JP4829865B2 - Manufacturing method of long fiber reinforced thermoplastic resin pellets - Google Patents
Manufacturing method of long fiber reinforced thermoplastic resin pellets Download PDFInfo
- Publication number
- JP4829865B2 JP4829865B2 JP2007258945A JP2007258945A JP4829865B2 JP 4829865 B2 JP4829865 B2 JP 4829865B2 JP 2007258945 A JP2007258945 A JP 2007258945A JP 2007258945 A JP2007258945 A JP 2007258945A JP 4829865 B2 JP4829865 B2 JP 4829865B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber bundle
- reinforcing fiber
- fiber
- reinforcing
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/12—Making granules characterised by structure or composition
- B29B9/14—Making granules characterised by structure or composition fibre-reinforced
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29B—PREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
- B29B9/00—Making granules
- B29B9/02—Making granules by dividing preformed material
- B29B9/06—Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Reinforced Plastic Materials (AREA)
Description
本発明は、回巻体から連続的に引き出される強化用繊維束を使用して、撚りが付与された長繊維強化熱可塑性樹脂ペレットを製造する方法に関するものである。 The present invention relates to a method for producing a twisted long fiber reinforced thermoplastic resin pellet using a reinforcing fiber bundle continuously drawn from a wound body.
長繊維強化熱可塑性樹脂ペレット(以下、単に長繊維強化樹脂ペレットともいう)は、射出成形用の原料として使用されるものである。長繊維強化樹脂ペレットは、ペレット長(例えば3〜10mm程度)がほぼそのまま繊維長となるため、短繊維強化樹脂ペレットに比べて機械的強度に優れている。 Long fiber reinforced thermoplastic resin pellets (hereinafter also simply referred to as long fiber reinforced resin pellets) are used as raw materials for injection molding. The long fiber reinforced resin pellet has excellent mechanical strength compared to the short fiber reinforced resin pellet because the pellet length (for example, about 3 to 10 mm) is almost the same as the fiber length.
長繊維強化樹脂ペレットの製造には、多数本の強化用単繊維(フィラメント)を集束してなる強化用繊維束(ロービング)を巻き取ってなる回巻体(ロービングパッケージ)が用いられる。そして、この長繊維強化樹脂ペレットの製造方法としては、撚りを行わない引抜き法と、撚りを行う引抜き法とが知られている。 For the production of long fiber reinforced resin pellets, a wound body (roving package) formed by winding a reinforcing fiber bundle (roving) formed by bundling a large number of reinforcing single fibers (filaments) is used. And as a manufacturing method of this long fiber reinforced resin pellet, the drawing method which does not twist, and the drawing method which performs twist are known.
撚りを行わない引抜き法は、回巻体から引き出された強化用繊維束を連続的に含浸ダイに導入して、強化用繊維束に溶融した熱可塑性樹脂を含浸させ、この含浸ダイから樹脂含浸強化用繊維束からなる長繊維強化樹脂ストランドを連続的に引き取り、この長繊維強化樹脂ストランドを所定長さに切断して、長繊維強化樹脂ペレットを製造する方法である。図6は、撚りを行わない引抜き法によって得られる長繊維強化樹脂ペレットを示す模式図である。 The drawing method without twisting is to continuously introduce the reinforcing fiber bundle drawn from the wound body into the impregnation die, impregnate the reinforcing fiber bundle with the molten thermoplastic resin, and impregnate the resin from this impregnation die. In this method, long fiber reinforced resin strands composed of reinforcing fiber bundles are continuously taken out, and the long fiber reinforced resin strands are cut into a predetermined length to produce long fiber reinforced resin pellets. FIG. 6 is a schematic diagram showing long fiber reinforced resin pellets obtained by a drawing method without twisting.
また、撚りを行う引抜き法は、回巻体から引き出された強化用繊維束を連続的に含浸ダイに導入して、強化用繊維束に溶融した熱可塑性樹脂を含浸させるとともに、含浸ダイの下流側に設けられた撚りローラ等の撚り機により、含浸ダイを連続的に通過している樹脂含浸強化用繊維束に撚りを付与し、含浸ダイから撚りが付与された樹脂含浸強化用繊維束からなる長繊維強化樹脂ストランドを連続的に引き取り、この長繊維強化樹脂ストランドを所定長さに切断して、長繊維強化樹脂ペレットを製造する方法である。図5は、撚りを行う引抜き法によって得られる長繊維強化樹脂ペレットを示す模式図である。 Further, the drawing method for twisting is performed by continuously introducing the reinforcing fiber bundle drawn from the wound body into the impregnation die, impregnating the molten fiber bundle with the molten thermoplastic resin, and downstream of the impregnation die. From the resin-impregnated reinforcing fiber bundle to which the twist is applied to the resin-impregnated reinforcing fiber bundle continuously passing through the impregnation die by a twisting machine such as a twisting roller provided on the side, and the twist is applied from the impregnation die The long fiber reinforced resin strand is continuously taken out, and the long fiber reinforced resin strand is cut into a predetermined length to produce a long fiber reinforced resin pellet. FIG. 5 is a schematic view showing long fiber reinforced resin pellets obtained by a drawing method for twisting.
ところで、回巻体から連続的に引き出される強化用繊維束を使用して、長繊維強化樹脂ペレットを製造する場合、使い終わりの回巻体の強化用繊維束と新しい回巻体の強化用繊維束とを継ぎ合わせて、強化用繊維束を長時間にわたり連続的に供給できるようにする必要がある。 By the way, when a long fiber reinforced resin pellet is manufactured using a reinforcing fiber bundle continuously drawn from the wound body, the reinforcing fiber bundle of the wound body after use and the reinforcing fiber of the new wound body are used. It is necessary to join the bundles so that the reinforcing fiber bundles can be continuously supplied over a long period of time.
特開平6−114832号公報には、前述した、撚りを行わない引抜き法により、長繊維強化樹脂ペレットを製造するに際し、使い終わりの回巻体の強化用繊維束の終端部分と新しい回巻体の強化用繊維束の始端部分とを重ね合わせ、エアスプライサにより、重ね合わされた部分同士を交絡させることにより、使い終わりの回巻体の強化用繊維束と新しい回巻体の強化用繊維束とを継ぎ合わせるようにした、長繊維強化樹脂ペレットの製造方法が提案されている(第1の従来技術)。 Japanese Patent Laid-Open No. 6-114832 discloses that when producing a long fiber reinforced resin pellet by the above-described drawing method without twisting, the end portion of the reinforcing fiber bundle of the end-of-use wound body and a new wound body The reinforcing fiber bundle of the end-of-use winding and the reinforcing fiber bundle of the new winding are formed by superimposing the reinforcing fiber bundle on the first end portion and interlacing the overlapped portions with an air splicer. There has been proposed a method for producing long fiber reinforced resin pellets that are joined together (first prior art).
しかしながら、前述した第1の従来技術では、使い終わりの回巻体の強化用繊維束と新しい回巻体の強化用繊維束との継ぎ合せ部(継ぎ目)の繊維量が、強化用繊維束の繊維量の2倍となり、継ぎ合せ部の太さが本来の強化用繊維束の太さより大きくなる。このため、繊維含有率が30%程度以上の長繊維強化樹脂ペレットを製造する場合、継ぎ合せ部が含浸ダイのダイノズルに引っかかってつまり易く、高速の生産速度では強化用繊維束が断線し易いという問題がある。 However, in the first prior art described above, the amount of fibers in the joint portion (seam) between the reinforcing fiber bundle of the end-of-use wound body and the reinforcing fiber bundle of the new wound body is the amount of the reinforcing fiber bundle. The fiber amount is doubled, and the thickness of the spliced portion becomes larger than the thickness of the original reinforcing fiber bundle. For this reason, when producing a long fiber reinforced resin pellet having a fiber content of about 30% or more, the joining portion is easily caught by the die nozzle of the impregnation die, and the reinforcing fiber bundle is easily disconnected at a high production speed. There's a problem.
また、特開2003−301340号公報には、繊維束同士を継ぎ合せる方法が提案されている(第2の従来技術)。繊維束は、それぞれ、多数本の単繊維(フィラメント)を集束してなるものである。図7は第2の従来技術を説明するため模式図である。 Japanese Patent Application Laid-Open No. 2003-301340 proposes a method for joining fiber bundles together (second prior art). Each fiber bundle is formed by bundling a large number of single fibers (filaments). FIG. 7 is a schematic diagram for explaining the second prior art.
この第2の従来技術による方法を説明する。図7に示すように、一方の繊維束X1と他方の繊維束X2とを重ね合わせるようにして引き揃えた後、繊維束X1を半割にして、糸Y1'と糸Y1とを形成する。また、繊維束X2を半割にして、糸Y2と糸Y2'とを形成する。次いで、糸Y1'と糸Y2とを重ね合わせるとともに、糸Y1と糸Y2’とを重ね合わせる。そして、エアスプライサにより、Y1'とY2同士を交絡させて交絡部Z1を形成するとともに、Y1とY2’同士を交絡させて交絡部Z2を形成する。この場合、交絡部Z1,Z2は、繊維束長手方向における異なる位置において形成されている。 The method according to the second prior art will be described. As shown in FIG. 7, after one fiber bundle X1 and the other fiber bundle X2 are aligned so as to overlap each other, the fiber bundle X1 is halved to form a yarn Y1 ′ and a yarn Y1. Further, the fiber bundle X2 is halved to form the yarn Y2 and the yarn Y2 ′. Next, the yarn Y1 ′ and the yarn Y2 are overlapped, and the yarn Y1 and the yarn Y2 ′ are overlapped. Then, with the air splicer, Y1 ′ and Y2 are entangled to form the entangled portion Z1, and Y1 and Y2 ′ are entangled to form the entangled portion Z2. In this case, the entangled portions Z1 and Z2 are formed at different positions in the fiber bundle longitudinal direction.
しかしながら、前述した第2の従来技術では、交絡部Z1と糸Y1とからなる(Z1+Y1)部分の繊維量が、繊維束X1の繊維量の1.5倍となり、(Z1+Y1)部分の太さが本来の繊維束X1の太さより大きくなる。同様に、交絡部Z2と糸Y2とからなる(Z2+Y2)部分の繊維量が、繊維束X2の繊維量の1.5倍となり、(Z2+Y2)部分の太さが本来の繊維束X+2の太さより大きくなる。このため、第2の従来技術によって継ぎ合わされた強化用繊維束を用いて、繊維含有率が高い長繊維強化樹脂ペレットを製造する場合、前記(Z1+Y1)部分及び前記(Z2+Y2)部分を有する継ぎ合せ部が、含浸ダイのダイノズルに引っかかってつまり易いという問題がある。
そこで、本発明の課題は、回巻体から連続的に引き出される強化用繊維束を使用して、撚りを行う引抜き法により、長繊維強化熱可塑性樹脂ペレットを製造するに際し、使い終わりの回巻体の強化用繊維束と新しい回巻体の強化用繊維束との継ぎ合わせ部を、強化用繊維束の断線などを引き起こさずに、高い生産速度にて含浸ダイのダイノズルを通過させることができるようにした、長繊維強化熱可塑性樹脂ペレットの製造方法を提供することにある。 Therefore, the object of the present invention is to use a reinforcing fiber bundle that is continuously drawn from a wound body, and to produce a long fiber reinforced thermoplastic resin pellet by a twisting method for twisting. The joint portion between the reinforcing fiber bundle of the body and the reinforcing fiber bundle of the new wound body can be passed through the die nozzle of the impregnation die at a high production rate without causing disconnection of the reinforcing fiber bundle. An object of the present invention is to provide a method for producing a long fiber reinforced thermoplastic resin pellet.
前記の課題を解決するため、本願発明では、次の技術的手段を講じている。 In order to solve the above problems, the present invention takes the following technical means.
請求項1の発明は、回巻体から引き出された強化用繊維束を連続的に含浸ダイに導入して、強化用繊維束に溶融した熱可塑性樹脂を含浸させるとともに、前記含浸ダイの下流側に設けられた撚り機により、前記含浸ダイを連続的に通過している樹脂含浸強化用繊維束に撚りを付与し、前記含浸ダイから撚りが付与された樹脂含浸強化用繊維束からなる長繊維強化樹脂ストランドを連続的に引き取り、前記長繊維強化樹脂ストランドをペレット化して長繊維強化熱可塑性樹脂ペレットを製造する方法において、使い終わりの回巻体の強化用繊維束の終端部分と新しい回巻体の強化用繊維束の始端部分との双方について、それぞれ、強化用繊維束の一部を除去して繊維量が本来の約半分である繊維量半減端部を形成し、エアスプライサにより、前記繊維量半減端部同士をその長手方向における1箇所以上にて交絡させ、さらに、前記新しい回巻体における前記繊維量半減端部に続く繊維量非削減端部において、その長手方向における1箇所以上にて、エアスプライサにより、強化用繊維同士を交絡させることにより、前記使い終わりの回巻体の強化用繊維束と前記新しい回巻体の強化用繊維束とを継ぎ合わせ、強化用繊維束を連続供給することを特徴とする長繊維強化熱可塑性樹脂ペレットの製造方法である。 According to the first aspect of the present invention, the reinforcing fiber bundle drawn from the wound body is continuously introduced into the impregnation die, the molten fiber bundle is impregnated with the molten thermoplastic resin, and the downstream side of the impregnation die A long fiber comprising a resin-impregnated reinforcing fiber bundle to which a twist is imparted to the resin-impregnated reinforcing fiber bundle continuously passing through the impregnation die by a twisting machine provided on the impregnation die In the method of continuously taking up the reinforced resin strands and pelletizing the long fiber reinforced resin strands to produce the long fiber reinforced thermoplastic resin pellets, the end portion of the reinforcing fiber bundle of the end-of-use wound body and a new winding For both the body reinforcing fiber bundle and the starting end part, respectively, a part of the reinforcing fiber bundle is removed to form a fiber amount half-end portion of which the fiber amount is about half of the original amount. The fiber amount half-ends are entangled at one or more places in the longitudinal direction, and further, at one or more places in the longitudinal direction in the fiber amount non-reducing end portion following the fiber half-end part in the new wound body Then, by reinforcing the reinforcing fibers with the air splicer, the reinforcing fiber bundle of the end-of-use wound body and the reinforcing fiber bundle of the new wound body are joined together, and the reinforcing fiber bundle is continuous. It is a manufacturing method of the long fiber reinforced thermoplastic resin pellet characterized by supplying.
請求項2の発明は、請求項1記載の長繊維強化熱可塑性樹脂ペレットの製造方法において、エアスプライサによって前記交絡させた交絡部に、さらに接着剤を付与し、この接着剤として、強化用繊維束に含浸させる熱可塑性樹脂と同一の樹脂を用いることを特徴とするものである。 According to a second aspect of the present invention, in the method for producing a long fiber reinforced thermoplastic resin pellet according to the first aspect, an adhesive is further applied to the entangled portion entangled by an air splicer, and a reinforcing fiber bundle is used as the adhesive. The same resin as the thermoplastic resin to be impregnated is used.
本発明の方法によると、回巻体から連続的に引き出される強化用繊維束を使用して、撚りを行う引抜き法により、長繊維強化熱可塑性樹脂ペレットを製造するに際し、使い終わりの回巻体の強化用繊維束と新しい回巻体の強化用繊維束との継ぎ合わせ部を、強化用繊維束の断線や、継ぎ合わせ部のダイノズル通過後に製造停止を招くことになるダイノズルへの毛羽のつまりを引き起こすことなく、高い生産速度にて含浸ダイのダイノズルを通過させることができて、長繊維強化熱可塑性樹脂ペレットの生産性を向上させることができる。 According to the method of the present invention, when a long fiber reinforced thermoplastic resin pellet is produced by a drawing method in which twisting is performed using a reinforcing fiber bundle continuously drawn from the wound body, the wound body is used up. The joint portion between the reinforcing fiber bundle and the reinforcing fiber bundle of the new wound body is cut off of the reinforcing fiber bundle or the clogging of the fluff to the die nozzle that will cause the production stop after passing through the die nozzle of the joint portion. Without causing any problems, the die nozzle of the impregnation die can be passed at a high production rate, and the productivity of the long fiber reinforced thermoplastic resin pellets can be improved.
図1は本発明の製造方法を実施するための長繊維強化熱可塑性樹脂ペレットの製造装置の構成を示す図である。 FIG. 1 is a diagram showing a configuration of a long fiber reinforced thermoplastic resin pellet manufacturing apparatus for carrying out the manufacturing method of the present invention.
図1に示すように、回巻体1から引き出された強化用繊維束2は、複数本(図1の例では3本)が引き揃えられて、一対の加熱用ローラ6A,6Bを備えた予熱用加熱装置5に導かれる。強化用繊維束2は、予熱用加熱装置5によって昇温された状態で、含浸ダイ7内に導かれる。この含浸ダイ7には、スクリュ11を内蔵する押出機10から、溶融樹脂(溶融した熱可塑性樹脂)3が連続供給される。含浸ダイ7内には、強化用繊維束2に溶融樹脂3を含浸させるための複数個の含浸ローラ9が配設されている。また、含浸ダイ7の出口には、撚りが付与された樹脂含浸強化用繊維束からなる断面円形状の長繊維強化樹脂ストランド4の線径を定めるダイノズル8が取り付けられている。
As shown in FIG. 1, the reinforcing
強化用繊維束2は、含浸ダイ7を通過しながら溶融樹脂が含浸され、樹脂含浸強化用繊維束となされる。この樹脂含浸強化用繊維束は、含浸ダイ7の下流側に設けられた撚り機としての撚りローラ13A,13Bにより、撚りが付与される。そして、撚りが付与された樹脂含浸強化用繊維束からなる長繊維強化樹脂ストランド4は、撚りローラ13A,13Bにより、含浸ダイ7から連続的に引き取られる。
The reinforcing
含浸ダイ7のダイノズル8から引き出された高温の長繊維強化樹脂ストランド4は、冷却水槽12によって冷却硬化されて、撚りローラ13A,13Bへと導かれる。そして、撚りローラ13A,13Bの下流側に導かれた長繊維強化樹脂ストランド4は、ペレタイザー14で所定長さに切断されて長繊維強化樹脂ペレットとされる。
The high-temperature long fiber reinforced
図2は図1に示す撚りローラの説明図、図3は図2に示す撚りローラの撚り角度を説明するための図である。 2 is an explanatory diagram of the twisting roller shown in FIG. 1, and FIG. 3 is a diagram for explaining the twisting angle of the twisting roller shown in FIG.
図2に示すように、一対の撚りローラ13A,13Bは、それぞれの回転軸線を平行な平面(水平面)上に保持し、かつ、該回転軸線を交差させた状態で上流側からの長繊維強化樹脂ストランド4を挟むように対向配置されている。すなわち、図2における上側の撚りローラ13Aの回転軸線と下側の撚りローラ13Bの回転軸線とは、平面視において、長繊維強化樹脂ストランド4の引き取り方向に対して互いに相反する方向に、かつ同角度をなして所定角度(撚り角度θ)だけずれた向きに設定されている。
As shown in FIG. 2, the pair of
図3に示すように、撚りローラ13Aの撚り角度θは、平面視において、この撚りローラ13Aの回転軸線aと直交する線と長繊維強化樹脂ストランド4の引き取り方向とのなす角度である。下側の撚りローラ13Bの撚り角度は、上側の撚りローラ13Aの撚り角度θと同一角度である。
As shown in FIG. 3, the twisting angle θ of the
ところで、回巻体から強化用繊維束を引き出す(繰り出す)方法としては、外取り法と内取り法とがある。外取り法は、回巻体を回転させながら回巻体外周側から強化用繊維束を引き出す方法である。一方、内取り法は、回巻体をある物の上に置いた状態で、回巻体内周側から強化用繊維束を引き出す方法である。なお、回巻体をある物の上に置いた状態で、回巻体外周側から強化用繊維束を引き出す方法もある。図1に示す製造装置では、回巻体1は強化用繊維束2を無心円筒状に巻き取ってなる回巻体であり、この回巻体1の内周側から強化用繊維束2を引き出す内取り法を採用している。
By the way, as a method of pulling out (feeding out) the reinforcing fiber bundle from the wound body, there are an outside method and an inside method. The outside method is a method of pulling out the reinforcing fiber bundle from the outer peripheral side of the wound body while rotating the wound body. On the other hand, the internal arrangement method is a method in which the reinforcing fiber bundle is pulled out from the circumferential side of the wound body with the wound body placed on a certain object. There is also a method of pulling out the reinforcing fiber bundle from the outer periphery side of the wound body with the wound body placed on a certain object. In the manufacturing apparatus shown in FIG. 1, the
図4は本発明による製造方法を説明するための図であって、強化用繊維束同士を継ぎ合せる方法を説明するための模式図である。 FIG. 4 is a diagram for explaining the production method according to the present invention, and is a schematic diagram for explaining a method for joining reinforcing fiber bundles together.
本発明の製造方法においては、使い終わりの回巻体の強化用繊維束Aと新しい回巻体の強化用繊維束Bとを継ぎ合わせるに際し、使い終わり側の強化用繊維束Aの終端部分において、強化用繊維束Aの一部をハサミ等で切除して、繊維量が本来の約半分で所定長さの繊維量半減端部A1を形成する。また、新しい側の強化用繊維束Bの始端部分において、強化用繊維束Bの一部をハサミ等で切除して、繊維量が本来の約半分である所定長さの繊維量半減端部B1を形成する。なお、繊維量半減端部A1,B1の長さは、50〜150mm程度の範囲である。繊維量半減端部A1,B1の長さは、交絡を行い易い種類の強化用繊維の場合、50mm程度であり、交絡を行い難い易い種類の強化用繊維の場合、100〜150mm程度である。 In the production method of the present invention, when joining the reinforcing fiber bundle A of the end-of-use wound body and the reinforcing fiber bundle B of the new wound body, at the end portion of the reinforcing fiber bundle A on the end-of-use side Then, a part of the reinforcing fiber bundle A is cut off with scissors or the like to form a fiber amount half-end A1 having a predetermined length with a fiber amount approximately half of the original. Further, at the starting end portion of the new-side reinforcing fiber bundle B, a part of the reinforcing fiber bundle B is cut off with scissors or the like, and the fiber amount half-end B1 of a predetermined length whose fiber amount is about half of the original length. Form. In addition, the length of fiber amount half-end part A1, B1 is the range of about 50-150 mm. The lengths of the fiber amount half-ends A1 and B1 are about 50 mm in the case of reinforcing fibers that are easy to be entangled, and about 100 to 150 mm in the case of reinforcing fibers that are difficult to be entangled.
次に、両方の繊維量半減端部A1,B1を互いに重ね合わせるようにして引き揃え、エアスプライサにより、繊維量半減端部A1,B1同士をその長手方向における1箇所以上にて交絡させ、交絡部C1を形成する。図4の例では、2箇所において交絡部C1を形成している。したがって、交絡部C1の繊維量は強化用繊維束A,Bの本来の繊維量(元の繊維量)とほぼ同じであり、繊維量半減端部A1,B1同士の継ぎ目の太さを、強化用繊維束A,Bの太さとほぼ同じにすることができる。 Next, both the fiber half-ends A1 and B1 are arranged so as to overlap each other, and the fiber half-ends A1 and B1 are entangled at one or more places in the longitudinal direction by an air splicer. C1 is formed. In the example of FIG. 4, the entangled part C1 is formed in two places. Therefore, the fiber amount of the entangled portion C1 is substantially the same as the original fiber amount (original fiber amount) of the reinforcing fiber bundles A and B, and the thickness of the seam between the fiber amount half-end portions A1 and B1 is reinforced. The fiber bundles A and B can be made substantially the same as the thickness.
さらに、新しい側の繊維量半減端部B1に続く繊維量非削減端部(繊維量を減らしていない元の強化用繊維束部分)B2において、その長手方向における1箇所以上にて、エアスプライサにより強化用繊維同士を交絡させ、交絡部C2を形成する。図4の例では、2箇所において交絡部C2を形成している。この交絡部C2を形成することにより、含浸ダイへ導かれている途中で、繊維量非削減端部B2の強化用繊維がばらけて、継ぎ合わせ部が切れないようにすることができる。しかも、交絡部C2の太さは、強化用繊維束A,Bの太さとほぼ同じある。なお、使い終わり側の繊維量半減端部A1に続く繊維量非削減端部A2は、撚りが付与されながら含浸ダイから引き取られることになるので、下流側から引っ張られても、ダイノズルにつまることがない。よって、この繊維量非削減端部A2に交絡部を形成する必要はない。エアスプライサによる交絡を施した後、新しい側の強化用繊維束Bについて、ばらけが生じている強化用繊維部分(図4に符号X,Yで示す)を、これがダイノズルにひっかかることがないようにするため、ハサミ等で切除する。なお、切除することに代えて、強化用繊維束A,Bに含浸させる熱可塑性樹脂と同種の樹脂からなる接着剤を用いて、前記ばらけが生じている強化用繊維部分X,Yを接着固定するようにしてもよい。 Further, at the fiber non-reducing end (the original reinforcing fiber bundle part not reducing the fiber amount) B2 following the fiber half half end B1 on the new side, reinforced by an air splicer at one or more points in the longitudinal direction. The fibers for use are entangled to form an entangled portion C2. In the example of FIG. 4, the entanglement part C2 is formed in two places. By forming the entangled portion C2, it is possible to prevent the reinforcing fiber of the fiber amount non-reduced end B2 from being scattered during the introduction to the impregnation die and to prevent the joint portion from being cut. Moreover, the thickness of the entangled portion C2 is substantially the same as the thickness of the reinforcing fiber bundles A and B. The fiber amount non-reduced end A2 following the end-of-use fiber amount half-end A1 is pulled from the impregnation die while being twisted, so that it will be caught by the die nozzle even if pulled from the downstream side. There is no. Therefore, it is not necessary to form an entangled portion at the fiber amount non-reduced end A2. After entanglement by the air splicer, the reinforcing fiber bundle B on the new side is separated from the reinforcing fiber portion (indicated by reference numerals X and Y in FIG. 4) so that it does not catch on the die nozzle. Therefore, remove with scissors. Note that, instead of cutting, the reinforcing fiber portions X and Y in which the separation occurs are bonded and fixed using an adhesive made of the same type of resin as the thermoplastic resin impregnated in the reinforcing fiber bundles A and B. You may make it do.
このように、継ぎ合わせ部においてエアスプライサによって交絡部C1及び交絡部C2を形成し、使い終わりの側の強化用繊維束Aと新しい側の強化用繊維束Bとを、継ぎ合わせ部の太さが強化用繊維束A,Bの太さとほぼ同じになるように継ぎ合せている。したがって、継ぎ合わせ部がダイノズルに引っかかってつまることがない。よって、強化用繊維束の断線を引き起こすことなく、継ぎ合わせ部を高い生産速度にてダイノズルを通過させることができる。 In this way, the entangled portion C1 and the entangled portion C2 are formed by the air splicer in the joint portion, and the reinforcing fiber bundle A on the end-of-use side and the reinforcing fiber bundle B on the new side are made thicker. The reinforcing fiber bundles A and B are spliced so as to be approximately the same in thickness. Therefore, the joining portion is not caught by the die nozzle. Therefore, the joining portion can be passed through the die nozzle at a high production rate without causing disconnection of the reinforcing fiber bundle.
また、継ぎ合わせ部において新しい側の強化用繊維束Bの繊維量非削減端部B2に前記交絡部C2を形成している。したがって、継ぎ合わせ部が屈曲のあるパスラインを経て含浸ダイへ導かれている途中で、前記繊維量非削減端部B2にばらけが発生して継ぎ合わせ部が切れることがない。よって、新しい側の強化用繊維束Bが含浸ダイに到達しないという事態を引き起こすことなく、継ぎ合わせ部を高い生産速度にてダイノズルを通過させることができる。 In addition, the entangled portion C2 is formed at the fiber amount non-reducing end portion B2 of the reinforcing fiber bundle B on the new side at the joining portion. Therefore, the fiber portion non-reducing end portion B2 is not broken and the spliced portion is not cut off while the spliced portion is guided to the impregnation die through the bent pass line. Therefore, the joining portion can be passed through the die nozzle at a high production speed without causing a situation that the reinforcing fiber bundle B on the new side does not reach the impregnation die.
また、撚りを行う引抜き法により、樹脂含浸強化用繊維束は、撚りをかけられながらダイノズルから引き出される。したがって、継ぎ合わせ部がダイノズルを通過する時に発生する毛羽をダイノズルから引き出すことができる。よって、継ぎ合わせ部のダイノズル通過後において、ダイノズルへの毛羽のつまりによる製造停止を引き起こすようなことがない。 In addition, the fiber bundle for reinforcing resin impregnation is pulled out from the die nozzle while being twisted by a drawing method for performing twisting. Therefore, the fluff generated when the splicing part passes through the die nozzle can be pulled out from the die nozzle. Therefore, after passing through the die nozzle of the joining portion, there is no possibility of causing a production stop due to clogging of the fuzz to the die nozzle.
なお、本発明の製造方法において強化用繊維束の継ぎ合わせを行うに際し、接着剤として前記交絡部C1,C2に、強化用繊維束A,Bに含浸させる熱可塑性樹脂と同一の樹脂を塗布するようにしてよい。これにより、より確実に継ぎ合わせ部を、強化用繊維束の断線などを引き起こすことなく、高い生産速度にてダイノズルを通過させることができる。 When joining the reinforcing fiber bundles in the production method of the present invention, the same resin as the thermoplastic resin impregnated in the reinforcing fiber bundles A and B is applied to the entangled portions C1 and C2 as an adhesive. You may do it. Thereby, the die nozzle can be passed through the die nozzle at a high production speed without causing the disconnection of the reinforcing fiber bundle and the like more reliably.
次に、本発明の実施例について説明する。継ぎ合わせ部を形成した強化用繊維束を用いて、図1に示す製造装置によって長繊維強化樹脂ペレットの製造実験を行い、強化用繊維束同士を継ぎ合せる方法について評価した。強化用繊維束として、ガラス繊維束を用いた。1本あたりのガラス繊維束の構成は、ガラス繊維径(フィラメント径)17μm、重量2400g/kmである。 Next, examples of the present invention will be described. Using the reinforcing fiber bundle in which the seam portion was formed, a production experiment of long fiber reinforced resin pellets was performed using the manufacturing apparatus shown in FIG. 1, and the method for joining the reinforcing fiber bundles was evaluated. A glass fiber bundle was used as the reinforcing fiber bundle. The composition of the glass fiber bundle per one is a glass fiber diameter (filament diameter) of 17 μm and a weight of 2400 g / km.
[実施例1] 実験条件は、ガラス繊維束:3本、生産速度(引き取り速度):80m/min、熱可塑性樹脂:ポリプロピレン、繊維含有率:約70%、撚りローラの撚り角度θ(図3参照):17.5°とした。継ぎ合わせ方法は、繊維量半減端部A1,B1の長さは約150mmとし、繊維量半減端部A1,B1同士については4箇所交絡部を形成し、新しい側の繊維量非削減端部B2については1箇所交絡部を形成する方法とした。そして、実験ごとに、3本のガラス繊維束のうち、1本について前記方法により継ぎ合せを行うようにした。これら3本のガラス繊維束を用いる実験を10回実施した。 [Example 1] Experimental conditions were: glass fiber bundle: 3, production rate (take-off rate): 80 m / min, thermoplastic resin: polypropylene, fiber content: about 70%, twist angle θ of the twisting roller (FIG. 3) Reference): 17.5 °. The splicing method is such that the length of the fiber half-ends A1 and B1 is about 150 mm, the fiber half-ends A1 and B1 are formed with four interlaced parts, and the fiber side non-reducing end B2 on the new side. About, it was set as the method of forming one place entanglement part. For each experiment, one of the three glass fiber bundles was spliced by the above method. Experiments using these three glass fiber bundles were carried out 10 times.
その結果、10回全ておいて、継ぎ合わせ部がダイノズルを通過した。継ぎ合わせ部がダイノズルを通過する時に発生する毛羽は、ダイノズルからねじられながら引き出された。このことにより、継ぎ合わせ部のダイノズル通過後においても、引き続いて良好に長繊維強化樹脂ペレットの製造を行うことができた。 As a result, the joint part passed through the die nozzle in all 10 times. Fluff generated when the splicing portion passes through the die nozzle was pulled out while being twisted from the die nozzle. As a result, even after passing through the die nozzle of the spliced portion, it was possible to continue to produce the long fiber reinforced resin pellets satisfactorily.
[実施例2] 実験条件は、ガラス繊維束:3本、生産速度(引き取り速度):80m/min、熱可塑性樹脂:ポリプロピレン、繊維含有率:約70%、撚りローラの撚り角度θ:17.5°とした。継ぎ合わせ方法は、繊維量半減端部A1,B1の長さは約150mmとし、繊維量半減端部A1,B1同士については4箇所交絡部を形成し、新しい側の繊維量非削減端部B2については1箇所交絡部を形成し、さらに、前記4箇所の交絡部に、接着剤として液状のポリプロピレン樹脂を薄い膜状に塗布し、これを硬化させる方法とした。そして、実験ごとに、3本のガラス繊維束のうち、1本について前記方法により継ぎ合せを行うようにした。これら3本のガラス繊維束を用いる実験を10回実施した。 [Example 2] The experimental conditions were: glass fiber bundle: 3, production speed (take-off speed): 80 m / min, thermoplastic resin: polypropylene, fiber content: about 70%, twist angle θ of twisting roller: 17. The angle was 5 °. The splicing method is such that the length of the fiber half-ends A1 and B1 is about 150 mm, the fiber half-ends A1 and B1 are formed with four interlaced parts, and the fiber side non-reducing end B2 on the new side. In the method, one entangled portion was formed, and a liquid polypropylene resin as an adhesive was applied to the four entangled portions in the form of a thin film and cured. For each experiment, one of the three glass fiber bundles was spliced by the above method. Experiments using these three glass fiber bundles were carried out 10 times.
その結果、前記実施例1と同様に、10回全ておいて、継ぎ合わせ部がダイノズルを通過し、継ぎ合わせ部のダイノズル通過後においても、引き続いて良好に長繊維強化樹脂ペレットの製造を行うことができた。 As a result, in the same manner as in Example 1, the splicing part passes through the die nozzle after all 10 times, and after the die nozzle of the splicing part passes through, the continuous fiber reinforced resin pellets are manufactured satisfactorily. I was able to.
[比較例1] 実験条件は、ガラス繊維束:3本、生産速度:5m/min、熱可塑性樹脂:ポリプロピレン、繊維含有率:約70%、撚りローラの撚り角度θ:17.5°とした。継ぎ合わせ方法は、継ぎ合わせるべきガラス繊維束の端部同士を、そのままの太さで、エアスプライサによる交絡を行う方法とした。そして、実験ごとに、3本のガラス繊維束のうち、1本について前記方法により継ぎ合わせを行うようにした。これら3本のガラス繊維束を用いる実験を4回実施した。 [Comparative Example 1] The experimental conditions were: glass fiber bundle: 3, production rate: 5 m / min, thermoplastic resin: polypropylene, fiber content: about 70%, twist angle θ of twisting roller: 17.5 ° . The joining method was a method in which the ends of the glass fiber bundles to be joined were entangled with an air splicer with the same thickness. For each experiment, one of the three glass fiber bundles was spliced by the above method. Experiments using these three glass fiber bundles were performed four times.
その結果、4回の実験のうち、2回において継ぎ合わせ部がダイノズルを通過した。残りの2回においては断線が発生した。そして、継ぎ合わせ部がダイノズルを通過した場合でも、ダイノズルに毛羽が大量につまり、2回の実験いずれの場合にも、継ぎ合わせ部のダイノズル通過後は、製造を続けることができなかった。 As a result, the splicing part passed through the die nozzle in two of the four experiments. Disconnection occurred in the remaining two times. Even when the splicing part passes through the die nozzle, a large amount of fluff is present in the die nozzle, that is, in any of the two experiments, the production cannot be continued after the splicing part has passed through the die nozzle.
[比較例2] 実験条件は、ガラス繊維束:3本、生産速度:80m/min、熱可塑性樹脂:ポリプロピレン、繊維含有率:約70%、撚りローラの撚り角度θ:17.5°とした。継ぎ合わせ方法は、繊維量半減端部A1,B1の長さは約150mmとし、繊維量半減端部A1,B1同士については4箇所交絡部を形成し、新しい側の繊維量非削減端部B2については交絡部を形成しない方法とした。そして、実験ごとに、3本のガラス繊維束のうち、1本について前記方法により継ぎ合わせを行うようにした。これら3本のガラス繊維束を用いる実験を3回実施した。 [Comparative Example 2] The experimental conditions were: 3 glass fiber bundles, production rate: 80 m / min, thermoplastic resin: polypropylene, fiber content: about 70%, twist angle θ of twisting roller: 17.5 ° . The splicing method is such that the length of the fiber half-ends A1 and B1 is about 150 mm, the fiber half-ends A1 and B1 are formed with four interlaced parts, and the fiber side non-reducing end B2 on the new side. The method of not forming the entangled part was used. For each experiment, one of the three glass fiber bundles was spliced by the above method. Experiments using these three glass fiber bundles were performed three times.
その結果、3回とも、継ぎ合わせ部がパスラインを経て含浸ダイへ導かれている途中で、新しい側の繊維量非削減端部B2にばらけが発生して、継ぎ合わせ部が切れてしまった。 As a result, in the middle of the three times, while the spliced part was led to the impregnation die through the pass line, the fiber side non-reducing end B2 on the new side was scattered and the spliced part was cut. .
[比較例3] 実験条件は、ガラス繊維束:1本、生産速度:10m/min、熱可塑性樹脂:ポリプロピレン、繊維含有率:約30%、撚りローラの撚り角度θ:0°(撚りなし)とした。継ぎ合わせ方法は、繊維量半減端部A1,B1の長さは約150mmとし、繊維量半減端部A1,B1同士については4箇所交絡部を形成し、新しい側の繊維量非削減端部B2については1箇所交絡部を形成する方法とした。そして、実験ごとに、1本のガラス繊維束について前記方法により継ぎ合わせを行うようにした。これらのガラス繊維束を用いる実験を3回実施した。 [Comparative Example 3] The experimental conditions were: glass fiber bundle: 1, production rate: 10 m / min, thermoplastic resin: polypropylene, fiber content: about 30%, twist angle θ of twisting roller: 0 ° (no twist) It was. The splicing method is such that the length of the fiber half-ends A1 and B1 is about 150 mm, the fiber half-ends A1 and B1 are formed with four interlaced parts, and the fiber side non-reducing end B2 on the new side. About, it was set as the method of forming one place entanglement part. In each experiment, one glass fiber bundle was spliced by the above method. Experiments using these glass fiber bundles were performed three times.
その結果、3回全ておいて、継ぎ合わせ部がダイノズルを通過した。しかしながら、ダイノズルに毛羽が大量につまり、3回の実験いずれの場合にも、継ぎ合わせ部のダイノズル通過後は、製造を続けることができなかった。 As a result, the joint portion passed through the die nozzle after all three times. However, a large amount of fluff in the die nozzle, that is, in any of the three experiments, the production could not be continued after passing through the die nozzle in the joint portion.
[比較例4] 実験条件は、ガラス繊維束:1本、生産速度:10m/min、熱可塑性樹脂:ポリプロピレン、繊維含有率:約30%、撚りローラの撚り角度θ:0°(撚りなし)とした。継ぎ合わせ方法は、繊維量半減端部A1,B1の長さは約150mmとし、繊維量半減端部A1,B1同士については4箇所交絡部を形成し、新しい側の繊維量非削減端部B2については交絡部を形成しない方法とした。そして、実験ごとに、1本のガラス繊維束について前記方法により継ぎ合わせを行うようにした。これらのガラス繊維束を用いる実験を3回実施した。 [Comparative Example 4] The experimental conditions were: glass fiber bundle: 1, production rate: 10 m / min, thermoplastic resin: polypropylene, fiber content: about 30%, twist angle θ of twisting roller: 0 ° (no twist) It was. The splicing method is such that the length of the fiber half-ends A1 and B1 is about 150 mm, the fiber half-ends A1 and B1 are formed with four interlaced parts, and the fiber side non-reducing end B2 on the new side. The method of not forming the entangled part was used. In each experiment, one glass fiber bundle was spliced by the above method. Experiments using these glass fiber bundles were performed three times.
その結果、3回とも、継ぎ合わせ部がパスラインを経て含浸ダイへ導かれている途中で、新しい側の繊維量非削減端部B2にばらけが発生して、継ぎ合わせ部が切れてしまった。 As a result, in the middle of the three times, while the spliced part was led to the impregnation die through the pass line, the fiber side non-reducing end B2 on the new side was scattered and the spliced part was cut. .
[比較例5] 実験条件は、ガラス繊維束:2本、生産速度:5m/min、熱可塑性樹脂:ポリプロピレン、繊維含有率:約50%、撚りローラの撚り角度θ:0°(撚りなし)とした。継ぎ合わせ方法は、繊維量半減端部A1,B1の長さは約150mmとし、繊維量半減端部A1,B1同士については4箇所交絡部を形成し、新しい側の繊維量非削減端部B2については1箇所交絡部を形成する方法とした。そして、実験ごとに、2本のガラス繊維束のうち、1本について前記方法により継ぎ合せを行うようにした。これら2本のガラス繊維束を用いる実験を3回実施した。 [Comparative Example 5] The experimental conditions were: glass fiber bundle: 2, production rate: 5 m / min, thermoplastic resin: polypropylene, fiber content: about 50%, twist angle θ of twisting roller: 0 ° (no twist) It was. The splicing method is such that the length of the fiber half-ends A1 and B1 is about 150 mm, the fiber half-ends A1 and B1 are formed with four interlaced parts, and the fiber side non-reducing end B2 on the new side. About, it was set as the method of forming one place entanglement part. For each experiment, one of the two glass fiber bundles was spliced by the above method. Experiments using these two glass fiber bundles were performed three times.
その結果、3回全ておいて、継ぎ合わせ部がダイノズルを通過した。しかしながら、ダイノズルに毛羽が大量につまり、3回の実験いずれの場合にも、継ぎ合わせ部のダイノズル通過後は、製造を続けることができなかった。 As a result, the joint portion passed through the die nozzle after all three times. However, a large amount of fluff in the die nozzle, that is, in any of the three experiments, the production could not be continued after passing through the die nozzle in the joint portion.
[比較例6] 実験条件は、ガラス繊維束:3本、生産速度:5m/min、熱可塑性樹脂:ポリプロピレン、繊維含有率:約70%、撚りローラの撚り角度θ:0°(撚りなし)とした。継ぎ合わせ方法は、繊維量半減端部A1,B1の長さは約150mmとし、繊維量半減端部A1,B1同士については4箇所交絡部を形成し、新しい側の繊維量非削減端部B2については1箇所交絡部を形成する方法とした。そして、実験ごとに、3本のガラス繊維束のうち、1本について前記方法により継ぎ合せを行うようにした。これら3本のガラス繊維束を用いる実験を3回実施した。 [Comparative Example 6] The experimental conditions were: glass fiber bundle: 3, production rate: 5 m / min, thermoplastic resin: polypropylene, fiber content: about 70%, twist angle θ of twisting roller: 0 ° (no twist) It was. The splicing method is such that the length of the fiber half-ends A1 and B1 is about 150 mm, the fiber half-ends A1 and B1 are formed with four interlaced parts, and the fiber side non-reducing end B2 on the new side. About, it was set as the method of forming one place entanglement part. For each experiment, one of the three glass fiber bundles was spliced by the above method. Experiments using these three glass fiber bundles were performed three times.
その結果、3回全ておいて、継ぎ合わせ部がダイノズルを通過した。しかしながら、ダイノズルに毛羽が大量につまり、3回の実験いずれの場合にも、継ぎ合わせ部のダイノズル通過後は、製造を続けることができなかった。 As a result, the joint portion passed through the die nozzle after all three times. However, a large amount of fluff in the die nozzle, that is, in any of the three experiments, the production could not be continued after passing through the die nozzle in the joint portion.
1…回巻体
2…強化用繊維束
3…溶融樹脂
4…長繊維強化樹脂ストランド
5…予熱用加熱装置
6A,6B…加熱用ローラ
7…含浸ダイ
8…ダイノズル
9…含浸ローラ
10…押出機
11…スクリュ
12…冷却水槽
13A,13B…撚りローラ
14…ペレタイザー
A,B…強化用繊維束
A1,B1…繊維量半減端部
A2,B2…繊維量非削減端部
C1,C2…交絡部
DESCRIPTION OF
Claims (2)
使い終わりの回巻体の強化用繊維束の終端部分と新しい回巻体の強化用繊維束の始端部分との双方について、それぞれ、強化用繊維束の一部を除去して繊維量が本来の約半分である繊維量半減端部を形成し、エアスプライサにより、前記繊維量半減端部同士をその長手方向における1箇所以上にて交絡させ、さらに、前記新しい回巻体における前記繊維量半減端部に続く繊維量非削減端部において、その長手方向における1箇所以上にて、エアスプライサにより、強化用繊維同士を交絡させることにより、前記使い終わりの回巻体の強化用繊維束と前記新しい回巻体の強化用繊維束とを継ぎ合わせ、強化用繊維束を連続供給することを特徴とする長繊維強化熱可塑性樹脂ペレットの製造方法。 The reinforcing fiber bundle drawn from the wound body is continuously introduced into the impregnation die and impregnated with the molten thermoplastic resin in the reinforcing fiber bundle, and by a twister provided on the downstream side of the impregnation die The fiber-impregnated reinforcing fiber bundle passing continuously through the impregnation die is twisted, and the continuous fiber-reinforced resin strand composed of the resin impregnated reinforcing fiber bundle to which the twist is applied from the impregnation die is continuously provided. In a method for producing a long fiber reinforced thermoplastic resin pellet by taking, pelletizing the long fiber reinforced resin strand,
For both the end portion of the reinforcing fiber bundle of the end-of-use wound body and the beginning end portion of the reinforcing fiber bundle of the new wound body, a part of the reinforcing fiber bundle is removed to obtain the original fiber amount. A half-end portion of the fiber amount that is about half is formed, and the half-end portion of the fiber amount is entangled at one or more places in the longitudinal direction by an air splicer, and further, the half-end portion of the fiber amount in the new wound body In the non-reducing end portion of the fiber amount, the reinforcing fiber bundle of the end-of-use wound body and the new winding are entangled with each other by an air splicer at one or more locations in the longitudinal direction. A method for producing a long fiber reinforced thermoplastic resin pellet, comprising joining a body reinforcing fiber bundle and continuously supplying the reinforcing fiber bundle.
The long fiber according to claim 1, wherein an adhesive is further applied to the entangled portion entangled by an air splicer, and the same resin as the thermoplastic resin impregnated in the reinforcing fiber bundle is used as the adhesive. A method for producing reinforced thermoplastic resin pellets.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007258945A JP4829865B2 (en) | 2007-10-02 | 2007-10-02 | Manufacturing method of long fiber reinforced thermoplastic resin pellets |
ES08836118T ES2791893T3 (en) | 2007-10-02 | 2008-09-19 | Method for making continuous fiber reinforced thermoplastic resin granules |
EP08836118.3A EP2206591B1 (en) | 2007-10-02 | 2008-09-19 | Method for manufacturing continuous-fiber-reinforced thermoplastic resin pellet |
KR1020107007120A KR101161497B1 (en) | 2007-10-02 | 2008-09-19 | Process and apparatus for producing long-fiber-reinforced thermoplastic resin pellet |
CN2008801097740A CN101815602B (en) | 2007-10-02 | 2008-09-19 | Process and apparatus for producing long-fiber-reinforced thermoplastic resin pellet |
US12/678,762 US8236127B2 (en) | 2007-10-02 | 2008-09-19 | Method and apparatus for manufacturing continuous fiber-reinforced thermoplastic resin pellet |
PCT/JP2008/066970 WO2009044641A1 (en) | 2007-10-02 | 2008-09-19 | Process and apparatus for producing long-fiber-reinforced thermoplastic resin pellet |
US13/471,096 US8910690B2 (en) | 2007-10-02 | 2012-05-14 | Method and apparatus for manufacturing continuous fiber-reinforced thermoplastic resin pellet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007258945A JP4829865B2 (en) | 2007-10-02 | 2007-10-02 | Manufacturing method of long fiber reinforced thermoplastic resin pellets |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009083420A JP2009083420A (en) | 2009-04-23 |
JP4829865B2 true JP4829865B2 (en) | 2011-12-07 |
Family
ID=40657478
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007258945A Active JP4829865B2 (en) | 2007-10-02 | 2007-10-02 | Manufacturing method of long fiber reinforced thermoplastic resin pellets |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4829865B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5286227B2 (en) | 2009-11-06 | 2013-09-11 | 株式会社神戸製鋼所 | Method for connecting reinforcing fiber bundles, method for producing long fiber reinforced thermoplastic resin pellets, and wound body |
JP6492979B2 (en) * | 2015-06-01 | 2019-04-03 | 日本電気硝子株式会社 | Glass fiber bundle and manufacturing method thereof |
JP2019108229A (en) * | 2019-03-01 | 2019-07-04 | 日本電気硝子株式会社 | Glass fiber convergence body |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54112452A (en) * | 1978-02-23 | 1979-09-03 | Furukawa Electric Co Ltd:The | Device for continuously supplying linear material |
JPS6015370A (en) * | 1983-07-04 | 1985-01-26 | Nippon Glass Seni Kk | Coupling method of glass fiber roving |
JPS62140973A (en) * | 1985-12-16 | 1987-06-24 | Shin Meiwa Ind Co Ltd | Winding type substance drawing out device |
JPS62173348A (en) * | 1986-01-23 | 1987-07-30 | Daito Press Kogyo Kk | Remote control type backsight mirror |
JPH04286574A (en) * | 1991-03-15 | 1992-10-12 | Hakodate Seimo Sengu Kk | Filament supply method for automatic spool winder and device therefor |
JP3114311B2 (en) * | 1991-12-20 | 2000-12-04 | 株式会社神戸製鋼所 | Method for producing fiber reinforced resin strand |
JPH0679348A (en) * | 1992-08-26 | 1994-03-22 | Showa Alum Corp | Continuous wire feeding method |
JP3315444B2 (en) * | 1992-10-05 | 2002-08-19 | 住友化学工業株式会社 | Fiber reinforced thermoplastic resin structure and method for producing the same |
JP3346872B2 (en) * | 1994-01-26 | 2002-11-18 | 住友化学工業株式会社 | Method of removing fiber bundle and method of manufacturing long fiber reinforced resin structure |
JPH0947814A (en) * | 1995-08-08 | 1997-02-18 | Asahi Chem Ind Co Ltd | Device and method for drawing wire coil |
JP3777145B2 (en) * | 2002-06-21 | 2006-05-24 | 旭ファイバーグラス株式会社 | Glass fiber reinforced thermoplastic resin pellet and method for producing the same |
-
2007
- 2007-10-02 JP JP2007258945A patent/JP4829865B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009083420A (en) | 2009-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100867251B1 (en) | Filament fiber reinforecd thermoplastic resin pellet, and manufacturing method of the same | |
JP3777145B2 (en) | Glass fiber reinforced thermoplastic resin pellet and method for producing the same | |
KR101161497B1 (en) | Process and apparatus for producing long-fiber-reinforced thermoplastic resin pellet | |
CN107735433A (en) | The manufacture method of fiber-reinforced resin sheet material | |
JP3029800B2 (en) | Manufacturing method of mixed yarn for composite material | |
JP6492979B2 (en) | Glass fiber bundle and manufacturing method thereof | |
JP5059259B2 (en) | Long fiber pellet and method and apparatus for producing long fiber pellet | |
JP4829865B2 (en) | Manufacturing method of long fiber reinforced thermoplastic resin pellets | |
CN110475920B (en) | Glass fiber yarn connected body | |
JPH06114832A (en) | Fibber-reinforced thermoplastic resin structure and manufacture thereof | |
JP5225260B2 (en) | Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand | |
JPH06254852A (en) | Manufacture of filament reinforced synthetic resin strand | |
JP5001875B2 (en) | Method and apparatus for producing long fiber reinforced thermoplastic resin pellets | |
JP6340110B1 (en) | Optical fiber cable manufacturing method | |
JP2019108229A (en) | Glass fiber convergence body | |
JP5431827B2 (en) | Manufacturing method of substantially rectangular thermoplastic resin-coated FRP filament, and drop optical fiber cable using the FRP filament | |
KR101956118B1 (en) | Polymer fiber puck manufacturing method for structural reinforcing | |
TWI717577B (en) | Fiberglass yarn connector | |
JP3671601B2 (en) | How to unwind glass roving | |
JPH0880576A (en) | Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material | |
TW202233920A (en) | Carbon fiber bundle splitting method for producing carbon fiber bundles with lower K numbers but higher strength and modulus | |
JP3433866B2 (en) | Manufacturing method of fiber reinforced resin cable | |
JPH10297932A (en) | Glass roving | |
JPH10278120A (en) | Method and apparatus for manufacturing fiber reinforced resin composite spiral rod | |
JPH06254849A (en) | Manufacture of filament reinforced synthetic resin strand |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090929 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110408 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110916 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140922 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4829865 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |