JP4810901B2 - Optical glass and optical element - Google Patents
Optical glass and optical element Download PDFInfo
- Publication number
- JP4810901B2 JP4810901B2 JP2005201974A JP2005201974A JP4810901B2 JP 4810901 B2 JP4810901 B2 JP 4810901B2 JP 2005201974 A JP2005201974 A JP 2005201974A JP 2005201974 A JP2005201974 A JP 2005201974A JP 4810901 B2 JP4810901 B2 JP 4810901B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- content
- optical
- range
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/066—Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/16—Silica-free oxide glass compositions containing phosphorus
- C03C3/21—Silica-free oxide glass compositions containing phosphorus containing titanium, zirconium, vanadium, tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/253—Silica-free oxide glass compositions containing germanium
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Description
本発明は光学ガラス及びこの光学ガラスからなる光学素子に関し、より詳細には高屈折率(nd:1.92以上)かつ高分散(νd:25以下)の光学恒数を有し、ガラス転移温度(Tg)が比較的低く、プレス成形に適した光学ガラス及びこの光学ガラスからなる光学素子に関するものである。 The present invention relates to an optical glass and an optical element comprising the optical glass, and more specifically, has an optical constant having a high refractive index (n d : 1.92 or more) and high dispersion (ν d : 25 or less). The present invention relates to an optical glass having a relatively low transition temperature (Tg) and suitable for press molding, and an optical element made of the optical glass.
近年、デジタルカメラや携帯電話等の光学機器の小型化が急速に進んでいる。光学機器の小型化を図るためには、使用するレンズを薄くする必要がある。レンズを薄くするには、屈折率の高い光学ガラスを用いる必要がある。 In recent years, optical devices such as digital cameras and mobile phones have been rapidly downsized. In order to reduce the size of the optical device, it is necessary to make the lens used thin. In order to make the lens thin, it is necessary to use optical glass having a high refractive index.
一方、非球面形状など加工困難な形状のガラスを比較的容易に成形できる技術として、軟化点温度以上に加熱したガラスを、加熱した一対の上型・下型からなる成形金型を用いてプレスすることにより直接レンズ成形を行ういわゆるモールドプレス成形法(精密プレス成形法)が注目されている。この成形法によれば、従来は必要であったレンズの研磨および切削工程などが不要となり高生産性と低コスト化が図れる。ところが、モールドプレス成形法では、ガラスを成形する場合に、プレス金型をガラス転移温度(以下、「Tg」と記すことがある)近傍またはそれ以上の温度に加熱する必要がある。このため、ガラスのTgが高いほどプレス金型の表面酸化や金属組成の変化が生じやすく、金型寿命が短くなる。特にTgが560℃を超えると金型の劣化が著しくなる。それで、モールドプレス成形法に用いるガラスとしてTgのできるだけ低いものが要求される。 On the other hand, as a technology that can form glass that is difficult to process, such as an aspheric shape, relatively easily, glass heated to a temperature above the softening point is pressed using a pair of heated upper and lower molds. Thus, a so-called mold press molding method (precision press molding method) in which lens molding is performed directly has been attracting attention. According to this molding method, the conventionally required lens polishing and cutting steps are unnecessary, and high productivity and cost reduction can be achieved. However, in the mold press molding method, when molding glass, it is necessary to heat the press mold to a temperature near or above the glass transition temperature (hereinafter sometimes referred to as “Tg”). For this reason, the higher the Tg of the glass, the easier the surface oxidation of the press mold and the change of the metal composition occur, and the mold life is shortened. In particular, when the Tg exceeds 560 ° C., the mold deteriorates significantly. Therefore, a glass having a Tg as low as possible is required as a glass used in the mold press molding method.
そこで、前述の高屈折率の光学ガラスをモールドプレス成形法を用いて成形する場合には、ガラス組成物として酸化鉛や酸化テルルを含有させて、高屈折率化と低Tg化を図っていた。例えば特許文献1では、酸化鉛を多量に含有させることによって屈折率2.0以上のガラスを得ている。また特許文献2〜4では、酸化テルルを多量に含有させることによって高屈折率を達成している。 Therefore, when the above-described high refractive index optical glass is molded using a mold press molding method, lead oxide or tellurium oxide is contained as a glass composition to achieve a high refractive index and a low Tg. . For example, in Patent Document 1, a glass having a refractive index of 2.0 or more is obtained by containing a large amount of lead oxide. In Patent Documents 2 to 4, a high refractive index is achieved by containing a large amount of tellurium oxide.
ところが、この酸化鉛や酸化テルルについての人体への悪影響が近年懸念され始めた。このため酸化鉛や酸化テルルを用いずに、高屈折率且つ低Tgのガラスを得る技術が検討され提案されている(例えば特許文献5)。
しかしながら特許文献5の提案技術は、Nb2O5の含有量が多く、WO3やBi2O3が含有されていないため、Tgが充分には低くなく、液相温度(以下、「TL」と記すことがある)が1,100℃と高い。TLが高いと溶融成形する際の作業温度が高くなる。また失透傾向が大きくなり、脈理が入りやすくなる。 However, the proposed technique of Patent Document 5 has a high Nb 2 O 5 content and does not contain WO 3 or Bi 2 O 3, so Tg is not sufficiently low, and the liquidus temperature (hereinafter referred to as “ TL ” ). Is sometimes as high as 1,100 ° C. When TL is high, the working temperature at the time of melt molding becomes high. In addition, the tendency to devitrification is increased, and striae are more likely to enter.
本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは酸化鉛および酸化テルルを実質的に含有させることなく、高屈折率・高分散であって耐失透性および耐久性に優れ、Tgが低くモールドプレス成形に適した光学ガラスを提供することにある。 The present invention has been made in view of such conventional problems. The object of the present invention is to have a high refractive index, a high dispersion and a devitrification resistance without substantially containing lead oxide and tellurium oxide. An object of the present invention is to provide an optical glass that is excellent in durability and durability and has a low Tg and is suitable for mold press molding.
また本発明の他の目的は、酸化鉛および酸化テルルを実質的に含有せず、高屈折率・高分散であって耐久性に優れ、生産性の高い光学素子を提供することにある。 Another object of the present invention is to provide an optical element substantially free of lead oxide and tellurium oxide, having a high refractive index and high dispersion, excellent durability, and high productivity.
本発明者は前記目的を達成すべく鋭意検討を重ねた結果、P2O5−Nb2O5−Bi2O3をガラスの基本組成とし、特定のガラス成分の含有量および総量を特定範囲とすればよいことを見出し本発明をなすに至った。 As a result of intensive studies to achieve the above object, the present inventor made P 2 O 5 —Nb 2 O 5 —Bi 2 O 3 as a basic composition of glass, and specified content and total amount of specific glass components within a specific range. As a result, the present invention has been found.
すなわち、本発明の光学ガラスは、重量%で、P2O5:7〜17%、B2O3:0.1〜10%、Nb2O5:10〜40%、WO3:3〜30%、Bi2O3:11〜55%、TiO2:0〜10%(ただし、ゼロを含む)、Ta2O5:0〜15%(ただし、ゼロを含む)、ただし、Nb2O5+WO3+Bi2O3+TiO2+Ta2O5:60〜80%、MgO:0〜5%(ただし、ゼロを含む)、CaO:0〜5%(ただし、ゼロを含む)、SrO:0〜5%(ただし、ゼロを含む)、BaO:0.1〜19%、ZnO:0〜5%(ただし、ゼロを含む)、ただし、MgO+CaO+SrO+BaO+ZnO:0.1〜19%、Li2O:0〜3%(ただし、ゼロを含む)、Na2O:0〜3%(ただし、ゼロを含む)、K2O:0.1〜6%、ただし、Li2O+Na2O+K2O:0.1〜6%の各ガラス成分を有することを特徴とする。なお、以下「%」は特に断りのない限り「重量%」を意味するものとする。 That is, the optical glass of the present invention is, by weight%, P 2 O 5 : 7 to 17%, B 2 O 3 : 0.1 to 10%, Nb 2 O 5 : 10 to 40%, WO 3 : 3 to 3%. 30%, Bi 2 O 3 : 11 to 55%, TiO 2 : 0 to 10% (including zero), Ta 2 O 5 : 0 to 15% (including zero), but Nb 2 O 5 + WO 3 + Bi 2 O 3 + TiO 2 + Ta 2 O 5 : 60 to 80%, MgO: 0 to 5% (including zero), CaO: 0 to 5% (including zero), SrO: 0 5% (including zero), BaO: 0.1~19%, ZnO : 0~5% ( however, including zero), however, MgO + CaO + SrO + BaO + ZnO: 0.1~19%, Li 2 O: 0 3% (including zero), Na 2 O: 0~3% ( however, including zero), K 2 O 0.1 to 6%, however, Li 2 O + Na 2 O + K 2 O: characterized by having a 0.1 to 6% of the respective glass component. Hereinafter, “%” means “% by weight” unless otherwise specified.
また、溶融生産性及び成形性などの観点から、SiO2:0〜10%、GeO2:0〜5%、Al2O3:0〜5%、La2O3:0〜5%、Y2O3:0〜5%、Gd2O3:0〜5%、Sb2O3:0〜0.5%のガラス成分の1種または2種以上をさらに含有させてもよい。 Further, from the viewpoint of melt productivity and formability, SiO 2: 0~10%, GeO 2: 0~5%, Al 2 O 3: 0~5%, La 2 O 3: 0~5%, Y One or more glass components of 2 O 3 : 0 to 5%, Gd 2 O 3 : 0 to 5%, Sb 2 O 3 : 0 to 0.5% may be further contained.
また本発明によれば、前記光学ガラスからなる光学素子および前記光学ガラスをモールドプレス成形して作製したことを特徴とする光学素子が提供される。このような光学素子としてはレンズやプリズム、ミラーが好ましい。 The present invention also provides an optical element made of the optical glass and an optical element produced by mold press molding the optical glass. Such an optical element is preferably a lens, a prism, or a mirror.
本発明の光学ガラスでは、P2O5−Nb2O5−Bi2O3をガラスの基本組成とし、特定のガラス成分の含有量および総量を特定範囲としたので、人体への悪影響が懸念される酸化鉛および酸化テルルを用いることなく、高屈折率・高分散で、しかも低いTgが得られ、優れたモールドプレス成形性が得られた。 In the optical glass of the present invention, P 2 O 5 —Nb 2 O 5 —Bi 2 O 3 is the basic composition of the glass, and the content and total amount of specific glass components are within a specific range. Without using lead oxide and tellurium oxide, a high refractive index and high dispersion and a low Tg were obtained, and an excellent mold press moldability was obtained.
また本発明の光学素子は、前記光学ガラスをモールドプレス成形することにより作製するので、前記光学ガラスの特性を有し、また生産効率が高く低コスト化が図れる。 In addition, since the optical element of the present invention is produced by mold-pressing the optical glass, it has the characteristics of the optical glass, has high production efficiency, and can be reduced in cost.
本発明の光学ガラスの各成分を前記のように限定した理由について以下説明する。まず、P2O5はガラス骨格を構成する成分(ガラスフォーマー)であり、その含有量が7%より少ないとガラスが不安定となり失透傾向が強くなる。他方、P2O5の含有量が17%を超えると、屈折率が低下し所望の光学恒数が得られない。そこでP2O5の含有量を7〜17%の範囲と定めた。より好ましいP2O5の含有量は8〜15%の範囲である。 The reason why each component of the optical glass of the present invention is limited as described above will be described below. First, P 2 O 5 is a component constituting a glass skeleton (glass former). If its content is less than 7%, the glass becomes unstable and the tendency to devitrification becomes strong. On the other hand, when the content of P 2 O 5 exceeds 17%, the refractive index is lowered and a desired optical constant cannot be obtained. Therefore, the content of P 2 O 5 is determined to be in the range of 7 to 17%. A more preferable content of P 2 O 5 is in the range of 8 to 15%.
B2O3は、P2O5と同様に、ガラス骨格を構成する成分(ガラスフォーマー)であり、少量の添加でガラスをより安定化させることができる。B2O3の含有量が0.1%より少ないと前記効果が得られない。他方、B2O3の含有量が10%を超えると、屈折率が低下し所望の光学恒数が得られない。そこでB2O3の含有量を0.1〜10%の範囲と定めた。より好ましい含有量は1〜7%の範囲である。 Like P 2 O 5 , B 2 O 3 is a component (glass former) that constitutes the glass skeleton, and the glass can be further stabilized by adding a small amount. If the content of B 2 O 3 is less than 0.1%, the above effect cannot be obtained. On the other hand, if the content of B 2 O 3 exceeds 10%, the refractive index decreases and a desired optical constant cannot be obtained. Therefore, the content of B 2 O 3 is determined to be in the range of 0.1 to 10%. A more preferable content is in the range of 1 to 7%.
Nb2O5は屈折率および化学的耐久性を向上させる効果を強く奏する。Nb2O5の含有量が10%より少ないと屈折率が低下し所望の光学恒数が得られない。他方、含有量が40%を超えると、Tgが高くなるとともに耐失透性が悪化する。そこで、Nb2O5の含有量を10〜40%の範囲とした。より好ましいNb2O5の含有量は15〜35%の範囲である。 Nb 2 O 5 has a strong effect of improving the refractive index and chemical durability. When the content of Nb 2 O 5 is less than 10%, the refractive index is lowered and a desired optical constant cannot be obtained. On the other hand, when the content exceeds 40%, Tg increases and devitrification resistance deteriorates. Therefore, the content of Nb 2 O 5 is set in the range of 10 to 40%. A more preferable content of Nb 2 O 5 is in the range of 15 to 35%.
WO3は、Tgを上昇させることなく屈折率を高くし、耐失透性を向上させる効果を奏する。WO3の含有量が3%より少ないと前記効果が得られない。他方、含有量が30%を超えると、ガラスの着色度が強くなり化学的耐久性が低下する。そこで、WO3の含有量を3〜30%の範囲とした。より好ましいWO3の含有量は5〜25%の範囲である。 WO 3 has the effect of increasing the refractive index without increasing Tg and improving devitrification resistance. If the content of WO 3 is less than 3%, the above effect cannot be obtained. On the other hand, when the content exceeds 30%, the coloring degree of the glass becomes strong and the chemical durability is lowered. Therefore, the content of WO 3 is set in the range of 3 to 30%. A more preferable content of WO 3 is in the range of 5 to 25%.
Bi2O3は、Tgを上昇させることなく屈折率を高め、耐失透性を向上させる効果を奏する。Bi2O3の含有量が11%より少ないと前記効果が得られない。他方、55%を超えると、ガラスの着色度が強くなると共に耐失透性が悪化する。そこで、Bi2O3の含有量を11〜55%の範囲とした。より好ましいBi2O3の含有量は15〜50%の範囲である。 Bi 2 O 3 has the effect of increasing the refractive index without increasing Tg and improving devitrification resistance. If the content of Bi 2 O 3 is less than 11%, the above effect cannot be obtained. On the other hand, if it exceeds 55%, the coloring degree of the glass becomes strong and the devitrification resistance deteriorates. Therefore, the Bi 2 O 3 content is set to a range of 11 to 55%. A more preferable Bi 2 O 3 content is in the range of 15 to 50%.
TiO2は屈折率を高める効果を奏するが、TiO2の含有量が10%を超えると、着色度が強くなる。そこで、TiO2の含有量を0〜10%の範囲とした。より好ましいTiO2の含有量は0〜6%の範囲である。 TiO 2 has an effect of increasing the refractive index, but when the content of TiO 2 exceeds 10%, the coloring degree becomes strong. Therefore, the content of TiO 2 is set in the range of 0 to 10%. A more preferable content of TiO 2 is in the range of 0 to 6%.
Ta2O5は屈折率を高くする効果を奏するが、その含有量が15%を超えると耐失透性が悪化する。このためTa2O5の含有量を0〜15%の範囲とした。より好ましいTa2O5の含有量は0〜10%の範囲である。 Ta 2 O 5 has the effect of increasing the refractive index, but if its content exceeds 15%, the devitrification resistance deteriorates. For this reason, the content of Ta 2 O 5 is set to a range of 0 to 15%. A more preferable content of Ta 2 O 5 is in the range of 0 to 10%.
Nb2O5、WO3、Bi2O3、TiO2、Ta2O5は、いずれも屈折率を向上させる成分であり、これらの総量が60%より少ないと所望の光学恒数が得られなくなる。一方、これらの総量が80%を超えるとガラスが失透しやすくなり、また着色が強くなる。このため、これらの総量を60%〜80%の範囲とした。 Nb 2 O 5 , WO 3 , Bi 2 O 3 , TiO 2 , and Ta 2 O 5 are all components that improve the refractive index, and when the total amount thereof is less than 60%, a desired optical constant can be obtained. Disappear. On the other hand, if the total amount of these exceeds 80%, the glass tends to be devitrified and coloring becomes strong. Therefore, the total amount of these is set in the range of 60% to 80%.
BaOは本発明の必須成分であって、耐失透性を向上させるとともに屈折率を上昇させる効果を奏する。BaOの含有量が0.1%より少ないと前記効果が得られない。他方、BaOの含有量が19%を超えると、Tgが上昇するとともに分散が低くなり所望の光学恒数が得られなくなる。そこで、BaOの含有量を0.1〜19%の範囲とした。より好ましいBaOの含有量は1〜15%の範囲である。 BaO is an essential component of the present invention, and has an effect of improving the devitrification resistance and increasing the refractive index. If the content of BaO is less than 0.1%, the above effect cannot be obtained. On the other hand, when the content of BaO exceeds 19%, Tg increases and dispersion decreases, making it impossible to obtain a desired optical constant. Therefore, the BaO content is set in the range of 0.1 to 19%. A more preferable BaO content is in the range of 1 to 15%.
MgO、CaO、SrO、ZnOは、光学恒数の調整と耐失透性を向上させる効果を奏するが、その含有量がそれぞれ5%を超えると耐失透性が悪化する。そこでMgO、CaO、SrO、ZnOの含有量をそれぞれ0〜5%の範囲とした。より好ましいMgO、CaO、SrO、ZnOの各含有量は0〜3%の範囲である。 MgO, CaO, SrO, and ZnO have the effect of adjusting the optical constant and improving the devitrification resistance. However, when the content exceeds 5%, the devitrification resistance deteriorates. Therefore, the contents of MgO, CaO, SrO, and ZnO are set in the range of 0 to 5%, respectively. More preferable contents of MgO, CaO, SrO, and ZnO are in the range of 0 to 3%.
またRO(R:Mg、Ca、Sr、Ba、Zn)成分の総量が、0.1%より少ないと前記効果が得られない。他方、RO成分の総量が19%を超えるとTgが上昇するとともにアッベ数が大きくなり本発明の目的とする光学恒数が得られなくなる。そこでRO成分の総量を0.1〜19%の範囲とした。RO成分の総量のより好ましい含有量は1〜15%の範囲である。 Further, if the total amount of RO (R: Mg, Ca, Sr, Ba, Zn) components is less than 0.1%, the above effect cannot be obtained. On the other hand, if the total amount of RO components exceeds 19%, Tg increases and the Abbe number increases, making it impossible to obtain the target optical constant of the present invention. Therefore, the total amount of RO components was set to a range of 0.1 to 19%. The more preferable content of the total amount of the RO component is in the range of 1 to 15%.
Li2O及びNa2Oは、それぞれ少量含有させることによってTgの低下や耐失透性の向上などの効果を奏するが、含有量が3%を超えるとガラスの粘度が低下し成形が困難となる。また化学的耐久性が低下する。そこで、Li2O及びNa2Oの含有量をそれぞれ0〜3%の範囲とした。Li2Oのより好ましい含有量は0〜2%の範囲である。 When Li 2 O and Na 2 O are each contained in a small amount, there are effects such as a decrease in Tg and an improvement in devitrification resistance. However, if the content exceeds 3%, the viscosity of the glass is lowered and molding is difficult. Become. In addition, chemical durability is reduced. Therefore, the contents of Li 2 O and Na 2 O were set in the range of 0 to 3%, respectively. A more preferable content of Li 2 O is in the range of 0 to 2%.
K2Oは溶融性の向上とTgを低下させる効果を奏する。K2Oの含有量が0.1%より少ないと前記効果が得られない。他方、K2Oの含有量が6%を超えると化学的耐久性が劣化するとともに屈折率が低下する。そこで、K2Oの含有量を0.1〜6%の範囲とした。より好ましいK2Oの含有量は0.1〜5%の範囲である。 K 2 O has the effect of improving meltability and lowering Tg. When the content of K 2 O is less than 0.1%, the above effect cannot be obtained. On the other hand, if the content of K 2 O exceeds 6%, the chemical durability deteriorates and the refractive index decreases. Therefore, the content of K 2 O is set in the range of 0.1 to 6%. A more preferable content of K 2 O is in the range of 0.1 to 5%.
そして、アルカリ金属成分R’2O(R’=Li,Na,K)の総量が6%を超えると、屈折率が低下するとともに化学的耐久性が低下する。このためR’2O成分の総量を0.1〜6%の範囲とした。R’2O成分の総量のより好ましい含有量は0.1〜5%の範囲である。 When the total amount of the alkali metal components R ′ 2 O (R ′ = Li, Na, K) exceeds 6%, the refractive index is lowered and the chemical durability is lowered. For this reason, the total amount of the R ′ 2 O component is set in the range of 0.1 to 6%. The more preferable content of the total amount of the R ′ 2 O component is in the range of 0.1 to 5%.
また、本発明の光学ガラスでは、SiO2、GeO2、Al2O3、La2O3、Y2O3、Gd2O3、Sb2O3のガラス成分の1種または2種以上を必要によりさらに特定量含有させてもよい。これら成分に限定した理由をそれぞれ以下に説明する。 In the optical glass of the present invention, one or more glass components of SiO 2 , GeO 2 , Al 2 O 3 , La 2 O 3 , Y 2 O 3 , Gd 2 O 3 , and Sb 2 O 3 are used. If necessary, a specific amount may be further contained. The reasons for limiting to these components will be described below.
SiO2はガラスの耐久性と粘度を向上させる効果を奏するが、その含有量が10%を超えると溶融性や耐失透性が悪化し、屈折率が低下する。このためSiO2の含有量を0〜10%の範囲とした。より好ましい含有量は0〜6%の範囲である。 SiO 2 has the effect of improving the durability and viscosity of the glass, but if its content exceeds 10%, the meltability and devitrification resistance deteriorate, and the refractive index decreases. Therefore the content of SiO 2 in the range of 0%. A more preferable content is in the range of 0 to 6%.
GeO2は屈折率を向上させる効果を奏するが、その含有量が5%を超えると耐失透性が悪化する。このためGeO2の含有量を0〜5%の範囲とした。より好ましい含有量は0〜3%の範囲である。 GeO 2 has the effect of improving the refractive index, but if its content exceeds 5%, the devitrification resistance deteriorates. For this reason, the content of GeO 2 is set to a range of 0 to 5%. A more preferable content is in the range of 0 to 3%.
Al2O3は、化学的耐久性を向上させると共に粘度を向上させる効果を奏する。Al2O3の含有量が5%を超えると、溶融性及び耐失透性が悪化する。そこで、Al2O3の含有量を0〜5%の範囲とした。より好ましい含有量は0〜3%の範囲である。 Al 2 O 3 has the effect of improving chemical durability and viscosity. When the content of Al 2 O 3 exceeds 5%, the meltability and devitrification resistance deteriorate. Therefore, the content of Al 2 O 3 is set in the range of 0 to 5%. A more preferable content is in the range of 0 to 3%.
La2O3、Y2O3、Gd2O3はそれぞれ屈折率や化学的耐久性を向上させる効果を奏するが、それぞれの含有量が5%を超えると耐失透性が悪化する。このため、La2O3、Y2O3、Gd2O3の各含有量を0〜5%の範囲とした。より好ましい各含有量は0〜3%の範囲である。 La 2 O 3 , Y 2 O 3 , and Gd 2 O 3 each have an effect of improving the refractive index and chemical durability. However, if the content of each of the elements exceeds 5%, the devitrification resistance is deteriorated. Therefore, the content of La 2 O 3, Y 2 O 3, Gd 2 O 3 was in the range of 0-5%. Each more preferable content is in the range of 0 to 3%.
Sb2O3は、少量添加されることにより清澄作用を向上させる効果を奏し、またガラスの着色度の悪化を抑える効果も奏する。このためSb2O3は外割りで0.5%以下の範囲で含有させるのが好ましい。 Sb 2 O 3 has the effect of improving the clarification effect when added in a small amount, and also has the effect of suppressing the deterioration of the coloration degree of the glass. Therefore a Sb 2 O 3 content be contained in a range of 0.5% or less outside split is preferable.
本発明の光学素子は前記光学ガラスをモールドプレス成形することによって作製される。このモールドプレス成形法としては、溶融したガラスをノズルから、所定温度に加熱された金型へ滴下しプレス成形するダイレクトプレス成形法、及びプリフォーム材を金型に載置してガラス軟化点以上に加熱してプレス成形する再加熱成形法が挙げられる。このような方法によれば研磨、研削工程が不要となり、生産性が向上し、また自由曲面や非球面といった加工困難な形状の光学素子を得ることができる。 The optical element of the present invention is produced by mold press molding the optical glass. The mold press molding method includes a direct press molding method in which molten glass is dropped from a nozzle into a mold heated to a predetermined temperature and press molded, and a preform material is placed on the mold and the glass softening point or higher is reached. And a reheating molding method in which it is heated and press-molded. According to such a method, polishing and grinding steps are not required, productivity is improved, and an optical element having a shape difficult to process such as a free curved surface or an aspherical surface can be obtained.
成形条件としては、ガラス成分や成形品の形状などにより異なるが一般に、金型温度は350〜600℃の範囲が好ましく、中でもガラス転移温度に近い温度域が好ましい。プレス時間は数秒〜数十秒の範囲が好ましい。またプレス圧力はレンズの形状や大きさにより2×107N/m2〜6×107N/m2の範囲が好ましく、高圧力でプレスするほど高精度の成形ができる。成形時のガラスの粘性としては101〜1012poiseの範囲が好ましい。 The molding conditions vary depending on the glass component and the shape of the molded product, but generally the mold temperature is preferably in the range of 350 to 600 ° C., and the temperature range close to the glass transition temperature is particularly preferable. The pressing time is preferably in the range of several seconds to several tens of seconds. The pressing pressure is preferably in the range of 2 × 10 7 N / m 2 to 6 × 10 7 N / m 2 depending on the shape and size of the lens, and the higher the pressing, the higher the accuracy of molding. The glass viscosity at the time of molding is preferably in the range of 10 1 to 10 12 poise.
本発明の光学素子は、例えばデジタルカメラのレンズやレーザービームプリンタなどのコリメータレンズ、プリズム、ミラーなどとして用いることができる。 The optical element of the present invention can be used as, for example, a digital camera lens, a collimator lens such as a laser beam printer, a prism, or a mirror.
以下に本発明を実施例により更に具体的に説明する。なお、本発明はこれら実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
実施例1〜9、比較例1,2
P2O5原料としてメタリン酸塩又はピロリン酸塩を用い、他の成分については、炭酸塩、硝酸塩、酸化物等を原料として使用し、表1及び表2に示す目標組成となるようにガラスの原料を調合し、粉末で十分に混合して調合原料とした。これを900〜1,200℃に加熱された溶融炉に投入し、溶融清澄後、撹拌均質化して予め加熱された金属製の鋳型に鋳込み、室温まで徐冷して各サンプルを製造した。これら各サンプルについてのd線に対する屈折率(nd)およびアッベ数(νd)、ガラス転移温度(Tg)、着色度、液相温度(TL)を測定した。測定結果を表1及び表2に合わせて示す。なお、比較例1は、特許文献5(特開2005−75665号公報)の実施例2を追試したものである。
Examples 1 to 9, Comparative Examples 1 and 2
Using metaphosphate or pyrophosphate as the P 2 O 5 raw material, and using other materials such as carbonate, nitrate, oxide, etc. as raw materials, the glass should have the target composition shown in Table 1 and Table 2. The raw materials were prepared and mixed thoroughly with powder to obtain a mixed raw material. This was put into a melting furnace heated to 900 to 1,200 ° C., melted and clarified, stirred and homogenized, cast into a pre-heated metal mold, and gradually cooled to room temperature to produce each sample. The refractive index (n d ) and Abbe number (ν d ), glass transition temperature (Tg), coloring degree, and liquidus temperature (T L ) for these samples were measured. The measurement results are shown in Tables 1 and 2. Note that Comparative Example 1 is a trial of Example 2 of Patent Document 5 (Japanese Patent Laid-Open No. 2005-75665).
前記ガラス特性の測定は日本光学硝子工業会規格(JOGIS)の試験方法に準じて行った。屈折率(nd)とアッベ数(νd)は、溶融し鋳型に流し込んだガラスを室温まで−30℃/時間で徐冷してサンプルとし、これをカルニュー光学工業社製「KPR-200」を用いて測定したものである。ガラス転移温度(Tg)は、セイコーインスツルメンツ社製の熱機械的分析装置「TMA/SS6000」を用いて毎分5℃の昇温条件で測定したものである。着色度は、サンプルを10mmの厚さに鏡面研磨を行い、日立製作所社製の分光光度計「U-4100」を用いて透過率を測定し、透過率が70%のときの波長(nm)を求めたものである。液相温度(TL)は、ガラスの入った50ccの白金坩堝を、所定温度に設定しておいた電気炉内に8時間放置した後取り出し、ガラス内部に失透(結晶)が有るかどうかを観察し、失透が確認されない温度とした。 The measurement of the glass property was performed according to the test method of Japan Optical Glass Industry Association Standard (JOGIS). Refractive index (n d ) and Abbe number (ν d ) were obtained by slowly cooling glass that had been melted and poured into a mold to room temperature at −30 ° C./hour to obtain a sample, which was “KPR-200” manufactured by Kalnew Optical Industry Co., Ltd. It was measured using. The glass transition temperature (Tg) is measured using a thermomechanical analyzer “TMA / SS6000” manufactured by Seiko Instruments Inc. under a temperature rising condition of 5 ° C. per minute. The degree of coloration is obtained by mirror-polishing the sample to a thickness of 10 mm, measuring the transmittance using a spectrophotometer “U-4100” manufactured by Hitachi, Ltd., and the wavelength (nm) when the transmittance is 70%. Is what we asked for. The liquidus temperature (T L ) is determined by checking whether there is devitrification (crystals) inside the glass after leaving a 50 cc platinum crucible containing glass in an electric furnace set at a predetermined temperature for 8 hours. The temperature was set to a temperature at which devitrification was not confirmed.
表1から明らかなように、実施例1〜9の光学ガラスは、屈折率ndが1.946〜2.014と高く、アッベ数νdは16.2〜21.1の範囲と小さく、所望の光学恒数を有していた。また、Tgは560℃以下、TLは900〜1000℃と低くモールドプレス成形に適したものであった。また着色度も500nm以下と光学機器用のレンズとして使用しても問題のないものであった。 As is clear from Table 1, the optical glasses of Examples 1 to 9 have a high refractive index n d of 1.946 to 2.014, an Abbe number ν d of a small range of 16.2 to 21.1, It had the desired optical constant. Further, Tg was 560 ° C. or lower, and T L was as low as 900 to 1000 ° C., which was suitable for mold press molding. Further, the coloring degree was 500 nm or less, and there was no problem even when used as a lens for optical equipment.
これに対して、表2によれば、Nb2O5の含有量が多く、且つWO3及びBi2O3を含有しない比較例1の光学ガラスは、Tgが639℃と高くまたTLも1120℃と高くモールドプレス成形に適さないものであった。一方、Bi2O3を主成分とする比較例2の光学ガラスは、高屈折率・高分散な光学恒数を有するものの、着色度が520nmと高く、光学機器向けのレンズとしては好ましくないものであった。 On the other hand, according to Table 2, the optical glass of Comparative Example 1 having a high Nb 2 O 5 content and not containing WO 3 or Bi 2 O 3 has a high Tg of 639 ° C. and a TL of It was as high as 1120 ° C. and was not suitable for mold press molding. On the other hand, the optical glass of Comparative Example 2 containing Bi 2 O 3 as a main component has an optical constant having a high refractive index and a high dispersion, but has a high coloring degree of 520 nm and is not preferable as a lens for optical equipment. Met.
Claims (5)
P2O5:7〜13.5%、
B2O3:0.1〜10%、
Nb2O5:10〜40%、
WO3:3〜30%、
Bi2O3:11〜55%、
TiO2:0%、
Ta2O5:0〜15%(ただし、ゼロを含む)、
ただし、Nb2O5+WO3+Bi2O3+TiO2+Ta2O5:60〜80%、
MgO:0〜5%(ただし、ゼロを含む)、
CaO:0〜5%(ただし、ゼロを含む)、
SrO:0〜5%(ただし、ゼロを含む)、
BaO:0.1〜19%、
ZnO:0〜5%(ただし、ゼロを含む)、
ただし、MgO+CaO+SrO+BaO+ZnO:0.1〜19%、
Li2O:0〜3%(ただし、ゼロを含む)、
Na2O:0〜3%(ただし、ゼロを含む)、
K2O:0.1〜6%、
ただし、Li2O+Na2O+K2O:0.1〜5%、
の各ガラス成分を有し、
屈折率(nd)が1.946以上、アッベ数(νd)が21.1以下、ガラス転移温度(Tg)が559℃以下、着色度(λ T70 )が474nm以下であることを特徴とする光学ガラス。 % By weight
P 2 O 5 : 7 to 13.5 %,
B 2 O 3 : 0.1 to 10%
Nb 2 O 5 : 10 to 40%,
WO 3: 3~30%,
Bi 2 O 3: 11~55%,
TiO 2 : 0 %,
Ta 2 O 5 : 0 to 15% (including zero),
However, Nb 2 O 5 + WO 3 + Bi 2 O 3 + TiO 2 + Ta 2 O 5: 60~80%,
MgO: 0 to 5% (including zero),
CaO: 0 to 5% (including zero),
SrO: 0 to 5% (including zero),
BaO: 0.1 to 19%,
ZnO: 0 to 5% (including zero),
However, MgO + CaO + SrO + BaO + ZnO: 0.1 to 19%,
Li 2 O: 0 to 3% (including zero),
Na 2 O: 0 to 3% (including zero),
K 2 O: 0.1 to 6%,
However, Li 2 O + Na 2 O + K 2 O: 0.1~ 5%,
Have a glass each component of,
Optical having a refractive index (nd) of 1.946 or more, an Abbe number (νd) of 21.1 or less, a glass transition temperature (Tg) of 559 ° C. or less, and a coloring degree (λ T70 ) of 474 nm or less. Glass.
重量%で、% By weight
LiLi 22 O:0%、O: 0%
NaNa 22 O:0%、O: 0%
である請求項1記載の光学ガラス。The optical glass according to claim 1.
SiOSiO 22 :0〜10%、: 0-10%
GeOGeO 22 :0〜5%、: 0 to 5%
AlAl 22 OO 3Three :0〜5%、: 0 to 5%
LaLa 22 OO 3Three :0〜5%、: 0 to 5%
YY 22 OO 3Three :0〜5%、: 0 to 5%
GdGd 22 OO 3Three :0〜5%、: 0 to 5%
SbSb 22 OO 3Three :0〜0.5%、: 0 to 0.5%
のガラス成分の1種または2種以上をさらに含有する請求項1又は2に記載の光学ガラス。The optical glass according to claim 1 or 2, further comprising one or more of the glass components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005201974A JP4810901B2 (en) | 2005-07-11 | 2005-07-11 | Optical glass and optical element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005201974A JP4810901B2 (en) | 2005-07-11 | 2005-07-11 | Optical glass and optical element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007015904A JP2007015904A (en) | 2007-01-25 |
JP4810901B2 true JP4810901B2 (en) | 2011-11-09 |
Family
ID=37753391
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005201974A Expired - Fee Related JP4810901B2 (en) | 2005-07-11 | 2005-07-11 | Optical glass and optical element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4810901B2 (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4411091B2 (en) * | 2004-01-15 | 2010-02-10 | 株式会社住田光学ガラス | Optical glass for precision press molding |
JP5109488B2 (en) * | 2007-06-08 | 2012-12-26 | コニカミノルタアドバンストレイヤー株式会社 | Optical glass and optical element produced therefrom |
JP5099890B2 (en) * | 2007-07-06 | 2012-12-19 | 独立行政法人産業技術総合研究所 | Optical glass |
JP5650371B2 (en) * | 2008-04-29 | 2015-01-07 | 株式会社オハラ | Optical glass |
JP2011219278A (en) * | 2008-08-22 | 2011-11-04 | Asahi Glass Co Ltd | Optical glass |
EP2383236B1 (en) | 2009-01-26 | 2018-04-18 | Asahi Glass Company, Limited | Glass composition and member having the same on substrate |
US8207074B2 (en) | 2009-04-27 | 2012-06-26 | Asahi Glass Company, Limited | Optical glass |
CN101734855B (en) * | 2009-12-30 | 2012-12-12 | 成都光明光电股份有限公司 | Optical glass, prefabricated part for mold pressing and optical element |
JP5760789B2 (en) | 2010-08-06 | 2015-08-12 | 旭硝子株式会社 | Optical glass |
JP5260623B2 (en) * | 2010-09-30 | 2013-08-14 | Hoya株式会社 | Optical glass, glass material for press molding, and optical element |
JP5444490B2 (en) * | 2010-09-30 | 2014-03-19 | Hoya株式会社 | Optical glass, glass material for press molding, and optical element |
JP5543395B2 (en) | 2011-02-23 | 2014-07-09 | Hoya株式会社 | Optical glass, glass material for press molding, and optical element |
US9550698B2 (en) | 2012-06-28 | 2017-01-24 | Hoya Corporation | Optical glass and use thereof |
JP6656744B2 (en) * | 2014-03-20 | 2020-03-04 | 株式会社オハラ | Optical glass, lens preform and optical element |
WO2017006998A1 (en) * | 2015-07-07 | 2017-01-12 | Hoya株式会社 | Glass, optical glass, phosphate optical glass, polishing glass, glass material for press molding, and optical element |
EP4281421B1 (en) | 2021-01-22 | 2025-04-02 | Corning Incorporated | High refractive index phosphate glasses containing calcium |
JP2024504373A (en) | 2021-01-22 | 2024-01-31 | コーニング インコーポレイテッド | Low dispersion phosphate glass with high refractive index |
EP4281420A1 (en) | 2021-01-22 | 2023-11-29 | Corning Incorporated | Phosphate glasses with high refractive index and low density |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3798268B2 (en) * | 2000-06-30 | 2006-07-19 | Hoya株式会社 | Optical glass and optical product using the same |
JP4448003B2 (en) * | 2004-10-15 | 2010-04-07 | Hoya株式会社 | Optical glass, precision press-molding preform and manufacturing method thereof, optical element and manufacturing method thereof |
-
2005
- 2005-07-11 JP JP2005201974A patent/JP4810901B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007015904A (en) | 2007-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5358888B2 (en) | Optical glass and optical element | |
JP4759986B2 (en) | Optical glass and optical element | |
JP5174368B2 (en) | Optical glass | |
JP4590386B2 (en) | Optical glass | |
JP4429295B2 (en) | Optical glass | |
US7603876B2 (en) | Optical glass, shapable glass material for press-shaping, optical element and process for producing optical element | |
JP4810901B2 (en) | Optical glass and optical element | |
KR20160038780A (en) | Glass, glass material for press molding, optical element blank, and optical element | |
JP2006111482A (en) | Optical glass and optical element | |
JP5109488B2 (en) | Optical glass and optical element produced therefrom | |
JP2011037660A (en) | Optical glass, lens preform and optical element | |
JP2009096649A (en) | Optical glass and optical element | |
JP4373688B2 (en) | Optical glass, precision press-molding preform, and optical element | |
JP7514351B2 (en) | Glass, glass materials for press molding, optical element blanks, and optical elements | |
JP5209897B2 (en) | Optical glass | |
JP5174373B2 (en) | Optical glass | |
JP2004231501A (en) | Optical glass and optical element produced from it | |
KR101660625B1 (en) | Optical glass and application of same | |
JP4997990B2 (en) | Optical glass and optical element | |
KR20150114944A (en) | Optical glass, hot-formed article and method for manufacturing same, and optical element and method for manufacturing same | |
JP2008179500A (en) | Optical glass and optical device | |
JP2007008761A (en) | Optical glass and optical element | |
JP2002211949A (en) | Optical glass for press molding, preform material for press molding and optical element using the same | |
JP2007145615A (en) | Optical glass and optical element | |
JP2014015384A (en) | Optical glass, preform and optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110607 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110726 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110808 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140902 Year of fee payment: 3 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |