JP4832355B2 - Refrigeration air conditioner - Google Patents
Refrigeration air conditioner Download PDFInfo
- Publication number
- JP4832355B2 JP4832355B2 JP2007116381A JP2007116381A JP4832355B2 JP 4832355 B2 JP4832355 B2 JP 4832355B2 JP 2007116381 A JP2007116381 A JP 2007116381A JP 2007116381 A JP2007116381 A JP 2007116381A JP 4832355 B2 JP4832355 B2 JP 4832355B2
- Authority
- JP
- Japan
- Prior art keywords
- refrigerant
- pipe
- heat exchanger
- refrigerating
- air
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005057 refrigeration Methods 0.000 title claims description 15
- 239000003507 refrigerant Substances 0.000 claims description 238
- 239000007788 liquid Substances 0.000 claims description 72
- 238000004378 air conditioning Methods 0.000 claims description 51
- 239000004215 Carbon black (E152) Substances 0.000 claims description 6
- 229930195733 hydrocarbon Natural products 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 238000002347 injection Methods 0.000 claims description 6
- 239000007924 injection Substances 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 4
- 239000012071 phase Substances 0.000 description 39
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 34
- 238000012546 transfer Methods 0.000 description 31
- 230000006837 decompression Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 18
- 239000001294 propane Substances 0.000 description 17
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 11
- 239000003570 air Substances 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 239000001282 iso-butane Substances 0.000 description 8
- 230000000704 physical effect Effects 0.000 description 5
- 239000012080 ambient air Substances 0.000 description 4
- 239000002826 coolant Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000009835 boiling Methods 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 239000011555 saturated liquid Substances 0.000 description 2
- 238000010792 warming Methods 0.000 description 2
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Images
Landscapes
- Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
- Other Air-Conditioning Systems (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
本発明は、冷凍空調装置、特に冷媒として炭化水素冷媒であるプロパンやイソブタンを使用する冷凍空調装置に関する。 The present invention relates to a refrigeration air conditioner, and more particularly to a refrigeration air conditioner using propane or isobutane which is a hydrocarbon refrigerant as a refrigerant.
オゾン層保護や地球温暖化防止のために、冷凍空調装置で使用する冷媒として炭化水素冷媒が注目されている。炭化水素冷媒であるプロパンやイソブタンは、HFC冷媒であるR410AやR407Cより地球温暖化係数(GWP)が低く、理論成績係数(冷凍機の効率:COP)が高いという良い特性がある。一方で、可燃性であるため充填冷媒量の削減が大きな技術課題となっている。 In order to protect the ozone layer and prevent global warming, hydrocarbon refrigerants are attracting attention as refrigerants used in refrigeration air conditioners. Propane and isobutane, which are hydrocarbon refrigerants, have good characteristics such as lower global warming potential (GWP) and higher theoretical coefficient of performance (refrigerator efficiency: COP) than R410A and R407C, which are HFC refrigerants. On the other hand, since it is flammable, reduction of the amount of filling refrigerant | coolants is a big technical subject.
そこで、室内側熱交換器のパイプ径やフィンの段ピッチ(フィン間距離)の上限値を定めて、熱交換器を小形化することで、充填冷媒量を削減するようにしたものが提案されている。 Therefore, it has been proposed to reduce the amount of refrigerant charged by reducing the size of the heat exchanger by setting the upper limit of the pipe diameter of the indoor heat exchanger and the fin pitch (distance between fins). ing.
しかしながら、前述のように熱交換器の容積を比例縮小するだけでは、冷媒量を削減できても必要な伝熱性能を確保できなくなる。 However, the necessary heat transfer performance cannot be ensured even if the amount of refrigerant can be reduced only by proportionally reducing the volume of the heat exchanger as described above.
本発明は以上の点に鑑み、可燃性の炭化水素冷媒であるプロパンやイソブタンを用いて、少ない冷媒滞留量で高性能な熱交換器と、冷凍サイクル技術を組み合わせて、規制値以下の充填冷媒量で高性能な空気調和装置を得ることを目的とする。 In view of the above, the present invention uses a combustible hydrocarbon refrigerant, propane or isobutane, and combines a high-performance heat exchanger with a small refrigerant retention amount with a refrigeration cycle technology, and a charged refrigerant below a regulation value. The purpose is to obtain a high-performance air conditioning device in quantity.
本発明に係る冷凍空調装置は、下記の構成からなるものである。すなわち、圧縮機、四方弁、熱源側熱交換器、減圧手段、利用側熱交換器、室外機と室内機を接続する液用冷媒配管およびガス用冷媒配管を、閉ループに結合した冷媒回路と、制御手段とを備え、冷媒として可燃性の炭化水素冷媒を使用し、利用側熱交換器から冷温熱を供給する冷凍空調装置において、熱源側熱交換器あるいは利用側熱交換器の内部冷媒流路を形成する配管の管内断面積を、その長手方向端部の管内断面積がその長手方向中間部の管内断面積よりも大きくなるように、さらに前記配管の管内断面における周長さをこの管内断面の面積で除した値は、この配管の長手方向両端部よりもこの配管の長手方向中間部の方が大きくなるように設定したものである。 The refrigerating and air-conditioning apparatus according to the present invention has the following configuration. That is, a refrigerant circuit in which a compressor, a four-way valve, a heat source side heat exchanger, a decompression means, a use side heat exchanger, a liquid refrigerant pipe and a gas refrigerant pipe connecting the outdoor unit and the indoor unit are coupled in a closed loop; An internal refrigerant flow path of a heat source side heat exchanger or a use side heat exchanger in a refrigeration air conditioner that uses a combustible hydrocarbon refrigerant as a refrigerant and supplies cold temperature from the use side heat exchanger. The pipe cross-sectional area of the pipe forming the pipe is further increased in circumferential length in the pipe cross-section of the pipe so that the cross-sectional area of the pipe in the longitudinal direction is larger than the cross-sectional area of the pipe in the middle of the longitudinal direction. The value divided by the area is set so that the middle portion in the longitudinal direction of the pipe is larger than both longitudinal ends of the pipe .
本発明の冷凍空調装置によれば、熱源側熱交換器あるいは利用側熱交換器の内部冷媒流路を形成する配管の管内断面積を、その長手方向両端部の管内断面積がその長手方向中間部の管内断面積よりも大きくなるように、さらに前記配管の管内断面における周長さをこの管内断面の面積で除した値は、この配管の長手方向両端部よりもこの配管の長手方向中間部の方が大きくなるように設定しているので、少ない冷媒滞留量で管内熱伝達率を向上させることができるとともに、長手方向中間部の配管の管内伝熱面積が大きくなって液膜を薄くすることができる。このため、伝熱性能が向上する。
According to the refrigerating and air-conditioning apparatus of the present invention, the in-pipe cross-sectional area of the pipe forming the internal refrigerant flow path of the heat source side heat exchanger or the use side heat exchanger is set so that the cross-sectional areas in the pipes at both longitudinal ends are intermediate in the longitudinal direction. Further, the value obtained by dividing the circumferential length of the pipe in the pipe cross section by the area of the pipe cross section so as to be larger than the pipe cross sectional area of the pipe is the intermediate portion in the longitudinal direction of the pipe rather than both longitudinal ends of the pipe. Since the heat transfer coefficient in the pipe can be improved with a small refrigerant retention amount, the pipe heat transfer area of the pipe in the middle portion in the longitudinal direction is increased and the liquid film is thinned. be able to. For this reason, heat transfer performance improves.
実施の形態1.
以下、図示実施形態により本発明を説明する。
図1は本発明の実施の形態1に係る冷凍空調装置の要部である熱交換器(熱源側熱交換器あるいは利用側熱交換器)の配管構成を示す斜視図、図2はその熱交換器の分解斜視図、図3はその熱交換器の配管と伝熱フィンとの関係を示す斜視図、図4はその熱交換器の配管の管断面形状の一例を示す模式図、図5はその熱交換器の配管の管断面形状の変形例を示す模式図、図6はその熱交換器の配管の管断面形状の他の変形例を示す模式図、図7はその熱交換器を用いた空調装置の冷媒回路図である。
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a perspective view showing a piping configuration of a heat exchanger (a heat source side heat exchanger or a use side heat exchanger) that is a main part of the refrigeration air-conditioning apparatus according to
本実施形態の冷凍空調装置は、図7のように圧縮機11、四方弁12、熱源側熱交換器13、減圧手段14a、14b、利用側熱交換器15、ガス用冷媒配管であるガス延長配管16、及び液用冷媒配管である液延長配管17を備えてなり、これらが閉ループに結合されて冷媒回路を構成している。室外機Xには圧縮機11、四方弁12、熱源側熱交換器13、減圧手段14aが、また室内機Yには減圧手段14b、利用側熱交換器15が設けられている。なお、図に示していないが熱源側熱交換器13と利用側熱交換器15にはファンとファンモータが設けられ、圧縮機11、ファンモータ、減圧手段14a、14bは制御手段と通信線で結ばれている。
As shown in FIG. 7, the refrigerating and air-conditioning apparatus of the present embodiment includes a
圧縮機11は、運転容量が可変に調節可能な低圧容器式の圧縮機であり、ここでは容器内にモータを収納した全密閉型を用いている。減圧装置14a、14bは、ここではいずれも開度可変式のものを用いているが、減圧装置14bについては冷房運転、暖房運転ともに液延長配管17内が気液二相冷媒状態になるなら開度固定式の採用も可能である。
The
熱源側熱交換器13と利用側熱交換器15は、同様の構造を有している。すなわち、これら熱交換器は、図1乃至図3に示すように、その内部冷媒流路を形成する配管部と伝熱面となるフィン部8とから構成される。配管部は、一端側となる冷媒導入部の配管1(以下「熱交換器配管A」という)と、長手方向中間部の配管2(以下「熱交換器配管B」という)と、他端側となる冷媒導出部の配管3(以下「熱交換器配管C」という)と、熱交換器配管Bを複数に分岐させて並列冷媒流路を形成させる分岐ヘッダ部4a,4bとから形成されている。
The heat source
これを更に詳述すると、熱交換器配管Aと熱交換器配管Cとは千鳥配管に構成されており、その折り返し部が図2のようにU字管5から構成されている。なお、熱交換器配管A、Cとその両端に接続される配管(例えば延長管)とは、管外に伝熱フィン8が存在するかしないかで区別する。
More specifically, the heat exchanger pipe A and the heat exchanger pipe C are configured as a staggered pipe, and the folded portion is formed of a
次に、図1の熱交換器を凝縮器利用する場合の各熱交換器配管A〜C内冷媒状態について説明する。凝縮器利用する場合、高圧ガス冷媒は熱交換器配管Aの一端から流入し、熱交換器配管B、熱交換器配管Cへと流れて、熱交換器配管Cの一端から高圧液冷媒として流出する。すなわち、熱交換器配管A部分では、高圧ガス冷媒が流入して凝縮し、比エンタルピが小さくなった高圧ガス冷媒か、高圧飽和ガス冷媒か、クオリティ(乾き度)の大きい高圧気液二相冷媒のいずれかになって流出する。つまり、熱交換器配管Aでは高圧ガス冷媒が支配的である。 Next, the refrigerant | coolant state in each heat exchanger piping AC when using the heat exchanger of FIG. 1 as a condenser is demonstrated. When the condenser is used, the high-pressure gas refrigerant flows in from one end of the heat exchanger pipe A, flows into the heat exchanger pipe B and the heat exchanger pipe C, and flows out as high-pressure liquid refrigerant from one end of the heat exchanger pipe C. To do. That is, in the heat exchanger pipe A, the high-pressure gas refrigerant flows in and condenses, the high-pressure gas refrigerant whose specific enthalpy is small, the high-pressure saturated gas refrigerant, or the high-pressure gas-liquid two-phase refrigerant with high quality (dryness). It becomes one of the spills. That is, the high-pressure gas refrigerant is dominant in the heat exchanger pipe A.
熱交換器配管B部分では、熱交換器配管Aから流出した高圧ガス冷媒か、高圧飽和ガス冷媒か、クオリティ(乾き度)の大きい高圧気液二相冷媒が流入して凝縮し、比エンタルピが小さくなった高圧気液二相冷媒か、高圧飽和液冷媒か、高圧液冷媒のいずれかになって流出する。つまり、熱交換器配管Bでは高圧気液二相冷媒が支配的である。 In the heat exchanger pipe B, high-pressure gas refrigerant, high-pressure saturated gas refrigerant, or high-pressure gas-liquid two-phase refrigerant of high quality (dryness) that flows out of the heat exchanger pipe A flows in and condenses, and the specific enthalpy is It flows out as either a reduced high-pressure gas-liquid two-phase refrigerant, a high-pressure saturated liquid refrigerant, or a high-pressure liquid refrigerant. That is, in the heat exchanger pipe B, the high-pressure gas-liquid two-phase refrigerant is dominant.
熱交換器配管C部分では、熱交換器配管Bから流出した高圧気液二相冷媒か、高圧飽和液冷媒か、高圧液冷媒のいずれかが流入して凝縮し、比エンタルピが小さくなった高圧液冷媒が流出する。つまり熱交換器配管Cでは高圧液冷媒が支配的である。 In the heat exchanger pipe C, either the high-pressure gas-liquid two-phase refrigerant, the high-pressure saturated liquid refrigerant, or the high-pressure liquid refrigerant that has flowed out of the heat exchanger pipe B flows in and is condensed, and the specific enthalpy is reduced. Liquid refrigerant flows out. That is, the high-pressure liquid refrigerant is dominant in the heat exchanger pipe C.
図1乃至図3ではガス冷媒流域の熱交換器配管A、液冷媒流域の熱交換器配管Cのパス数を1つとしているが、複数パスに分岐してもよいことは言うまでもない。 1 to 3, the number of paths of the heat exchanger pipe A in the gas refrigerant flow area and the heat exchanger pipe C in the liquid refrigerant flow area is one, but it goes without saying that the paths may be branched into a plurality of paths.
また、ここでは熱交換器配管A,Cの管断面形状を円形とし、熱交換器配管Bの管断面形状を図4のように扁平断面内に複数の細管2aを設けたものとしているが、熱交換器配管Bの管断面形状はそれ以外に図5のような楕円管2bや、図6のような角が丸い多角形管2cも採用可能である。いずれの場合も熱交換器配管Bの管断面積は熱交換器配管A、Cの管断面積よりも小さくしている。
In addition, here, the pipe cross-sectional shape of the heat exchanger pipes A and C is circular, and the pipe cross-sectional shape of the heat exchanger pipe B is provided with a plurality of
熱交換器配管A,Cは、断面形状を円管として千鳥状に形成し、その折り返し部すなわち図1に示す端部6、7には円管をU字形にしたU字管5あるいはヘアピンを用いている。
The heat exchanger pipes A and C are formed in a zigzag shape with a cross-sectional shape as a circular pipe, and a
熱交換器配管Bは、断面形状を非円管としたので、円管同様に配管をU字形に曲げようとすると配管形状が潰れる可能性がある。特に管断面積が小さい場合は潰れる可能性が大きくなる。そのため、熱交換器配管Bの両端は、図1のように円筒形容器のヘッダ4と接続するのが製造上容易である。しかし、この構造の場合、1パスあたりの配管長さを熱交換器積巾(図1の長さL)以上にできないこと、パス数が増加するにつれて冷媒流速が低減して伝熱性能が低下すること、等の欠点が存在する。 Since the cross-sectional shape of the heat exchanger pipe B is a non-circular pipe, there is a possibility that the pipe shape may be crushed when the pipe is bent into a U shape like the circular pipe. In particular, when the pipe cross-sectional area is small, the possibility of crushing increases. Therefore, both ends of the heat exchanger pipe B can be easily connected to the header 4 of the cylindrical container as shown in FIG. However, in this structure, the pipe length per pass cannot be made longer than the heat exchanger stack width (length L in FIG. 1), and the refrigerant flow rate is reduced and the heat transfer performance is lowered as the number of passes is increased. There are disadvantages such as
次に、熱交換器配管Bの両端に接続される熱交換器配管A,Cの管断面形状を円形とする効果について説明する。なお、伝熱に関する基本的な考え方は「コンパクト熱交換器」瀬下、藤井著、日刊工業新聞社のP.83-P.104を参照しながら整理した。 Next, the effect of making the cross-sectional shape of the heat exchanger pipes A and C connected to both ends of the heat exchanger pipe B circular will be described. The basic concept of heat transfer was organized with reference to “Compact Heat Exchanger” by Seshita, Fujii, and Nikkan Kogyo Shimbun P.83-P.104.
熱交換器配管A,Cでは、既述したようにガスまたは液単相冷媒が支配的である。単相冷媒流通時の管内伝熱性能の無次元数であるヌセルト数Nuは以下のDittus-Boelterの近似式で表現できる。
Nu=0.023*Re0.8*Pr0.4‥‥‥‥‥‥‥‥(1)
ここで、Reはレイノルズ数
Prはプラントル数
また、式中のレイノルズ数Reは以下のように表すことができる。
Re=v*d/ν‥‥‥‥‥‥‥‥‥‥‥‥‥(2)
ここで、vは流速
dは代表長さ
νは動粘性係数
なお、dは配管径から一意的に決定される値であり、Pr、νは冷媒物性値である。前記(1)式および(2)式より同一配管径、同一冷媒においてガスまたは液単相冷媒の管内熱伝達率を増加するには冷媒流速を大きくすることが有効であることがわかる。
In the heat exchanger pipes A and C, as described above, the gas or liquid single-phase refrigerant is dominant. The Nusselt number Nu, which is a dimensionless number of heat transfer performance in a pipe when a single-phase refrigerant flows, can be expressed by the following Dittus-Boelter approximation.
Nu = 0.023 * Re0.8 * Pr0.4 (1)
Where Re is the Reynolds number
Pr is the Prandtl number. The Reynolds number Re in the equation can be expressed as follows.
Re = v * d / ν ……………………………………………………………………………………………………………………………… (2)
Where v is the flow velocity
d is the representative length
ν is a kinematic viscosity coefficient d is a value uniquely determined from the pipe diameter, and Pr and ν are physical property values of the refrigerant. From the above formulas (1) and (2), it can be seen that increasing the refrigerant flow rate is effective in increasing the pipe heat transfer coefficient of the gas or liquid single-phase refrigerant with the same pipe diameter and the same refrigerant.
熱交換器配管形状に円管を採用すると、熱交換器配管端をU字管やヘアピンで接続できるので1パスあたりの長さを大きくし、パス数を低減して冷媒流速を増加することができる。よって、単相冷媒が支配的な熱交換器配管A,Cには円管を採用するのが良い。 When a circular pipe is used for the heat exchanger piping shape, the end of the heat exchanger piping can be connected with a U-shaped tube or hairpin, so the length per pass can be increased, the number of passes can be reduced, and the refrigerant flow rate can be increased. it can. Therefore, it is preferable to adopt circular pipes for the heat exchanger pipes A and C in which the single-phase refrigerant is dominant.
HFC冷媒であるR407C,R410AとHC冷媒であるプロパンの同一温度における冷媒物性値(プラントル数Pr、動粘性係数ν)を比較した結果を下表1に示す。表1は温度40℃の飽和ガスの物性値である。 Table 1 below shows the results of comparison of the refrigerant physical properties (Prandtl number Pr, kinematic viscosity coefficient ν) at the same temperature of R407C and R410A, which are HFC refrigerants, and propane, which is an HC refrigerant. Table 1 shows physical property values of saturated gas at a temperature of 40 ° C.
表1から明らかなように、同一冷媒流速、同一熱交配管径で比較すると、プロパンはR407C,R410Aと比較してレイノルズ数、プラントル数ともに小さく、その結果、Dittus-Boelterの式より求めたヌセルト数も小さくなる。 As is clear from Table 1, when compared with the same refrigerant flow rate and the same heat exchanger pipe diameter, propane is smaller in both Reynolds number and Prandtl number than R407C and R410A. As a result, Nusert obtained from the Dittus-Boelter equation The number is also small.
ヌセルト数を増加するには冷媒流速を増加するのが効果的である。熱交換器配管端をU字管やヘアピンで接続できる円管で熱交換器配管A,Cを構成すると、1パスあたりの長さを大きくし、パス数を低減できるので、冷媒流速を増加できる。 In order to increase the Nusselt number, it is effective to increase the refrigerant flow rate. If the heat exchanger pipes A and C are configured with circular pipes that can connect the heat exchanger pipe ends with U-shaped tubes or hairpins, the length per pass can be increased and the number of passes can be reduced, so the refrigerant flow rate can be increased. .
また、同一流速で配管径を大きくすることもヌセルト数の増加に効果的である。一般に配管径を大きくすると冷媒流速が低減するが、プロパン冷媒はR407C,R410A冷媒に対して密度が小さいので同一配管径、同一冷媒質量流量あたりの流速が大きくなる。すなわち、プロパン冷媒を用いた場合には、R407C,R410A冷媒を用いた場合に比し、配管径を大きくし易いといえる。さらに、熱交換器配管端をU字管やヘアピンで接続できる円管で熱交換器配管A,Cを構成すると、1パスあたりの長さを多くして、パス数を低減できるので、冷媒流速を増加することができる。 Increasing the pipe diameter at the same flow rate is also effective for increasing the Nusselt number. Generally, when the pipe diameter is increased, the refrigerant flow rate is reduced. However, since the density of the propane refrigerant is smaller than that of the R407C and R410A refrigerants, the flow speed per the same pipe diameter and the same refrigerant mass flow rate is increased. In other words, when the propane refrigerant is used, it can be said that the pipe diameter is easily increased as compared with the case where the R407C and R410A refrigerants are used. Furthermore, if the heat exchanger pipes A and C are configured with circular pipes that can connect the heat exchanger pipe ends with U-shaped tubes or hairpins, the length per pass can be increased and the number of passes can be reduced. Can be increased.
可燃性のプロパン冷媒を採用する場合、充填冷媒量を削減するために管内容積を小さくすることだけを考えて熱交換器を設計することが多い。しかし、既述した理由から気液二相冷媒が支配的な熱交換器配管Bは管内容積を小さくすることを考えてもよいが、単相冷媒が支配的な熱交換器配管A,Cは配管径を大きくし、かつ1パスあたりの長さを長くして冷媒流速を増加するように設計する必要がある。 When a combustible propane refrigerant is employed, a heat exchanger is often designed only for reducing the volume of the pipe in order to reduce the amount of refrigerant charged. However, although the heat exchanger pipe B in which the gas-liquid two-phase refrigerant is dominant for the reasons described above may be considered to reduce the volume in the pipe, the heat exchanger pipes A and C in which the single-phase refrigerant is dominant are It is necessary to design to increase the refrigerant flow rate by increasing the pipe diameter and increasing the length per pass.
熱交換器配管Bだけで構成した凝縮用熱交換器を搭載した冷熱空調装置にHFC冷媒を充填した場合と同一の伝熱性能をプロパン冷媒充填時に確保するには、熱交換器配管A,CをHFC冷媒時より配管径を大きく、冷媒流速を同等以上にする必要がある。前述したように円管を採用することで、配管径を大きくし、かつ1パス当りの配管長さを大きくしてパス数を削減することで、HFC同等のヌセルト数を確保することができる。 In order to ensure the same heat transfer performance at the time of propane refrigerant filling, the heat exchanger pipes A and C are used to secure the same heat transfer performance as when the HFC refrigerant is filled in the cooling air conditioner equipped with the heat exchanger for condensing composed only of the heat exchanger pipe B. It is necessary to make the pipe diameter larger than that of the HFC refrigerant and to make the refrigerant flow rate equal or higher. As described above, by adopting a circular pipe, the pipe diameter is increased, and the pipe length per path is increased to reduce the number of paths, thereby ensuring the number of Nusselts equivalent to HFC.
次に、熱交換器配管Bの管断面形状を非円形とし、かつ管断面積は熱交換器配管A、Cの管断面積よりも小さくする効果について説明する。伝熱に関する基本的な考え方は「コンパクト熱交換器」瀬下、藤井著、日刊工業新聞社のP.83-P.104を参照しながら整理した。 Next, the effect of making the pipe cross-sectional shape of the heat exchanger pipe B non-circular and making the pipe cross-sectional area smaller than the pipe cross-sectional areas of the heat exchanger pipes A and C will be described. The basic concept of heat transfer was organized by referring to “Compact Heat Exchanger” by Seshita, Fujii, and Nikkan Kogyo Shimbun P.83-P.104.
気液二相冷媒の流域における伝熱様式は2つに大別できる。第1は蒸気相の割合が少ない低クオリティ域で、熱伝達は伝熱表面における核沸騰(伝熱面から気泡の発生を伴う蒸発)に支配される。伝熱面積が大きいほど核沸騰をより多く発生させることができる。 The heat transfer mode in the gas-liquid two-phase refrigerant flow area can be roughly divided into two. The first is a low quality region with a small proportion of the vapor phase, and heat transfer is governed by nucleate boiling on the heat transfer surface (evaporation accompanied by generation of bubbles from the heat transfer surface). The larger the heat transfer area, the more nucleate boiling can be generated.
第2は壁面上に薄い液膜を有し、管中心部を蒸気が流れる環状流である高クオリティ域で、伝熱面に沿って流れる液膜の対流熱伝達と液膜表面からの蒸発が支配的になる領域である。この伝熱様式では液膜が薄いほど伝熱性能が向上する。そして、同一管内容積、同一滞留冷媒量、同一冷媒流速においては、管内伝熱面積が大きいほど液膜は薄くなる。 Second, there is a thin liquid film on the wall surface, and the high quality region is an annular flow in which steam flows through the center of the tube. Convective heat transfer of the liquid film flowing along the heat transfer surface and evaporation from the liquid film surface It is an area that becomes dominant. In this heat transfer mode, the thinner the liquid film, the better the heat transfer performance. And in the same pipe | tube internal volume, the same residence refrigerant | coolant amount, and the same refrigerant | coolant flow velocity, a liquid film becomes thin, so that the pipe | tube heat transfer area is large.
例として管断面形状が円(図4)、楕円(図5)、四角形(図6)の場合で比較する。管肉厚は無視する。管断面積が10mm2の場合の各形状の周囲長さを計算し、結果を下表2に示す。
As an example, comparison is made when the tube cross-sectional shape is a circle (FIG. 4), an ellipse (FIG. 5), or a quadrangle (FIG. 6). Ignore tube wall thickness. The perimeter of each shape when the tube cross-sectional area is 10
表2から明らかなように、比較すると円11.21mmに対して楕円11.89mm、正方形12.65mmとなり、円より楕円や正方形の周囲長さが長くなる。 As is apparent from Table 2, when compared, the ellipse is 11.89 mm and the square is 12.65 mm with respect to the circle of 11.21 mm, and the circumference of the ellipse or square is longer than the circle.
単相冷媒の場合で説明したレイノルズ数、プラントル数が大きいほど管内熱伝達率が向上することについては、気液二相状態でも同じである。 As the Reynolds number and Prandtl number described in the case of the single-phase refrigerant are larger, the heat transfer coefficient in the pipe is improved in the gas-liquid two-phase state.
すなわち、気液二相冷媒流域でも単相冷媒と同様に冷媒流速や配管径が大きいほど管内熱伝達率は向上するが、さらに管内伝熱面積が大きいほど管内熱伝達率は向上する。 That is, in the gas-liquid two-phase refrigerant flow region, the pipe heat transfer coefficient is improved as the refrigerant flow rate and the pipe diameter are increased as in the case of the single-phase refrigerant, but the pipe heat transfer coefficient is improved as the pipe heat transfer area is further increased.
プロパンはR407CやR410Aと比較して動粘度係数が大きいため、管壁付近の流速が低下し、液膜厚さが大きくなる。プロパン冷媒では非円形の熱交換器配管Bを採用して管内伝熱面積を大きくすることは特に有効である。これはR407CやR410Aが円形の熱交換器配管Bを採用して所望の性能を確保できた場合でも、プロパン冷媒を適用するには熱交換器配管Bの断面形状を非円形にする必要があることを意味する。 Since propane has a larger kinematic viscosity coefficient than R407C and R410A, the flow velocity near the tube wall decreases and the liquid film thickness increases. In propane refrigerant, it is particularly effective to increase the heat transfer area in the pipe by using the non-circular heat exchanger pipe B. This is because even when R407C and R410A adopt a circular heat exchanger pipe B to ensure the desired performance, it is necessary to make the cross-sectional shape of the heat exchanger pipe B non-circular in order to apply the propane refrigerant. Means that.
次に、熱交換器配管Bにガスまたは液単相冷媒を流通させると、管径が小さいので流れの粘性の影響が配管1より大きくなる。その結果、冷媒流通による圧力損失が大きくなる。またパス数が多いので1パス当りの冷媒流量が少なく冷媒流速が低減する。その結果、凝縮器の伝熱性能は低下する。液またはガス単相冷媒の流域では断面が円形の熱交換器配管を採用するのが望ましい。
Next, when the gas or liquid single-phase refrigerant is circulated through the heat exchanger pipe B, the influence of the flow viscosity becomes larger than that of the
本内容は熱源側熱交換器13、利用側熱交換器15のどちらにもあてはまる。また、ガス単相冷媒の流域の割合は通常10%未満と小さい。したがって、ガス単相冷媒流域と気液二相冷媒流域は配管2を使用し、液単相冷媒流域は配管1を使用する配管構成も可能であり、この場合には熱交換器の小形化による充填冷媒量の削減に寄与する。ここでは、熱交換器の内部冷媒流路を形成する配管の長手方向中間部すなわち気液二相冷媒流域の長さは両側のガス単相冷媒流域と液単相冷媒流域を合わせた流域配管全長の60%以上90%以下とし、凝縮器として使用した場合にガス単相冷媒が流通するガス単相冷媒流域の配管長さは前記流域配管全長の0%以上15%以下とし、液単相冷媒が流通する液単相冷媒流域の配管長さは前記流域配管全長の5%以上40%以下に設定している。これにより、熱交換器の小形化が図れ、充填冷媒量の削減が可能となる。
This content applies to both the heat source
プロパン、イソブタンは空気より重い。したがって、熱源側熱交換器13及び利用側熱交換器15のいずれにおいても、熱交換器を凝縮器利用する場合の液冷媒流域の熱交換器部分は、電気部品や圧縮機の電力線接続部よりも低い位置(遠い位置)に配置する。これにより、電気部品のスパークが生じても冷媒に触れて燃焼する可能性が低くなる。
Propane and isobutane are heavier than air. Therefore, in both the heat source
次に、本実施形態の冷凍空調装置の冷房運転時の冷媒の動作について図7に基づき図1乃至図6を参照しながら説明する。まず、圧縮機11を吐出した高圧高温ガス冷媒は、四方弁12を介して熱源側熱交換器13に流入し、ここで周囲空気と熱交換して凝縮し、高圧液冷媒として流出する。その後、減圧手段14aで減圧されて低圧の気液二相冷媒となった後、液延長配管17、減圧手段14bを介して利用側熱交換器15に流入し、ここで周囲空気と熱交換して蒸発し、低圧ガス冷媒となって流出する。その後、ガス延長配管16、四方弁12を介して圧縮機11の吸入口にいたる。
Next, the operation of the refrigerant during the cooling operation of the refrigerating and air-conditioning apparatus of the present embodiment will be described based on FIG. 7 and with reference to FIGS. First, the high-pressure and high-temperature gas refrigerant discharged from the
減圧手段14aで減圧されるため、液延長配管17中の冷媒は低圧の気液二相冷媒となる。
Since the pressure is reduced by the
次に、本実施形態の冷凍空調装置の暖房運転時の冷媒の動作について図7に基づき図1乃至図6を参照しながら説明する。まず、圧縮機11を吐出した高圧高温ガス冷媒は、四方弁12を介してガス延長配管16を介して利用側熱交換器15に流入し、ここで周囲空気と熱交換して凝縮し、高圧液冷媒として流出する。その後、減圧手段14bで減圧されて低圧の気液二相冷媒となった後、液延長配管17、減圧手段14aを介して熱源側熱交換器13に流入し、ここで周囲空気と熱交換して蒸発し、低圧ガス冷媒となって流出する。その後、四方弁12を介して圧縮機11の吸入口にいたる。
Next, the operation of the refrigerant during the heating operation of the refrigerating and air-conditioning apparatus of the present embodiment will be described based on FIG. 7 and with reference to FIGS. First, the high-pressure and high-temperature gas refrigerant discharged from the
減圧手段14bで減圧されるため、液延長配管17中の冷媒は低圧の気液二相冷媒となる。
Since the pressure is reduced by the
冷房運転、暖房運転ともに液延長配管17中の冷媒状態を低圧と説明したが、両端に減圧装置14a、14bを備えるため、正確には中圧である。
In the cooling operation and the heating operation, the refrigerant state in the
このように、減圧手段を2つ備え、冷房と暖房で主減圧手段を変えることで、液延長配管17中の冷媒を常時気液二相冷媒にして滞留冷媒量を削減することができる。
In this way, by providing two decompression means and changing the main decompression means for cooling and heating, the refrigerant in the
ところで、HC冷媒は吐出温度がHFC冷媒やHCFC冷媒と比較して低い。その結果、暖房運転時の能力低下や、圧縮機吐出過熱度が低下すると、圧縮機内の冷凍機油に対する溶解冷媒量が増加して油濃度が低下する。その結果、圧縮機の軸摺動部に必要な油粘度が確保できず圧縮機が故障する可能性がある。次に、これらの問題の解消を図るための手段について順次説明する。 By the way, the discharge temperature of the HC refrigerant is lower than that of the HFC refrigerant or the HCFC refrigerant. As a result, when the capacity reduction during the heating operation or the compressor discharge superheat degree decreases, the amount of refrigerant dissolved in the refrigeration oil in the compressor increases and the oil concentration decreases. As a result, the oil viscosity required for the shaft sliding portion of the compressor cannot be ensured, and the compressor may break down. Next, means for solving these problems will be sequentially described.
既述したように、HC冷媒であるプロパンやイソブタンはHFC冷媒であるR410AやR407C冷媒と比較して理論COPが良く、吐出温度が低いという特性がある。下表3にHFC冷媒であるR410A、R407C、HC冷媒であるプロパン、イソブタンの物性値を示す。表3の冷媒物性値は、冷凍サイクルの凝縮温度45℃、蒸発温度5℃、圧縮機吸入過熱度5℃、凝縮器出口過冷却度5℃、圧縮過程は等エントロピ変化すると想定した条件における値であり、理論吐出温度Td、動力ΔIcomp、蒸発器エンタルピ差ΔIeは冷媒物性計算ソフトRefprop Ver.7を使用して求めたものである。 As described above, propane and isobutane, which are HC refrigerants, have characteristics that the theoretical COP is better and the discharge temperature is lower than R410A and R407C refrigerants that are HFC refrigerants. Table 3 below shows physical property values of R410A and R407C as HFC refrigerants, and propane and isobutane as HC refrigerants. The refrigerant physical properties in Table 3 are the values under the conditions assuming that the condensation temperature of the refrigeration cycle is 45 ° C., the evaporation temperature is 5 ° C., the compressor inlet superheat is 5 ° C., the condenser outlet supercool is 5 ° C., and the compression process is isentropic. The theoretical discharge temperature Td, power ΔIcomp, and evaporator enthalpy difference ΔIe are obtained using the refrigerant property calculation software Refprop Ver.
表3から明らかなように、HC冷媒であるプロパン、イソブタンはR410A、R407C冷媒より吐出温度が低いことがわかる。 As is clear from Table 3, propane and isobutane, which are HC refrigerants, have lower discharge temperatures than the R410A and R407C refrigerants.
実施の形態2.
図8は前述の図1の熱交換器を適用した本発明の実施の形態2に係る冷凍空調装置を示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。なお、説明にあたっては前述の図1乃至図3を参照するものとする。
FIG. 8 is a refrigerant circuit diagram showing a refrigerating and air-conditioning apparatus according to
本実施形態の冷凍空調装置は、圧縮機11の吐出口と四方弁12との間と、圧縮機11吸入口と四方弁12との間に減圧手段18を設け、圧縮機吐出温度を増加させたものである。それ以外の構成は前述の実施形態1と同様である。
The refrigerating and air-conditioning apparatus of the present embodiment is provided with a pressure reducing means 18 between the discharge port of the
本実施形態の冷凍空調装置のように、冷房、暖房運転時に圧縮機11を吐出した冷媒の一部を、減圧手段18を介して圧縮機11の吸入側に戻すと、圧縮機11の吸入温度が増加する。その結果、圧縮機11の吐出温度を増加することができる。そのため、暖房時の暖房能力を増加したり、低圧縮比運転時に吐出過熱度を確保する運転が可能になる。
When a part of the refrigerant discharged from the
実施の形態3.
図9は前述の図1の熱交換器を適用した本発明の実施の形態3に係る冷凍空調装置を示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。なお、ここでも説明にあたっては前述の図1乃至図3を参照するものとする。
FIG. 9 is a refrigerant circuit diagram showing a refrigerating and air-conditioning apparatus according to
本実施形態の冷凍空調装置は、熱源側熱交換器13と減圧手段14aとの間を流通する冷媒と、圧縮機11の吸入口と四方弁12との間を流通する冷媒との間で熱交換する手段19Aを設けたものである。それ以外の構成は前述の実施形態1と同様である。
The refrigerating and air-conditioning apparatus of the present embodiment generates heat between the refrigerant flowing between the heat source
本実施形態の冷凍空調装置においては、圧縮機11の吸入冷媒が、熱交換する手段19Aを介して高圧液冷媒と熱交換して加熱されるので、圧縮機11の吸入冷媒温度を増加することができる。本回路は冷房運転で効果が得られる。
In the refrigerating and air-conditioning apparatus of the present embodiment, the intake refrigerant of the
実施の形態4.
図10は前述の図1の熱交換器を適用した本発明の実施の形態4に係る冷凍空調装置を示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。なお、ここでも説明にあたっては前述の図1乃至図3を参照するものとする。
Embodiment 4 FIG.
FIG. 10 is a refrigerant circuit diagram showing a refrigerating and air-conditioning apparatus according to Embodiment 4 of the present invention to which the heat exchanger shown in FIG. 1 is applied. In the figure, the same parts as those of
本実施形態の冷凍空調装置は、利用側熱交換器15と減圧手段14aとの間を流通する冷媒と、圧縮機11の吸入口と四方弁12との間を流通する冷媒との間で熱交換する手段19Bを設けたものである。それ以外の構成は前述の実施形態1と同様である。
The refrigerating and air-conditioning apparatus of the present embodiment generates heat between the refrigerant that circulates between the use-
本実施形態の冷凍空調装置においては、圧縮機11の吸入冷媒が、低圧気液二相冷媒と熱交換して冷却され、圧縮機11の吸入冷媒温度を下げることができる。本回路は暖房運転で効果が得られる。
In the refrigerating and air-conditioning apparatus of the present embodiment, the intake refrigerant of the
実施の形態5.
図11は前述の図1の熱交換器を適用した本発明の実施の形態5に係る冷凍空調装置を示す冷媒回路図であり、図中、前述の実施の形態1および実施の形態2のものと同一部分には同一符号を付してある。なお、ここでも説明にあたっては前述の図1乃至図3を参照するものとする。
FIG. 11 is a refrigerant circuit diagram showing a refrigerating and air-conditioning apparatus according to
本実施形態の冷凍空調装置は、熱源側熱交換器13と減圧手段14aとの間を流通する冷媒と、熱源側熱交換器13と減圧手段14aとの間を流通する冷媒を一部分離し更に減圧手段21Aで減圧して得られる冷媒との間で熱交換する手段20Aを設けるとともに、分離した冷媒を圧縮機11の吸入口と四方弁12との間に戻す配管22Aを備えたものである。それ以外の構成は前述の実施形態1および実施の形態2のものと同様である。
The refrigerating and air-conditioning apparatus of this embodiment partially separates the refrigerant flowing between the heat source
本実施形態の冷凍空調装置においては、冷房運転時、分離された高圧液冷媒は減圧手段21Aで減圧されて低圧気液二相冷媒となり、熱交換手段20Aで高圧液冷媒と熱交換して蒸発し、低圧過熱ガス冷媒として流出して圧縮機吸入冷媒に合流する。このように、過熱ガスを圧縮機吸入冷媒に合流させることで、吸入温度を増加し、その結果、圧縮機吐出温度を増加させる。本回路は冷房運転で効果が得られる。 In the refrigerating and air-conditioning apparatus of the present embodiment, during the cooling operation, the separated high-pressure liquid refrigerant is decompressed by the decompression means 21A to become a low-pressure gas-liquid two-phase refrigerant, and is evaporated by exchanging heat with the high-pressure liquid refrigerant by the heat exchange means 20A. Then, it flows out as a low-pressure superheated gas refrigerant and merges with the compressor suction refrigerant. In this way, the superheated gas is joined to the compressor suction refrigerant, thereby increasing the suction temperature and, as a result, increasing the compressor discharge temperature. This circuit is effective in cooling operation.
実施の形態6.
図12は前述の図1の熱交換器を適用した本発明の実施の形態6に係る冷凍空調装置を示す冷媒回路図であり、図中、前述の実施の形態1および実施の形態2のものと同一部分には同一符号を付してある。なお、ここでも説明にあたっては前述の図1乃至図3を参照するものとする。
Embodiment 6 FIG.
FIG. 12 is a refrigerant circuit diagram showing a refrigerating and air-conditioning apparatus according to Embodiment 6 of the present invention to which the heat exchanger of FIG. 1 described above is applied. In the drawing, those of
本実施形態の冷凍空調装置は、利用側熱交換器15と減圧手段14aとの間を流通する冷媒と、利用側熱交換器15と減圧手段14aとの間を流通する冷媒を一部分離し更に減圧手段21Bで減圧して得られる冷媒との間で熱交換する手段20Bを設けるとともに、分離した冷媒を圧縮機11の吸入口と四方弁12との間に戻す配管22Bを備えたものである。それ以外の構成は前述の実施形態1および実施の形態2のものと同様である。
The refrigerating and air-conditioning apparatus of this embodiment partially separates the refrigerant flowing between the use-
本実施形態の冷凍空調装置においては、暖房運転時、分離された低圧気液二相冷媒は減圧手段21Bで更に減圧されて低圧ガス冷媒となり、熱交換手段20Bで低圧気液二相冷媒と熱交換して冷却され、流出して圧縮機吸入冷媒に合流する。低圧ガスを圧縮機吸入冷媒に合流させることで吸入温度を下げ、その結果、圧縮機吐出温度を低下させる。本回路は暖房運転で効果が得られる。 In the refrigerating and air-conditioning apparatus of the present embodiment, during the heating operation, the separated low-pressure gas-liquid two-phase refrigerant is further depressurized by the decompression means 21B to become a low-pressure gas refrigerant, and the heat exchange means 20B and the low-pressure gas-liquid two-phase refrigerant and heat. It is exchanged and cooled, and it flows out and joins the compressor suction refrigerant. The suction temperature is lowered by joining the low-pressure gas to the compressor suction refrigerant, and as a result, the compressor discharge temperature is lowered. This circuit is effective in heating operation.
実施の形態7.
図13は前述の図1の熱交換器を適用した本発明の実施の形態7に係る冷凍空調装置を示す冷媒回路図であり、図中、前述の実施の形態1のものと同一部分には同一符号を付してある。なお、ここでも説明にあたっては前述の図1乃至図3を参照するものとする。
Embodiment 7 FIG.
FIG. 13 is a refrigerant circuit diagram showing a refrigerating and air-conditioning apparatus according to Embodiment 7 of the present invention to which the heat exchanger shown in FIG. 1 is applied. In the figure, the same parts as those in
本実施形態の冷凍空調装置において、HC冷媒のプロパン、イソブタンが円管を流通する場合、既述したように圧力損失がHFC冷媒よりも大きい。円管内を流通するガス冷媒の圧力損失は速度の1〜2乗に比例する。下表4に各冷媒の過熱度5℃で、各ガス冷媒の温度10℃の時の速度比を示す。 In the refrigerating and air-conditioning apparatus of this embodiment, when propane and isobutane of HC refrigerants circulate in the circular pipe, the pressure loss is larger than that of the HFC refrigerant as described above. The pressure loss of the gas refrigerant flowing through the circular pipe is proportional to the power of 1 to the second power. Table 4 below shows the speed ratio when the superheat degree of each refrigerant is 5 ° C and the temperature of each gas refrigerant is 10 ° C.
圧力損失を小さくする手法の1つとしてインジェクション回路がある。図13に示すように本実施形態に係る圧縮機24はインジェクションポートを備えている。また、熱源側熱交換器13と減圧手段14aの間に、冷媒を気液分離する気液分離手段25が設けられているとともに、気液分離手段25で分離されたガス冷媒を減圧する減圧手段26が設けられており、減圧手段26で減圧した中圧の飽和ガス冷媒はインジェクションバイパス管23を介して圧縮機24のインジェクションポートに流通させるように構成されている。それ以外の構成は前述の実施形態1および実施の形態2のものと同様である。
One technique for reducing pressure loss is an injection circuit. As shown in FIG. 13, the
本実施形態の冷凍空調装置においては、冷房運転時、利用側熱交換器15に流れる冷媒流量を低減できるので、圧力損失を小さくすることができる。一方、利用側熱交換器15の入口の冷媒比エンタルピは低減して能力はほとんど変わらない。
In the refrigerating and air-conditioning apparatus of the present embodiment, the flow rate of the refrigerant flowing through the use
なお、その他にも圧縮機内圧力を低圧にする低圧容器式圧縮機を採用することも冷媒量削減に有効である。 In addition, it is also effective to reduce the amount of refrigerant by adopting a low-pressure container compressor that lowers the internal pressure of the compressor.
1 長手方向端部の配管(熱交換器配管A)、2 長手方向中間部の配管(熱交換器配管B)、2a 細管、2b 楕円管、2c 多角形管、3 長手方向端部の配管(熱交換器配管C)、4,4a,4b ヘッダ、5 U字管、11,24 圧縮機、12 四方弁、13 熱源側熱交換器、14a 減圧手段、15 利用側熱交換器、X 室外機、Y 室内機、16 ガス延長配管(ガス用冷媒配管)、17 液延長配管(液用冷媒配管)、18,21A,21B,26 減圧手段、19A,19B,20A,20B 熱交換する手段、22A,22B 配管、25 気液冷媒を分離する手段。 1 Longitudinal end pipe (heat exchanger pipe A), 2 Longitudinal intermediate pipe (heat exchanger pipe B), 2a Narrow pipe, 2b Elliptic pipe, 2c Polygon pipe, 3 Longitudinal end pipe ( Heat exchanger piping C), 4, 4a, 4b header, 5 U-shaped tube, 11, 24 compressor, 12 four-way valve, 13 heat source side heat exchanger, 14a pressure reducing means, 15 use side heat exchanger, X outdoor unit , Y indoor unit, 16 gas extension pipe (gas refrigerant pipe), 17 liquid extension pipe (liquid refrigerant pipe), 18, 21A, 21B, 26 pressure reducing means, 19A, 19B, 20A, 20B means for heat exchange, 22A , 22B Piping, 25 Means for separating the gas-liquid refrigerant.
Claims (15)
熱源側熱交換器あるいは利用側熱交換器の内部冷媒流路を形成する配管の管内断面積を、その長手方向端部の管内断面積がその長手方向中間部の管内断面積よりも大きくなるように、さらに前記配管の管内断面における周長さを該管内断面の面積で除した値は、該配管の長手方向両端部よりも該配管の長手方向中間部の方が大きくなるように設定したことを特徴とする冷凍空調装置。 Compressor, four-way valve, heat source side heat exchanger, pressure reducing means, usage side heat exchanger, refrigerant circuit for liquid and gas refrigerant pipe for connecting outdoor unit and indoor unit, and closed loop, and control means In a refrigerating and air-conditioning apparatus that uses a combustible hydrocarbon refrigerant as a refrigerant and supplies cold / hot heat from the use side heat exchanger,
The cross-sectional area in the pipe of the pipe forming the internal refrigerant flow path of the heat source side heat exchanger or the use side heat exchanger is such that the cross-sectional area in the pipe at the longitudinal end is larger than the cross-sectional area in the pipe at the middle in the longitudinal direction. In addition, the value obtained by dividing the circumferential length of the pipe in the pipe cross section by the area of the pipe cross section is set so that the middle portion in the longitudinal direction of the pipe is larger than both longitudinal ends of the pipe. Refrigeration air conditioner characterized by.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007116381A JP4832355B2 (en) | 2007-04-26 | 2007-04-26 | Refrigeration air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007116381A JP4832355B2 (en) | 2007-04-26 | 2007-04-26 | Refrigeration air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008275201A JP2008275201A (en) | 2008-11-13 |
JP4832355B2 true JP4832355B2 (en) | 2011-12-07 |
Family
ID=40053363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007116381A Active JP4832355B2 (en) | 2007-04-26 | 2007-04-26 | Refrigeration air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4832355B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102767873A (en) * | 2012-08-02 | 2012-11-07 | 李贤锡 | Healthy comfortable energy-saving air conditioner and air treating method |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2942237B1 (en) * | 2009-02-13 | 2013-01-04 | Arkema France | METHOD FOR HEATING AND / OR AIR CONDITIONING A VEHICLE |
CN102954633B (en) * | 2011-08-30 | 2015-08-05 | 郑州大学 | Air-conditioning liquid storage throttling economizer and air-conditioning equipment thereof |
JP6026871B2 (en) * | 2012-11-29 | 2016-11-16 | サンデンホールディングス株式会社 | HEAT EXCHANGER AND HEAT EXCHANGER MANUFACTURING METHOD |
AU2013101100B4 (en) * | 2013-08-17 | 2013-11-07 | Pioneer International Pty Ltd | An Arrangement and Method For Retrofitting an Air Conditioning System |
CN103836742B (en) * | 2014-02-10 | 2016-07-06 | 中国科学院理化技术研究所 | Multi-connected heat pipe machine room air conditioning system |
MY184976A (en) * | 2014-05-09 | 2021-04-30 | Eco Factory Co Ltd | Air conditioning system |
CN104236175B (en) * | 2014-09-25 | 2016-06-29 | 天津商业大学 | A kind of bleeder vaporizer |
EP3640550A4 (en) | 2017-06-12 | 2020-06-17 | Mitsubishi Electric Corporation | OUTDOOR UNIT |
CN107144051A (en) * | 2017-07-05 | 2017-09-08 | 南通远征冷冻设备有限公司 | A kind of high efficiency condenser |
RU2751049C9 (en) * | 2018-02-19 | 2022-04-26 | ДжГК Корпорейшн | Plant for natural gas liquefaction |
JP2020101324A (en) * | 2018-12-21 | 2020-07-02 | 三星電子株式会社Samsung Electronics Co.,Ltd. | Air conditioner |
EA202191921A1 (en) * | 2019-01-29 | 2021-10-13 | Файвеле Транспорт Лейпциг Гмбх & Ко. Кг | HEAT EXCHANGER FOR FLAMMABLE REFRIGERANTS |
KR102092400B1 (en) * | 2019-09-04 | 2020-03-23 | 주식회사 해성화공 | Refrigerant tubing structure to restore the performance and efficiency of condenser |
CN111141067A (en) * | 2020-02-21 | 2020-05-12 | 顺德职业技术学院 | Variable-pipe-diameter composite twisted elliptic reinforced pipe condenser |
CN114593466B (en) * | 2022-02-21 | 2023-09-12 | 青岛海信日立空调系统有限公司 | air conditioner |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6463968A (en) * | 1987-09-03 | 1989-03-09 | Alps Electric Co Ltd | Photoconductive film and electrophotographic sensitive body using same |
JPH0679768B2 (en) * | 1989-06-01 | 1994-10-12 | 株式会社神戸製鋼所 | Joining method and joined body of titanium carbide sintered alloy and steel |
JPH0979667A (en) * | 1995-09-19 | 1997-03-28 | Denso Corp | Gas injection type refrigerating cycle equipment |
JP3807004B2 (en) * | 1997-02-03 | 2006-08-09 | ダイキン工業株式会社 | Air conditioner using flammable refrigerant |
JP3436670B2 (en) * | 1997-11-07 | 2003-08-11 | 三菱電機株式会社 | Air conditioner |
JP3811116B2 (en) * | 2001-10-19 | 2006-08-16 | 松下電器産業株式会社 | Refrigeration cycle equipment |
JP2006038306A (en) * | 2004-07-26 | 2006-02-09 | Hitachi Ltd | Refrigeration equipment |
-
2007
- 2007-04-26 JP JP2007116381A patent/JP4832355B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102767873A (en) * | 2012-08-02 | 2012-11-07 | 李贤锡 | Healthy comfortable energy-saving air conditioner and air treating method |
Also Published As
Publication number | Publication date |
---|---|
JP2008275201A (en) | 2008-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4832355B2 (en) | Refrigeration air conditioner | |
JP5241872B2 (en) | Refrigeration cycle equipment | |
JP5423089B2 (en) | Refrigeration equipment | |
JP6639697B2 (en) | Heat exchanger with water chamber | |
KR101797176B1 (en) | Dual pipe structure for internal heat exchanger | |
JP2005083741A (en) | Air conditioner having heat exchanger and refrigerant switching means | |
JP6042026B2 (en) | Refrigeration cycle equipment | |
JP2008096095A (en) | Refrigeration equipment | |
JP4442237B2 (en) | Air conditioner | |
JP5812997B2 (en) | Condenser with refrigeration cycle and supercooling section | |
EP2578966A1 (en) | Refrigeration device and cooling and heating device | |
JP7460550B2 (en) | Refrigeration cycle equipment | |
CN202853208U (en) | Heat utilization balancing processor | |
US9506700B2 (en) | Air-conditioning apparatus | |
JP2012237518A (en) | Air conditioner | |
JP5646257B2 (en) | Refrigeration cycle equipment | |
JP2013134024A (en) | Refrigeration cycle device | |
JP3650358B2 (en) | Air conditioner | |
JP6298992B2 (en) | Air conditioner | |
JP2010096372A (en) | Internal heat exchanger for carbon dioxide refrigerant | |
CN108278801A (en) | A kind of condenser and air conditioner | |
JP4710869B2 (en) | Air conditioner | |
WO2017149642A1 (en) | Refrigeration cycle device | |
JP4983878B2 (en) | Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner | |
JP2002228380A (en) | Heat exchanger and cooling apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090213 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110317 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110525 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110920 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4832355 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |