JP4812157B2 - Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action - Google Patents
Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action Download PDFInfo
- Publication number
- JP4812157B2 JP4812157B2 JP2000142998A JP2000142998A JP4812157B2 JP 4812157 B2 JP4812157 B2 JP 4812157B2 JP 2000142998 A JP2000142998 A JP 2000142998A JP 2000142998 A JP2000142998 A JP 2000142998A JP 4812157 B2 JP4812157 B2 JP 4812157B2
- Authority
- JP
- Japan
- Prior art keywords
- molecular weight
- glucan
- water
- sample
- soluble
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Cosmetics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Medicines Containing Plant Substances (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、免疫力を増強し、種々の細菌、ウイルス感染やガンの発生を予防する作用を有する水溶性βグルカン、及び該水溶性βグルカンを有効成分として含有する食品素材、化粧品素材、医薬品素材及びそれら素材の加工品に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
生体は、主として免疫系の作用によって、細菌やウイルス等の微生物、或いは生体内で発生する腫瘍等の攻撃から守られている。近年、免疫機能に作用し、これを増強する効果を有する生体応答修飾物質(以下BRMと略記)を用いたインフルエンザ予防或いはガン治療に関する研究が注目されている。
【0003】
BRMの免疫増強効果は、先ず、生体内の様々な細胞にBRMが作用し、腫瘍壊死因子(以下TNFと略記)、インターロイキン類、インターフェロン類等のサイトカインと総称される物質産生が活性化、誘導されることにより生じる。誘導されたこれらの物質は、免疫担当細胞に作用し免疫系を活性化する。サイトカインのうち、TNFは、単球やマクロファージから放出されるものであって、細胞増殖作用や抗ウイルス作用を示すことが知られている。インターロイキン類としては、IL1〜IL12の存在が知られている。そのうちIL1は、感染、炎症、種々の免疫反応等に伴い、主として単球やマクロファージから産生される分子量17500のペプチドホルモンである。インターフェロン類は、インターフェロン−α、インターフェロン−β、インターフェロン−γの3つが知られている。インターフェロン−γは、分子量が約2万の糖蛋白質であって、抗ウイルス作用、マクロファージやナチュラルキラー細胞等の免疫担当細胞の活性化や分化誘導に作用し免疫調節因子として注目されている。
【0004】
これらサイトカインを単離精製して、或いは遺伝子組換えによって調製し、それぞれを投与してウイルス感染治療或いはガン治療に応用する研究が行われているが、免疫増強作用は、多くの細胞が協奏的に働き、はじめて効果を発揮するものであり、それぞれのサイトカインのバランスが重要で、未だ多くのサイトカインをバランスよく投与する方法が見出されておらず、ガン治療を達成するには至っていないのが現状で、これらの課題克服の目的に使用されるBRMへの期待は大きい。
【0005】
BRMとしては、微生物由来の多糖類、或いは細胞壁成分等では酵母菌体、乳酸菌菌体等が知られている。また、シイタケ抽出多糖類であるレンチナン或いはその他胆子菌類のβグルカン類も有効であることが知られている。
しかし、これら微生物や胆子菌は、培養に手間がかかり、特殊な設備を必要とする。また、これら微生物や胆子菌由来のβグルカン或いはその他多糖類の抽出は、操作が煩雑であると共に、精製工程も煩雑で、コスト及び操作時間が多大にかかり、得られるBRMが高価なものとなってしまう問題がある。
【0006】
水溶性βグルカンのBRMの作用、即ち免疫増強作用に関しては、胆子菌培養物或いは子実体の熱水抽出物に同作用が認められている。
しかし、これらのキノコ類では、重量平均分子量200万〜20万の高分子量のβグルカンに免疫増強作用が認められている。
また、イネ科植物由来の重量平均分子量が10万を超える比較的高分子量のβグルカンに免疫増強作用のあることは知られているが、その免疫増強作用は満足できるものではなく、また重量平均分子量が10万以下に低分子化されたβグルカンについての免疫増強作用に関しては未知であった。
【0007】
このように免疫増強作用が認められているβグルカンは、重量平均分子量が10万を超える高分子量のものである。一般的に高分子量のβグルカンは、粘性が高く、水に溶解させるのが難しい。そのため、食品、化粧品、医薬品等の素材として使用する場合、加熱操作や長時間の攪拌操作等が必要になり、熱による変性や分子修飾のためのコストが高くなる等の問題があり、機能性を保持した、より低分子量のβグルカンが望まれている。
【0008】
従って、本発明の目的は、体内におけるTNFをはじめとするサイトカインの産生を促進し、その作用を増強させ、抗体産生能或いは免疫作用全体を増強することによって各種感染症や腫瘍発生の予防に役立つ、低分子量の水溶性βグルカンを提供することにある。
【0009】
【課題を解決するための手段】
本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、高分子量のβグルカンを低分子化することによって得られた低分子量の水溶性βグルカンが、高分子量のβグルカンに比較してより強い免疫増強作用を有することを見出し、本発明に到達した。
【0010】
即ち、本発明は、免疫増強作用のための医薬品素材であって、重量平均分子量が5000〜10万に低分子化された大麦粉由来の水溶性βグルカンを有効成分として含有する医薬品素材を提供するものである。
【0018】
【発明の実施の形態】
本発明の低分子化された水溶性βグルカンは、抗体産生増強作用或いはサイトカイン特にTNFの産生促進作用を有する免疫増強作用を有し、特に、食品、化粧品及び医薬品等の素材として適している。
【0019】
本発明のβグルカンは、植物、特にイネ科植物由来のものが好ましく、食品素材として最も適当である。イネ科植物の例としては、米類、小麦類、トウモロコシ類、ヒエ類、アワ類、キビ類、大麦類、オーツ麦類(カラス麦類)、ライ麦類等が挙げられ、好ましくは、大麦類、オーツ麦類、さらに好ましくは大麦類である。これらのイネ科植物には、ワキシー蛋白質を発現し、アミロース合成される粳系統のもの或いはこの蛋白質の作用の欠失した餅化系統のものがあるが、本発明においては何れも材料とすることができる。
【0020】
本発明の低分子化された水溶性βグルカンの水溶性とは、65℃の温水に完全に溶解する性質をいう。完全に溶解する性質は、サンプルを蒸留水に対して1重量%となるように添加し、10分間撹拌溶解させた後、沈殿が目視によって確認されないこと、660nmの吸光度による濁度測定において、対照の溶解水に対して、O.D.値が0.4以下である性質をいう。本発明の水溶性βグルカンは、このような水溶性を有するため、食品、化粧品、医薬品等の素材として扱いやすく、加工の手間がかからず、コストも抑えることができる。
【0021】
本発明の水溶性βグルカンは、低分子量である。ここでいう低分子量とは、水溶性であり、且つ免疫増強作用を有すればよい。その中でも、特に重量平均分子量が10万以下の水溶性βグルカンが、免疫増強作用に優れ、食品、化粧品、医薬品等の素材としても優れている。その中でも、重量平均分子量5000〜10万のものが好ましく。更に重量平均分子量1万〜6万のものがより好ましい。
【0022】
本発明の水溶性βグルカンは、分子量10万未満のβグルカンの含有量の割合が、全βグルカンの80重量%以上が好ましく、90重量%以上がより好ましく、さらに95重量%以上がより好ましく、100重量%のものが最も好ましい。
【0023】
本発明の低分子化された水溶性βグルカンは、イネ科植物等の原料から直接得ることができ、また原料から抽出精製された高分子量のβグルカンを低分子化して得ることもできる。
【0024】
穀類から高分子量のβグルカンを得る方法としては、例えば、多ろう質大麦を原料とし、水抽出により製造する方法(特公平4−11197号公報)、或いは、大麦、オーツ麦を原料として、アルカリ抽出、中和、アルコール沈殿により、重量平均分子量10万〜100万のβグルカンを得る方法(特公平6−83652号公報)等がある。これらの製造方法で得られたβグルカンは、高分子量であるため、このままでは粘性が高く水に再可溶させるのが難しい。これらの高分子量のβグルカンを低分子化して本発明の低分子化水溶性βグルカンを得ることができる。
【0025】
高分子量のβグルカンを低分子化する方法としては、公知である多糖類の加水分解反応の何れもが利用可能である。例えば、水溶性多糖類は、酸存在下に加圧加熱により加水分解することが知られており、これを利用して高分子量のβグルカンを低分子化することができる。また、酵素による加水分解反応を利用した低分子化も有効で、酵素としては、1/3βグルカナーゼ等を用いることができる。以上のように、原料から抽出精製された高分子量のβグルカンから本発明の低分子化水溶性βグルカンを得ることができる。
また、本発明の低分子化水溶性βグルカンは、WO98/13056号国際公報に記載の方法等により、原料穀物から直接抽出して得ることもできる。
【0026】
本発明の低分子化された水溶性βグルカンの中でも最も好ましいものは、大麦由来の低分子化水溶性βグルカンであり、このものは、免疫増強作用に優れており、特に体内におけるTNF類、インターロイキン類、インターフェロン類等のサイトカインの産生を促進し、その作用による抗体産生等の免疫力を増強させる効果に優れ、これらの効果の中でも特に抗体産生増強作用が、重量平均分子量10万以上の高分子量のβグルカンに比較して著しく優れている。
【0027】
また、本発明の低分子化された水溶性βグルカンを、食品、化粧品、医薬品等の素材又はそれら素材の加工品に含有させて使用する場合、0.1〜90重量%含有させることが好ましい。
また、本発明の低分子化された水溶性βグルカンの免疫増強作用は単独で十分発現しうるものであるが、乳酸菌又は乳酸菌菌体成分と併用することで、さらに免疫増強作用が増し好ましい。
【0028】
【実施例】
以下、実施例により本発明を更に説明するが、本発明はこれら実施例によって限定されるものではない。尚、特に記述がない限り、実施例中の%は重量によるものであり、分子量は重量平均分子量である。
【0029】
実施例1(低分子化水溶性βグルカンの製造)
市販の大麦を粉砕し、24メッシュの篩にて通過分を大麦粉とした。該大麦粉500gに水2.5L(リットル)を加え、55℃に加温後、2時間攪拌抽出した。抽出後、混合液を遠心力1500Gで10分間遠心分離し、2.2Lの上清を得た。この上清を冷却、凍結し、−10℃で24時間放置した。解凍後、沈殿したβグルカンを濾過分離し、80℃にて加熱乾燥し、15gのβグルカン粗抽出物を得た。このβグルカン粗抽出物に水300mlを加え、90℃にて完全に溶解させた後、−20℃に冷却し、24時間凍結保存した。解凍後、沈殿したβグルカンを濾過分離し、凍結乾燥し、10gのβグルカン精製物(サンプルA)を得た。
【0030】
このサンプルAを1%となるように蒸留水に加え、65℃に加温し、10分間放置したところ、溶解し透明の水溶液となった。660nmによる吸光度は、蒸留水を対照として、O.D.値0.127を示した。
次に、サンプルAの分子量をゲル濾過クロマトグラフィーにて次のようにして測定した。サンプルAを蒸留水に濃度1%となるように加え、沸騰水中で溶解させた。分離には温度50℃でゲル濾過カラムSuperose6HR(ファルマシア製)を用い、分子量マーカーとしてShodexプルラン標準液P−82(昭和電工社製)を用いた。蒸留水を溶出液とし、流速0.6ml/min.で溶出画分を屈折計(RI)でモニタリングした。プルラン標準物の分子量より、サンプルAの分子量を測定した結果、その分子量は10万〜5000に分布し、分子量10万以上のピークはわずかであり(3%以下)、分子量が低下するほど含量は多くなり、主成分は分子量4万であった。また分子量5000以下のβグルカンはわずかであった(5%以下)。
【0031】
比較例2(高分子量のβグルカンの製造)
市販の大麦を粉砕し、24メッシュの篩にて通過分を大麦粉とした。該大麦粉500gに水2.5Lを加え、55℃に加温後、30分間攪拌抽出した。抽出後、混合液を遠心力1500Gで10分間遠心分離し、2.2Lの上清を得た。この上清を冷却、凍結し、−10℃で24時間放置した。解凍後、沈殿したβグルカンを濾過分離し、80℃にて加熱乾燥し、5gのβグルカン粗抽出物を得た。このβグルカン粗抽出物に水500mlを加え、煮沸して溶解させた後、−20℃に冷却し、24時間凍結保存した。解凍後、沈殿したβグルカンを濾過分離し、凍結乾燥し、3.6gのβグルカン精製物(サンプルB)を得た。
【0032】
このサンプルBを1%となるように蒸留水に加え、65℃に加温し、10分間溶解を試みたが、サンプルBは沈殿が認められ全ては溶解しなかった。660nmの吸光度を測定したところ、O.D.値1.74を示した。
次に、サンプルBの分子量をゲル濾過クロマトグラフィーにて次のようにして測定した。サンプルBを蒸留水に濃度1%となるように加え、沸騰水中で溶解させた。分離には50℃でゲル濾過カラムSuperose6HR(ファルマシア製)を用い、分子量マーカーとしてShodexプルラン標準液P−82(昭和電工社製)を用いた。蒸留水を溶出液とし、流速0.6ml/min.で溶出画分を屈折計(RI)でモニタリングした。その結果、プルラン標準物の分子量より、サンプルBの分子量を測定した結果、その分子量分布は、分子量50万〜15万に分布し、主成分は分子量30万であった。分子量10万以下の低分子化βグルカンは認められなかった。
【0033】
試験例1(腹空内細胞数の変動)
先ず、実施例1で得られたサンプルA(本発明の低分子化水溶性βグルカン)を10mMリン酸緩衝液(pH6.9)100μlに溶解し、0.32〜20mgの量でICRマウス6週齢メスの腹空に投与し、6時間後に腹空細胞を採取し、顕微鏡下、その細胞数をカウントした。その結果、投与量に比例して細胞数は増加し、未投与マウスに比較すると、2〜3倍となった。増加した全細胞数に対する好中球数の割合をカウントしたところ、投与量に従い増加し、0.32mg投与で約10倍、1mg投与で20倍、5mg投与で30倍に増加した。増加した細胞中の好中球数の割合は1mg投与で増加細胞の70%を超えていた。臨床的に使用されている免疫増強剤であるシイタケ抽出物由来の精製レンチナンは1mg投与で、細胞数が3倍、好中球数は30倍、割合は80%であった。細菌由来のOK−432の投与では0.2mg投与で細胞数は5倍、好中球は60倍、割合は90%であった。
【0034】
次に、前記サンプルAを投与し、経時的な細胞の質的変化を検討した。前記サンプルAの10mgをマウス腹空に投与し、6、12、24、48、72時間後に細胞を採取し免疫担当細胞である好中球、マクロファージ、リンパ球の数をカウントした。その結果、総細胞数は、24時間で最大となり未投与の10倍であった。好中球は24時間後に最大となり、その後48時間後には急激に減少し、72時間後にはほぼ正常値であった。マクロファージは、12時間以降増加し48時間で最大を示した。リンパ球数も48時間後に最大を示した。
レンチナンでは、12時間後に総細胞数が最大となり、その後減少した。好中球数は6時間後が最大でその後減少した。好中球の数は前記サンプルAでは24時間まで減少せず、レンチナンに比較すると持続力があった。レンチナン投与のマウスにおけるマクロファージとリンパ球の変化は前記サンプルAとほぼ同様であった。尚、上記細胞数のカウントは、腹空細胞をスライドガラスに塗布し、核染色して形態学的な変化より好中球、マクロファージ、リンパ球に類別してカウントした。
また、細胞の顕微鏡観察により、前記サンプルAの投与後48時間の細胞観察において、マクロファージの活発な貪食作用の結果と考えられる形態学的特徴と、劇的な好中球の減少を認めた。このような変化はレンチナン、OK−432、その他では認められず、前記サンプルAの投与で特異的に認められることであった。
【0035】
試験例2(腹空内細胞より産生されるTNF量の変動)
実施例1で得られたサンプルAを投与したマウスより得た腹空細胞を用いて、TNF−αの産生能を評価した。先ず、前記サンプルAを10mMリン酸緩衝液(pH6.9)100μlに溶解し、ICRマウス6週齢メスに0〜10mgとなるよう腹空投与した。3日後、腹空細胞を採取し、無血清培養液で洗浄後、同培養液にて各ウェルに5×105cellsとなるよう調整して添加した。さらに乳酸菌菌体を20μg/mlとなるように各ウェルに添加し、全量を200μlとし、2時間37℃にて放置した。培養上清のTNF−α濃度をELISA測定キット(ENDOGEN社製TNF−2 ELISAKIT EN−2601−90)を用いて測定した。その結果、前記サンプルAの0.3mg投与で51pg/ml、1mg投与で128pg/ml、3mg投与で141pg/mlと濃度依存的に産生されるTNF−αの濃度は増加した。無添加の場合、25pg/mlであり、その産生量は前記サンプルAに特異的であった。
【0036】
また、前記サンプルAを投与したマウスより得た腹空細胞を用いて、TNF−α産生能の経時変化を評価した。サンプルAの3mgを10mMリン酸緩衝液(pH6.9)100μlに溶解し、ICRマウス6週齢メスに腹空投与した。0〜7日後、腹空細胞を採取し、無血清培養液で洗浄後、同培養液にて各ウェルに5×105cellsとなるよう調整して添加した。さらに乳酸菌菌体を20μg/mlとなるように各ウェルに添加し、全量を200μlとし、2時間37℃にて放置した。培養上清のTNF−α濃度をELISA測定キット(ENDOGEN社製TNF−2 ELISAKIT EN−2601−90)を用いて測定した。その結果、前記サンプルA投与直後では18pg/ml、1日後で84pg/ml、3日後で130pg/ml、5日後に121pg/ml、7日後に98pg/mlとTNF−αの産生量は経日的に増加し、その産生能は7日間持続していた。
【0037】
試験例3
実施例1で得られたサンプルA及び比較例1で得られたサンプルBをマウスに投与し、その抗体産生増強の作用を解析した。
先ず、抗原としてウシ・血漿ガンマーグロブリン1mgをPBS(リン酸緩衝液)の1mlに溶解させ1mg/mlの抗原液を調整した。前記サンプルA又はBの500μgをPBSの1mlに加え、加熱溶解させた。前記サンプルAは、50℃に加温することで瞬時に溶解した。前記サンプルBは、50℃に加温することでは溶解せず、90℃に30分間放置し溶解させた。抗原液とサンプル溶液を当量混合し、マウスの腹空に100μlづつ投与した。マウスは、Balbcマウス4週齢、メスを用い、各サンプル5匹を1群とした。2週間後に1回目と同様にして追加免疫した。尚、ウシ・血漿ガンマーグロブリン0.5mgをPBSの1mlに溶解させ0.5mg/mlとし、マウスに100μl投与した群を対照とした。追加免疫後2週間で採血し、トータルの抗体産生量(IgG,IgM,IgA抗体量)の差をELISAにて測定した。尚、ELISAは、先ず、免疫に用いたウシ・血漿ガンマーグロブリンを10μg/mlの濃度で96マイクロプレート(ヌンク社製・マキシソープ)にプレートコーティングして、血清の希釈液を1時間、37℃にて反応後、さらにペルオキシターゼを標識した抗マウス・イムノグロブリン抗体を2次抗体として1時間、37℃で反応させた。次に、オルトフェニレンジアミン溶液(和光純薬社製)を発色剤として用いて、10分間37℃に放置後、2M硫酸で反応を停止後、490nmの吸光度を測定した。
【0038】
次に、マウスより採取した血液を遠心分離し、血清を得て、これを×10〜×5120倍に0.2%BSA(牛血清アルブミン)を含むPBS−Tween溶液(ソルビタンモノエステルであるTween20をPBSに0.05%となるように溶解したもの)にて希釈し、抗体価を測定した。その結果、2560倍に希釈した血清の抗ウシ・血漿ガンマーグロブリン抗体価をO.D.値の平均値として比較すると、サンプルA投与群(n=5)は0.703±0.1、サンプルB投与群(n=5)は0.491±0.075、対照群(n=5)は0.315±0.090であった。
この試験からサンプルA投与群の抗体価はサンプルB投与群よりも高値を示し、前記サンプルAの抗体産生増強効果が認められた。
【0039】
【発明の効果】
本発明の低分子化された水溶性βグルカンは、体内におけるTNFをはじめとするサイトカインの産生を促進し、その作用を増強させ、抗体産生能或いは免疫作用全体を増強することによって各種感染症や腫瘍発生の予防に役立つものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-soluble β-glucan that has an action of enhancing immunity and preventing the occurrence of various bacteria, viral infections and cancer, and a food material, a cosmetic material, and a pharmaceutical containing the water-soluble β-glucan as an active ingredient The present invention relates to materials and processed products of those materials.
[0002]
[Prior art and problems to be solved by the invention]
The living body is protected from attacks of microorganisms such as bacteria and viruses, or tumors generated in the living body mainly by the action of the immune system. In recent years, research on influenza prevention or cancer treatment using a biological response modifier (hereinafter abbreviated as BRM) having an effect of acting on and enhancing immune functions has attracted attention.
[0003]
First, BRM acts on various cells in the body to activate the production of substances generally called cytokines such as tumor necrosis factor (hereinafter abbreviated as TNF), interleukins, and interferons. It is caused by being induced. These induced substances act on immunocompetent cells and activate the immune system. Among cytokines, TNF is released from monocytes and macrophages and is known to exhibit cell proliferation and antiviral effects. As interleukins, the presence of IL1 to IL12 is known. Among them, IL1 is a peptide hormone having a molecular weight of 17500, which is mainly produced from monocytes and macrophages due to infection, inflammation, various immune reactions and the like. Three types of interferons are known: interferon-α, interferon-β, and interferon-γ. Interferon-γ is a glycoprotein having a molecular weight of about 20,000, and has attracted attention as an immunoregulatory factor by acting on antiviral action, activation of immune cells such as macrophages and natural killer cells, and induction of differentiation.
[0004]
Studies have been conducted to isolate and purify these cytokines, or to prepare them by gene recombination, and administer each of them to apply virus infection treatment or cancer treatment. The balance of each cytokine is important, the method of administering many cytokines in a balanced manner has not yet been found, and cancer treatment has not been achieved. At present, expectations are high for BRM used for the purpose of overcoming these problems.
[0005]
As BRM, yeast cells, lactic acid bacteria and the like are known as microorganism-derived polysaccharides or cell wall components. It is also known that Lentinan, a shiitake-extracted polysaccharide, or β-glucans of other bile fungi are also effective.
However, these microorganisms and gallbladder are time-consuming to culture and require special equipment. In addition, the extraction of β-glucan or other polysaccharides derived from these microorganisms or bile fungi is complicated in operation, complicated in the purification process, takes a lot of cost and operation time, and the resulting BRM is expensive. There is a problem.
[0006]
Regarding the action of BRM of water-soluble β-glucan, that is, the immunopotentiating action, the same action has been observed in the bile fungus culture or the hot water extract of fruiting bodies.
However, in these mushrooms, a high molecular weight β-glucan having a weight average molecular weight of 2 million to 200,000 has an immunopotentiating action.
Moreover, it is known that β glucan having a relatively high molecular weight derived from a Gramineae plant having a weight average molecular weight exceeding 100,000 has an immunopotentiating action, but the immunopotentiating action is not satisfactory, and the weight average It was unknown about the immunopotentiating action of β-glucan having a molecular weight reduced to 100,000 or less.
[0007]
The β-glucan that has been confirmed to have an immunopotentiating action has a high molecular weight with a weight average molecular weight exceeding 100,000. In general, high molecular weight β-glucan is highly viscous and difficult to dissolve in water. Therefore, when used as a raw material for food, cosmetics, pharmaceuticals, etc., there are problems such as heating operation and long-time stirring operation, and there are problems such as high cost for denaturation by heat and molecular modification. There is a demand for β-glucan having a lower molecular weight and retaining the above.
[0008]
Therefore, the object of the present invention is to promote the production of cytokines including TNF in the body, enhance its action, and enhance the antibody production ability or the overall immune action, thereby preventing various infectious diseases and tumor development. It is to provide a low molecular weight water-soluble β-glucan.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have compared low molecular weight water-soluble β-glucan obtained by lowering high molecular weight β-glucan to high-molecular-weight β-glucan. As a result, the present inventors have found that it has a stronger immunity enhancing action, and reached the present invention.
[0010]
That is, the present invention provides a pharmaceutical material for immune enhancement, which contains a barley flour- derived water-soluble β-glucan whose weight average molecular weight is reduced to 5000 to 100,000 as an active ingredient. To do.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The low molecular weight water-soluble β-glucan of the present invention has an antibody enhancing effect or an immune enhancing effect that promotes the production of cytokines, particularly TNF, and is particularly suitable as a material for foods, cosmetics, and pharmaceuticals.
[0019]
The β-glucan of the present invention is preferably derived from a plant, particularly a grass family plant, and is most suitable as a food material. Examples of gramineous plants include rice, wheat, corn, barnyard millet, millet, millet, barley, oats (crown), rye, etc., preferably barley Oats, more preferably barley. Among these gramineous plants, there are those of the silkworm strain that expresses the waxy protein and synthesizes amylose, or those of the hatched strain that lacks the action of this protein. Can do.
[0020]
The water solubility of the low molecular weight water-soluble β-glucan of the present invention refers to the property of completely dissolving in 65 ° C. warm water. The property of complete dissolution is that the sample was added to 1% by weight with respect to distilled water, stirred and dissolved for 10 minutes, and then no precipitate was visually confirmed. In the turbidity measurement by absorbance at 660 nm, O. D. The value is 0.4 or less. Since the water-soluble β-glucan of the present invention has such water solubility, it is easy to handle as a raw material for foods, cosmetics, pharmaceuticals, etc., and it does not take time and effort for processing, and the cost can be reduced.
[0021]
The water-soluble β-glucan of the present invention has a low molecular weight. The term “low molecular weight” as used herein may be water-soluble and have an immunopotentiating action. Among these, water-soluble β-glucan having a weight average molecular weight of 100,000 or less is particularly excellent as an immunopotentiating action, and is also excellent as a material for foods, cosmetics, pharmaceuticals and the like. Among them, those having a weight average molecular weight of 5,000 to 100,000 are preferable. Further, those having a weight average molecular weight of 10,000 to 60,000 are more preferable.
[0022]
In the water-soluble β-glucan of the present invention, the content ratio of β-glucan having a molecular weight of less than 100,000 is preferably 80% by weight or more of the total β-glucan, more preferably 90% by weight or more, and further preferably 95% by weight or more. 100% by weight is most preferred.
[0023]
The low molecular weight water-soluble β-glucan of the present invention can be obtained directly from raw materials such as gramineous plants, and can also be obtained by reducing the molecular weight of high molecular weight β-glucan extracted and purified from raw materials.
[0024]
Examples of a method for obtaining high molecular weight β-glucan from cereals include, for example, a method of producing a waxy barley as a raw material by water extraction (Japanese Patent Publication No. 4-11197), or barley and oat as a raw material. There is a method of obtaining β-glucan having a weight average molecular weight of 100,000 to 1,000,000 by extraction, neutralization and alcohol precipitation (Japanese Patent Publication No. 6-83651). Since β-glucan obtained by these production methods has a high molecular weight, it is highly viscous and difficult to re-solubilize in water. The low molecular weight water-soluble β-glucan of the present invention can be obtained by reducing the molecular weight of these high molecular weight β-glucans.
[0025]
As a method for reducing the molecular weight of high molecular weight β-glucan, any known hydrolysis reaction of polysaccharides can be used. For example, water-soluble polysaccharides are known to hydrolyze by heating under pressure in the presence of an acid, and this can be used to reduce the molecular weight of high molecular weight β-glucan. Further, it is effective to lower the molecular weight by utilizing an enzymatic hydrolysis reaction, and 1/3 β-glucanase or the like can be used as the enzyme. As described above, the low molecular weight water-soluble β-glucan of the present invention can be obtained from the high molecular weight β-glucan extracted and purified from the raw material.
Moreover, the low molecular weight water-soluble β-glucan of the present invention can also be obtained by directly extracting from raw material grains by the method described in WO98 / 13056 International Publication.
[0026]
Among the low molecular weight water-soluble β-glucan of the present invention, the most preferable one is barley-derived low molecular weight water-soluble β-glucan, which has an excellent immune enhancing action, particularly TNFs in the body, It promotes the production of cytokines such as interleukins and interferons, and is excellent in the effect of enhancing immunity such as antibody production by its action. Among these effects, the antibody production enhancing action has a weight average molecular weight of 100,000 or more. It is remarkably superior to high molecular weight β-glucan.
[0027]
In addition, when the low molecular weight water-soluble β-glucan of the present invention is used in materials such as foods, cosmetics, and pharmaceuticals or processed products of these materials, it is preferably contained in an amount of 0.1 to 90% by weight. .
Moreover, the immunopotentiating action of the low molecular weight water-soluble β-glucan of the present invention can be sufficiently expressed alone, but it is preferable to use it together with lactic acid bacteria or lactic acid bacteria cell components since the immunopotentiating action is further increased.
[0028]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not limited by these Examples. Unless otherwise specified,% in the examples is by weight, and the molecular weight is a weight average molecular weight.
[0029]
Example 1 (Production of low molecular weight water-soluble β-glucan)
Commercial barley was pulverized and passed through a 24 mesh sieve to make barley flour. 2.5 L (liter) of water was added to 500 g of the barley flour, heated to 55 ° C., and extracted by stirring for 2 hours. After extraction, the mixture was centrifuged at 1500 G for 10 minutes to obtain 2.2 L of supernatant. The supernatant was cooled, frozen and left at -10 ° C for 24 hours. After thawing, the precipitated β-glucan was separated by filtration and dried by heating at 80 ° C. to obtain 15 g of a β-glucan crude extract. 300 ml of water was added to this β-glucan crude extract and completely dissolved at 90 ° C., then cooled to −20 ° C. and stored frozen for 24 hours. After thawing, the precipitated β-glucan was separated by filtration and lyophilized to obtain 10 g of a purified product of β-glucan (sample A).
[0030]
This sample A was added to distilled water so as to be 1%, heated to 65 ° C., and allowed to stand for 10 minutes to dissolve and become a transparent aqueous solution. Absorbance at 660 nm is O.D. with distilled water as a control. D. A value of 0.127 was indicated.
Next, the molecular weight of Sample A was measured by gel filtration chromatography as follows. Sample A was added to distilled water to a concentration of 1% and dissolved in boiling water. For the separation, a gel filtration column Superose 6HR (manufactured by Pharmacia) was used at a temperature of 50 ° C., and Shodex pullulan standard solution P-82 (manufactured by Showa Denko KK) was used as a molecular weight marker. Using distilled water as the eluent, a flow rate of 0.6 ml / min. The elution fraction was monitored with a refractometer (RI). As a result of measuring the molecular weight of the sample A from the molecular weight of the pullulan standard, the molecular weight is distributed in the range of 100,000 to 5,000, the peak having a molecular weight of 100,000 or more is slight (3% or less), and the content decreases as the molecular weight decreases. The main component was 40,000 molecular weight. In addition, β-glucan having a molecular weight of 5000 or less was slight (5% or less).
[0031]
Comparative Example 2 (Production of high molecular weight β-glucan)
Commercial barley was pulverized and passed through a 24 mesh sieve to make barley flour. Water (2.5 L) was added to 500 g of the barley flour, heated to 55 ° C., and extracted by stirring for 30 minutes. After extraction, the mixture was centrifuged at 1500 G for 10 minutes to obtain 2.2 L of supernatant. The supernatant was cooled, frozen and left at -10 ° C for 24 hours. After thawing, the precipitated β-glucan was separated by filtration and dried by heating at 80 ° C. to obtain 5 g of a crude extract of β-glucan. The β-glucan crude extract was added with 500 ml of water, boiled and dissolved, cooled to −20 ° C., and stored frozen for 24 hours. After thawing, the precipitated β-glucan was separated by filtration and freeze-dried to obtain 3.6 g of purified β-glucan (sample B).
[0032]
Sample B was added to distilled water so as to be 1%, heated to 65 ° C., and dissolution was attempted for 10 minutes. Sample B was found to be precipitated but not completely dissolved. When the absorbance at 660 nm was measured, O.D. D. A value of 1.74 was indicated.
Next, the molecular weight of Sample B was measured by gel filtration chromatography as follows. Sample B was added to distilled water to a concentration of 1% and dissolved in boiling water. For the separation, gel filtration column Superose 6HR (manufactured by Pharmacia) was used at 50 ° C., and Shodex pullulan standard solution P-82 (manufactured by Showa Denko KK) was used as a molecular weight marker. Using distilled water as the eluent, a flow rate of 0.6 ml / min. The elution fraction was monitored with a refractometer (RI). As a result, the molecular weight of Sample B was measured from the molecular weight of the pullulan standard, and as a result, the molecular weight distribution was distributed to a molecular weight of 500,000 to 150,000, and the main component was a molecular weight of 300,000. No low molecular weight β-glucan having a molecular weight of 100,000 or less was observed.
[0033]
Test Example 1 (Change in the number of cells in the ascites)
First, sample A (low molecular weight water-soluble β-glucan of the present invention) obtained in Example 1 was dissolved in 100 μl of 10 mM phosphate buffer (pH 6.9), and ICR mouse 6 in an amount of 0.32 to 20 mg. It was administered to the abdominal cavity of a week-old female, and after 6 hours, ascites cells were collected, and the number of cells was counted under a microscope. As a result, the number of cells increased in proportion to the dose, which was 2-3 times that of untreated mice. When the ratio of the number of neutrophils to the total number of cells increased was counted, it increased according to the dose, and increased approximately 10 times by 0.32 mg administration, 20 times by 1 mg administration, and 30 times by 5 mg administration. The percentage of neutrophil count in the increased cells exceeded 70% of the increased cells at 1 mg administration. Purified lentinan derived from Shiitake extract, an immunopotentiator used clinically, was administered at 1 mg, and the number of cells was 3 times, the number of neutrophils was 30 times, and the rate was 80%. In the case of administration of bacteria-derived OK-432, the cell number was 5-fold, neutrophil was 60-fold, and the ratio was 90% when 0.2 mg was administered.
[0034]
Next, the sample A was administered, and qualitative changes in cells over time were examined. 10 mg of the sample A was administered to the mouse ascites, and cells were collected after 6, 12, 24, 48 and 72 hours, and the number of neutrophils, macrophages and lymphocytes as immunocompetent cells was counted. As a result, the total number of cells reached a maximum at 24 hours, which was 10 times that of untreated cells. Neutrophils reached a maximum after 24 hours, then decreased rapidly after 48 hours, and were almost normal after 72 hours. Macrophages increased after 12 hours and showed a maximum at 48 hours. The lymphocyte count also showed a maximum after 48 hours.
With lentinan, the total cell number reached a maximum after 12 hours and then decreased. The neutrophil count reached its maximum after 6 hours and then decreased. The number of neutrophils did not decrease in the sample A until 24 hours, and was more persistent than lentinan. Changes in macrophages and lymphocytes in lentinan-administered mice were almost the same as in sample A. The number of cells was counted by applying peritoneal cells on a slide glass, nuclear staining, and classifying neutrophils, macrophages and lymphocytes according to morphological changes.
Further, by microscopic observation of the cells, morphological characteristics considered to be a result of the active phagocytosis of macrophages and a dramatic decrease in neutrophils were observed in the cell observation 48 hours after administration of the sample A. Such a change was not observed in lentinan, OK-432 and others, but was observed specifically by administration of the sample A.
[0035]
Test Example 2 (Fluctuation in the amount of TNF produced from intraperitoneal cells)
Using the ascites cells obtained from the mice administered with sample A obtained in Example 1, the ability to produce TNF-α was evaluated. First, the sample A was dissolved in 100 μl of 10 mM phosphate buffer (pH 6.9), and administered to the ICR mouse 6-week-old female as 0 to 10 mg ascites. Three days later, ascites cells were collected, washed with a serum-free culture solution, and added to each well with the same culture solution to 5 × 10 5 cells. Furthermore, lactic acid bacteria were added to each well so as to be 20 μg / ml to make a total volume of 200 μl and left at 37 ° C. for 2 hours. The TNF-α concentration of the culture supernatant was measured using an ELISA measurement kit (TNF-2 ELISA KIT EN-2601-90 manufactured by Endogen). As a result, the concentration of TNF-α produced in a concentration-dependent manner was 51 pg / ml after administration of 0.3 mg of Sample A, 128 pg / ml after 1 mg administration, and 141 pg / ml after 3 mg administration. In the case of no addition, it was 25 pg / ml, and the production amount was specific to the sample A.
[0036]
Moreover, the time-dependent change of TNF- (alpha) production ability was evaluated using the ascites cells obtained from the mouse | mouth which administered the said sample A. FIG. 3 mg of Sample A was dissolved in 100 μl of 10 mM phosphate buffer (pH 6.9) and administered ascites to 6-week-old female ICR mice. After 0 to 7 days, ascites cells were collected, washed with a serum-free culture solution, and added to each well with the same culture solution so as to have 5 × 10 5 cells. Furthermore, lactic acid bacteria were added to each well so as to be 20 μg / ml to make a total volume of 200 μl and left at 37 ° C. for 2 hours. The TNF-α concentration of the culture supernatant was measured using an ELISA measurement kit (TNF-2 ELISA KIT EN-2601-90 manufactured by Endogen). As a result, 18 pg / ml immediately after administration of Sample A, 84 pg / ml after 1 day, 130 pg / ml after 3 days, 121 pg / ml after 5 days, 98 pg / ml after 7 days, and the amount of TNF-α produced is The production capacity was maintained for 7 days.
[0037]
Test example 3
Sample A obtained in Example 1 and Sample B obtained in Comparative Example 1 were administered to mice, and the effect of enhancing antibody production was analyzed.
First, 1 mg of bovine plasma gamma globulin as an antigen was dissolved in 1 ml of PBS (phosphate buffer) to prepare a 1 mg / ml antigen solution. 500 μg of the sample A or B was added to 1 ml of PBS and dissolved by heating. Sample A was instantly dissolved by heating to 50 ° C. Sample B was not dissolved by heating to 50 ° C., but was allowed to stand at 90 ° C. for 30 minutes for dissolution. The antigen solution and the sample solution were mixed in an equivalent amount, and 100 μl each was administered to the mouse ascites. The mice were Balbc mice, 4 weeks old, female, and each sample consisted of 5 mice. Two weeks later, booster immunization was performed in the same manner as the first time. A group in which 0.5 mg of bovine plasma gamma globulin was dissolved in 1 ml of PBS to give 0.5 mg / ml and 100 μl was administered to mice was used as a control. Blood was collected 2 weeks after the booster immunization, and the difference in total antibody production (IgG, IgM, IgA antibody amounts) was measured by ELISA. In the ELISA, first, bovine / plasma gamma globulin used for immunization was plate-coated at a concentration of 10 μg / ml on a 96 microplate (manufactured by NUNK, maxi soap), and a serum dilution was applied at 37 ° C. for 1 hour. After the reaction, an anti-mouse immunoglobulin antibody labeled with peroxidase was further reacted as a secondary antibody at 37 ° C. for 1 hour. Next, using an orthophenylenediamine solution (manufactured by Wako Pure Chemical Industries, Ltd.) as a color former, the mixture was allowed to stand at 37 ° C. for 10 minutes, the reaction was stopped with 2M sulfuric acid, and the absorbance at 490 nm was measured.
[0038]
Next, the blood collected from the mouse was centrifuged to obtain serum, and this was obtained in a PBS-Tween solution (Tween 20 which is a sorbitan monoester) containing 0.2% BSA (bovine serum albumin) x10 to x5120 times. Was dissolved in PBS so as to be 0.05%), and the antibody titer was measured. As a result, the anti-bovine / plasma gamma globulin antibody titer of the serum diluted 2560 times was determined as O.D. D. When compared as an average value, the sample A administration group (n = 5) is 0.703 ± 0.1, the sample B administration group (n = 5) is 0.491 ± 0.075, and the control group (n = 5). ) Was 0.315 ± 0.090.
From this test, the antibody titer in the sample A administration group was higher than that in the sample B administration group, and the antibody production enhancement effect of the sample A was observed.
[0039]
【The invention's effect】
The low-molecular-weight water-soluble β-glucan of the present invention promotes the production of cytokines including TNF in the body, enhances its action, and enhances the antibody-producing ability or the overall immune action, thereby causing various infectious diseases and the like. It helps to prevent tumor development.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000142998A JP4812157B2 (en) | 2000-05-16 | 2000-05-16 | Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000142998A JP4812157B2 (en) | 2000-05-16 | 2000-05-16 | Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001323001A JP2001323001A (en) | 2001-11-20 |
JP4812157B2 true JP4812157B2 (en) | 2011-11-09 |
Family
ID=18649872
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000142998A Expired - Lifetime JP4812157B2 (en) | 2000-05-16 | 2000-05-16 | Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4812157B2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001354570A (en) * | 2000-06-15 | 2001-12-25 | Ichimaru Pharcos Co Ltd | Immunoactivating agent and cosmetic using the same |
JP4688335B2 (en) * | 2001-04-10 | 2011-05-25 | 株式会社Adeka | Dough for bakery products |
JP4499979B2 (en) * | 2001-05-21 | 2010-07-14 | コンビ株式会社 | Composition for controlling pathogen infection |
KR20110038739A (en) | 2002-06-25 | 2011-04-14 | 가부시키가이샤 아데카 | β-GLUCAN-CONTAINING FAT COMPOSITIONS AND NOVEL MICROORGANISM PRODUCING Β-GLUCAN |
ATE519490T1 (en) * | 2003-03-07 | 2011-08-15 | Aureo Co Ltd | BETA-GLUCAN COMPOSITION AND ANTI-OBSTIPATION RELIEVING AGENT, IMMUNOPOTENTIATOR AND SKIN MOISTURIZER USING THE COMPOSITION |
JP4054697B2 (en) * | 2003-03-07 | 2008-02-27 | 株式会社アウレオ | Constipation improving agent |
JP4000078B2 (en) * | 2003-03-07 | 2007-10-31 | 株式会社アウレオ | Skin moisturizer |
KR101187127B1 (en) * | 2003-04-02 | 2012-09-28 | 카아길, 인코포레이팃드 | Improved dietary fiber containing materials comprising low molecular weight glucan |
JP5095912B2 (en) * | 2004-09-06 | 2012-12-12 | 雪印メグミルク株式会社 | Immune enhancer |
JP2007297322A (en) * | 2006-04-28 | 2007-11-15 | Toyobo Co Ltd | Method for promoting cytokine production |
JP5740072B2 (en) * | 2007-03-05 | 2015-06-24 | ダイソー株式会社 | Stress relieving agent using β-1,3-1,6-D-glucan |
KR20090009513A (en) * | 2007-07-20 | 2009-01-23 | 한국원자력연구원 | Method for preparing low molecular weight beta glucan by irradiation and low molecular weight beta glucan prepared by irradiation |
BE1020120A3 (en) * | 2011-06-06 | 2013-05-07 | Duynie Holding Bv | COMPOSITION OF ANIMAL FOOD. |
JP2012184261A (en) * | 2012-06-21 | 2012-09-27 | Snow Brand Milk Products Co Ltd | Immunopotentiating agent |
JP2016079118A (en) * | 2014-10-15 | 2016-05-16 | 株式会社Adeka | Immunomodulator, health supplement feed, and feed |
KR102558854B1 (en) * | 2015-11-04 | 2023-07-24 | 경기대학교 산학협력단 | Immune-enhancing composition comprsing glucan |
JP7284467B1 (en) | 2022-06-01 | 2023-05-31 | 国立大学法人信州大学 | Immunostimulatory macrophage inducer, cancer microenvironment improving agent, cancer apoptosis inducer, and immunostimulatory macrophage induction method |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5919121B2 (en) * | 1975-10-31 | 1984-05-02 | タイトウ カブシキガイシヤ | Shinkinoyakurikatsuseitatoubunkaibutsuno Seizouhouhou |
JPS5945301A (en) * | 1982-09-09 | 1984-03-14 | Toyo Soda Mfg Co Ltd | Polysaccharide and its manufacturing method |
JPS5953424A (en) * | 1982-09-20 | 1984-03-28 | Toyo Soda Mfg Co Ltd | antitumor agent |
JPS6377901A (en) * | 1986-09-22 | 1988-04-08 | Tosoh Corp | New polysaccharide |
JPH0680575A (en) * | 1991-03-05 | 1994-03-22 | Meiji Milk Prod Co Ltd | Oral immunostimulant |
JP3650409B2 (en) * | 1993-03-29 | 2005-05-18 | 台糖株式会社 | Process for producing low molecular weight branched β-1,3-glucan and branched laminary oligosaccharide |
JP3841495B2 (en) * | 1995-09-14 | 2006-11-01 | サンエイ糖化株式会社 | Lactic acid bacteria having L-lactic acid producing ability and TNF production inducing activity |
JP2886130B2 (en) * | 1996-03-18 | 1999-04-26 | 全国農業協同組合連合会 | Antitumor agent |
ES2210577T3 (en) * | 1996-09-25 | 2004-07-01 | Gracelinc Limited | BETA-GLUCAN PRODUCTS AND EXTRACTION PROCEDURES FROM CEREALS. |
JP4064481B2 (en) * | 1996-10-11 | 2008-03-19 | ハウスウェルネスフーズ株式会社 | Immunostimulator |
JPH11199494A (en) * | 1998-01-10 | 1999-07-27 | Nichinichi Seiyaku Kk | Immunopotentiator using enteric capsure |
-
2000
- 2000-05-16 JP JP2000142998A patent/JP4812157B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001323001A (en) | 2001-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4812157B2 (en) | Pharmaceutical material containing low molecular weight β-glucan with immunopotentiating action | |
Bartemes et al. | Innate and adaptive immune responses to fungi in the airway | |
Sun et al. | Purification, structural features and immunostimulatory activity of novel polysaccharides from Caulerpa lentillifera | |
Cho et al. | Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide-induced immunosuppression | |
Chen et al. | Antiproliferative and differentiating effects of polysaccharide fraction from fu-ling (Poria cocos) on human leukemic U937 and HL-60 cells | |
Fan et al. | Partial characterization and anti-tumor activity of an acidic polysaccharide from Gracilaria lemaneiformis | |
Xia et al. | Partial characterization and immunomodulatory activity of polysaccharides from the stem of Dendrobium officinale (Tiepishihu) in vitro | |
Inngjerdingen et al. | Bioactive pectic polysaccharides from Glinus oppositifolius (L.) Aug. DC., a Malian medicinal plant, isolation and partial characterization | |
EP2370475B1 (en) | Production of a saccharide composition comprising glucans and mannans by alkaline and acid hydrolysis of yeast cells | |
Xiao-Lei et al. | Immunomodulatory activity of macromolecular polysaccharide isolated from Grifola frondosa | |
He et al. | Sea cucumber (Codonopsis pilosula) oligopeptides: immunomodulatory effects based on stimulating Th cells, cytokine secretion and antibody production | |
Zhao et al. | A novel lectin with highly potent antiproliferative and HIV-1 reverse transcriptase inhibitory activities from the edible wild mushroom Russula delica | |
Yang et al. | Characterization and biological activity of Taishan Pinus massoniana pollen polysaccharide in vitro | |
JP2004505925A (en) | Chlorella preparations exhibiting immunomodulatory properties | |
JP6270822B2 (en) | Polysaccharides from the order of Plasinococcus | |
Wang et al. | Polysaccharides purified from the submerged culture of Ganoderma formosanum stimulate macrophage activation and protect mice against Listeria monocytogenes infection | |
Liu et al. | Oligopeptide derived from solid-state fermented cottonseed meal significantly affect the immunomodulatory in BALB/c mice treated with cyclophosphamide | |
Zheng et al. | Polysaccharides from spores of cordyceps cicadae protect against cyclophosphamide-induced immunosuppression and oxidative stress in mice | |
Jo et al. | Polysaccharide isolated from fermented barley activates innate immune system and anti-tumor metastasis in mice | |
Hu et al. | Isolation and purification of polysaccharides with anti-tumor activity from Pholiota adiposa (Batsch) P. Kumm.(higher Basidiomycetes) | |
Liu et al. | Immunomodulatory effect of structurally characterized mushroom sclerotial polysaccharides isolated from Polyporus rhinocerus on bone marrow dendritic cells | |
Liu et al. | Immunomodulatory activities of polysaccharides from white button mushroom, Agaricus bisporus (Agaricomycetes), fruiting bodies and cultured mycelia in healthy and immunosuppressed mice | |
Li et al. | Structural characterization of novel comb-like branched α-D-glucan from Arca inflata and its immunoregulatory activities in vitro and in vivo | |
Førland et al. | An extract based on the medicinal mushroom Agaricus blazei Murill stimulates monocyte-derived dendritic cells to cytokine and chemokine production in vitro | |
Ji et al. | The immunosuppressive effects of low molecular weight chitosan on thymopentin-activated mice bearing H22 solid tumors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100817 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110823 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110823 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4812157 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
EXPY | Cancellation because of completion of term |