導入される。合成石英ガラス基板4に内部欠陥16が存在し、この内部欠陥16が欠陥変質装置20によって変質されている場合には、上述のようにして合成石英ガラス基板4内に導入された可視レーザー光26が、変質した内部欠陥16によって散乱されて散乱光15を発する。   The second laser irradiation device 42 and the mirrors 41A and 41B are configured so that the visible laser beam 26 is chamfered on the end face 2 of the synthetic quartz glass substrate 4 while the XYZ stage 43 moves the synthetic quartz glass substrate 4 in the Y direction. Are introduced sequentially from each position in the Y direction (that is, the longitudinal direction of the chamfered surface 49 of the end face 2). Therefore, the visible laser beam 26 is scanned in the longitudinal direction of the chamfered surface 49 at the end face 2 of the synthetic quartz glass substrate 4 and is introduced into the entire region of the synthetic quartz glass substrate 4. When the internal defect 16 exists in the synthetic quartz glass substrate 4 and this internal defect 16 has been altered by the defect alteration device 20, the visible laser beam 26 introduced into the synthetic quartz glass substrate 4 as described above. Are scattered by the altered internal defect 16 and emit scattered light 15.

前記CCDカメラ45は、合成石英ガラス基板4の端面2の面取り面49におけるY方向の各位置に入射された可視レーザー光26が、変質した内部欠陥16によって散乱された散乱光15を、合成石英ガラス基板4のY方向の各位置毎に、当該合成石英ガラス基板4の端面3側から受光して撮影する。本実施形態では、CCDカメラ45はモノクロカメラであり、散乱光15の明暗を受光して撮影する。   The CCD camera 45 converts the scattered light 15 obtained by scattering the visible laser light 26 incident on the chamfered surface 49 of the end surface 2 of the synthetic quartz glass substrate 4 in the Y direction from the internal defect 16 that has been altered into synthetic quartz. For each position of the glass substrate 4 in the Y direction, light is received from the end face 3 side of the synthetic quartz glass substrate 4 and photographed. In the present embodiment, the CCD camera 45 is a monochrome camera, and takes light and darkness of the scattered light 15 to photograph.

前記コンピュータ47は、CCDカメラ45からの画像を入力して、合成石英ガラス基板4のY方向の各位置毎に画像処理し、この合成石英ガラス基板4のY方向の各位置について、CCDカメラ45が受光する散乱光15の光量(強度)を、合成石英ガラス基板4のX方向位置との関係で解析する。つまり、コンピュータ47は、散乱光15の光量が所定閾値以上である場合に、この所定閾値以上の光量の散乱光15を、変質した内部欠陥16が散乱したものと判断して、この内部欠陥16の位置を特定して検出する。   The computer 47 inputs an image from the CCD camera 45 and processes the image for each position in the Y direction of the synthetic quartz glass substrate 4. The amount of light (intensity) of the scattered light 15 received by is analyzed with respect to the position of the synthetic quartz glass substrate 4 in the X direction. That is, when the light quantity of the scattered light 15 is greater than or equal to a predetermined threshold, the computer 47 determines that the altered internal defect 16 has scattered the scattered light 15 having a light quantity greater than or equal to the predetermined threshold. The position of is identified and detected.

上述の欠陥変質装置20及び欠陥検査装置40を用いた検出工程において、内部欠陥16が検出されない合成石英ガラス基板4に対し、その主表面5、6を所望の表面粗さになるように鏡面・精密研磨し、洗浄処理を実施してマスクブランク用ガラス基板7を得る(図1(c))。このときの主表面5、6の表面粗さは、自乗平均平方根粗さ(RMS)で0.2nm以下が好ましい。   In the detection process using the defect alteration device 20 and the defect inspection device 40 described above, the main surfaces 5 and 6 of the synthetic quartz glass substrate 4 from which the internal defect 16 is not detected are mirror-polished so as to have a desired surface roughness. The glass substrate 7 for mask blank is obtained by carrying out precision grinding | polishing and cleaning process (FIG.1 (c)). The surface roughness of the main surfaces 5 and 6 at this time is preferably 0.2 nm or less in root mean square roughness (RMS).

〔B〕マスクブランクの製造方法
次に、マスクブランク用ガラス基板7の主表面5上にマスクパターンとなる薄膜(ハーフトーン膜8)をスパッタリング法により形成して、マスクブランク9(ハーフトーン型位相シフトマスクブランク)を作製する(図1(d))。ハーフトーン膜8の成膜は、以下の構成を有するスパッタリング装置を使って行う。
[B] Mask Blank Manufacturing Method Next, a thin film (halftone film 8) to be a mask pattern is formed on the main surface 5 of the mask blank glass substrate 7 by a sputtering method, and a mask blank 9 (halftone phase) is formed. A shift mask blank) is produced (FIG. 1 (d)). The halftone film 8 is formed using a sputtering apparatus having the following configuration.

このスパッタリング装置は、図5に示すようなDCマグネトロンスパッタリング装置30であり、真空槽31を有しており、この真空槽31の内部にマグネトロンカソード32及び基板ホルダ33が配置されている。マグネトロンカソード32には、バッキングプレート34に接着されたスパッタリングターゲット35が装着されている。上記バッキングプレート34は水冷機構により直接または間接的に冷却される。また、マグネトロンカソード32、バッキングプレート34及びスパッタリングターゲット35は電気的に結合されている。基板ホルダ33にガラス基板7が装着される。   This sputtering apparatus is a DC magnetron sputtering apparatus 30 as shown in FIG. 5 and has a vacuum chamber 31, and a magnetron cathode 32 and a substrate holder 33 are arranged inside the vacuum chamber 31. A sputtering target 35 bonded to a backing plate 34 is attached to the magnetron cathode 32. The backing plate 34 is directly or indirectly cooled by a water cooling mechanism. Further, the magnetron cathode 32, the backing plate 34, and the sputtering target 35 are electrically coupled. The glass substrate 7 is mounted on the substrate holder 33.

図5の真空槽31は、排気口37を介して真空ポンプにより排気される。真空槽31内の雰囲気が、形成する膜の特性に影響しない真空度に達した後に、ガス導入口38から窒素を含む混合ガスを導入し、DC電源39を用いてマグネトロンカソード32に負電圧を加え、スパッタリングを行う。DC電源39はアーク検出機能を持ち、スパッタリング中の放電状態を監視する。真空槽31の内部圧力は圧力計36によって測定される。   The vacuum chamber 31 in FIG. 5 is exhausted by a vacuum pump through an exhaust port 37. After the atmosphere in the vacuum chamber 31 reaches a degree of vacuum that does not affect the characteristics of the film to be formed, a mixed gas containing nitrogen is introduced from the gas introduction port 38, and a negative voltage is applied to the magnetron cathode 32 using the DC power supply 39. In addition, sputtering is performed. The DC power source 39 has an arc detection function and monitors the discharge state during sputtering. The internal pressure of the vacuum chamber 31 is measured by a pressure gauge 36.

〔C〕露光用マスクの製造方法
次に、図1に示すように、上記マスクブランク9(ハーフトーン型位相シフトマスクブランク)のハーフトーン膜8の表面にレジストを塗布した後、加熱処理してレジスト膜10を形成する。(図1(e))。
[C] Manufacturing Method for Exposure Mask Next, as shown in FIG. 1, a resist is applied to the surface of the halftone film 8 of the mask blank 9 (halftone phase shift mask blank), followed by heat treatment. A resist film 10 is formed. (Figure 1 (e)).

次に、レジスト膜付きのマスクブランク11におけるレジスト膜10に所定のパターンを描画・現像処理し、レジストパターン12を形成する(図1(f))。   Next, a predetermined pattern is drawn and developed on the resist film 10 in the mask blank 11 with a resist film to form a resist pattern 12 (FIG. 1 (f)).

次に、上記レジストパターン12をマスクにして、ハーフトーン膜8をドライエッチングしてハーフトーン膜パターン13をマスクパターンとして形成する(図1(g))。   Next, using the resist pattern 12 as a mask, the halftone film 8 is dry-etched to form a halftone film pattern 13 as a mask pattern (FIG. 1 (g)).

最後に、レジストパターン12を除去して、ガラス基板7上にハーフトーン膜パターン13が形成された露光用マスク14を得る(図1(h))。   Finally, the resist pattern 12 is removed to obtain an exposure mask 14 in which the halftone film pattern 13 is formed on the glass substrate 7 (FIG. 1 (h)).

[D]半導体デバイスの製造方法
得られた露光用マスク14を露光装置に装着し、この露光用マスク14を使用し、ArFエキシマレーザーを露光光として光リソグラフィー技術を用い、半導体基板(半導体ウェハ)に形成されているレジスト膜に露光用マスクのマスクパターンを転写して、この半導体基板上に所望の回路パターンを形成し、半導体デバイスを製造する。
[D] Manufacturing Method of Semiconductor Device The obtained exposure mask 14 is attached to an exposure apparatus, and the exposure mask 14 is used to form a semiconductor substrate (semiconductor wafer) by using an ArF excimer laser as exposure light and using a photolithographic technique. The mask pattern of the exposure mask is transferred to the resist film formed on the substrate, and a desired circuit pattern is formed on the semiconductor substrate to manufacture a semiconductor device.

[E]実施の形態の効果
上述のように構成されたことから、上記実施の形態によれば、次の効果(1)〜(5)を奏する。
(1)合成石英ガラス基板4の内部欠陥16を検出する検出工程の欠陥変質工程では、欠陥変質装置26を用いて、内部欠陥16が変質するエネルギーを有する、波長が200nm以下のArFエキシマレーザー光25を当該合成石英ガラス基板4に導入して上記内部欠陥16を変質させることから、この変質により上記内部欠陥16を顕在化させることができる。この結果、個々の合成石英ガラス基板4の表面状態にばらつきがある場合にも、これらの合成石英ガラス基板4に存在する内部欠陥(波長が200nm以下の短波長光であるArFエキシマレーザー光25を露光光としたときのパターン転写に影響の大きな内部欠陥)を簡単且つ確実に検出できる。
[E] Effects of the Embodiments The configuration described above provides the following effects (1) to (5) according to the above embodiment.
(1) In the defect alteration step of the detection step for detecting the internal defect 16 of the synthetic quartz glass substrate 4, ArF excimer laser light having a wavelength of 200 nm or less and having energy for altering the internal defect 16 using the defect alteration device 26. Since 25 is introduced into the synthetic quartz glass substrate 4 to alter the internal defect 16, the internal defect 16 can be revealed by this alteration. As a result, even when the surface states of the individual synthetic quartz glass substrates 4 vary, internal defects existing in these synthetic quartz glass substrates 4 (the ArF excimer laser light 25 which is a short wavelength light having a wavelength of 200 nm or less) It is possible to easily and reliably detect an internal defect having a great influence on pattern transfer when exposure light is used.

(2)検出工程の欠陥特定工程において、波長が200nm以下のArFエキシマレーザー光25を合成石英ガラス基板4に導入して、この合成石英ガラス基板4の内部欠陥16を変質させる欠陥変質工程の後に、欠陥検査装置40を用いて当該合成石英ガラス基板4に可視レーザー光26を導入し、変質した内部欠陥16により散乱する散乱光15を検出することで当該内部欠陥16を特定する。このことから、波長が200nm以下の短波長光を露光波長としてパターン転写を実施する際に生ずる転写パターン欠陥の原因となる合成石英ガラス基板4の内部欠陥16を、可視レーザー光26を用いることで簡単に検出することができる。   (2) In the defect identification step of the detection step, after the defect alteration step of introducing ArF excimer laser light 25 having a wavelength of 200 nm or less into the synthetic quartz glass substrate 4 and altering the internal defects 16 of the synthetic quartz glass substrate 4 Then, the visible laser beam 26 is introduced into the synthetic quartz glass substrate 4 by using the defect inspection apparatus 40, and the scattered light 15 scattered by the altered internal defect 16 is detected to identify the internal defect 16. From this, the visible laser beam 26 is used for the internal defect 16 of the synthetic quartz glass substrate 4 that causes a transfer pattern defect that occurs when pattern transfer is performed using a short wavelength light having a wavelength of 200 nm or less as an exposure wavelength. It can be easily detected.

(3)欠陥特定工程では、合成石英ガラス基板4の両主表面5、6と端面2、3の側面48との間で全反射条件を満たす条件で、当該合成石英ガラス基板4へ可視レーザー光26を導入することから、この可視レーザー光26を当該合成石英ガラス基板4内に閉じ込めることができるので、合成石英ガラス基板4内で、変質した内部欠陥16を漏れなく確実に検出することができる。   (3) In the defect identification step, visible laser light is applied to the synthetic quartz glass substrate 4 under conditions that satisfy the total reflection condition between the main surfaces 5 and 6 of the synthetic quartz glass substrate 4 and the side surfaces 48 of the end faces 2 and 3. 26 is introduced, the visible laser beam 26 can be confined in the synthetic quartz glass substrate 4, and the altered internal defect 16 can be reliably detected in the synthetic quartz glass substrate 4 without leakage. .

(4)欠陥変質工程では、主表面5、6が鏡面研磨される前の状態の合成石英ガラス基板4に、波長が200nm以下のArFエキシマレーザー光25を導入して、合成石英ガラス基板4の内部欠陥16を変質させ顕在化することから、内部欠陥16が検出されない合成石英ガラス基板4のみの主表面5、6を鏡面研磨することができ、内部欠陥16が検出された合成石英ガラス基板4の主表面5、6を鏡面研磨する無駄を省くことができる。   (4) In the defect alteration process, ArF excimer laser light 25 having a wavelength of 200 nm or less is introduced into the synthetic quartz glass substrate 4 in a state before the main surfaces 5 and 6 are mirror-polished. Since the internal defect 16 is altered and becomes apparent, the main surfaces 5 and 6 of only the synthetic quartz glass substrate 4 in which the internal defect 16 is not detected can be mirror-polished, and the synthetic quartz glass substrate 4 in which the internal defect 16 is detected. The waste of mirror polishing the main surfaces 5 and 6 can be eliminated.

(5)検出工程の欠陥変質装置20を用いた欠陥変質工程と、欠陥検査装置40を用いた欠陥特定工程とにおいて、内部欠陥16が検出されない合成石英ガラス基板4を用いてマスクブランク用ガラス基板7を製造し、このマスクブランク用ガラス基板7を用いてマスクブランク9を製造し、このマスクブランク9におけるハーフトーン膜8をパターンニングして露光用マスク14を製造する。従って、この露光用マスク14と、波長が200nm以下のArFエキシマレーザー光25とを用いて被転写体に、上記露光用マスクのマスクパターン13を転写するパターン転写時に、この露光用マスク14には、内部欠陥16が存在しない合成石英ガラス基板4が用いられているので、上記内部欠陥16に起因して局所的に光学特性が変化(例えば透過率が低下)する領域が存在せず、パターン転写に悪影響を及ぼして転写パターン欠陥を生ずることがなく、転写精度を向上させることができる。   (5) Glass substrate for mask blank using synthetic quartz glass substrate 4 in which internal defect 16 is not detected in the defect alteration step using defect alteration device 20 in the detection step and the defect identification step using defect inspection device 40 7 is manufactured, a mask blank 9 is manufactured using the mask blank glass substrate 7, and the exposure mask 14 is manufactured by patterning the halftone film 8 in the mask blank 9. Therefore, when the pattern is transferred to transfer the mask pattern 13 of the exposure mask onto the transfer object using the exposure mask 14 and the ArF excimer laser beam 25 having a wavelength of 200 nm or less, Since the synthetic quartz glass substrate 4 having no internal defect 16 is used, there is no region where the optical characteristics are locally changed (for example, the transmittance is reduced) due to the internal defect 16, and pattern transfer The transfer accuracy can be improved without adversely affecting the transfer pattern defects.

以上、本発明を上記実施の形態に基づいて説明したが、本発明はこれに限定されるものではない。例えば、上記実施形態における検出工程では、欠陥変質装置20を用いた欠陥変質工程の後に、欠陥検査装置40を用いた欠陥特定工程を実施するものを述べたが、上記欠陥変質工程の後に、自然光や集光ランプを用いて目視により、変質した内部欠陥16を確認するようにしてもよい。また、上記欠陥の検出は、上記欠陥変質工程と同時に、可視域の光や集光ランプの光をガラス基板に照射して行ってもよい。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this. For example, in the detection process in the above-described embodiment, the defect identifying process using the defect inspection apparatus 40 is performed after the defect modifying process using the defect modifying apparatus 20, but natural light is emitted after the defect modifying process. Alternatively, the altered internal defect 16 may be confirmed by visual observation using a condensing lamp. The defect may be detected by irradiating the glass substrate with light in the visible region or light from a condenser lamp simultaneously with the defect alteration step.

また、上記実施形態における検出工程の欠陥特定工程では、合成石英ガラス基板4においてCCDカメラ45が配置される端面3側が鏡面研磨されたものを述べたが、この鏡面研磨は実施されなくてもよい。   In the defect identification step of the detection step in the above embodiment, the end surface 3 side on which the CCD camera 45 is disposed in the synthetic quartz glass substrate 4 is mirror-polished, but this mirror-polishing may not be performed. .

更に、上記実施形態における検出工程の欠陥特定工程を実施する欠陥検査装置40は、CCDカメラ45を合成石英ガラス基板4の端面3側に配置するものを述べたが、このCCDカメラ45が合成石英ガラス基板4の主表面5または6側に配置されてもよい。   Furthermore, the defect inspection apparatus 40 that performs the defect identification process of the detection process in the above embodiment has been described in which the CCD camera 45 is disposed on the end face 3 side of the synthetic quartz glass substrate 4. It may be arranged on the main surface 5 or 6 side of the glass substrate 4.

また、上記実施の形態における欠陥変質装置20を用いた欠陥変質工程では、ArFエキシマレーザー光を用いる場合を述べたが、波長が200nm以下、好ましくは波長が100nm〜200nmの光であればよく、F2エキシマレーザーであってもよい。或いは、ArFエキシマレーザーやF2エキシマレーザーと同じ波長を得るために、重水(D)ランプ等の光源から光を分光させて中心波長がArFエキシマレーザー、F2エキシマレーザーと同じ光を用いても構わない。 Moreover, in the defect alteration process using the defect alteration device 20 in the above embodiment, the case where ArF excimer laser light is used has been described, but the wavelength may be 200 nm or less, preferably light having a wavelength of 100 nm to 200 nm. An F2 excimer laser may be used. Alternatively, in order to obtain the same wavelength as an ArF excimer laser or F2 excimer laser, light from a light source such as a heavy water (D 2 ) lamp may be dispersed to use the same center wavelength as ArF excimer laser or F2 excimer laser. Absent.

また、上記実施形態では、合成石英ガラス基板4における内部欠陥16を検出するものを述べたが、この合成石英ガラス基板4を切り出す前のブロック状態の合成石英ガラス(合成石英ガラスブロック)、またはこの合成石英ガラスブロックを製造するためのインゴット状態の合成石英ガラスに存在する内部欠陥16を検出するものでもよい。尚、この場合には、少なくとも、波長が200nm以下のArFエキシマレーザー光25を導入する導入面が鏡面研磨される必要がある。また、上記実施形態では、基板の材料として合成石英ガラスを挙げたが、ソーダライムガラスや、SiO−TiOなどの多成分系のガラス材料であっても有効である。 Moreover, although the said embodiment described what detects the internal defect 16 in the synthetic quartz glass substrate 4, synthetic quartz glass (synthetic quartz glass block) of the block state before cutting out this synthetic quartz glass substrate 4, or this The internal defect 16 existing in the synthetic quartz glass in the ingot state for producing the synthetic quartz glass block may be detected. In this case, at least the introduction surface for introducing the ArF excimer laser beam 25 having a wavelength of 200 nm or less needs to be mirror-polished. In the above embodiment, synthetic quartz glass is used as the material for the substrate. However, soda lime glass and multi-component glass materials such as SiO 2 —TiO 2 are also effective.

また、上記実施の形態では、マスクブランク用ガラス基板上にハーフトーン膜を形成したハーフトーン型位相シフトマスクブランクの場合を述べたが、これに限定されるものではない。例えば、合成石英ガラス基板7上にハーフトーン膜と、このハーフトーン膜上に遮光膜とを有するハーフトーン型位相シフトマスクブランクや、マスクブランク用ガラス基板7上に遮光膜が形成されたフォトマスクブランクであっても構わない。尚、これらのハーフトーン型位相シフトマスクブランク、フォトマスクブランクの遮光膜上にレジスト膜を形成していてもよい。   Moreover, although the case of the halftone type phase shift mask blank which formed the halftone film | membrane on the glass substrate for mask blanks was described in the said embodiment, it is not limited to this. For example, a halftone phase shift mask blank having a halftone film on a synthetic quartz glass substrate 7 and a light shielding film on the halftone film, or a photomask having a light shielding film formed on the glass substrate 7 for mask blank It can be blank. A resist film may be formed on the light-shielding film of these halftone phase shift mask blanks and photomask blanks.

また、上記実施形態では、リソグラフィー用ガラス部材としてマスクブランク用ガラス基板を挙げて説明したが、リソグラフィー技術で使用するステッパーに使われるレンズなどの光学部品(リソグラフィー用ガラス部材)の製造方法にも適用できる。   Further, in the above embodiment, the mask blank glass substrate has been described as the lithography glass member, but it is also applied to a method of manufacturing an optical component (lithography glass member) such as a lens used in a stepper used in lithography technology. it can.

本発明に係るマスクブランク用ガラス基板の製造方法、マスクブランクの製造方法、及び露光用マスクの製造方法における一実施の形態を示す製造工程図である。It is a manufacturing process figure which shows one Embodiment in the manufacturing method of the glass substrate for mask blanks which concerns on this invention, the manufacturing method of a mask blank, and the manufacturing method of the mask for exposure. 本発明に係るマスクブランク用ガラス基板の製造方法において用いられる欠陥変質装置を示し、(A)が当該装置の斜視図、(B)が内部欠陥を変質させる状況を示す断面図である。The defect alteration apparatus used in the manufacturing method of the glass substrate for mask blanks concerning this invention is shown, (A) is a perspective view of the said apparatus, (B) is sectional drawing which shows the condition which changes the internal defect. 本発明に係るマスクブランク用ガラス基板の製造方法において用いられる欠陥検査装置を示す斜視図である。It is a perspective view which shows the defect inspection apparatus used in the manufacturing method of the glass substrate for mask blanks which concerns on this invention. 図3の欠陥検査装置にて内部欠陥が特定されて検出される状況を示す断面図である。It is sectional drawing which shows the condition where an internal defect is specified and detected with the defect inspection apparatus of FIG. 図1のマスクブランクの製造工程において用いられるスパッタリング装置を示す概略側面図である。It is a schematic side view which shows the sputtering device used in the manufacturing process of the mask blank of FIG.

符号の説明Explanation of symbols

1 合成石英ガラス板
2 端面(一端面)
3 端面
4 合成石英ガラス基板
5、6 主表面
7 マスクブランク用ガラス基板
8 ハーフトーン膜(薄膜)
9 マスクブランク
13 ハーフトーン膜パターン(マスクパターン)
14 露光用マスク
15 散乱光
16 内部欠陥
20 欠陥変質装置
21 第1レーザー照射装置
25 ArFエキシマレーザー光(短波長光)
26 可視レーザー光
40 欠陥検査装置
41A、41B ミラー
42 第2レーザー照射装置
45 CCDカメラ
48 側面
49、50 面取り面
1 synthetic quartz glass plate 2 end face (one end face)
3 End face 4 Synthetic quartz glass substrate 5, 6 Main surface 7 Mask blank glass substrate 8 Halftone film (thin film)
9 Mask blank 13 Halftone film pattern (mask pattern)
DESCRIPTION OF SYMBOLS 14 Exposure mask 15 Scattered light 16 Internal defect 20 Defect alteration apparatus 21 1st laser irradiation apparatus 25 ArF excimer laser beam (short wavelength light)
26 Visible laser beam 40 Defect inspection device 41A, 41B Mirror 42 Second laser irradiation device 45 CCD camera 48 Side surface 49, 50 Chamfered surface

Claims (11)

波長が200nm以下の短波長光を導入する一端面を含む表面を有するガラス基板を準備する準備工程と、
この準備されたガラス基板の内部欠陥を検出する検出工程とを有し、
前記検出工程でパターン転写に影響する内部欠陥が存在しない前記ガラス基板を用いてマスクブランク用ガラス基板を製造するマスクブランク用ガラス基板の製造方法であって、
前記検出工程は、前記ガラス基板の前記内部欠陥が変質するエネルギーを有する前記短波長光を当該ガラス基板に導入して、前記内部欠陥を変質させる欠陥変質工程を有し、
前記ガラス基板は、合成石英からなり、
前記短波長光は、1パルス当たりのエネルギーが10〜100mJ/cm であることを特徴とするマスクブランク用ガラス基板の製造方法。
A preparation step of preparing a glass substrate having a surface including one end surface for introducing short-wavelength light having a wavelength of 200 nm or less;
A detection step of detecting an internal defect of the prepared glass substrate,
A method of manufacturing a glass substrate for a mask blank for manufacturing a glass substrate for a mask blank using the glass substrate that internal defects are not present to affect the pattern transfer in the detection step,
The detection step, the short-wavelength light having an energy that the internal defects of the glass substrate is deteriorated by introducing into the glass substrate, have a defect alteration step of alteration of the internal defects,
The glass substrate is made of synthetic quartz,
The short-wavelength light, a glass substrate manufacturing method for a mask blank, wherein the energy per pulse is 10 to 100 mJ / cm 2.
前記短波長光は、パルス幅が2〜15nsecであることを特徴とする請求項1に記載のマスクブランク用ガラス基板の製造方法。 The short wavelength light, method of manufacturing a glass substrate for a mask blank according to claim 1, wherein the pulse width is 2~15nse c. 前記内部欠陥は、波長が200nm超の露光光源に対して局所的な光学特性の変化が生じず、波長が200nm以下の露光光源に対して局所的な光学特性の変化が生じる欠陥である局所脈理、内容物、または異質物の少なくともいずれかであることを特徴とする請求項1または2に記載のマスクブランク用ガラス基板の製造方法。The internal defect is a defect in which a local optical characteristic change does not occur with respect to an exposure light source having a wavelength of greater than 200 nm, and a local optical characteristic change occurs with respect to an exposure light source with a wavelength of 200 nm or less. The method for producing a glass substrate for a mask blank according to claim 1, wherein the glass blank substrate is at least one of a physics, a content, and a foreign material. 前記検出工程は、波長が200nm以下の短波長光をガラス基板に導入して内部欠陥を変質させる欠陥変質工程の後または当該欠陥変質工程と同時に、
可視域の光を前記ガラス基板に導入して、変質した前記内部欠陥により散乱する光を検出することで、当該内部欠陥を特定する欠陥特定工程を有することを特徴とする請求項1乃至3のいずれかに記載のマスクブランク用ガラス基板の製造方法。
The detection step is performed after the defect alteration step of introducing short wavelength light having a wavelength of 200 nm or less into the glass substrate to alter internal defects, or simultaneously with the defect alteration step.
By introducing a light in the visible region on the glass substrate, by detecting the light scattered by the altered the internal defects, of claims 1 to 3, characterized in that it has a defect specifying step of specifying the internal defects The manufacturing method of the glass substrate for mask blanks in any one .
前記欠陥特定工程における可視域の光のガラス基板への導入は、当該ガラス基板の両主表面と側面との間で全反射条件を満たす条件で実施することを特徴とする請求項に記載のマスクブランク用ガラス基板の製造方法。 Introduction into the glass substrate light in the visible region in the defect specific process, according to claim 4, which comprises carrying out the total reflection condition is satisfied condition between the both main surfaces and side surfaces of the glass substrate A method for producing a mask blank glass substrate. 前記検出工程で、波長が200nm以下の短波長光を導入するガラス基板は、主表面が鏡面研磨される前の状態であることを特徴とする請求項1乃至のいずれかに記載のマスクブランク用ガラス基板の製造方法。 The glass substrate in the detection step, the wavelength is introduced to the following short-wavelength light 200nm, the mask blank according to any one of claims 1 to 5 major surface characterized in that it is a state before being mirror-polished Method for manufacturing glass substrate. 請求項1乃至のいずれかに記載のマスクブランク用ガラス基板の製造方法によって得られたマスクブランク用ガラス基板の主表面上に、マスクパターンとなる薄膜を形成してマスクブランクを製造することを特徴とするマスクブランクの製造方法。 A mask blank is manufactured by forming a thin film to be a mask pattern on a main surface of a glass substrate for a mask blank obtained by the method for manufacturing a glass substrate for a mask blank according to any one of claims 1 to 6. A method for producing a mask blank. 請求項に記載のマスクブランクにおける薄膜をパターニングして、マスクブランク用ガラス基板の主表面上にマスクパターンを形成し、露光用マスクを製造することを特徴とする露光用マスクの製造方法。 A method for producing an exposure mask, comprising: patterning a thin film in the mask blank according to claim 7 to form a mask pattern on a main surface of a glass substrate for mask blank to produce an exposure mask. 波長が200nm以下の短波長光を導入する導入面を有するガラス材料を準備する準備工程と、
この準備されたガラス材料の内部欠陥を検出する検出工程とを有し、
前記検出工程で内部欠陥が存在しない前記ガラス材料を用いてリソグラフィー用ガラス部材を製造するリソグラフィー用ガラス部材の製造方法であって、
前記検出工程は、前記ガラス材料の前記内部欠陥が変質するエネルギーを有する前記短波長光を当該ガラス材料に導入して、前記内部欠陥を変質させる欠陥変質工程を有し、
前記ガラス基板は、合成石英からなり、
前記短波長光は、1パルス当たりのエネルギーが10〜100mJ/cm であることを特徴とするリソグラフィー用ガラス部材の製造方法。
A preparation step of preparing a glass material having an introduction surface for introducing short-wavelength light having a wavelength of 200 nm or less;
A detection step of detecting an internal defect of the prepared glass material,
A method of manufacturing a lithographic glass member to produce a glass member for lithography using the glass material whose internal defect does not exist in the detection step,
The detection step, the short-wavelength light having an energy that the internal defects of the glass material is altered by introducing into the glass material, have a defect alteration step of alteration of the internal defects,
The glass substrate is made of synthetic quartz,
The short wavelength light has an energy per pulse of 10 to 100 mJ / cm 2 , and is a method for producing a glass member for lithography.
前記短波長光は、パルス幅が2〜15nsecであることを特徴とする請求項9に記載のリソグラフィー用ガラス部材の製造方法。The method for manufacturing a glass member for lithography according to claim 9, wherein the short wavelength light has a pulse width of 2 to 15 nsec. 前記内部欠陥は、波長が200nm超の露光光源に対して局所的な光学特性の変化が生じず、波長が200nm以下の露光光源に対して局所的な光学特性の変化が生じる欠陥である局所脈理、内容物、または異質物の少なくともいずれかであることを特徴とする請求項9または10に記載のリソグラフィー用ガラス部材の製造方法。The internal defect is a defect in which a local optical characteristic change does not occur with respect to an exposure light source having a wavelength of greater than 200 nm, and a local optical characteristic change occurs with respect to an exposure light source with a wavelength of 200 nm or less. The method for producing a glass member for lithography according to claim 9 or 10, wherein the method is at least one of a reason, a content, and a foreign substance.
JP2005303563A 2005-10-18 2005-10-18 Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask for exposure, and manufacturing method of glass member for lithography Expired - Fee Related JP4859436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005303563A JP4859436B2 (en) 2005-10-18 2005-10-18 Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask for exposure, and manufacturing method of glass member for lithography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005303563A JP4859436B2 (en) 2005-10-18 2005-10-18 Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask for exposure, and manufacturing method of glass member for lithography

Publications (2)

Publication Number Publication Date
JP2007113962A JP2007113962A (en) 2007-05-10
JP4859436B2 true JP4859436B2 (en) 2012-01-25

Family

ID=38096300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005303563A Expired - Fee Related JP4859436B2 (en) 2005-10-18 2005-10-18 Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask for exposure, and manufacturing method of glass member for lithography

Country Status (1)

Country Link
JP (1) JP4859436B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5525838B2 (en) * 2010-01-29 2014-06-18 Hoya株式会社 Mask blank substrate, mask blank, transfer mask, and semiconductor device manufacturing method
JP5739712B2 (en) * 2011-03-31 2015-06-24 住友大阪セメント株式会社 Manufacturing method and observation method of sample for optical microscope observation
KR102112362B1 (en) * 2012-08-08 2020-05-18 호야 가부시키가이샤 Method for manufacturing substrate for mask blank, method for manufacturing mask blank, method for manufacturing transfer mask, method for manufacturing semiconductor device and inspecting apparatus
US11363176B2 (en) * 2020-01-17 2022-06-14 Samsung Electro-Mechanics Co., Ltd. Reflection module including a holder and a reflective member and a camera module including a reflection module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942437A (en) * 1982-09-02 1984-03-09 Konishiroku Photo Ind Co Ltd Screening method of glass substrate for photomask
JP4100514B2 (en) * 1997-12-26 2008-06-11 Hoya株式会社 Manufacturing method of glass substrate for electronic device, manufacturing method of photomask blank, and manufacturing method of photomask
JP2000346802A (en) * 1999-03-26 2000-12-15 Sony Corp Inspecting device for inside of element and its method

Also Published As

Publication number Publication date
JP2007113962A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
KR101117826B1 (en) Light-transmitting object examining method, manufacturing method for light-transmitting substrate of mask blank, manufacturing method for mask blank, manufacturing method for light-expososure mask, manufacturing method for semiconductor device and manufacturing method for phase shift mask
US20060269851A1 (en) Photomask and method for conveying information associated with a photomask substrate
KR101057564B1 (en) Manufacturing method of photomask blank
JP2007086050A (en) Method for inspecting translucent article made of translucent material, method and apparatus for inspecting defect of glass substrate, glass substrate for mask blank, and manufacturing method therefor, mask bland and manufacturing method therefor, mask for exposure and manufacturing method therefor, and manufacturing method of semiconductor device
US7972702B2 (en) Defect inspection method for a glass substrate for a mask blank, glass substrate for a mask blank, mask blank, exposure mask, method of producing a glass substrate for a mask blank, method of producing a mask blank, and method of producing an exposure mask
US11681215B2 (en) Photomask and method for forming the same
JP4859436B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, manufacturing method of mask for exposure, and manufacturing method of glass member for lithography
JP4204583B2 (en) Photomask blank manufacturing method
JP4688150B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and defect inspection apparatus
JP5346243B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and pattern transfer method
JP5028437B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, and manufacturing method of photomask for exposure
JP4761360B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and semiconductor device manufacturing method
JP4204584B2 (en) Photomask blank manufacturing method
WO2010079771A1 (en) Method for manufacturing glass substrate for mask blank, method for manufacturing mask blank and method for manufacturing photomask for exposure
KR100485029B1 (en) Glass substrate for an electron device, photomask blank and photomask using the same
JP5090379B2 (en) Manufacturing method of glass substrate for mask blank, manufacturing method of mask blank, and manufacturing method of photomask for exposure
JP4721259B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
JP4100514B2 (en) Manufacturing method of glass substrate for electronic device, manufacturing method of photomask blank, and manufacturing method of photomask
Zait et al. CD variations correction by local transmission control of photomasks done with a novel laser-based process
JP2018189997A (en) Photomask substrate, photomask blank, photomask, production method of photomask substrate, production method of display device, handling method of photomask, and handling method of photomask substrate
JP4683409B2 (en) Mask blank glass substrate manufacturing method, mask blank manufacturing method, and exposure mask manufacturing method
KR20210030978A (en) Method and apparatus for determining the effect of one or more pixels introduced into a substrate of a photolithographic mask
JP2016212131A (en) Photomask substrate, photomask blank, photomask, method for manufacturing photomask substrate, method for manufacturing display device, and method for handling photomask
JP2005031483A (en) Original plate for exposure and inspection method and exposure method for original plate for exposure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111101

R150 Certificate of patent or registration of utility model

Ref document number: 4859436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees