JP4815066B2 - Cleaning agent recovery method - Google Patents
Cleaning agent recovery method Download PDFInfo
- Publication number
- JP4815066B2 JP4815066B2 JP2001163665A JP2001163665A JP4815066B2 JP 4815066 B2 JP4815066 B2 JP 4815066B2 JP 2001163665 A JP2001163665 A JP 2001163665A JP 2001163665 A JP2001163665 A JP 2001163665A JP 4815066 B2 JP4815066 B2 JP 4815066B2
- Authority
- JP
- Japan
- Prior art keywords
- copper
- component
- purification
- agent
- carbonate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Treating Waste Gases (AREA)
- Processing Of Solid Wastes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Removal Of Specific Substances (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は塩基性炭酸銅を成分として含む浄化剤、または水酸化銅を成分として含む浄化剤の回収方法に関する。さらに詳細には、半導体製造工程等から排出される排ガスに含まれるホスフィン類またはシラン系ガスの除去に使用した塩基性炭酸銅を成分として含む浄化剤、水酸化銅を成分として含む浄化剤から銅成分を回収する方法に関する。
【0002】
【従来の技術】
シリコン半導体、化合物半導体等の製造工程においては、原料ガスあるいはドーピングガスとしてホスフィン類、シラン、ジシラン等の水素化物ガスが使用されている。また、シリコンウェハー等の半導体基板にシリコン窒化膜(Si3N4)を形成するための原料としてジクロロシランが使用されている。これらのガスは極めて毒性が高く、大気にそのまま放出した場合は人体及び環境に悪影響を与えるので、半導体製造工程で使用した後は、大気に放出するに先立ってこれらを含むガスを浄化する必要がある。そのため従来から有害成分としてホスフィン類を含む有害ガス、あるいは有害成分としてシラン、ジシラン、ジクロロシラン等のシラン系ガスを含む有害ガスの浄化剤が開発されてきた。
【0003】
このような浄化剤としては、例えば、III−V族化合物半導体薄膜製造工程から排出される無機V族化合物を含む排ガスを処理する処理剤であって、塩基性炭酸銅等の銅化合物からなる処理剤(特開平8−59391号公報)、III−V族化合物半導体薄膜製造工程から排出される有機V族化合物及び無機V族化合物を含む排ガスを処理する処理剤であって、塩基性炭酸銅及び過マンガン酸カリウムにアナターゼ型微粒子酸化チタンを混合して調製した処理剤(特開平8−155258号公報)、あるいは有害成分として排ガス中に含有している揮発性無機水素化物、揮発性無機ハロゲン化物等を乾式除去する固体除去剤であって、結晶性の水酸化第二銅を反応主成分とする固体除去剤(特開平6−319945号公報)等がある。
【0004】
【発明が解決しようとする課題】
前記塩基性炭酸銅を含む浄化剤、または水酸化銅を含む浄化剤は、ホスフィン類またはシラン系ガスを含む有害ガスの除去に使用された後、水に浸漬する等により失活させて人体や環境に悪影響を及ぼさない安全な状態としてから、産業廃棄物として処理されている。これらの廃棄物の中から銅成分を回収し有害ガスの浄化剤の成分として再利用することができれば、資源の有効利用となるばかりでなく、環境保全の点からも好ましいことである。
【0005】
しかしながら、有害成分が収着した使用済の浄化剤の状態については何も解明されておらず、有害成分を収着した浄化剤の反応性、酸への溶解処理や中和処理した場合の有害ガス発生の可能性等については全く検討されていなかった。そのため、使用済の浄化剤の銅成分を回収しさらに高活性化して再使用可能な状態に戻す方法も開発されていなかった。
従って、本発明が解決しようとする課題は、半導体製造工程等から排出される排ガスに含まれるホスフィン類またはシラン系ガスの除去に使用した塩基性炭酸銅を含む浄化剤、または水酸化銅を含む浄化剤から銅成分を効率よく再使用可能な状態で回収する方法を提供することである。
【0006】
【課題を解決するための手段】
本発明者らは、これらの課題を解決すべく鋭意検討した結果、有害成分としてホスフィン類またはシラン系ガスを含む有害ガスの浄化に使用した塩基性炭酸銅を含む浄化剤、水酸化銅を含む浄化剤は、いずれも硫酸、硝酸等の酸性溶液に溶解し、浄化剤に含まれていた銅成分と、有害ガスの浄化の際に浄化剤に収着したリン成分あるいはケイ素成分を容易に分離できることを見い出し本発明の浄化剤の回収方法に到達した。
【0007】
すなわち本発明は、有害成分としてホスフィン類を含む有害ガスと接触させて、該有害ガスからホスフィン類を除去することに使用した、使用前のBET比表面積が10m 2 /g以上である塩基性炭酸銅を成分として含む浄化剤、または使用前のBET比表面積が10m 2 /g以上である水酸化銅を成分として含む浄化剤を、酸性溶液に浸漬して溶解した後、該溶液に銅の沈殿剤を添加して、銅化合物の沈殿を生成させることにより、銅成分と、有害ガスの浄化の際に該浄化剤に収着したリン成分を分離して、該浄化剤の銅成分を回収することを特徴とする浄化剤の回収方法である。
【0008】
また、本発明は、有害成分としてホスフィン類を含む有害ガスと接触させて、該有害ガスからホスフィン類を除去することに使用した、使用前のBET比表面積が10m 2 /g以上である塩基性炭酸銅を成分として含む浄化剤、または使用前のBET比表面積が10m 2 /g以上である水酸化銅を成分として含む浄化剤を、酸性溶液に浸漬して溶解した後、該溶液にリンの沈殿剤を添加して、リン化合物の沈殿を生成させることにより、銅成分と、有害ガスの浄化の際に該浄化剤に収着したリン成分を分離し、さらに該溶液に銅の沈殿剤を添加して、銅化合物の沈殿を生成させて、該浄化剤の銅成分を回収することを特徴とする浄化剤の回収方法でもある。
【0009】
さらに、本発明は、有害成分としてシラン系ガスを含む有害ガスと接触させて、該有害ガスからシラン系ガスを除去することに使用した、使用前のBET比表面積が10m 2 /g以上である塩基性炭酸銅を成分として含む浄化剤、または使用前のBET比表面積が10m 2 /g以上である水酸化銅を成分として含む浄化剤を、酸性溶液に浸漬して、銅成分を可溶性の銅塩とするとともに、有害ガスの浄化の際に該浄化剤に収着したケイ素成分を、酸化ケイ素として沈殿させることにより、銅成分とケイ素成分を分離し、さらに該溶液に銅の沈殿剤を添加して、銅化合物の沈殿を生成させて、該浄化剤の銅成分を回収することを特徴とする浄化剤の回収方法でもある。
【0010】
【発明の実施の形態】
本発明の浄化剤の回収方法は、有害成分としてホスフィン類またはシラン系ガスを含む有害ガスの浄化に使用した塩基性炭酸銅を含む浄化剤、水酸化銅を含む浄化剤から銅成分を回収する方法に適用される。
本発明の浄化剤の回収方法においては、特に高比表面積の塩基性炭酸銅、水酸化銅を含む使用済みの浄化剤から、銅成分を、高比表面積を有する塩基性炭酸銅、水酸化銅、または酸化銅として回収することが可能である。
【0011】
本発明の浄化剤の回収方法は、有害成分としてホスフィン類を含む有害ガスと接触させて、有害ガスからホスフィン類を除去することに使用した、使用前のBET比表面積が10m 2 /g以上である塩基性炭酸銅を含む浄化剤、または使用前のBET比表面積が10m 2 /g以上である水酸化銅を含む浄化剤を、酸性溶液に浸漬して溶解した後、さらに溶液に銅の沈殿剤またはリンの沈殿剤を添加して、銅化合物の沈殿またはリン化合物の沈殿のいずれか一方を生成させることにより、銅成分と、有害ガスの浄化の際に浄化剤に収着したリン成分を分離して、浄化剤の銅成分を回収する方法である。
【0012】
また、本発明の浄化剤の回収方法は、有害成分としてシラン系ガスを含む有害ガスと接触させて、有害ガスからシラン系ガスを除去することに使用した、使用前のBET比表面積が10m 2 /g以上である塩基性炭酸銅を含む浄化剤、または使用前のBET比表面積が10m 2 /g以上である水酸化銅を含む浄化剤を、酸性溶液に浸漬して、銅成分を可溶性の銅塩とするとともに、有害ガスの浄化の際に浄化剤に収着したケイ素成分を、酸化ケイ素として沈殿させることにより、銅成分とケイ素成分を分離して、浄化剤の銅成分を回収する方法でもある。
【0013】
本発明における有害ガスは、有害成分として少なくともホスフィン類、シラン、ジシラン等のシラン系ガスを含むガスである。また、ベースガスは、通常は窒素、アルゴン、ヘリウム、水素等のガスである。尚、本発明においては、有害成分であるホスフィン類は、ホスフィン、ジホスフィン等の他、モノメチルホスフィン、t−ブチルホスフィン等のアルキルホスフィンも含めて定義されるものであり、シラン系ガスについても、シラン、ジシラン等の他、モノクロロシラン、ジクロロシラン、トリクロロシラン等のハロゲン化シランも含めて定義されるものである。
【0014】
本発明における使用前の浄化剤は、その成分として少なくとも、塩基性炭酸銅、または水酸化銅を含む浄化剤である。
塩基性炭酸銅を成分として含む浄化剤としては、例えば、塩基性炭酸銅の他、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ランタン、バナジウム、ニオブ、タンタル、モリブデン、タングステン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ケイ素、錫、鉛、アンチモン、ビスマス及び銅から選ばれる少なくとも1種以上の金属、及び/またはこれらの金属の酸化物の少なくとも1種以上を含んでいてもよい。
【0015】
また、水酸化銅を成分として含む浄化剤としても、前記と同様に、水酸化銅の他、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、チタン、ジルコニウム、ランタン、バナジウム、ニオブ、タンタル、モリブデン、タングステン、鉄、コバルト、ニッケル、亜鉛、アルミニウム、ケイ素、錫、鉛、アンチモン、ビスマス及び銅から選ばれる少なくとも1種以上の金属、及び/またはこれらの金属の酸化物の少なくとも1種以上を含んでいてもよい。
しかし、本発明における使用前の浄化剤は、前記の金属及び/または金属酸化物を含んだ場合であっても、通常は各々塩基性炭酸銅または水酸化銅を70wt%以上含むものである。
【0016】
本発明において回収の対象となる浄化剤は、有害成分としてホスフィン類を含む有害ガスと接触させて、有害ガスからホスフィン類を除去することに使用した前述の塩基性炭酸銅を成分として含む浄化剤、水酸化銅を成分として含む浄化剤、及び、有害成分としてシラン系ガスを含む有害ガスと接触させて、有害ガスからシラン系ガスを除去することに使用した前述の塩基性炭酸銅を成分として含む浄化剤、水酸化銅を成分として含む浄化剤である。
【0017】
本発明の浄化剤の回収方法においては、有害ガスの浄化に使用された塩基性炭酸銅を成分として含む浄化剤、水酸化銅を成分として含む浄化剤から、銅成分を使用前と同じ程度の浄化能力を有する付加価値の高い浄化剤の成分として回収することができる。このような付加価値の高い浄化剤の成分としては、BET比表面積が10m2/g以上の塩基性炭酸銅、水酸化銅、または酸化銅を例示することができる。また、これらの回収成分から、BET比表面積が10m2/g以上の浄化剤を調製することもできる。
【0018】
次に、有害成分としてホスフィン類を含む有害ガスと接触させて、ホスフィン類を除去することに使用した塩基性炭酸銅を含む浄化剤、または水酸化銅を含む浄化剤から銅成分を回収する方法について詳細に説明する。
有害成分としてホスフィン類を含む有害ガスの浄化に使用した塩基性炭酸銅を成分として含む浄化剤、または水酸化銅を成分として含む浄化剤は、浄化筒から抜き取られた後、酸性溶液に浸漬して溶解される。浄化剤の溶解に使用される酸性溶液としては、硫酸、硝酸、塩酸等の無機酸、蟻酸、酢酸等の有機酸を例示することができるが、容易に使用済の浄化剤を溶解することができる点で硫酸、硝酸または塩酸が好ましい。
【0019】
酸性溶液の濃度及び浄化剤に対する量は、浄化剤、酸性溶液の種類等によって異なり一概に限定することはできないが、浄化剤の可溶成分を容易に溶解することができればよい。硫酸、硝酸あるいは塩酸を使用した場合、濃度は特に制限されることはないが、好ましくは5〜30wt%であり、浄化剤1kgに対する酸性溶液の量は通常1〜25kg程度、好ましくは4〜12kg程度である。また、浄化剤を酸性溶液に浸漬して溶解する際の温度は、通常は100℃以下であり、好ましくは30〜80℃である。
【0020】
前記浄化剤が溶けた酸性溶液には、さらに銅の沈殿剤またはリンの沈殿剤が添加され、銅化合物の沈殿またはリン化合物の沈殿のいずれか一方が生成される。銅の沈殿剤としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウムまたは炭酸水素アンモニウムを挙げることができる。また、リンの沈殿剤としては、例えば、塩化マグネシウム、塩化カルシウム、硫酸マグネシウム、硝酸マグネシウムまたは硝酸カルシウムを挙げることができる。
【0021】
以上のようにして銅成分はリン成分と分離されるが、リン化合物の沈殿を生成させることによりこれらを分離した場合は銅成分が溶液に溶解しているので、さらに銅の沈殿剤を添加する必要がある。銅成分はいずれの場合においても、例えば沈殿を生成する際のPHを調整することによって、塩基性炭酸銅または水酸化銅の沈殿とすることができる。この沈殿を水洗、乾燥することにより銅成分が塩基性炭酸銅または水酸化銅として回収される。また、沈殿を水洗、乾燥した後、焼成することにより銅成分を酸化銅として回収することもできる。このような回収方法により回収される塩基性炭酸銅、水酸化銅、または酸化銅は、BET比表面積が、ホスフィン類を含む有害ガスの浄化に使用される前の浄化剤のものと同等のものに調製することが可能である。尚、回収される銅成分には、銅成分以外の金属成分が混合される場合もあるが、このような場合も本発明の浄化剤の回収方法に含まれるものである。
【0022】
次に、有害成分としてシラン系ガスを含む有害ガスと接触させて、シラン系ガスを除去することに使用した塩基性炭酸銅を含む浄化剤、または水酸化銅を含む浄化剤から銅成分を回収する方法について詳細に説明する。
有害成分としてシラン系ガスを含む有害ガスの浄化に使用した塩基性炭酸銅を含む浄化剤、または水酸化銅を含む浄化剤は、前述と同様に、浄化筒から抜き取られた後、酸性溶液に浸漬される。使用済の浄化剤を酸性溶液に浸漬すると、浄化剤中の銅成分は酸性溶液に溶解し可溶性の銅塩となるが、浄化の際に浄化剤に収着したケイ素成分は酸化ケイ素として沈殿する。
【0023】
尚、使用される酸性溶液としては、硫酸、硝酸、塩酸等の無機酸、蟻酸、酢酸等の有機酸を例示することができるが、前述と同様の理由で硫酸、硝酸または塩酸が好ましい。また、酸性溶液の濃度及び浄化剤に対する量も前述と同様であり、例えば、硫酸、硝酸あるいは塩酸を使用した場合、濃度は好ましくは5〜30wt%であり、浄化剤1kgに対する酸性溶液の量は通常1〜25kg程度、好ましくは4〜12kg程度である。また、浄化剤を酸性溶液に浸漬して溶解する際の温度は、通常は100℃以下であり、好ましくは30〜80℃である。
また、浄化剤を溶液に浸漬する際または浸漬した後、溶液に過酸化水素を添加して、ケイ素の凝固性を向上させることもできる。
【0024】
以上のようにしてケイ素成分と分離された銅成分を含む溶液には、さらに水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化アンモニウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、炭酸水素ナトリウム、炭酸水素カリウムまたは炭酸水素アンモニウム等の銅の沈殿剤が添加される。この際に例えばPHを調整することによって、塩基性炭酸銅または水酸化銅の沈殿とすることができる。この沈殿を水洗、乾燥することにより銅成分が塩基性炭酸銅または水酸化銅として回収される。また、沈殿を水洗、乾燥した後、焼成することにより銅成分を酸化銅として回収することもできる。このような回収方法により回収される塩基性炭酸銅、水酸化銅、または酸化銅は、BET比表面積が、シラン系ガスを含む有害ガスの浄化に使用される前の浄化剤のものと同等のものに調製することが可能である。尚、回収される銅成分には、銅成分以外の金属成分が混合される場合もあるが、このような場合も本発明の浄化剤の回収方法に含まれるものである。
【0025】
【実施例】
次に、本発明を実施例により具体的に説明するが、本発明がこれらにより限定されるものではない。
【0026】
実施例1
(塩基性炭酸銅を成分として含む浄化剤の調製)
市販の硫酸銅5水塩1.5kgをイオン交換水5Lに溶解し、さらに15wt%の炭酸ナトリウム水溶液4.3kgを添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、塩基性炭酸銅を調製した。さらに得られた塩基性炭酸銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Aとした。尚、塩基性炭酸銅(浄化剤A)のBET比表面積をガス吸着量測定装置(ユアサアイオニクス(株)製、オートソーブ3B)で測定したところ66m2/gであった。
【0027】
(ホスフィンを含む有害ガスの浄化)
浄化剤Aを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてホスフィン10000ppmを含有するガスを20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させた。この間、浄化筒の出口ガスの一部を検知管((株)ガステック製ホスフィン7L、検知下限0.15ppm)に吸引することにより、ホスフィンが検知されるまでの時間(有効処理時間)を測定し、浄化剤1L(リットル)当たりに対するホスフィンの除去量(L)(浄化能力)を求めた。その結果を表1に示す。
【0028】
(使用済浄化剤からの銅成分の回収)
前述の「ホスフィンを含む有害ガスの浄化」と同様にして使用した浄化剤Aを500g収集し、10wt%の硫酸水溶液6.0kgに浸漬して溶解した。次に不溶解成分をろ別した溶液に銅の沈殿剤として15wt%の炭酸ナトリウム水溶液を4.3kg添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を塩基性炭酸銅として回収した。さらに回収された塩基性炭酸銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Bとした。尚、回収された塩基性炭酸銅(浄化剤B)のBET比表面積は64m2/gであった。
【0029】
(回収浄化剤によるホスフィンを含む有害ガスの浄化)
前述の「ホスフィンを含む有害ガスの浄化」と同様にして、浄化剤Bを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてホスフィン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Bの浄化能力測定結果を表1に示す。
【0030】
実施例2
(使用済浄化剤からの銅成分の回収)
実施例1の「ホスフィンを含む有害ガスの浄化」と同様にして使用した浄化剤Aを500g収集し、10wt%の硫酸水溶液6.0kgに浸漬して溶解した。次に不溶解成分をろ別した溶液に銅の沈殿剤として4.1wt%の水酸化ナトリウム水溶液を6.0kg添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を水酸化銅として回収した。さらに回収された水酸化銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Cとした。尚、回収された水酸化銅浄化剤(浄化剤C)のBET比表面積は40m2/gであった。
【0031】
(回収浄化剤によるホスフィンを含む有害ガスの浄化)
実施例1の「回収浄化剤によるホスフィンを含む有害ガスの浄化」と同様にして浄化剤Cを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてホスフィン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Cの浄化能力測定結果を表1に示す。
【0032】
実施例3
(使用済浄化剤からの銅成分の回収)
実施例1の「ホスフィンを含む有害ガスの浄化」と同様にして使用した浄化剤Aを500g収集し、10wt%の硫酸水溶液6kgに浸漬して溶解した。次に不溶解成分をろ別した溶液に銅の沈殿剤として15wt%の炭酸ナトリウム水溶液4.3kgを添加して銅成分の沈殿を得た。この沈殿をろ過、水洗し、酸化アルミニウム16gを加えてニーダーで混練した後、120℃で乾燥し350℃で焼成することにより、銅成分を酸化第二銅として回収した。得られた回収物は、酸化第二銅(96wt%)及び酸化アルミニウム(4wt%)を含んでいた。さらに得られた回収物を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Dとした。浄化剤DのBET比表面積は83m2/gであった。
【0033】
(回収浄化剤によるホスフィンを含む有害ガスの浄化)
実施例1の「回収浄化剤によるホスフィンを含む有害ガスの浄化」と同様にして浄化剤Dを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてホスフィン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Dの浄化能力測定結果を表1に示す。
【0034】
実施例4
(t−ブチルホスフィンを含む有害ガスの浄化)
実施例1において調製した浄化剤Aを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてt−ブチルホスフィン10000ppmを含有するガスを20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させた。この間、浄化筒の出口ガスの一部を検知管((株)ガステック製ホスフィン7L、検知下限0.15ppm)に吸引することにより、ホスフィンが検知されるまでの時間(有効処理時間)を測定し、浄化剤1L(リットル)当たりに対するt−ブチルホスフィンの除去量(L)(浄化能力)を求めた。その結果を表1に示す。
【0035】
(使用済浄化剤からの銅成分の回収)
前述の「t−ブチルホスフィンを含む有害ガスの浄化」と同様にして使用した浄化剤Aを500g収集し、10wt%の硫酸水溶液6.0kgに浸漬して溶解した。次に不溶解成分をろ別した溶液に銅の沈殿剤として15wt%の炭酸ナトリウム水溶液を4.3kg添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を塩基性炭酸銅として回収した。さらに回収された塩基性炭酸銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Eとした。尚、回収された塩基性炭酸銅(浄化剤E)のBET比表面積は62m2/gであった。
【0036】
(回収浄化剤によるt−ブチルホスフィンを含む有害ガスの浄化)
前述の「t−ブチルホスフィンを含む有害ガスの浄化」と同様にして、浄化剤Eを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてt−ブチルホスフィン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Eの浄化能力測定結果を表1に示す。
【0037】
実施例5
(使用済浄化剤からの銅成分の回収)
実施例1の「ホスフィンを含む有害ガスの浄化」と同様にして使用した浄化剤Aを500g収集し、10wt%の硫酸水溶液6.0kgに浸漬して溶解した。次にリンの沈殿剤として15wt%の硫酸マグネシウム水溶液1.5kgを添加してリン成分の沈殿を生成させてろ別した。その後、ろ液に銅の沈殿剤として15wt%の炭酸ナトリウム水溶液4.3kgを添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を塩基性炭酸銅として回収した。さらに回収された塩基性炭酸銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Fとした。尚、回収された塩基性炭酸銅(浄化剤F)のBET比表面積は64m2/gであった。
【0038】
(回収浄化剤によるホスフィンを含む有害ガスの浄化)
実施例1の「回収浄化剤によるホスフィンを含む有害ガスの浄化」と同様にして浄化剤Fを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてホスフィン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Fの浄化能力測定結果を表1に示す。
【0039】
実施例6
(水酸化銅を成分として含む浄化剤の調製)
市販の硫酸銅5水塩1.5kgをイオン交換水5Lに溶解し、さらに16wt%の水酸化ナトリウム水溶液1.5kgを添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、水酸化銅を調製した。さらに得られた水酸化銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Gとした。尚、水酸化銅(浄化剤G)のBET比表面積をガス吸着量測定装置で測定したところ41m2/gであった。
【0040】
(ホスフィンを含む有害ガスの浄化)
浄化剤Gを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてホスフィン10000ppmを含有するガスを20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させた。この間、浄化筒の出口ガスの一部を検知管((株)ガステック製ホスフィン7L、検知下限0.15ppm)に吸引することにより、ホスフィンが検知されるまでの時間(有効処理時間)を測定し、浄化剤1L(リットル)当たりに対するホスフィンの除去量(L)(浄化能力)を求めた。
その結果を表1に示す。
【0041】
(使用済浄化剤からの銅成分の回収)
前述の「ホスフィンを含む有害ガスの浄化」と同様にして使用した浄化剤Gを500g収集し、10wt%の硫酸水溶液6.0kgに浸漬して溶解した。次に不溶解成分をろ別した溶液に銅の沈殿剤として4.1wt%の水酸化ナトリウム水溶液を6.0kg添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を水酸化銅として回収した。さらに回収された水酸化銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Hとした。尚、回収された水酸化銅(浄化剤H)のBET比表面積は42m2/gであった。
【0042】
(回収浄化剤によるホスフィンを含む有害ガスの浄化)
前述の「ホスフィンを含む有害ガスの浄化」と同様にして、浄化剤Hを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてホスフィン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Hの浄化能力測定結果を表1に示す。
【0043】
実施例7
(使用済浄化剤からの銅成分の回収)
実施例6の「ホスフィンを含む有害ガスの浄化」と同様にして使用した浄化剤Gを500g収集し、10wt%の硫酸水溶液6.0kgに浸漬して溶解した。次にリンの沈殿剤として15wt%の硫酸マグネシウム水溶液1.5kgを添加してリン成分の沈殿を生成させてろ別した。その後、ろ液に銅の沈殿剤として5.3wt%の水酸化ナトリウム水溶液6.0kgを添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を水酸化銅として回収した。さらに回収された水酸化銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Iとした。尚、回収された水酸化銅(浄化剤I)のBET比表面積は38m2/gであった。
【0044】
(回収浄化剤によるホスフィンを含む有害ガスの浄化)
実施例6の「回収浄化剤によるホスフィンを含む有害ガスの浄化」と同様にして浄化剤Iを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてホスフィン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Iの浄化能力測定結果を表1に示す。
【0045】
実施例8
(シランを含む有害ガスの浄化)
実施例1において調製した浄化剤Aを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてシラン10000ppmを含有するガスを20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させた。この間、浄化筒の出口ガスの一部を検知管(光明理化学工業(株)製シランS型、検知下限0.5ppm)に吸引することにより、シランが検知されるまでの時間(有効処理時間)を測定し、浄化剤1L(リットル)当たりに対するシランの除去量(L)(浄化能力)を求めた。その結果を表1に示す。
【0046】
(使用済浄化剤からの銅成分の回収)
前述の「シランを含む有害ガスの浄化」と同様にして使用した浄化剤Aを500g収集し、10wt%の硫酸水溶液5.6kg及び30wt%の過酸化水素水溶液0.2kgの混合液に浸漬した。次に不溶解成分をろ別した溶液に銅の沈殿剤として15wt%の炭酸ナトリウム水溶液を4.3kg添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を塩基性炭酸銅として回収した。さらに回収された塩基性炭酸銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Jとした。尚、回収された塩基性炭酸銅(浄化剤J)のBET比表面積は61m2/gであった。
【0047】
(回収浄化剤によるシランを含む有害ガスの浄化)
前述の「シランを含む有害ガスの浄化」と同様にして、浄化剤Jを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてシラン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Jの浄化能力測定結果を表1に示す。
【0048】
実施例9
(使用済浄化剤からの銅成分の回収)
実施例8の「シランを含む有害ガスの浄化」と同様にして使用した浄化剤Aを500g収集し、10wt%の硫酸水溶液5.6kg及び30wt%の過酸化水素水溶液0.2kgの混合液に浸漬した。次に不溶解成分をろ別した溶液に銅の沈殿剤として4.1wt%の水酸化ナトリウム水溶液を6.0kg添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を水酸化銅として回収した。さらに回収された水酸化銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Kとした。尚、回収された水酸化銅(浄化剤K)のBET比表面積は39m2/gであった。
【0049】
(回収浄化剤によるシランを含む有害ガスの浄化)
実施例8の「回収浄化剤によるシランを含む有害ガスの浄化」と同様にして浄化剤Kを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてシラン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Kの浄化能力測定結果を表1に示す。
【0050】
実施例10
(使用済浄化剤からの銅成分の回収)
実施例8の「シランを含む有害ガスの浄化」と同様にして使用した浄化剤Aを500g収集し、10wt%の硫酸水溶液5.6kg及び30wt%の過酸化水素水溶液0.2kgの混合液に浸漬した。次に不溶解成分をろ別した溶液に銅の沈殿剤として15wt%の炭酸ナトリウム水溶液4.3kgを添加して銅成分の沈殿を得た。この沈殿をろ過、水洗し、酸化アルミニウム16gを加えてニーダーで混練した後、120℃で乾燥し350℃で焼成することにより、銅成分を酸化第二銅として回収した。得られた回収物は、酸化第二銅(96wt%)及び酸化アルミニウム(4wt%)を含んでいた。さらに得られた回収物を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Lとした。浄化剤LのBET比表面積は81m2/gであった。
【0051】
(回収浄化剤によるシランを含む有害ガスの浄化)
実施例8の「回収浄化剤によるシランを含む有害ガスの浄化」と同様にして浄化剤Lを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてシラン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Lの浄化能力測定結果を表1に示す。
【0052】
実施例11
(ジシランを含む有害ガスの浄化)
実施例1において調製した浄化剤Aを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてジシラン10000ppmを含有するガスを20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させた。この間、浄化筒の出口ガスの一部を検知管(光明理化学工業(株)製シランS型、検知下限0.5ppm)に吸引することにより、ジシランが検知されるまでの時間(有効処理時間)を測定し、浄化剤1L(リットル)当たりに対するジシランの除去量(L)(浄化能力)を求めた。その結果を表1に示す。
【0053】
(使用済浄化剤からの銅成分の回収)
前述の「ジシランを含む有害ガスの浄化」と同様にして使用した浄化剤Aを500g収集し、10wt%の硫酸水溶液5.6kg及び30wt%の過酸化水素水溶液0.2kgの混合液に浸漬した。次に不溶解成分をろ別した溶液に銅の沈殿剤として15wt%の炭酸ナトリウム水溶液を4.3kg添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を塩基性炭酸銅として回収した。さらに回収された塩基性炭酸銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Mとした。尚、回収された塩基性炭酸銅(浄化剤M)のBET比表面積は63m2/gであった。
【0054】
(回収浄化剤によるジシランを含む有害ガスの浄化)
前述の「ジシランを含む有害ガスの浄化」と同様にして、浄化剤Mを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてシラン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Mの浄化能力測定結果を表1に示す。
【0055】
実施例12
(ジクロロシランを含む有害ガスの浄化)
実施例6において調製した浄化剤Gを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてジクロロシラン10000ppmを含有するガスを20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させた。この間、浄化筒の出口ガスの一部を検知管((株)ガステック製、検知下限0.05ppm)に吸引することにより、ジクロロシランが検知されるまでの時間(有効処理時間)を測定し、浄化剤1L(リットル)当たりに対するジクロロシランの除去量(L)(浄化能力)を求めた。その結果を表1に示す。
【0056】
(使用済浄化剤からの銅成分の回収)
前述の「ジクロロシランを含む有害ガスの浄化」と同様にして使用した浄化剤Gを500g収集し、10wt%の硫酸水溶液5.6kg及び30wt%の過酸化水素水溶液0.2kgの混合液に浸漬した。次に不溶解成分をろ別した溶液に銅の沈殿剤として4.1wt%の水酸化ナトリウム水溶液6.0kgを添加して銅成分の沈殿を得た。この沈殿をろ過、水洗した後、120℃で乾燥して、銅成分を水酸化銅として回収した。さらに回収された水酸化銅を直径6mm、高さ6mmのペレットに打錠成形した後、これを破砕し、篩にかけて12〜28meshのものを浄化剤Nとした。尚、回収された水酸化銅(浄化剤N)のBET比表面積は41m2/gであった。
【0057】
(回収浄化剤によるジクロロシランを含む有害ガスの浄化)
前述の「ジクロロシランを含む有害ガスの浄化」と同様にして、浄化剤Nを内径40mmの硬質ガラス製の浄化筒に充填長が100mmとなるように充填し、乾燥窒素中に有害成分としてジクロロシラン10000ppmを含有するガスを、20℃、常圧下で2000ml/min(空筒線速度2.65cm/sec)の流量で流通させて浄化試験を行なった。浄化剤Nの浄化能力測定結果を表1に示す。
【0058】
【表1】
【0059】
以上のように、有害成分としてホスフィン類またはシラン系ガスを含む有害ガスの浄化に使用された浄化剤から銅成分を回収し、これを用いて調製した回収浄化剤は、有害ガスの浄化に使用される前の新規浄化剤と比べて同等の浄化能力を有することが確認された。
【0060】
【発明の効果】
本発明の浄化剤の回収方法により、半導体製造工程等から排出される排ガスに含まれるホスフィン類またはシラン系ガスの除去に使用した塩基性炭酸銅を含む浄化剤、水酸化銅を含む浄化剤から、銅成分を効率よく、再使用可能な状態で回収することが可能となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purification agent containing basic copper carbonate as a component or a method for recovering a purification agent containing copper hydroxide as a component. More specifically, a purifier containing basic copper carbonate as a component used for removing phosphines or silane-based gas contained in exhaust gas discharged from a semiconductor manufacturing process, etc., and a purifier containing copper hydroxide as a component from copper. The present invention relates to a method for recovering components.
[0002]
[Prior art]
In manufacturing processes of silicon semiconductors, compound semiconductors, etc., hydride gases such as phosphines, silanes, disilanes, etc. are used as source gases or doping gases. Also, a silicon nitride film (Si3N4Dichlorosilane is used as a raw material for forming). These gases are extremely toxic and, if released into the atmosphere as they are, will adversely affect the human body and the environment. Therefore, after being used in the semiconductor manufacturing process, it is necessary to purify the gas containing them before releasing them into the atmosphere. is there. For this reason, a purifier for harmful gases containing phosphines as toxic components or silane-based gases such as silane, disilane, dichlorosilane and the like has been developed.
[0003]
As such a purifying agent, for example, a treating agent for treating exhaust gas containing an inorganic group V compound discharged from a III-V group compound semiconductor thin film manufacturing process, which is a treatment comprising a copper compound such as basic copper carbonate. A treating agent for treating exhaust gas containing an organic group V compound and an inorganic group V compound discharged from the III-V compound semiconductor thin film manufacturing process, comprising basic copper carbonate and Treatment agent prepared by mixing anatase type fine particle titanium oxide with potassium permanganate (JP-A-8-155258), or volatile inorganic hydride and volatile inorganic halide contained in exhaust gas as harmful components There is a solid remover for dry removal of etc., and a solid remover having crystalline cupric hydroxide as a main reaction component (JP-A-6-319945).
[0004]
[Problems to be solved by the invention]
The cleaning agent containing basic copper carbonate or the cleaning agent containing copper hydroxide is used to remove harmful gases containing phosphines or silane-based gases, and then deactivated by immersion in water or the like. It is treated as industrial waste after it is in a safe state that does not adversely affect the environment. If the copper component can be recovered from these wastes and reused as a component of a harmful gas purification agent, it is preferable not only for effective use of resources but also for environmental conservation.
[0005]
However, nothing has been elucidated about the state of the used cleaning agent with toxic components sorbed, the reactivity of the cleaning agent with sorbed harmful components, and the harmful effects of dissolving and neutralizing in acid. The possibility of gas generation was not studied at all. For this reason, no method has been developed for recovering the copper component of the used cleaning agent, further increasing its activity, and returning it to a reusable state.
Accordingly, the problem to be solved by the present invention includes a purifier containing basic copper carbonate used for removing phosphines or silane-based gas contained in exhaust gas discharged from a semiconductor manufacturing process or the like, or copper hydroxide. To provide a method for efficiently recovering a copper component from a cleaning agent in a reusable state.
[0006]
[Means for Solving the Problems]
As a result of intensive studies to solve these problems, the present inventors include copper hydroxide, a purifying agent containing basic copper carbonate used for purification of harmful gases containing phosphines or silane-based gases as harmful components. All of the purifiers are dissolved in acidic solutions such as sulfuric acid and nitric acid, and the copper component contained in the purifier and the phosphorus component or silicon component adsorbed on the purifier when purifying harmful gases can be easily separated. The inventors have found that this is possible and have reached the method for recovering the purifying agent of the present invention.
[0007]
That is, the present invention was used to remove phosphine from the harmful gas by contacting with harmful gas containing phosphine as a harmful component., BET specific surface area before use is 10m 2 / G or morePurifying agent containing basic copper carbonate as a component,OrBET specific surface area before use is 10m 2 / G or moreA solubilizing agent containing copper hydroxide as a component is immersed and dissolved in an acidic solution, and then a copper precipitating agent is added to the solution to produce a copper compound precipitate. A method for recovering a purifying agent, comprising separating a phosphorus component adsorbed on the purifying agent during purification and recovering a copper component of the purifying agent.
[0008]
In addition, the present invention was used to remove phosphine from the harmful gas by contacting with harmful gas containing phosphine as a harmful component., BET specific surface area before use is 10m 2 / G or morePurifying agent containing basic copper carbonate as a component,OrBET specific surface area before use is 10m 2 / G or moreA solubilizing agent containing copper hydroxide as a component is immersed and dissolved in an acidic solution, and then a phosphorus precipitant is added to the solution to produce a phosphorus compound precipitate. Separating the phosphorus component adsorbed on the purification agent during purification, and further adding a copper precipitant to the solution to form a copper compound precipitate, and recovering the copper component of the purification agent. It is also a recovery method of the cleaning agent that is characterized.
[0009]
Furthermore, the present invention is used for removing silane-based gas from the harmful gas by contacting with a harmful gas containing silane-based gas as a harmful component., BET specific surface area before use is 10m 2 / G or morePurifying agent containing basic copper carbonate as a component,OrBET specific surface area before use is 10m 2 / G or moreA purifying agent containing copper hydroxide as a component is immersed in an acidic solution to make the copper component a soluble copper salt, and the silicon component sorbed to the purifying agent during purification of harmful gases is converted into silicon oxide. The copper component and the silicon component are separated by precipitation, and a copper precipitant is further added to the solution to form a copper compound precipitate, and the copper component of the purifier is recovered. It is also a method for collecting the cleaning agent.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The purification agent recovery method of the present invention recovers a copper component from a purification agent containing basic copper carbonate and a purification agent containing copper hydroxide used for purification of harmful gases containing phosphines or silane-based gases as harmful components. Applied to the method.
In the method for recovering a cleaning agent of the present invention, a copper component is converted into a basic copper carbonate or copper hydroxide having a high specific surface area, particularly from a used cleaning agent containing basic copper carbonate or copper hydroxide having a high specific surface area. Or as copper oxide.
[0011]
The purification agent recovery method of the present invention was used to remove phosphine from harmful gas by contacting with harmful gas containing phosphine as harmful component., BET specific surface area before use is 10m 2 / G or moreA cleansing agent containing basic copper carbonate, orBET specific surface area before use is 10m 2 / G or moreAfter the cleaning agent containing copper hydroxide is dissolved in an acidic solution, a copper precipitating agent or a phosphorus precipitating agent is further added to the solution to either precipitate the copper compound or the phosphorus compound. This is a method of separating the copper component and the phosphorus component sorbed on the purifier during the purification of harmful gas, and recovering the copper component of the purifier.
[0012]
Further, the cleaning agent recovery method of the present invention was used to remove a silane-based gas from a harmful gas by bringing it into contact with a harmful gas containing a silane-based gas as a harmful component., BET specific surface area before use is 10m 2 / G or moreA cleansing agent containing basic copper carbonate, orBET specific surface area before use is 10m 2 / G or moreSoaking a cleaning agent containing copper hydroxide in an acidic solution to make the copper component a soluble copper salt, and precipitating the silicon component sorbed on the cleaning agent during the purification of harmful gases as silicon oxide Thus, the copper component and the silicon component are separated to recover the copper component of the purifier.
[0013]
The harmful gas in the present invention is a gas containing at least a silane-based gas such as phosphines, silane, and disilane as a harmful component. The base gas is usually a gas such as nitrogen, argon, helium or hydrogen. In the present invention, phosphines that are harmful components are defined to include alkylphosphines such as monomethylphosphine and t-butylphosphine in addition to phosphine and diphosphine. In addition to disilane and the like, halogenosilanes such as monochlorosilane, dichlorosilane, and trichlorosilane are also defined.
[0014]
The purification agent before use in the present invention is a purification agent containing at least basic copper carbonate or copper hydroxide as its component.
As a cleaning agent containing basic copper carbonate as a component, for example, in addition to basic copper carbonate, lithium, sodium, potassium, magnesium, calcium, strontium, barium, titanium, zirconium, lanthanum, vanadium, niobium, tantalum, molybdenum, Including at least one metal selected from tungsten, iron, cobalt, nickel, zinc, aluminum, silicon, tin, lead, antimony, bismuth and copper, and / or at least one oxide of these metals May be.
[0015]
In addition, as a cleaning agent containing copper hydroxide as a component, in addition to copper hydroxide, lithium, sodium, potassium, magnesium, calcium, strontium, barium, titanium, zirconium, lanthanum, vanadium, niobium, tantalum, as described above. At least one metal selected from molybdenum, tungsten, iron, cobalt, nickel, zinc, aluminum, silicon, tin, lead, antimony, bismuth and copper, and / or at least one oxide of these metals May be included.
However, the purification agent before use in the present invention usually contains 70 wt% or more of basic copper carbonate or copper hydroxide, even when the metal and / or metal oxide is included.
[0016]
In the present invention, the purifying agent to be recovered is a purifying agent containing as a component the above-mentioned basic copper carbonate used for removing the phosphine from the harmful gas by bringing it into contact with a harmful gas containing the phosphine as a harmful component. The above-mentioned basic copper carbonate used for removing the silane-based gas from the harmful gas by bringing it into contact with a harmful gas containing the silane-based gas as a harmful agent, and a cleaning agent containing copper hydroxide as a component. A cleaning agent containing copper hydroxide as a component.
[0017]
In the purification agent recovery method of the present invention, the purification agent containing basic copper carbonate used as a component for harmful gas purification, and the purification agent containing copper hydroxide as a component, the same amount as before use of the copper component. It can be recovered as a component of a high-value-added purification agent having purification ability. As a component of such a high added-value purifier, the BET specific surface area is 10 m.2/ G or more of basic copper carbonate, copper hydroxide, or copper oxide can be exemplified. Further, from these recovered components, the BET specific surface area is 10 m.2/ G or more of a cleaning agent can also be prepared.
[0018]
Next, a method for recovering a copper component from a purifying agent containing basic copper carbonate or a purifying agent containing copper hydroxide, which is used for removing phosphines by contacting with a harmful gas containing phosphines as a harmful component Will be described in detail.
A purifier containing basic copper carbonate as a component or a purifier containing copper hydroxide as a component used to purify harmful gases containing phosphines as harmful components is taken out from the purification cylinder and immersed in an acidic solution. Dissolved. Examples of the acidic solution used for dissolving the cleaning agent include inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid, and organic acids such as formic acid and acetic acid, but the used cleaning agent can be easily dissolved. Of these, sulfuric acid, nitric acid or hydrochloric acid is preferable.
[0019]
The concentration of the acidic solution and the amount with respect to the purification agent vary depending on the type of the purification agent, the acidic solution, and the like, and cannot be generally limited, but it is sufficient that the soluble component of the purification agent can be easily dissolved. When sulfuric acid, nitric acid or hydrochloric acid is used, the concentration is not particularly limited, but is preferably 5 to 30 wt%, and the amount of the acidic solution relative to 1 kg of the purifier is usually about 1 to 25 kg, preferably 4 to 12 kg. Degree. Moreover, the temperature at the time of melt | dissolving a cleaning agent by immersing in an acidic solution is 100 degrees C or less normally, Preferably it is 30-80 degreeC.
[0020]
A copper precipitating agent or a phosphorus precipitating agent is further added to the acidic solution in which the purifying agent is dissolved, thereby generating either a copper compound precipitate or a phosphorus compound precipitate. Examples of the copper precipitant include lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, or ammonium hydrogen carbonate. . Examples of the phosphorus precipitant include magnesium chloride, calcium chloride, magnesium sulfate, magnesium nitrate and calcium nitrate.
[0021]
As described above, the copper component is separated from the phosphorus component, but when these are separated by generating a precipitate of the phosphorus compound, the copper component is dissolved in the solution, so a copper precipitant is further added. There is a need. In any case, the copper component can be made into a precipitate of basic copper carbonate or copper hydroxide, for example, by adjusting the pH when the precipitate is generated. The precipitate is washed with water and dried to recover the copper component as basic copper carbonate or copper hydroxide. Further, the precipitate can be washed with water, dried, and then fired to recover the copper component as copper oxide. The basic copper carbonate, copper hydroxide, or copper oxide recovered by such a recovery method has a BET specific surface area equivalent to that of the purifier before being used for the purification of harmful gases containing phosphines. Can be prepared. In addition, metal components other than a copper component may be mixed with the copper component collect | recovered, Such a case is also included in the collection | recovery method of the purifier of this invention.
[0022]
Next, the copper component is recovered from the purifying agent containing basic copper carbonate or the purifying agent containing copper hydroxide used for removing the silane-based gas by bringing it into contact with a harmful gas containing a silane-based gas as a harmful component. The method of performing will be described in detail.
The purification agent containing basic copper carbonate or the purification agent containing copper hydroxide used for the purification of harmful gas containing silane-based gas as a harmful component is taken out from the purification cylinder in the same way as described above, and then into an acidic solution. Soaked. When the used cleaning agent is immersed in an acidic solution, the copper component in the cleaning agent dissolves in the acidic solution to form a soluble copper salt, but the silicon component sorbed on the cleaning agent during the purification precipitates as silicon oxide. .
[0023]
Examples of the acidic solution used include inorganic acids such as sulfuric acid, nitric acid and hydrochloric acid, and organic acids such as formic acid and acetic acid, and sulfuric acid, nitric acid or hydrochloric acid are preferred for the same reason as described above. The concentration of the acidic solution and the amount with respect to the purification agent are the same as described above. For example, when sulfuric acid, nitric acid or hydrochloric acid is used, the concentration is preferably 5 to 30 wt%, and the amount of the acidic solution with respect to 1 kg of the purification agent is Usually, it is about 1 to 25 kg, preferably about 4 to 12 kg. Moreover, the temperature at the time of melt | dissolving a cleaning agent by immersing in an acidic solution is 100 degrees C or less normally, Preferably it is 30-80 degreeC.
Further, when the purifying agent is immersed in the solution or after it is immersed, hydrogen peroxide can be added to the solution to improve the solidification of silicon.
[0024]
In the solution containing the copper component separated from the silicon component as described above, lithium hydroxide, sodium hydroxide, potassium hydroxide, ammonium hydroxide, sodium carbonate, potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, carbonate A copper precipitating agent such as potassium hydrogen or ammonium bicarbonate is added. At this time, for example, by adjusting PH, precipitation of basic copper carbonate or copper hydroxide can be achieved. The precipitate is washed with water and dried to recover the copper component as basic copper carbonate or copper hydroxide. Further, the precipitate can be washed with water, dried, and then fired to recover the copper component as copper oxide. The basic copper carbonate, copper hydroxide, or copper oxide recovered by such a recovery method has a BET specific surface area equivalent to that of the purifying agent before being used for purification of harmful gases including silane-based gas. Can be prepared. In addition, metal components other than a copper component may be mixed with the copper component collect | recovered, Such a case is also included in the collection | recovery method of the purifier of this invention.
[0025]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these.
[0026]
Example 1
(Preparation of purifier containing basic copper carbonate as a component)
Commercially available copper sulfate pentahydrate (1.5 kg) was dissolved in 5 L of ion-exchanged water, and 4.3 kg of a 15 wt% sodium carbonate aqueous solution was further added to obtain a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to prepare basic copper carbonate. Further, the obtained basic copper carbonate was tablet-molded into pellets having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent A having 12 to 28 mesh. In addition, when the BET specific surface area of basic copper carbonate (cleaning agent A) was measured with a gas adsorption measuring device (manufactured by Yuasa Ionics Co., Ltd., Autosorb 3B), it was 66 m.2/ G.
[0027]
(Purification of harmful gases including phosphine)
Purifying agent A is filled in a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length is 100 mm, and a gas containing 10000 ppm of phosphine as a harmful component in dry nitrogen is 20 ° C. under normal pressure and 2000 ml / min (empty). The cylinder was circulated at a flow rate of 2.65 cm / sec). During this time, the time until the phosphine is detected (effective treatment time) is measured by sucking a part of the outlet gas of the purification cylinder into the detector tube (phosphine 7L manufactured by Gastec Co., Ltd., detection lower limit 0.15 ppm) Then, the amount of phosphine removed (L) (purification ability) per 1 L (liter) of the purifier was determined. The results are shown in Table 1.
[0028]
(Recovery of copper components from used cleaning agents)
500 g of the purification agent A used in the same manner as in the above-mentioned “Purification of toxic gas containing phosphine” was collected and dissolved in 6.0 kg of 10 wt% sulfuric acid aqueous solution. Next, 4.3 kg of a 15 wt% aqueous sodium carbonate solution as a copper precipitant was added to the solution obtained by filtering the insoluble components, thereby obtaining a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as basic copper carbonate. Further, the recovered basic copper carbonate was tablet-molded into pellets having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent B having 12 to 28 mesh. The recovered basic copper carbonate (cleaning agent B) has a BET specific surface area of 64 m.2/ G.
[0029]
(Purification of toxic gases including phosphine with recovered purification agent)
In the same manner as the above-mentioned “Purification of toxic gas containing phosphine”, the purification agent B is filled in a purification tube made of hard glass having an inner diameter of 40 mm so as to have a filling length of 100 mm, and 10000 ppm of phosphine as a harmful component in dry nitrogen. A purification test was conducted by circulating a gas containing 20 at a flow rate of 2000 ml / min (empty linear velocity: 2.65 cm / sec) at 20 ° C. and normal pressure. Table 1 shows the measurement results of the purification capacity of the purification agent B.
[0030]
Example 2
(Recovery of copper components from used cleaning agents)
500 g of the purification agent A used in the same manner as in “Purification of toxic gas containing phosphine” in Example 1 was collected and dissolved by being immersed in 6.0 kg of a 10 wt% sulfuric acid aqueous solution. Next, 6.0 kg of a 4.1 wt% aqueous sodium hydroxide solution as a copper precipitant was added to the solution obtained by filtering out the insoluble components, thereby obtaining a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as copper hydroxide. Further, the recovered copper hydroxide was tablet-molded into pellets having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent C having 12 to 28 mesh. In addition, the BET specific surface area of the recovered copper hydroxide purifier (purifier C) is 40 m.2/ G.
[0031]
(Purification of toxic gases including phosphine with recovered purification agent)
In the same manner as in “Purification of toxic gas containing phosphine by the recovered purification agent” in Example 1, the purification agent C was filled into a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length was 100 mm, and the resulting product was put into dry nitrogen. A gas containing 10000 ppm of phosphine as a harmful component was circulated at a flow rate of 2000 ml / min (cylinder linear velocity 2.65 cm / sec) at 20 ° C. and normal pressure to conduct a purification test. Table 1 shows the results of measuring the purification capacity of the purification agent C.
[0032]
Example 3
(Recovery of copper components from used cleaning agents)
500 g of the purification agent A used in the same manner as in “Purification of toxic gas containing phosphine” in Example 1 was collected and dissolved by immersion in 6 kg of a 10 wt% sulfuric acid aqueous solution. Next, 4.3 kg of a 15 wt% aqueous sodium carbonate solution was added as a copper precipitant to the solution obtained by filtering out the insoluble components, thereby obtaining a precipitate of copper components. This precipitate was filtered, washed with water, 16 g of aluminum oxide was added and kneaded with a kneader, then dried at 120 ° C. and baked at 350 ° C., whereby the copper component was recovered as cupric oxide. The obtained recovered product contained cupric oxide (96 wt%) and aluminum oxide (4 wt%). Further, the recovered material thus obtained was tablet-molded into pellets having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purifier D of 12 to 28 mesh. BET specific surface area of cleaning agent D is 83m2/ G.
[0033]
(Purification of toxic gases including phosphine with recovered purification agent)
In the same manner as in “Purification of toxic gas containing phosphine by recovered purification agent” in Example 1, purification agent D was filled into a purification tube made of hard glass having an inner diameter of 40 mm so as to have a filling length of 100 mm, and in dry nitrogen. A gas containing 10000 ppm of phosphine as a harmful component was circulated at a flow rate of 2000 ml / min (cylinder linear velocity 2.65 cm / sec) at 20 ° C. and normal pressure to conduct a purification test. Table 1 shows the measurement results of the purification capacity of the purification agent D.
[0034]
Example 4
(Purification of harmful gases containing t-butylphosphine)
The purification agent A prepared in Example 1 was filled into a hard glass purification cylinder having an inner diameter of 40 mm so that the filling length was 100 mm, and a gas containing 10000 ppm of t-butylphosphine as a harmful component in dry nitrogen was added at 20 ° C. The sample was circulated at a flow rate of 2000 ml / min (empty cylinder linear velocity 2.65 cm / sec) under normal pressure. During this time, the time until the phosphine is detected (effective treatment time) is measured by sucking a part of the outlet gas of the purification cylinder into the detector tube (phosphine 7L manufactured by Gastec Co., Ltd., detection lower limit 0.15 ppm) Then, the removal amount (L) (purification ability) of t-butylphosphine per 1 L (liter) of the purification agent was determined. The results are shown in Table 1.
[0035]
(Recovery of copper components from used cleaning agents)
500 g of the purification agent A used in the same manner as in the above-mentioned “Purification of harmful gas containing t-butylphosphine” was collected and dissolved by being immersed in 6.0 kg of 10 wt% sulfuric acid aqueous solution. Next, 4.3 kg of a 15 wt% aqueous sodium carbonate solution as a copper precipitant was added to the solution obtained by filtering the insoluble components, thereby obtaining a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as basic copper carbonate. Further, the recovered basic copper carbonate was tablet-molded into a pellet having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent E having 12 to 28 mesh. The recovered basic copper carbonate (cleaning agent E) has a BET specific surface area of 62 m.2/ G.
[0036]
(Purification of harmful gas containing t-butylphosphine by recovered purification agent)
In the same manner as the above-mentioned “Purification of harmful gas containing t-butylphosphine”, the purification agent E is filled into a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length becomes 100 mm, and harmful components are contained in dry nitrogen. A purification test was conducted by flowing a gas containing 10000 ppm of t-butylphosphine at a flow rate of 2000 ml / min (empty linear velocity 2.65 cm / sec) at 20 ° C. under normal pressure. Table 1 shows the measurement results of the purification capacity of the purification agent E.
[0037]
Example 5
(Recovery of copper components from used cleaning agents)
500 g of the purification agent A used in the same manner as in “Purification of toxic gas containing phosphine” in Example 1 was collected and dissolved by being immersed in 6.0 kg of a 10 wt% sulfuric acid aqueous solution. Next, 1.5 kg of a 15 wt% magnesium sulfate aqueous solution was added as a phosphorus precipitant to form a phosphorus component precipitate, which was filtered off. Thereafter, 4.3 kg of a 15 wt% aqueous sodium carbonate solution as a copper precipitant was added to the filtrate to obtain a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as basic copper carbonate. Further, the recovered basic copper carbonate was tablet-molded into pellets having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent F having 12 to 28 mesh. The recovered basic copper carbonate (cleaning agent F) has a BET specific surface area of 64 m.2/ G.
[0038]
(Purification of toxic gases including phosphine with recovered purification agent)
In the same manner as in “Purification of toxic gas containing phosphine by recovered purification agent” in Example 1, the purification agent F was filled in a purification tube made of hard glass having an inner diameter of 40 mm so as to have a filling length of 100 mm. A gas containing 10000 ppm of phosphine as a harmful component was circulated at a flow rate of 2000 ml / min (cylinder linear velocity 2.65 cm / sec) at 20 ° C. and normal pressure to conduct a purification test. Table 1 shows the measurement results of the purification capacity of the purification agent F.
[0039]
Example 6
(Preparation of purifier containing copper hydroxide as a component)
Commercially available copper sulfate pentahydrate (1.5 kg) was dissolved in 5 L of ion-exchanged water, and 1.5 kg of a 16 wt% sodium hydroxide aqueous solution was further added to obtain a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to prepare copper hydroxide. Further, the obtained copper hydroxide was tablet-molded into pellets having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent G having 12 to 28 mesh. In addition, when the BET specific surface area of copper hydroxide (cleaning agent G) was measured with a gas adsorption amount measuring device, it was 41 m.2/ G.
[0040]
(Purification of harmful gases including phosphine)
Purifying agent G is filled in a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length is 100 mm, and a gas containing 10,000 ppm of phosphine as a harmful component in dry nitrogen is 20 ° C. under normal pressure and 2000 ml / min (empty). The cylinder was circulated at a flow rate of 2.65 cm / sec). During this time, the time until the phosphine is detected (effective treatment time) is measured by sucking a part of the outlet gas of the purification cylinder into the detector tube (phosphine 7L manufactured by Gastec Co., Ltd., detection lower limit 0.15 ppm) Then, the amount of phosphine removed (L) (purification ability) per 1 L (liter) of the purifier was determined.
The results are shown in Table 1.
[0041]
(Recovery of copper components from used cleaning agents)
500 g of the purification agent G used in the same manner as in the above-mentioned “Purification of toxic gas containing phosphine” was collected and dissolved by being immersed in 6.0 kg of 10 wt% sulfuric acid aqueous solution. Next, 6.0 kg of a 4.1 wt% aqueous sodium hydroxide solution as a copper precipitant was added to the solution obtained by filtering out the insoluble components, thereby obtaining a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as copper hydroxide. Further, the recovered copper hydroxide was tablet-molded into pellets having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent H having a size of 12 to 28 mesh. The recovered copper hydroxide (purifier H) has a BET specific surface area of 42 m.2/ G.
[0042]
(Purification of toxic gases including phosphine with recovered purification agent)
In the same manner as the above-mentioned “Purification of toxic gas containing phosphine”, the purification agent H is filled in a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length becomes 100 mm, and 10000 ppm of phosphine as a harmful component in dry nitrogen. A purification test was conducted by circulating a gas containing 20 at a flow rate of 2000 ml / min (empty linear velocity: 2.65 cm / sec) at 20 ° C. and normal pressure. Table 1 shows the results of measuring the purification capacity of the purification agent H.
[0043]
Example 7
(Recovery of copper components from used cleaning agents)
500 g of the purification agent G used in the same manner as in “Purification of toxic gas containing phosphine” in Example 6 was collected and dissolved by being immersed in 6.0 kg of 10 wt% sulfuric acid aqueous solution. Next, 1.5 kg of a 15 wt% magnesium sulfate aqueous solution was added as a phosphorus precipitant to form a phosphorus component precipitate, which was filtered off. Thereafter, 6.0 kg of a 5.3 wt% aqueous sodium hydroxide solution was added to the filtrate as a copper precipitant to obtain a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as copper hydroxide. Further, the recovered copper hydroxide was tablet-molded into a pellet having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent I having 12 to 28 mesh. The recovered copper hydroxide (purifier I) has a BET specific surface area of 38 m.2/ G.
[0044]
(Purification of toxic gases including phosphine with recovered purification agent)
In the same manner as in “Purification of toxic gas containing phosphine by the recovered purification agent” in Example 6, the purification agent I was filled into a purification tube made of hard glass having an inner diameter of 40 mm so as to have a filling length of 100 mm, and in dry nitrogen. A gas containing 10000 ppm of phosphine as a harmful component was circulated at a flow rate of 2000 ml / min (cylinder linear velocity 2.65 cm / sec) at 20 ° C. and normal pressure to conduct a purification test. Table 1 shows the results of measuring the purification ability of the purification agent I.
[0045]
Example 8
(Purification of harmful gases including silane)
The purification agent A prepared in Example 1 was filled in a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length was 100 mm, and a gas containing 10000 ppm of silane as a harmful component in dry nitrogen was kept at 20 ° C. under normal pressure. At a flow rate of 2000 ml / min (empty cylinder linear velocity 2.65 cm / sec). During this time, the time until the silane is detected (effective treatment time) by sucking a part of the outlet gas of the purification cylinder into the detector tube (silane type S, manufactured by Komyo Chemical Co., Ltd., detection lower limit 0.5 ppm). The amount of silane removed (L) (purification capacity) per 1 L (liter) of the purification agent was determined. The results are shown in Table 1.
[0046]
(Recovery of copper components from used cleaning agents)
500 g of the purification agent A used in the same manner as in the above-mentioned “Purification of toxic gas containing silane” was collected and immersed in a mixture of 5.6 kg of 10 wt% sulfuric acid aqueous solution and 0.2 kg of 30 wt% hydrogen peroxide aqueous solution. . Next, 4.3 kg of a 15 wt% aqueous sodium carbonate solution as a copper precipitant was added to the solution obtained by filtering the insoluble components, thereby obtaining a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as basic copper carbonate. Further, the recovered basic copper carbonate was tablet-molded into a pellet having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent J having 12 to 28 mesh. The recovered basic copper carbonate (cleaning agent J) has a BET specific surface area of 61 m.2/ G.
[0047]
(Purification of toxic gases including silanes using recovered purification agent)
In the same manner as the above-mentioned “Purification of harmful gas containing silane”, the purification agent J is filled in a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length is 100 mm, and 10000 ppm of silane as a harmful component in dry nitrogen. A purification test was conducted by circulating a gas containing 20 at a flow rate of 2000 ml / min (empty linear velocity: 2.65 cm / sec) at 20 ° C. and normal pressure. Table 1 shows the results of measuring the purification capacity of the purification agent J.
[0048]
Example 9
(Recovery of copper components from used cleaning agents)
500 g of the purification agent A used in the same manner as in “Purification of toxic gas containing silane” in Example 8 was collected and mixed into a mixture of 5.6 kg of 10 wt% sulfuric acid aqueous solution and 0.2 kg of 30 wt% hydrogen peroxide aqueous solution. Soaked. Next, 6.0 kg of a 4.1 wt% aqueous sodium hydroxide solution as a copper precipitant was added to the solution obtained by filtering out the insoluble components, thereby obtaining a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as copper hydroxide. Further, the recovered copper hydroxide was tablet-molded into pellets having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent K having a size of 12 to 28 mesh. The recovered copper hydroxide (cleaning agent K) has a BET specific surface area of 39 m.2/ G.
[0049]
(Purification of toxic gases including silanes using recovered purification agent)
In the same manner as in “Purification of harmful gas containing silane by recovered purification agent” in Example 8, a purification glass made of hard glass having an inner diameter of 40 mm is filled with a purification agent K so as to have a filling length of 100 mm, and in dry nitrogen. A gas containing 10000 ppm of silane as a harmful component was circulated at a flow rate of 2000 ml / min (cylinder linear velocity 2.65 cm / sec) at 20 ° C. under normal pressure to conduct a purification test. Table 1 shows the measurement results of the purification capacity of the purification agent K.
[0050]
Example 10
(Recovery of copper components from used cleaning agents)
500 g of the purification agent A used in the same manner as in “Purification of toxic gas containing silane” in Example 8 was collected and mixed into a mixture of 5.6 kg of 10 wt% sulfuric acid aqueous solution and 0.2 kg of 30 wt% hydrogen peroxide aqueous solution. Soaked. Next, 4.3 kg of a 15 wt% aqueous sodium carbonate solution was added as a copper precipitant to the solution obtained by filtering out the insoluble components, thereby obtaining a precipitate of copper components. This precipitate was filtered, washed with water, 16 g of aluminum oxide was added and kneaded with a kneader, then dried at 120 ° C. and baked at 350 ° C., whereby the copper component was recovered as cupric oxide. The obtained recovered product contained cupric oxide (96 wt%) and aluminum oxide (4 wt%). Further, the recovered material thus obtained was tablet-molded into a pellet having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent L having a size of 12 to 28 mesh. BET specific surface area of the cleaning agent L is 81m2/ G.
[0051]
(Purification of toxic gases including silanes using recovered purification agent)
In the same manner as in “Purification of harmful gas containing silane by recovered purification agent” in Example 8, the purification agent L was filled in a purification tube made of hard glass having an inner diameter of 40 mm so as to have a filling length of 100 mm, and was put in dry nitrogen. A gas containing 10000 ppm of silane as a harmful component was circulated at a flow rate of 2000 ml / min (cylinder linear velocity 2.65 cm / sec) at 20 ° C. under normal pressure to conduct a purification test. Table 1 shows the results of measuring the purification capacity of the purification agent L.
[0052]
Example 11
(Purification of harmful gases containing disilane)
The purification agent A prepared in Example 1 was filled in a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length was 100 mm, and a gas containing 10000 ppm of disilane as a harmful component in dry nitrogen was kept at 20 ° C. under normal pressure. At a flow rate of 2000 ml / min (empty cylinder linear velocity 2.65 cm / sec). During this time, the time until disilane is detected (effective processing time) by sucking a part of the outlet gas of the purification cylinder into the detector tube (silane type S, manufactured by Komyo Chemical Co., Ltd., detection limit 0.5 ppm). Was measured, and the removal amount (L) (purification ability) of disilane per 1 L (liter) of the purification agent was determined. The results are shown in Table 1.
[0053]
(Recovery of copper components from used cleaning agents)
500 g of the cleaning agent A used in the same manner as in the above-mentioned “Purification of harmful gas containing disilane” was collected and immersed in a mixture of 5.6 kg of 10 wt% sulfuric acid aqueous solution and 0.2 kg of 30 wt% aqueous hydrogen peroxide solution. . Next, 4.3 kg of a 15 wt% aqueous sodium carbonate solution as a copper precipitant was added to the solution obtained by filtering the insoluble components, thereby obtaining a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as basic copper carbonate. Further, the recovered basic copper carbonate was tablet-molded into a pellet having a diameter of 6 mm and a height of 6 mm, and then crushed and sieved to obtain a purification agent M having a size of 12 to 28 mesh. The recovered basic copper carbonate (cleaning agent M) has a BET specific surface area of 63 m.2/ G.
[0054]
(Purification of harmful gases including disilane using recovered purification agent)
In the same manner as the above-mentioned “Purification of harmful gas containing disilane”, the purification agent M is filled into a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length is 100 mm, and 10000 ppm of silane as a harmful component in dry nitrogen. A purification test was conducted by circulating a gas containing 20 at a flow rate of 2000 ml / min (empty linear velocity: 2.65 cm / sec) at 20 ° C. and normal pressure. Table 1 shows the measurement results of the purification capacity of the purification agent M.
[0055]
Example 12
(Purification of harmful gases including dichlorosilane)
The purification agent G prepared in Example 6 was filled in a purification tube made of hard glass having an inner diameter of 40 mm so that the filling length was 100 mm, and a gas containing 10000 ppm of dichlorosilane as a harmful component in dry nitrogen was kept at 20 ° C. It was made to distribute | circulate by the flow volume of 2000 ml / min (empty cylinder linear velocity 2.65 cm / sec) under pressure. During this time, the time (effective treatment time) until dichlorosilane is detected is measured by sucking a part of the outlet gas of the purification cylinder into the detector tube (manufactured by Gastec Corporation, detection lower limit 0.05 ppm). The removal amount (L) (purification capacity) of dichlorosilane per 1 L (liter) of the purification agent was determined. The results are shown in Table 1.
[0056]
(Recovery of copper components from used cleaning agents)
500 g of the cleaning agent G used in the same manner as in the above-mentioned “Purification of toxic gas containing dichlorosilane” was collected and immersed in a mixed solution of 5.6 kg of 10 wt% sulfuric acid aqueous solution and 0.2 kg of 30 wt% aqueous hydrogen peroxide solution. did. Next, 6.0 kg of a 4.1 wt% aqueous sodium hydroxide solution was added as a copper precipitant to the solution obtained by filtering out the insoluble components, thereby obtaining a copper component precipitate. The precipitate was filtered, washed with water, and dried at 120 ° C. to recover the copper component as copper hydroxide. Further, the recovered copper hydroxide was tablet-molded into pellets having a diameter of 6 mm and a height of 6 mm, and then crushed and passed through a sieve to obtain a purification agent N having 12 to 28 mesh. The recovered copper hydroxide (purifier N) has a BET specific surface area of 41 m.2/ G.
[0057]
(Purification of toxic gas containing dichlorosilane by recovered purification agent)
In the same manner as in the above-mentioned “Purification of toxic gas containing dichlorosilane”, the purification agent N is filled in a hard glass purification cylinder having an inner diameter of 40 mm so that the filling length becomes 100 mm, and dinitrogen as a harmful component in dry nitrogen. A gas containing 10000 ppm of chlorosilane was circulated at a flow rate of 2000 ml / min (cylinder linear velocity: 2.65 cm / sec) at 20 ° C. and normal pressure to conduct a purification test. Table 1 shows the results of measuring the purification capacity of the purification agent N.
[0058]
[Table 1]
[0059]
As described above, copper components are recovered from the purifiers used to purify harmful gases containing phosphines or silane gases as harmful components, and the recovered purifiers prepared using them are used for purifying harmful gases. It was confirmed that it has the same purification ability as compared with the new purification agent before being applied.
[0060]
【The invention's effect】
From the cleaning agent containing the basic copper carbonate and the cleaning agent containing copper hydroxide used for the removal of phosphines or silane-based gas contained in the exhaust gas discharged from the semiconductor manufacturing process etc. The copper component can be recovered efficiently and in a reusable state.
Claims (11)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001163665A JP4815066B2 (en) | 2001-05-31 | 2001-05-31 | Cleaning agent recovery method |
EP20010126085 EP1205564B1 (en) | 2000-11-14 | 2001-11-02 | Method of recovering a copper and/or a manganese component from a particulate gas cleaning agent |
DE2001623547 DE60123547T2 (en) | 2000-11-14 | 2001-11-02 | Process for recovering a copper and / or manganese compound from gas cleaning particles |
TW90127635A TWI247811B (en) | 2000-11-14 | 2001-11-07 | Method of recovering a cleaning agent |
US09/986,606 US6716403B2 (en) | 2000-11-14 | 2001-11-09 | Method of recovering a cleaning agent |
KR20010070298A KR100781838B1 (en) | 2000-11-14 | 2001-11-13 | Method of recovering a cleaning agent |
CN01138492A CN1357639A (en) | 2000-11-14 | 2001-11-14 | Purifying agent recovering method |
US10/768,671 US7297315B2 (en) | 2000-11-14 | 2004-02-02 | Method of recovering a cleaning agent |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001163665A JP4815066B2 (en) | 2001-05-31 | 2001-05-31 | Cleaning agent recovery method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002356325A JP2002356325A (en) | 2002-12-13 |
JP4815066B2 true JP4815066B2 (en) | 2011-11-16 |
Family
ID=19006589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001163665A Expired - Fee Related JP4815066B2 (en) | 2000-11-14 | 2001-05-31 | Cleaning agent recovery method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4815066B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111302472A (en) * | 2020-03-04 | 2020-06-19 | 惠州大亚湾亿田环保技术有限公司 | Zero-emission chlorate type acidic copper etching waste liquid treatment process |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3615217A (en) * | 1966-06-27 | 1971-10-26 | Catalysts & Chemicals Inc | Low temperature copper-zinc shift reaction catalysts and methods for their preparation |
GB8327933D0 (en) * | 1983-10-19 | 1983-11-23 | Ici Plc | Catalyst |
JP2753855B2 (en) * | 1989-04-27 | 1998-05-20 | 鶴見曹達株式会社 | Manufacturing method of copper plating material |
JP2561616B2 (en) * | 1993-03-17 | 1996-12-11 | 日本酸素株式会社 | Solid remover for harmful components |
JPH0812328A (en) * | 1994-07-04 | 1996-01-16 | Nippon Chem Ind Co Ltd | Cupric hydroxide manufacturing method |
JP3612592B2 (en) * | 1994-09-29 | 2005-01-19 | 大陽日酸株式会社 | Method for stabilizing copper hydroxide and stabilized copper hydroxide composition |
JP4486215B2 (en) * | 2000-04-24 | 2010-06-23 | 三井化学株式会社 | How to recover the pesticide |
-
2001
- 2001-05-31 JP JP2001163665A patent/JP4815066B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002356325A (en) | 2002-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101957705B1 (en) | Manufacturing method of titania from scr catalyst | |
JP5409948B1 (en) | A method for producing urea water, a method for removing triuret from urea water, and a method for recovering triuret from an aqueous solution. | |
JP2540401B2 (en) | Method for precipitating and separating radioactive iodine compounds | |
JP4815066B2 (en) | Cleaning agent recovery method | |
JP4111768B2 (en) | Water treatment catalyst and water treatment method | |
EP1205564B1 (en) | Method of recovering a copper and/or a manganese component from a particulate gas cleaning agent | |
JP5137232B2 (en) | Method for producing porous iron oxide and method for treating water to be treated | |
JP4815071B2 (en) | Cleaning agent recovery method | |
KR20180108472A (en) | Purification treatment agents and purification treatment methods | |
JP3260825B2 (en) | How to purify harmful gases | |
JP2000511865A (en) | Method for producing industrial sodium chloride aqueous solution | |
CN114887587A (en) | Porous adsorbent for heavy metal in wastewater prepared by using lithium ore waste residue as raw material and preparation method thereof | |
JP3838977B2 (en) | Exhaust gas treatment agent, method for producing the same, and exhaust gas treatment method | |
JP4486215B2 (en) | How to recover the pesticide | |
JP4597283B2 (en) | By-product salt processing method | |
JP3667804B2 (en) | How to remove harmful gases | |
JP2005169370A (en) | Dehydrosulfurization treatment agent of gas containing hydrogen sulfide, treatment method and treatment apparatus | |
JP2014008473A (en) | Catalyst for cleaning exhaust gas | |
JP2955164B2 (en) | Method for removing iodine from exhaust gas | |
TW593134B (en) | Cleaning agent for chemisorption of gaseous hydrides and method of cleaning harmful gas | |
JP4023928B2 (en) | Metal scavenger | |
JP3803870B2 (en) | Detoxification method for contaminated soil containing heavy metal compounds | |
CA2395851C (en) | A method for treatment of flue gas cleaning products | |
JP2702461B2 (en) | Exhaust gas purification method | |
JP3486767B2 (en) | Apparatus and method for removing harmful substances in exhaust gas and activated carbon for removing harmful substances |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110223 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110330 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110804 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110829 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |