JP3114311B2 - Method for producing fiber reinforced resin strand - Google Patents
Method for producing fiber reinforced resin strandInfo
- Publication number
- JP3114311B2 JP3114311B2 JP35585591A JP35585591A JP3114311B2 JP 3114311 B2 JP3114311 B2 JP 3114311B2 JP 35585591 A JP35585591 A JP 35585591A JP 35585591 A JP35585591 A JP 35585591A JP 3114311 B2 JP3114311 B2 JP 3114311B2
- Authority
- JP
- Japan
- Prior art keywords
- strand
- resin
- fiber bundle
- molten resin
- reinforcing fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Reinforced Plastic Materials (AREA)
Description
【0001】本発明は連続した長尺の強化用繊維束を使
用して繊維強化樹脂ストランドを製造する方法に関し、
詳細には高い柔軟性及び耐座屈性を発揮する繊維強化樹
脂ストランドを効率良く製造する方法に関するものであ
る。The present invention relates to a method for producing a fiber-reinforced resin strand using a continuous long reinforcing fiber bundle,
More specifically, the present invention relates to a method for efficiently producing a fiber-reinforced resin strand exhibiting high flexibility and buckling resistance.
【0002】[0002]
【従来の技術】FRTP(Fiber Reinforced Thermo Pl
astic;繊維強化熱可塑性プラスチック)のプリプレグを
製造する方法としては、溶融状態の熱可塑性樹脂浴内に
連続した長尺の強化用繊維束を通過させ、該繊維束に樹
脂を含浸すると共に、断面形状を賦形ダイによって成形
しつつ引取って繊維強化樹脂ストランド(以下単にスト
ランドという)を連続的に製造する方法がもっとも広く
行われている。図4は上記ストランドの製造装置の一例
を示す説明図、図5はその要部拡大断面図であり、樹脂
材料2Aは加熱押出機21によって溶融されると共に、
クロスヘッド22へ供給され、該クロスヘッド22の樹
脂通路22a内を通過する途中において、多数本の強化
用繊維1,1と複合化された後吐出され(図5参照)、
その後賦形ダイ23によってその断面を所望形状に成形
しストランド3として冷却器24へ送給する。冷却によ
って固化状態となったストランド3は引抜機25によっ
て矢印方向へ引抜かれ、必要によりカッター26によっ
て所定長さに切断される。なおカッター26に替えて巻
取リール等が設けられることもある。2. Description of the Related Art FRTP (Fiber Reinforced Thermo Pl)
As a method of producing a prepreg of astic; fiber-reinforced thermoplastic, a continuous long reinforcing fiber bundle is passed through a molten thermoplastic resin bath, and the fiber bundle is impregnated with a resin and a cross section is formed. The most widely used method is to continuously produce fiber-reinforced resin strands (hereinafter simply referred to as "strands") by shaping and shaping the shape with a shaping die. FIG. 4 is an explanatory view showing an example of the strand manufacturing apparatus, and FIG. 5 is an enlarged cross-sectional view of a main part of the strand manufacturing apparatus.
After being supplied to the crosshead 22 and passing through the resin passage 22a of the crosshead 22, it is discharged after being compounded with a large number of reinforcing fibers 1 and 1 (see FIG. 5).
Thereafter, the cross-section is formed into a desired shape by the shaping die 23 and fed to the cooler 24 as the strand 3. The strand 3 which has been solidified by cooling is pulled out in the direction of the arrow by a puller 25 and cut to a predetermined length by a cutter 26 as necessary. A take-up reel or the like may be provided in place of the cutter 26.
【0003】一方図6はストランド3の他の製造装置例
を示す説明図であり、溶融樹脂材料2は図の右側から押
出しスクリュー7によってクロスヘッド5内へ連続的に
供給されると共に、強化用繊維1,1…はクロスヘッド
5の軸長手方向に沿って上から下へ貫通する様に供給さ
れ、この通過過程において強化用繊維束に樹脂材料を含
浸しつつ賦形ダイ9において断面を所望の形状に賦形し
冷却器10によって即座に冷却硬化する。このストラン
ド3は巻取リール17に巻取られる。なおクロスヘッド
5内に設けられるスプレダー8,8…は強化用繊維束を
ジグザグ状に走行させて解繊し含浸性を高めるのに使用
される。On the other hand, FIG. 6 is an explanatory view showing another example of a production apparatus for the strand 3. The molten resin material 2 is continuously supplied from the right side of the figure into the crosshead 5 by an extrusion screw 7, and the reinforcing The fibers 1, 1... Are supplied so as to penetrate from top to bottom along the axial longitudinal direction of the crosshead 5, and in this passing process, a reinforcing fiber bundle is impregnated with a resin material and a desired cross section is formed in the shaping die 9. And immediately cooled and hardened by the cooler 10. The strand 3 is taken up on a take-up reel 17. The spreaders 8, 8,... Provided in the crosshead 5 are used for running the reinforcing fiber bundle in a zigzag manner to defibrate and improve impregnation.
【0004】[0004]
【発明が解決しようとする課題】上記の様にして製造さ
れるストランド3においては、強化用繊維はストランド
長手方向と平行に配向されており、該ストランド長手方
向の引張力及び圧縮力に対しては優れた機械的性質を発
揮する。しかるにこのストランドにおける曲げについて
は、強化用繊維自体には弾性があるが、ストランド全体
としては柔軟性に乏しく該ストランドを屈曲又は湾曲さ
せると容易に破断又は座屈してしまうという大きな問題
があった。In the strand 3 manufactured as described above, the reinforcing fibers are oriented parallel to the longitudinal direction of the strand, and the tensile strength and the compressive force in the longitudinal direction of the strand are reduced. Exhibits excellent mechanical properties. However, regarding the bending of the strand, the reinforcing fiber itself has elasticity, but the entire strand is poor in flexibility, and there is a serious problem that the strand is easily broken or buckled when the strand is bent or curved.
【0005】一方強化用繊維と樹脂材料との密着性を確
保するためには、分子量の低い樹脂を用いて溶融粘度の
低い状態で含浸を行う方法があるが(特公昭63-37694
号)、この方法ではストランドの耐熱性や疲労強度が不
十分になるという不具合が生じる。また図6の様に強化
用繊維束をスプレダー8に押し付けて解繊し、繊維間に
樹脂が浸入し易い様に構成する手段も考えられている
が、強化用繊維の折損が増加してストランドとしての機
械的性質が低下するといった問題があった。そこで本発
明者らは、強化用繊維に対して良好な撚りを与えると共
に十分な樹脂含心を行わせ、その結果として柔軟性及び
耐座屈性の両方が向上された繊維強化樹脂ストランドを
提供する目的で研究を重ね、本発明を完成した。On the other hand, in order to ensure the adhesion between the reinforcing fibers and the resin material, there is a method of impregnating the resin with a low molecular weight using a resin having a low melt viscosity (Japanese Patent Publication No. 63-37694).
No.), this method has a disadvantage that the heat resistance and fatigue strength of the strand become insufficient. Further, as shown in FIG. 6, there is considered a means in which the reinforcing fiber bundle is pressed against the spreader 8 to be defibrated so that the resin easily enters between the fibers. However, there is a problem that the mechanical properties of the steel are deteriorated. Therefore, the present inventors provide a fiber reinforced resin strand that gives a good twist to the reinforcing fiber and performs sufficient resin concentricity, and as a result, improves both flexibility and buckling resistance. The research was repeated for the purpose of completing the present invention.
【0006】上記目的を達成し得た繊維強化樹脂ストラ
ンドは、次に示す様な方法によって製造することにより
提供される。即ち第1の方法は、長尺の強化用繊維束を
熱可塑性樹脂の溶融樹脂浴中に浸漬させて繊維束内に溶
融樹脂を含浸せしめ、更にダイを経て前記溶融樹脂浴外
に引き出した後、該引き出し方向に対して傾斜方向に回
転するローラによって溶融樹脂含浸強化繊維束をねじれ
方向に回転させ、該強化繊維束に撚りを与えつつ繊維間
への溶融樹脂含浸を進めることを要旨とするものであ
る。また第2の方法は、長尺の強化用繊維束を熱可塑性
樹脂の溶融樹脂浴中に浸漬させて繊維束内に溶融樹脂を
含浸せしめ、更にダイを経て前記溶融樹脂浴外に引き出
した後、該引き出し方向軸を中心としてその周囲を旋回
する旋回リールに巻取ることによって前記強化用繊維束
に撚りを与えつつ繊維間への溶融樹脂含浸を進めること
を要旨とするものである。これらの方法であれば良好な
樹脂含浸性が発揮されると共に、ストランドに対しても
良好な柔軟性が与えられる。更に本発明においては、前
記強化用繊維束を解繊しつつ前記溶融樹脂浴中に浸漬さ
せることが好ましい。The fiber reinforced resin strand which has achieved the above object is provided by being manufactured by the following method. That is, in the first method, a long reinforcing fiber bundle is immersed in a molten resin bath of a thermoplastic resin to impregnate the fiber bundle with the molten resin, and further drawn out of the molten resin bath through a die. The gist is that the molten resin-impregnated reinforcing fiber bundle is rotated in a twisting direction by a roller that rotates in an inclined direction with respect to the drawing direction, and the molten resin is impregnated between the fibers while twisting the reinforcing fiber bundle. Things. In the second method, a long reinforcing fiber bundle is immersed in a molten resin bath of a thermoplastic resin to impregnate the fiber bundle with the molten resin, and then drawn out of the molten resin bath through a die. The gist of the invention is to impregnate the reinforcing fiber bundle with the molten resin while twisting the reinforcing fiber bundle by winding it around a revolving reel that revolves around the drawing direction axis. With these methods, good resin impregnation properties are exhibited, and also good flexibility is given to the strand. Further, in the present invention, the reinforcing fiber bundle is preferably immersed in the molten resin bath while being defibrated.
【0007】[0007]
【作用】本発明の上記方法によって製造されたストラン
ドは、強化用繊維束に撚りが付与されているので、曲げ
力が負荷されるときには、各構成繊維1は図3の(b)
に示す様に曲げの内側と外側に交互に変位して湾曲され
ることとなり、その為引張応力と圧縮応力が均等化され
て曲げに対する抗力が低減され、ストランドに座屈や破
断が生じるのを防止すると共に、ストランド自体は高い
柔軟性を発揮する。In the strand produced by the above method of the present invention, since the reinforcing fiber bundle is twisted, when a bending force is applied, each of the constituent fibers 1 is converted into the strand shown in FIG.
As shown in the figure, it is displaced to the inside and outside of the bend alternately to bend, so that the tensile stress and the compressive stress are equalized, the resistance to bending is reduced, and the buckling or fracture of the strand is prevented. While preventing, the strand itself exhibits high flexibility.
【0008】しかも本発明製造方法においては、樹脂含
浸後に与えられた撚が樹脂浴内を走行するストランドに
も伝達され、その結果強化用繊維束が撚られつつ樹脂含
浸が行われることとなるので、撚りによって樹脂と強化
用繊維の接触点が3次元的に変化していき、樹脂含浸が
確実に行なえ、樹脂と繊維は確実に密着させることがで
きる。Further, in the manufacturing method of the present invention, the twist given after the resin impregnation is also transmitted to the strand running in the resin bath, and as a result, the resin impregnation is performed while the reinforcing fiber bundle is being twisted. In addition, the contact point between the resin and the reinforcing fiber changes three-dimensionally due to the twist, so that the resin impregnation can be reliably performed, and the resin and the fiber can be surely brought into close contact with each other.
【0009】また上記方法であれば仮に強化用繊維が樹
脂含浸途中で折損しても、撚り作用によってこれが繊維
束内へ巻込まれることになるので、折損した繊維がクロ
スヘッドや賦形ダイに引掛って引抜き抵抗を増す様なこ
とはなく、また折損した繊維がクロスヘッドや賦形ダイ
の内部に滞留することも少なくなるので、これらのクリ
ーニング作業も少なくでき、効率的な製造を継続して実
施できる様になる。In the above method, even if the reinforcing fibers are broken during the impregnation with the resin, the fibers are wound into the fiber bundle by the twisting action, so that the broken fibers are caught on the crosshead or the shaping die. It does not increase the pull-out resistance, and the broken fibers are less likely to stay inside the crosshead or shaping die, so these cleaning operations can be reduced and efficient production can be continued. Be able to do it.
【0010】[0010]
【実施例】図1は本発明ストランドを製造するための装
置例を示す説明図であり、溶融樹脂材料2は押出機6よ
りクロスヘッド5内へ連続供給される。該クロスヘッド
5の出側には賦形ダイ9、冷却器10、撚りローラ11
a,11b、引抜きローラ12が順に配設され、該クロ
スヘッド5内には強化用繊維束を解繊するためのスプレ
ダー8が設けられる。すなわち強化用繊維1,1…はク
ロスヘッド5内で溶融樹脂材料2中に浸漬され、樹脂含
浸された後、賦形ダイ9によってその断面形状が定めら
れ、冷却器10において冷却硬化される。撚りローラ1
1a,11bはゴム製ローラで逆回転駆動する様に構成
され、各ローラ11a,11bは水平面内で逆方向に傾
けて配設されており、これらローラ11a,11bの交
差部でストランド3を挟持して矢印方向へ引抜くことに
より、該ストランド3は軸心を中心として回転される。
これによって冷却器10と最下流側のスプレダー8aの
間で撚りが付与される。なおストランド3の外面形状を
できるだけ均整化するため、クロスヘッド5の出口、賦
形ダイ9及び冷却器10はできるだけ近接して配置する
ことが好ましい。FIG. 1 is an explanatory view showing an example of an apparatus for producing the strand of the present invention. A molten resin material 2 is continuously supplied from an extruder 6 into a crosshead 5. On the exit side of the crosshead 5, a shaping die 9, a cooler 10, a twist roller 11
a, 11b and a pull-out roller 12 are arranged in this order, and a spreader 8 for defibrating the reinforcing fiber bundle is provided in the crosshead 5. Are immersed in the molten resin material 2 in the crosshead 5 and impregnated with the resin, the cross-sectional shape is determined by the shaping die 9, and cooled and hardened in the cooler 10. Twist roller 1
The rollers 1a and 11b are configured to be driven in reverse rotation by rubber rollers, and the rollers 11a and 11b are disposed to be inclined in the reverse direction in a horizontal plane, and the strand 3 is held at the intersection of the rollers 11a and 11b. Then, the strand 3 is rotated about the axis by pulling in the direction of the arrow.
Thereby, twist is provided between the cooler 10 and the spreader 8a on the most downstream side. In order to equalize the outer surface shape of the strand 3 as much as possible, it is preferable to arrange the outlet of the crosshead 5, the shaping die 9 and the cooler 10 as close as possible.
【0011】図2は本発明に用いる撚り機の他の実施例
を示す説明図であり、ストランド3は自転する巻取リー
ル17に巻取られると共に、該巻取リール17がアーム
部14を介して回転軸15に接続され、ガイドロール1
6aの下流側においてストランド3を軸心を中心として
回転させる様になっているので、強化用繊維束に撚りが
付与される。なお符号ガイドロール16a,16bはス
トランド3における長手方向の移動を補助するものであ
る。FIG. 2 is an explanatory view showing another embodiment of the twisting machine used in the present invention. The strand 3 is wound on a take-up reel 17 rotating on its own axis, and the take-up reel 17 is Guide roll 1
The strand 3 is rotated around the axis downstream of 6a, so that the reinforcing fiber bundle is twisted. The code guide rolls 16a and 16b assist the movement of the strand 3 in the longitudinal direction.
【0012】本発明に用いられる樹脂材料は特に限定さ
れず、高融点耐熱性樹脂(ポリエーテルエーテルケトン
やポリエーテルスルホンなど)を始めとして如何なる熱
可塑性樹脂も用いることができ、強化用繊維についても
制限を受けるものではなく、無機繊維や有機繊維の如何
を問わずに用いることができる。The resin material used in the present invention is not particularly limited, and any thermoplastic resin such as a high melting point heat resistant resin (such as polyetheretherketone or polyethersulfone) can be used. There is no limitation, and any inorganic fiber or organic fiber can be used.
【0013】(実施例1)図1に示す装置を用い、熱可
塑性樹脂としてエチレン・アクリル酸共重合体(EAA
樹脂、ダウケミカル社製プリマコール5990)を、強
化用繊維としてEガラスロービング(日本硝子繊維製2
400tex)を夫々用い、繊維含有量74wt%の繊
維強化樹脂ストランド(断面径 2.1mmφ)を製造した。
ガラスロービングを溶融樹脂浴中に通し、クロスヘッド
5に配設された複数のスプレダーを交互に架け渡し5m
/minの速度で引抜いた。さらに賦形ダイを通すこと
によりロッド状に成形した。(Example 1) An ethylene-acrylic acid copolymer (EAA) was used as a thermoplastic resin by using the apparatus shown in FIG.
E glass roving (Nippon Glass Fiber 2
400 tex), and a fiber reinforced resin strand (cross-sectional diameter 2.1 mmφ) having a fiber content of 74 wt% was produced.
The glass roving is passed through a molten resin bath, and a plurality of spreaders arranged in the crosshead 5 are alternately bridged over 5 m.
/ Min. Further, it was shaped into a rod by passing through a shaping die.
【0014】こうして製造されたストランドは柔軟性に
富み、曲率半径50mmに曲げても座屈が生じなかっ
た。座屈曲率半径の測定はそれぞれ50、150、20
0、250mm半径の円弧状の治具にストランドを沿わ
せてフープ状に曲げることにより、どの半径で座屈が生
じるかを目視で観察した。引張強度、引張弾性率はAS
TM D 3916に準じて測定したが、繊維が撚られ
ていてもストランドの機械的強度の低下は認められず、
むしろ向上する傾向が認められた。また5時間連続運転
後、クロスヘッドを分解して内部を調べたが、残存した
繊維の毛羽は操業上無視できるぐらいのものであった。The strand thus produced was rich in flexibility and did not buckle even when bent to a radius of curvature of 50 mm. Measurement of the squat flexion radius was 50, 150, and 20 respectively.
By bending the strand along an arc-shaped jig having a radius of 0 or 250 mm and bending it into a hoop shape, it was visually observed at which radius buckling would occur. The tensile strength and tensile modulus are AS
It was measured according to TM D 3916, but no decrease in the mechanical strength of the strand was observed even if the fibers were twisted,
Rather, the tendency for improvement was observed. After the continuous operation for 5 hours, the crosshead was disassembled and the interior was examined. The fluff of the remaining fibers was negligible in operation.
【0015】(比較例1)撚り機を用いない他は実施例
1と同様のクロスヘッドを用い、ガラス繊維強化樹脂ス
トランドを製造した。材料、繊維含有量、製造条件は実
施例1と同じである。得られたストランドは曲率半径2
50mmで座屈が生じた。また製造開始から約2時間後
にクロスヘッドの賦形部に折損繊維が溜り、ダイ詰まり
を生じたため、運転を中断して、クリーニングを行なう
必要があった。実施例1と比較例1において得られたス
トランドの機械的性質を表1に示す。Comparative Example 1 A glass fiber reinforced resin strand was produced using the same crosshead as in Example 1 except that no twisting machine was used. The material, fiber content, and manufacturing conditions are the same as in Example 1. The resulting strand has a radius of curvature of 2
Buckling occurred at 50 mm. Also, about 2 hours after the start of production, broken fibers accumulated in the shaped portion of the crosshead and clogged the die, so it was necessary to interrupt the operation and perform cleaning. Table 1 shows the mechanical properties of the strands obtained in Example 1 and Comparative Example 1.
【0016】[0016]
【表1】 [Table 1]
【0017】(実施例2)図2に示す装置を用い、熱可
塑性樹脂としてエチレン・アクリル酸共重合体(EAA
樹脂、ダウ ケミカル社製プリマコール5990)を、
強化繊維としてEガラスロービング(日本硝子繊維製2
400tex)を夫々用いて、繊維含有量約70wt%
の繊維強化樹脂ストランド(断面径 1.6mmφ)を製造し
た。ガラスロービングを溶融樹脂浴中に通して、クロス
ヘッド5に配置された複数のスプレダーを交互に架け渡
し、5m/minの速度で引抜いた。さらにストランド
が0.3 m巻取られる間に巻取リールがその垂直面内にも
1回転させることにより、ストランド中の繊維が撚ら
れ、その後冷却されてロッド状に成形した。Example 2 Using an apparatus shown in FIG. 2, an ethylene / acrylic acid copolymer (EAA) was used as a thermoplastic resin.
Resin, Dow Chemical's Primacol 5990)
E-glass roving (Nippon Glass Fiber 2
400 tex) and a fiber content of about 70 wt%
Of the fiber reinforced resin strand (cross-sectional diameter 1.6 mmφ). The glass roving was passed through a molten resin bath, and a plurality of spreaders arranged in the crosshead 5 were alternately bridged and pulled out at a speed of 5 m / min. Further, while the strand was wound by 0.3 m, the take-up reel also made one rotation in the vertical plane, whereby the fibers in the strand were twisted and then cooled to form a rod.
【0018】こうして製造されたストランドは柔軟性に
富み、曲率半径が50mmをこえても座屈が生じなかっ
た。ストランドの引張強度、引張弾性率は繊維が撚られ
ていても低下は認められず、むしろ向上する傾向が認め
られた。また5時間連続運転後、クロスヘッドを分解し
てダイ内部を調べたが、残存した繊維の毛羽は操業上無
視できるぐらいのものであった。The strand thus produced was rich in flexibility, and did not buckle even when the radius of curvature exceeded 50 mm. The tensile strength and tensile modulus of the strand did not decrease even if the fiber was twisted, but rather tended to improve. After the continuous operation for 5 hours, the crosshead was disassembled and the inside of the die was examined. The fluff of the remaining fibers was negligible in operation.
【0019】(比較例2)巻取りの際に撚りをかけずに
実施例2と同様にしてガラス繊維強化樹脂ストランド
(断面径 1.6mmφ)を製造した。材料、繊維含有量、製
造条件は実施例2と同じである。得られたストランドは
曲率半径が250mm以上で座屈が生じた。また製造開
始から約4時間後にクロスヘッドダイの賦形部に毛羽が
溜り、ダイ詰まりを生じたため、運転を中断して、クリ
ーニングを行なう必要があった。座屈部での繊維の損傷
具合を軟X線写真で調べたところ、内包する繊維に撚り
のかかったストランドの方が引き取り方向に繊維が1次
元的に配向した従来のストランドよりも明らかに座屈部
での繊維の損傷が少ないことがわかった。(Comparative Example 2) A glass fiber reinforced resin strand (cross-sectional diameter: 1.6 mmφ) was produced in the same manner as in Example 2 without twisting during winding. The material, fiber content, and manufacturing conditions are the same as in Example 2. Buckling occurred in the obtained strand when the radius of curvature was 250 mm or more. Also, about 4 hours after the start of the production, fuzz accumulated in the shaping portion of the crosshead die and clogged the die, so that it was necessary to interrupt the operation and perform cleaning. Examination of the degree of fiber damage at the buckled portion by soft X-ray photography revealed that strands twisted on the contained fibers were clearly more seated than conventional strands in which the fibers were oriented one-dimensionally in the take-off direction. It was found that there was little fiber damage at the flexure.
【0020】(実施例3)実施例2と同様のクロスヘッ
ド押出機により、強化繊維として予め撚糸されたEガラ
スヤーン(日本硝子繊維製2400tex)を用いて、
ガラス繊維強化樹脂ストランドを製造した。熱可塑性樹
脂としては実施例2と同じくエチレン・アクリル酸共重
合体(EAA樹脂、ダウ ケミカル社製プリマコール5
990)を用い、繊維含有率も同じく約70wt%とな
る様にストランドの断面径(1.6mmφ)を定めた。ガラス
ヤーンを溶融樹脂浴中に通して、クロスヘッドに配置さ
れた複数のスプレダーを交互に架け渡し、5m/min
の速度で引き、賦形ダイを通して冷却しロッド状に成形
した。(Embodiment 3) Using the same crosshead extruder as in Embodiment 2, using E-glass yarn (2400 tex, manufactured by Nippon Glass Fiber) previously twisted as a reinforcing fiber,
Glass fiber reinforced resin strands were manufactured. As the thermoplastic resin, as in Example 2, an ethylene / acrylic acid copolymer (EAA resin, Primacol 5 manufactured by Dow Chemical Co., Ltd.) was used.
990), and the cross-sectional diameter (1.6 mmφ) of the strand was determined so that the fiber content also became about 70 wt%. The glass yarn is passed through a molten resin bath, and a plurality of spreaders arranged in a crosshead are alternately bridged, and 5 m / min.
And cooled through a shaping die to form a rod.
【0021】このストランドは柔軟性に富み、曲率半径
が50mmをこえても座屈が生じなかった。しかし繊維
が予め撚糸されていたことにより、樹脂が繊維束内部に
完全に浸透せず、ストランド中への樹脂の供給不足から
見かけの繊維含有率が非常に高くなった(80wt
%)。このため樹脂と繊維の密着性が著しく劣るものと
なり、引張強度、引張弾性率においてガラスロービング
を用いたものに比べ、10〜15%の低下が認められ
た。実施例2,3と比較例2において得られたストラン
ドの機械的性質を表2に示す。This strand was rich in flexibility and did not buckle even if the radius of curvature exceeded 50 mm. However, since the fibers were twisted in advance, the resin did not completely penetrate into the inside of the fiber bundle, and the apparent fiber content became extremely high due to insufficient supply of the resin into the strands (80 wt.
%). For this reason, the adhesion between the resin and the fiber was significantly poor, and a decrease in tensile strength and tensile elasticity of 10 to 15% was observed as compared with that using glass roving. Table 2 shows the mechanical properties of the strands obtained in Examples 2 and 3 and Comparative Example 2.
【0022】[0022]
【表2】 [Table 2]
【0023】[0023]
【発明の効果】本発明によって製造されたストランドは
柔軟性を有し、曲げに対して高い耐座屈性を発揮する。
また本発明方法では、ストランドに対して良好な撚が与
えられつつ含浸が行われるので、強化用繊維と樹脂材料
を強固に密着させることができ、また賦形ダイ等におい
て破損した強化用繊維が引掛かることなく効率的な製造
ができる様になった。The strand produced according to the present invention has flexibility and exhibits high buckling resistance against bending.
Further, in the method of the present invention, since the strand is impregnated while being given a good twist, the reinforcing fiber and the resin material can be firmly adhered to each other. Efficient production can be performed without getting caught.
【図1】本発明方法に用いられる装置の実施例を示す説
明図である。FIG. 1 is an explanatory view showing an embodiment of an apparatus used in the method of the present invention.
【図2】本発明方法に用いられる装置の他の実施例を示
す説明図である。FIG. 2 is an explanatory view showing another embodiment of the apparatus used in the method of the present invention.
【図3】(a)は直線状態、(b)は曲げ状態の本発明
ストランドを示す説明図である。FIGS. 3A and 3B are explanatory views showing the strand of the present invention in a straight line state and in a bent state.
【図4】従来方法に用いられる装置例を示す説明図であ
る。FIG. 4 is an explanatory diagram showing an example of an apparatus used in a conventional method.
【図5】図4に示すクロスヘッドの一部破断説明図であ
る。FIG. 5 is a partially cutaway explanatory view of the crosshead shown in FIG. 4;
【図6】従来方法に用いられる他の装置例を示す説明図
である。FIG. 6 is an explanatory diagram showing another example of an apparatus used in a conventional method.
1 強化用繊維 2 溶融樹脂材料 3 繊維強化樹脂ストランド 11a,11b 撚りローラ 15 回転軸 17 巻取リール DESCRIPTION OF SYMBOLS 1 Reinforcing fiber 2 Molten resin material 3 Fiber reinforced resin strand 11a, 11b Twisting roller 15 Rotary shaft 17 Take-up reel
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−78628(JP,A) 特開 昭63−12785(JP,A) 特開 昭63−264306(JP,A) 特開 平3−19809(JP,A) 特開 平2−127583(JP,A) (58)調査した分野(Int.Cl.7,DB名) B29B 11/16 B29B 15/14 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-78628 (JP, A) JP-A-63-12785 (JP, A) JP-A-63-264306 (JP, A) 19809 (JP, A) JP-A-2-12783 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B29B 11/16 B29B 15/14
Claims (3)
融樹脂浴中に浸漬させて繊維束内に溶融樹脂を含浸せし
め、更にダイを経て前記溶融樹脂浴外に引き出した後、
該引き出し方向に対して傾斜方向に回転するローラによ
って溶融樹脂含浸強化繊維束をねじれ方向に回転させ、
該強化繊維束に撚りを与えつつ繊維間への溶融樹脂含浸
を進めることを特徴とする繊維強化樹脂ストランドの製
造方法。1. A long reinforcing fiber bundle is melted with a thermoplastic resin.
Dipped in a molten resin bath to impregnate the fiber bundle with the molten resin
After further drawing out of the molten resin bath through a die,
A roller that rotates in an inclined direction with respect to the drawing direction
To rotate the molten resin-impregnated reinforcing fiber bundle in the twisting direction,
Impregnation of molten resin between fibers while twisting the reinforcing fiber bundle
Made in the fiber-reinforced resin strand, wherein the advancing
Construction method .
融樹脂浴中に浸漬させて繊維束内に溶融樹脂を含浸せし
め、更にダイを経て前記溶融樹脂浴外に引き出した後、
該引き出し方向軸を中心としてその周囲を旋回する旋回
リールに巻取ることによって前記強化用繊維束に撚りを
与えつつ繊維間への溶融樹脂含浸を進めることを特徴と
する繊維強化樹脂ストランドの製造方法。2. A long reinforcing fiber bundle is melted with a thermoplastic resin.
Dipped in a molten resin bath to impregnate the fiber bundle with the molten resin
After further drawing out of the molten resin bath through a die,
Revolving around the axis of the drawing direction
A method for producing a fiber-reinforced resin strand, comprising: impregnating a molten resin between fibers while twisting the reinforcing fiber bundle by winding on a reel .
樹脂浴中に浸漬させる請求項1または2に記載の繊維強3. The fiber strength according to claim 1, which is immersed in a resin bath.
化樹脂ストランドの製造方法。Method for producing a plasticized resin strand.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35585591A JP3114311B2 (en) | 1991-12-20 | 1991-12-20 | Method for producing fiber reinforced resin strand |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35585591A JP3114311B2 (en) | 1991-12-20 | 1991-12-20 | Method for producing fiber reinforced resin strand |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05169445A JPH05169445A (en) | 1993-07-09 |
JP3114311B2 true JP3114311B2 (en) | 2000-12-04 |
Family
ID=18446077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35585591A Expired - Lifetime JP3114311B2 (en) | 1991-12-20 | 1991-12-20 | Method for producing fiber reinforced resin strand |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3114311B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100867251B1 (en) | 2007-03-12 | 2008-11-06 | 가부시키가이샤 고베 세이코쇼 | Filament fiber reinforecd thermoplastic resin pellet, and manufacturing method of the same |
JP2013039809A (en) * | 2011-08-19 | 2013-02-28 | Yamaguchi Univ | Method and apparatus for manufacturing natural fiber reinforced resin strand |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3073988B1 (en) | 1999-08-12 | 2000-08-07 | 株式会社神戸製鋼所 | Manufacturing method of organic fiber reinforced resin pellets |
JP4524865B2 (en) * | 2000-06-12 | 2010-08-18 | 日東紡績株式会社 | Paper rope pellets |
US8993670B2 (en) | 2006-02-27 | 2015-03-31 | Asahi Kasei Chemicals Corporation | Glass-fiber reinforced thermoplastic resin composition and molded article thereof |
US7834080B2 (en) | 2006-03-13 | 2010-11-16 | Asahi Kasei Chemicals Corporation | Process for producing glass fiber-reinforced polyamide resin composition |
JP2007269914A (en) * | 2006-03-30 | 2007-10-18 | Asahi Kasei Chemicals Corp | Long glass fiber reinforced polyamide resin pellets and molded articles thereof |
US8147635B2 (en) | 2006-04-28 | 2012-04-03 | Kobe Steel, Ltd. | Manufacturing apparatus of fiber-reinforced resin strand |
JP4567662B2 (en) * | 2006-12-26 | 2010-10-20 | 株式会社神戸製鋼所 | Fiber reinforced resin strand manufacturing equipment |
US8236127B2 (en) | 2007-10-02 | 2012-08-07 | Kobe Steel, Ltd. | Method and apparatus for manufacturing continuous fiber-reinforced thermoplastic resin pellet |
JP4829865B2 (en) * | 2007-10-02 | 2011-12-07 | 株式会社神戸製鋼所 | Manufacturing method of long fiber reinforced thermoplastic resin pellets |
JP4831238B2 (en) * | 2010-03-31 | 2011-12-07 | 日東紡績株式会社 | Method for producing shimeji pellets |
JP5713685B2 (en) | 2011-01-04 | 2015-05-07 | 株式会社神戸製鋼所 | Manufacturing method of fiber reinforced strand |
KR101279328B1 (en) * | 2011-01-05 | 2013-06-26 | 지에스칼텍스 주식회사 | Apparatus for producing long-fiber-reinforced thermoplastic resin pellet |
JP5597152B2 (en) * | 2011-03-23 | 2014-10-01 | 株式会社神戸製鋼所 | Manufacturing method and manufacturing apparatus for long fiber reinforced resin strand |
JP6325195B2 (en) * | 2013-03-08 | 2018-05-16 | 大明化学工業株式会社 | Method for manufacturing brush-like grindstone, linear abrasive and brush-like grindstone |
KR20220101110A (en) | 2019-11-11 | 2022-07-19 | 도레이 카부시키가이샤 | Molding materials and molded articles |
CN111497170B (en) * | 2020-04-03 | 2021-05-11 | 武汉理工大学 | A preparation device of filamentous carbon fiber composite material for 3D printing |
-
1991
- 1991-12-20 JP JP35585591A patent/JP3114311B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100867251B1 (en) | 2007-03-12 | 2008-11-06 | 가부시키가이샤 고베 세이코쇼 | Filament fiber reinforecd thermoplastic resin pellet, and manufacturing method of the same |
US9211654B2 (en) | 2007-03-12 | 2015-12-15 | Kobe Steel, Ltd. | Continuous fiber-reinforced thermoplastic resin pellets and manufacturing method of the same |
JP2013039809A (en) * | 2011-08-19 | 2013-02-28 | Yamaguchi Univ | Method and apparatus for manufacturing natural fiber reinforced resin strand |
Also Published As
Publication number | Publication date |
---|---|
JPH05169445A (en) | 1993-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3114311B2 (en) | Method for producing fiber reinforced resin strand | |
EP2130658B1 (en) | Process for producing continuous fiber reinforced thermoplastic resin pellet | |
US5503928A (en) | Fibre reinforced composites | |
JP3777145B2 (en) | Glass fiber reinforced thermoplastic resin pellet and method for producing the same | |
JP5597152B2 (en) | Manufacturing method and manufacturing apparatus for long fiber reinforced resin strand | |
JP5467828B2 (en) | Manufacturing method of long fiber reinforced thermoplastic resin pellets | |
JP2002539982A (en) | Long fiber pellet and method and apparatus for producing long fiber pellet | |
JP2023069315A (en) | Strand manufacturing method, strand manufacturing apparatus, and fiber-reinforced resin strand | |
JP2001129827A (en) | Long fiber pellet, and method and apparatus for manufacturing it | |
JPH0533278A (en) | Rope comprising carbon fiber-reinforced composite material and production thereof | |
CN109789423B (en) | Cutting module and method for cutting a strand of string into individual pieces | |
JPH0768544A (en) | Impregnation of fiber bundle with resin | |
JP3178562B2 (en) | Yarn for thermoplastic composites | |
JP3386158B2 (en) | Molding materials and filament wound moldings | |
JP3532629B2 (en) | Manufacturing apparatus and manufacturing method for long fiber reinforced resin structure | |
JP4829865B2 (en) | Manufacturing method of long fiber reinforced thermoplastic resin pellets | |
JPH01229867A (en) | Apparatus and method for impregnating multifilament and multifiber structure having continuous length | |
JP5057286B2 (en) | Glass roving | |
JP3237716B2 (en) | Method for producing thermoplastic composite material | |
JP2662853B2 (en) | Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material | |
JPH06155460A (en) | Yarn for thermoplastic composite | |
JPS6359862B2 (en) | ||
KR101956118B1 (en) | Polymer fiber puck manufacturing method for structural reinforcing | |
JPH03129040A (en) | Concrete reinforcement and its manufacturing method | |
JP2621399B2 (en) | Glass fiber reinforced plastic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000829 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070929 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080929 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080929 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090929 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090929 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100929 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110929 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 12 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120929 Year of fee payment: 12 |