[go: up one dir, main page]

JP2004231501A - Optical glass and optical element produced from it - Google Patents

Optical glass and optical element produced from it Download PDF

Info

Publication number
JP2004231501A
JP2004231501A JP2003025371A JP2003025371A JP2004231501A JP 2004231501 A JP2004231501 A JP 2004231501A JP 2003025371 A JP2003025371 A JP 2003025371A JP 2003025371 A JP2003025371 A JP 2003025371A JP 2004231501 A JP2004231501 A JP 2004231501A
Authority
JP
Japan
Prior art keywords
glass
less
optical
content
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003025371A
Other languages
Japanese (ja)
Inventor
Akio Ogaki
昭男 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2003025371A priority Critical patent/JP2004231501A/en
Publication of JP2004231501A publication Critical patent/JP2004231501A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide optical glass whose refractive index is high, whose dispersion is low, whose Tg and T<SB>L</SB>values are low and which is suitable for a precise press-forming. <P>SOLUTION: The optical glass contains B<SB>2</SB>O<SB>3</SB>of 27-34 wt%, Li<SB>2</SB>O of 0.2-2 wt%, ZnO of 7-15 wt%, ZrO<SB>2</SB>of 5-10 wt%, La<SB>2</SB>O<SB>3</SB>of 35-53 wt%, Y<SB>2</SB>O<SB>3</SB>of 8-15 wt%, Gd<SB>2</SB>O<SB>3</SB>of 0-1 wt% (including 0 and not including 1 wt%), Ta<SB>2</SB>O<SB>5</SB>of 0-1 wt% (including 0), Nb<SB>2</SB>O<SB>5</SB>of 0-1 wt% (including 0), Bi<SB>2</SB>O<SB>3</SB>of 0-1 wt% (including 0), WO<SB>3</SB>of 0-1 wt% (including 0) and SiO<SB>2</SB>of 0-5 wt% (including 0) (wherin, La<SB>2</SB>O<SB>3</SB>+Y<SB>2</SB>O<SB>3</SB>+Gd<SB>2</SB>O<SB>3</SB>is 45-54 wt%;and Ta<SB>2</SB>O<SB>5</SB>+Nb<SB>2</SB>O<SB>5</SB>+Bi<SB>2</SB>O<SB>3</SB>+WO<SB>3</SB>is 0.5-3 wt%). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は光学ガラス及びこれから作製される光学素子に関し、より詳細には高屈折率で低分散で、ガラス転移温度および液相温度が比較的低く、精密プレス成形に適した光学ガラス及びこれから作製される光学素子に関するものである。
【0002】
【従来の技術】
デジタルカメラなどの光学機器において機器の小型・軽量化を図るために非球面レンズを使用することが近年多くなってきた。しかし、従来の切削・研磨によってレンズを非球面形状に加工することは難しく、必然的に生産コストが高くなっていた。そこで、非球面形状など加工困難な形状のガラスの成形を比較的容易にできる技術として、精密プレス成形法(モールド成形法)が注目されている。この成形法によれば、従来は必要であったレンズの研磨および切削工程などが不要となり低コスト化が図れる。
【0003】
ところが、精密プレス成形法でガラスを成形する場合には、プレス金型をガラス転移温度(以下「Tg」と記すことがある)近傍またはそれ以上の温度にする必要がある一方、ガラスのTgが高いほどプレス金型の表面酸化や金属組成の変化が生じ、金型の劣化が激しくなって金型寿命が短くなる。金型劣化を抑制するための方策としては、成形雰囲気を窒素などの不活性雰囲気に制御することが考えられるが、生産コストの上昇を招く。したがって、精密プレス成形法に用いるガラスとしてはTgのできるだけ低いものが望ましい。また、ガラスの成形性の観点からは液相温度(以下「T」と記すことがある)は低い方が望ましく、加えて液相温度におけるガラスの粘性は高い方が望ましい。
【0004】
このような精密プレス成形法に適した光学ガラスは従来から種々提案されている。例えば特許文献1には、高屈折率・低分散、比較的低Tg、Tを目的とした精密プレス成形用の光学ガラスが提案されている。
【0005】
【特許文献1】
特開2002−249337号公報(特許請求の範囲、
【0005】〜
【0039】)
【0006】
【発明が解決しようとする課題】
しかしながら、本発明者が特許文献1に記載の実施例を追試してみたところ、得られた光学ガラスは高屈折率・低分散ではあったがTが1040℃以上と未だ満足できる水準ではなかった。
【0007】
本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは屈折率(n)が1.766以上、アッベ数(ν)が49.0以上,ガラス転移温度(T)が640℃以下、液相温度(T)が1030℃以下である光学ガラスを提供することにある。
【0008】
また本発明の目的は、上記の屈折率及びアッベ数を有し、生産性が高く低コスト化が図れる光学素子を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は前記目的を達成すべく鋭意検討を重ねた結果、Tの上昇をもたらす一つの要因がGdであることを突き止めた。そして、Gdの含有量を少なくできないかさらに検討を重ねたところ、Gd以外のガラス成分の種類やその含有量を最適に組み合わせることにより高屈折率・低分散で、比較的低Tg、Tの精密プレス成形に適した光学ガラスが得られることを実験的に見出し本発明をなすに至った。すなわち、本発明の光学ガラスは、wt%で、B:27〜34%、LiO:0.2〜2%、ZnO:7〜15%、ZrO:5〜10%、La:35〜53%、Y:8〜15%、Gd:0〜1%(ゼロを含み、1%を含まず)、ただし、La+Y+Gd:45〜54%、Ta:0〜1%(ゼロを含む)、Nb:0〜1%(ゼロを含む)、Bi:0〜1%(ゼロを含む)、WO:0〜1%(ゼロを含む)、ただし、Ta+Nb+Bi+WO:0.5〜3%、SiO:0〜5%(ゼロを含む)のガラス成分を含有することを特徴とする。なお、本明細書において特段の説明のない限り以下の「%」は「wt%」を意味するものとする。
【0010】
ここでガラスの粘性の増大や高屈折率化、光学恒数の調整などの観点から、GeO:3%以下、TiO:1%以下、Al:3%以下、MgO:3%以下、CaO:3%以下、SrO:3以下、BaO:3%以下、NaO:1%以下、KO:1%以下のガラス成分の1種または2種以上をさらに含有させてもよい。
【0011】
また本発明によれば、前記光学ガラスを精密プレス成形して作製したことを特徴とする光学素子が提供される。このような光学素子としてはレンズが好ましい。
【0012】
【発明の実施の形態】
本発明の光学ガラスの各成分を前記のように限定した理由について以下説明する。まずBはガラスを形成する主成分であり、Bの含有量が27%未満であるとガラスが失透しやすくなる。他方、含有量が34%を超えると所期の屈折率が得られない。そこで含有量を27〜34%の範囲と定めた。より好ましい含有量は29〜33%の範囲である。
【0013】
LiOはガラスのTgを効果的に下げる効果を有し、LiOを0.2%以上含有させることによりTgを640℃以下に調整しやすくなる。他方、含有量が2%を超えるとガラスが急激に失透しやすくなる。また粘性が小さくなり成形が困難となる。そこで含有量を0.2〜2%の範囲と定めた。より好ましい含有量は0.2〜1%の範囲である。
【0014】
ZnOはガラスのTgを効果的に下げる効果を有し、その含有量が7%未満であるとその効果が得られない。他方、含有量が15%を超えると所期の屈折率とアッベ数を得にくくなる。そこで含有量を7〜15%の範囲と定めた。より好ましい含有量は7.5〜12%の範囲である。
【0015】
ZrOはガラスを安定させ液相温度を下げる効果を有するが、その含有量が5%未満ではその効果が十分には得られない。他方、含有量が10%を超えるとガラスが急激に失透しやすくなる。そこで含有量を5〜10%の範囲と定めた。より好ましい含有量は6〜7%の範囲である。
【0016】
Laは屈折率を高める効果を有し、その含有量が35%未満であるとその効果が得られない。他方、含有量が53%を超えるとガラスが失透しやすくなる。そこで含有量を35〜53%の範囲と定めた。より好ましい含有量は47〜52%の範囲である。
【0017】
は、Laより劣るものの屈折率を高める効果を有する。またガラスを安定させる効果も有する。含有量が8%未満であるとこれらの効果が十分には得られない。他方、含有量が15%を超えるとガラスが失透しやすくなる。そこで含有量を8〜15%の範囲と定めた。より好ましい範囲は9〜10%の範囲である。
【0018】
Gdも屈折率を高める効果を有するもののLaやYに比べてその能力は劣り、またGdは添加すると液相温度の上昇を招く。そこでGdの含有量を1%未満と定めた。より好ましくは実質的に含有しないようにすることである。
【0019】
またLaとYとGdは総量が45%未満であると、所期の光学恒数を得ることが困難となる。他方、総量が54%を超えるとガラスが失透しやすくなる。そこで総量を45〜54%の範囲と定めた。より好ましい総量は47〜52%の範囲である。
【0020】
Ta、Nb、Bi、WOは、いずれもガラスの屈折率を高める効果を有し、これらの総量が0.5%未満であるとその効果が十分には得られない。他方、総量が3%を超えると所期のアッベ数を得にくくなる。そこで総量を0.5〜3%の範囲と定めた。より好ましい総量は0.5〜2.5%の範囲である。また、これらのガラス成分のうちTa、Nb、WOを1%を超えて含有させても前記効果は向上は得られない。またBiを1%を超えて含有させるとガラスが着色しやすくなる。そこで、これらの各ガラス成分の含有量を1%以下と定めた。
【0021】
SiOはガラスの粘性を高くする効果を有するが、その含有量が5%を超えるとガラスが失透しやすくなる。そこで、SiOの含有量を5%以下と定めた。より好ましい含有量は1〜4%の範囲である。
【0022】
また、本発明の光学ガラスでは、GeO:3%以下、TiO:1%以下、Al:3%以下、MgO:3%以下、CaO:3%以下、SrO:3以下、BaO:3%以下、NaO:1%以下、KO:1%以下のガラス成分の1種または2種以上をさらに含有させてもよい。
【0023】
GeO、TiO、Al、MgO、CaO、SrO、BaO、NaO、KOを含有させることにより光学恒数を所期の範囲に調整できる。しかし、GeO及びTiOでは、その含有量がそれぞれ3%及び1%を超えるとアッベ数が低下し所期の値が得られないおそれがある。したがって、GeO及びTiOの含有量はそれぞれ3%以下及び1%以下が望ましい。他方、Al、MgO、CaO、SrO、BaOではその含有量がそれぞれ3%を超えると、またNaO、KOではその含有量が1%を超えると、ガラスの屈折率が低下するおそれがある。したがって、Al、MgO、CaO、SrO、BaOではその含有量を3%以下、またNaO、KOではその含有量を1%以下とするのが望ましい。
【0024】
また清澄剤として、As、Sb、SnOの各ガラス成分の1種または2種以上を前記ガラス成分の総量100重量部に対して0.5重量部以下の範囲で含有させてもよい。含有量を0.5重量部以下としたのは、0.5重量部を含有させることで充分な清澄作用が得られるからである。
【0025】
その他必要により、従来公知のガラス成分及び添加剤を本発明の効果を害しない範囲で添加してももちろん構わない。
【0026】
本発明の光学素子は前記光学ガラスを精密プレス成形することによって作製される。この精密プレス成形法としては、溶融したガラスをノズルから、所定温度に加熱された金型へ滴下しプレス成形する精密ダイレクトプレス成形法、及びプリフォーム材を金型に載置してガラス軟化点以上に加熱してプレス成形する再加熱成形法が挙げられる。このような方法によれば研磨、研削工程が不要となり、生産性が向上する。これらの中でも精密ダイレクトプレス成形法が本発明の光学素子の製造方法としてより好ましい。
【0027】
成形条件としては、ガラス成分や成形品の形状などにより異なるが一般に、金型温度は600〜700℃の範囲が好ましく、中でもガラス転移温度に近い高温域が好ましい。プレス時間は数秒〜数十秒の範囲が好ましく、長時間プレスするほど高精度の成形ができる。またプレス圧力は200kgf/cm〜600kgf/cmの範囲が好ましく、高圧力でプレスするほど高精度の成形ができる。成形時のガラスの粘度としては10〜1012poiseの範囲が好ましい。
【0028】
本発明の光学素子は、例えばデジタルカメラのレンズやレーザービームプリンタなどのコリメータレンズなどとして用いることができる。
【0029】
【実施例】
以下に本発明を実施例により更に具体的に説明する。なお、本発明はこれら実施例に何ら限定されるものではない。
【0030】
実施例1〜10、比較例1〜5
酸化物原料、炭酸塩など一般的なガラス原料を用いて、表1に示す目標組成となるように、ガラスの原料を調合し、粉末で十分に混合して調合原料とした。これを1,150〜1,350℃に加熱された電気炉中の白金坩堝に投入し、溶融清澄後、撹拌均質化して予め加熱された鉄製又はカーボン製の鋳型に鋳込み、徐冷して各サンプルを製造した。これら各サンプルについてのd線に対する屈折率(n)およびアッベ数(ν)、ガラス転移温度(Tg)、液相温度(T)を測定した。なお、これらの測定は日本光学硝子工業会規格(JOGIS)の試験方法に準じて行った。Tgの測定は熱機械的分析装置「TMA/SS6000」(Seiko Instruments Inc.社製)を用いて毎分5℃の昇温条件で行った。Tは500〜1150℃の温度勾配のついた失透試験炉に2時間入れた後、取り出して失透の有無を顕微鏡で観察し特定した。測定結果を表1及び表2に合わせて示す。
【0031】
【表1】

Figure 2004231501
【0032】
【表2】
Figure 2004231501
【0033】
表1から明らかなように、実施例1〜10の光学ガラスは高屈折率(1.766〜1.770)、低分散(アッベ数:49.4〜49.8)であった。またガラス転移温度(Tg)が639℃以下、液相温度(T)が1030℃以下と精密プレス成形に適したものであった。
【0034】
これに対し、ZnOとYの含有量が少ない比較例1の光学ガラスは、Tg及びTが644℃及び1100℃と高く精密プレス成形に適さないものであった。また、LiOを3.0%と多く含有した比較例2の光学ガラスは溶融中に失透した。ZnO及びTaを20.0%及び5.0%と多く含有した比較例3の光学ガラスは屈折率が所期の値に達しなかった。比較例3と同様にZnOが20.0%と多く、さらにYを含有せずLaとYの総量の少ない比較例4の光学ガラスは、屈折率が所期の値に達せずまたTも高かった。そして、Gdを36.4%と多量に含有させた比較例5の光学ガラスは、Tが1080℃と高く精密プレス成形に適さないものであった。
【0035】
【発明の効果】
本発明の光学ガラスでは、B、LiO、ZnO、ZrO、La、Y、GdO、Ta、Nb、Bi、WO、SiOの各ガラス成分を特定量含有させることにより、高屈折率・低分散(n:1.766以上,ν:49.0以上)が達成でき、しかも低Tg及び低T(Tg:640℃以下,T:1030℃以下)とすることができ優れた精密プレス成形性が得られる。
【0036】
また本発明の光学素子は、前記光学ガラスを精密プレス成形することにより作製するので、生産効率が高く低コスト化が図れる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical glass and an optical element produced therefrom, and more particularly to an optical glass suitable for precision press molding and having a high refractive index, low dispersion, a relatively low glass transition temperature and a liquidus temperature, and an optical glass produced therefrom. Optical element.
[0002]
[Prior art]
In recent years, an aspheric lens has been frequently used in optical devices such as digital cameras in order to reduce the size and weight of the devices. However, it is difficult to process the lens into an aspherical shape by conventional cutting and polishing, and the production cost is inevitably increased. Therefore, a precision press molding method (mold molding method) has attracted attention as a technique that can relatively easily form glass having a difficult-to-process shape such as an aspherical shape. According to this molding method, the steps of polishing and cutting the lens, which were conventionally required, are not required, and the cost can be reduced.
[0003]
However, when molding glass by the precision press molding method, it is necessary to set the temperature of the press die to a temperature close to or higher than the glass transition temperature (hereinafter, sometimes referred to as “Tg”), while the Tg of the glass is The higher the temperature, the more the surface oxidation of the press die and the change in the metal composition occur, and the more severe the deterioration of the die, the shorter the life of the die. As a measure for suppressing mold deterioration, it is conceivable to control the molding atmosphere to an inert atmosphere such as nitrogen, but this leads to an increase in production cost. Therefore, it is desirable that the glass used in the precision press molding method has a Tg as low as possible. Further, from the viewpoint of the moldability of the glass, it is desirable that the liquidus temperature (hereinafter sometimes referred to as “ TL ”) be low, and that the viscosity of the glass at the liquidus temperature be high.
[0004]
Various optical glasses suitable for such a precision press molding method have been conventionally proposed. For example, Patent Document 1 proposes an optical glass for precision press molding for the purpose of high refractive index, low dispersion, relatively low Tg and TL .
[0005]
[Patent Document 1]
JP-A-2002-249337 (claims,
[0005]
[0039]
[0006]
[Problems to be solved by the invention]
However, when the present inventor additionally tested the example described in Patent Document 1, the obtained optical glass had a high refractive index and a low dispersion, but had a TL of 1040 ° C. or higher, which was not yet a satisfactory level. Was.
[0007]
The present invention has been made in view of such conventional problems, the refractive index and it is an object of (n d) is 1.766 or more and an Abbe's number ([nu d) is 49.0 or more, the glass transition An object of the present invention is to provide an optical glass having a temperature (T g ) of 640 ° C. or less and a liquidus temperature (T L ) of 1030 ° C. or less.
[0008]
Another object of the present invention is to provide an optical element having the above-mentioned refractive index and Abbe number, which can achieve high productivity and low cost.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor has found that one factor that causes an increase in TL is Gd 2 O 3 . Further studies were conducted to determine whether the content of Gd 2 O 3 could be reduced. As a result, a glass material other than Gd 2 O 3 was optimally combined with the type and content thereof to achieve a high refractive index and a low dispersion, and a relatively high refractive index. The present inventors have experimentally found that an optical glass suitable for precision press molding with low Tg and TL can be obtained, and have accomplished the present invention. That is, the optical glass of the present invention, in wt%, B 2 O 3: 27~34%, Li 2 O: 0.2~2%, ZnO: 7~15%, ZrO 2: 5~10%, La 2 O 3 : 35 to 53%, Y 2 O 3 : 8 to 15%, Gd 2 O 3 : 0 to 1% (including zero and not including 1%), provided that La 2 O 3 + Y 2 O 3 + Gd 2 O 3: 45~54% , Ta 2 O 5: ( including zero) 0~1%, Nb 2 O 5 : 0~1% ( including zero), Bi 2 O 3: 0~1 % ( including zero), WO 3: 0~1% (including zero), however, Ta 2 O 5 + Nb 2 O 5 + Bi 2 O 3 + WO 3: 0.5~3%, SiO 2: 0~5% ( (Including zero). In the present specification, unless otherwise specified, the following “%” means “wt%”.
[0010]
Here, from the viewpoint of increasing the viscosity of the glass, increasing the refractive index, adjusting the optical constant, and the like, GeO 2 : 3% or less, TiO 2 : 1% or less, Al 2 O 3 : 3% or less, MgO: 3% hereinafter, CaO: 3% or less, SrO: 3 or less, BaO: 3% or less, Na 2 O: 1% or less, K 2 O: even further contain one or more of 1% or less of the glass component Good.
[0011]
Further, according to the present invention, there is provided an optical element characterized in that the optical glass is manufactured by precision press molding. As such an optical element, a lens is preferable.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The reason why each component of the optical glass of the present invention is limited as described above will be described below. First, B 2 O 3 is a main component forming glass, and if the content of B 2 O 3 is less than 27%, the glass is apt to be devitrified. On the other hand, if the content exceeds 34%, the desired refractive index cannot be obtained. Therefore, the content was determined to be in the range of 27 to 34%. A more preferred content is in the range of 29-33%.
[0013]
Li 2 O has an effect of effectively lowering the Tg of the glass, and by including Li 2 O in an amount of 0.2% or more, it becomes easy to adjust the Tg to 640 ° C. or less. On the other hand, if the content exceeds 2%, the glass tends to rapidly devitrify. In addition, the viscosity becomes small and molding becomes difficult. Therefore, the content is set in the range of 0.2 to 2%. A more preferred content is in the range of 0.2-1%.
[0014]
ZnO has the effect of effectively lowering the Tg of glass, and if its content is less than 7%, the effect cannot be obtained. On the other hand, if the content exceeds 15%, it becomes difficult to obtain the desired refractive index and Abbe number. Therefore, the content is set in the range of 7 to 15%. A more preferred content is in the range of 7.5 to 12%.
[0015]
ZrO 2 has the effect of stabilizing the glass and lowering the liquidus temperature, but if its content is less than 5%, the effect cannot be obtained sufficiently. On the other hand, if the content exceeds 10%, the glass tends to rapidly devitrify. Therefore, the content is set in the range of 5 to 10%. A more preferred content is in the range of 6-7%.
[0016]
La 2 O 3 has an effect of increasing the refractive index, and if the content is less than 35%, the effect cannot be obtained. On the other hand, if the content exceeds 53%, the glass tends to be devitrified. Therefore, the content is set in the range of 35 to 53%. A more preferred content is in the range of 47-52%.
[0017]
Y 2 O 3 is inferior to La 2 O 3 but has an effect of increasing the refractive index. It also has the effect of stabilizing the glass. If the content is less than 8%, these effects cannot be sufficiently obtained. On the other hand, if the content exceeds 15%, the glass tends to be devitrified. Therefore, the content is set in the range of 8 to 15%. A more preferred range is from 9 to 10%.
[0018]
Although Gd 2 O 3 also has the effect of increasing the refractive index, its performance is inferior to La 2 O 3 and Y 2 O 3 , and the addition of Gd 2 O 3 causes an increase in the liquidus temperature. Therefore, the content of Gd 2 O 3 was determined to be less than 1%. More preferably, it is substantially not contained.
[0019]
If the total amount of La 2 O 3 , Y 2 O 3 and Gd 2 O 3 is less than 45%, it becomes difficult to obtain the desired optical constant. On the other hand, if the total amount exceeds 54%, the glass tends to be devitrified. Therefore, the total amount is set in the range of 45 to 54%. A more preferred total is in the range of 47-52%.
[0020]
Ta 2 O 5 , Nb 2 O 5 , Bi 2 O 3 , and WO 3 all have the effect of increasing the refractive index of glass. When the total amount is less than 0.5%, the effect is not sufficiently achieved. I can't get it. On the other hand, if the total amount exceeds 3%, it becomes difficult to obtain the desired Abbe number. Therefore, the total amount is set in the range of 0.5 to 3%. A more preferred total is in the range of 0.5-2.5%. Further, even if Ta 2 O 5 , Nb 2 O 5 , or WO 3 is contained in more than 1% of these glass components, the above effect cannot be improved. When Bi 2 O 3 is contained in an amount exceeding 1%, the glass is easily colored. Therefore, the content of each of these glass components was determined to be 1% or less.
[0021]
SiO 2 has the effect of increasing the viscosity of glass, but if its content exceeds 5%, the glass tends to devitrify. Therefore, the content of SiO 2 is determined to be 5% or less. A more preferred content is in the range of 1-4%.
[0022]
In the optical glass of the present invention, GeO 2 : 3% or less, TiO 2 : 1% or less, Al 2 O 3 : 3% or less, MgO: 3% or less, CaO: 3% or less, SrO: 3 or less, BaO : 1% or less, Na 2 O: 1% or less, K 2 O: 1% or less.
[0023]
By including GeO 2 , TiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, Na 2 O, and K 2 O, the optical constant can be adjusted to a desired range. However, if the content of GeO 2 and TiO 2 exceeds 3% and 1%, respectively, the Abbe number decreases, and the desired values may not be obtained. Therefore, the contents of GeO 2 and TiO 2 are desirably 3% or less and 1% or less, respectively. On the other hand, when the content of each of Al 2 O 3 , MgO, CaO, SrO, and BaO exceeds 3%, and when the content of Na 2 O, K 2 O exceeds 1%, the refractive index of the glass increases. It may decrease. Therefore, the content of Al 2 O 3 , MgO, CaO, SrO, and BaO is desirably 3% or less, and the content of Na 2 O, K 2 O is desirably 1% or less.
[0024]
Further, as a fining agent, one or more of each glass component of As 2 O 3 , Sb 2 O 3 , and SnO 2 is contained in a range of 0.5 parts by weight or less based on 100 parts by weight of the total amount of the glass components. You may let it. The content is set to 0.5 part by weight or less because a sufficient clarifying action can be obtained by containing 0.5 part by weight.
[0025]
If necessary, a conventionally known glass component and additive may be added as long as the effects of the present invention are not impaired.
[0026]
The optical element of the present invention is produced by precision press molding the optical glass. As the precision press molding method, there is a precision direct press molding method in which molten glass is dropped from a nozzle into a mold heated to a predetermined temperature and press molded, and a glass softening point in which a preform material is placed on a mold and placed on a mold. The reheat molding method of heating and press molding is mentioned above. According to such a method, polishing and grinding steps are not required, and productivity is improved. Among these, the precision direct press molding method is more preferable as the method for producing the optical element of the present invention.
[0027]
The molding conditions vary depending on the glass component, the shape of the molded product, and the like. Generally, the mold temperature is preferably in the range of 600 to 700 ° C., and particularly preferably a high temperature range close to the glass transition temperature. The pressing time is preferably in the range of several seconds to several tens of seconds, and the higher the pressing time, the higher the precision of molding. The pressing pressure is preferably in the range of 200 kgf / cm 2 to 600 kgf / cm 2 , and the higher the pressure, the higher the precision of molding. The viscosity of the glass at the time of molding is preferably in the range of 10 2 to 10 12 poise.
[0028]
The optical element of the present invention can be used, for example, as a lens of a digital camera or a collimator lens of a laser beam printer.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
[0030]
Examples 1 to 10, Comparative Examples 1 to 5
Glass raw materials were prepared using a general glass raw material such as an oxide raw material and a carbonate so as to have a target composition shown in Table 1, and were sufficiently mixed with powder to obtain a prepared raw material. This is put into a platinum crucible in an electric furnace heated to 1,150 to 1,350 ° C., melted and clarified, stirred and homogenized, cast into a pre-heated iron or carbon mold, gradually cooled, and cooled. Samples were produced. Refractive index at the d-line of the respective samples (n d) and Abbe number ([nu d), glass transition temperature (Tg), was measured liquidus temperature (T L). In addition, these measurements were performed according to the test method of the Japan Optical Glass Industry Association standard (JOGIS). The Tg was measured using a thermomechanical analyzer “TMA / SS6000” (manufactured by Seiko Instruments Inc.) at a temperature rising rate of 5 ° C./min. The TL was placed in a devitrification test furnace having a temperature gradient of 500 to 1150 ° C. for 2 hours, taken out, and observed by a microscope for the presence or absence of devitrification. The measurement results are shown in Tables 1 and 2.
[0031]
[Table 1]
Figure 2004231501
[0032]
[Table 2]
Figure 2004231501
[0033]
As is clear from Table 1, the optical glasses of Examples 1 to 10 had a high refractive index (1.766 to 1.770) and a low dispersion (Abbe number: 49.4 to 49.8). Further, the glass transition temperature (Tg) was 639 ° C. or less, and the liquidus temperature (T L ) was 1030 ° C. or less, which was suitable for precision press molding.
[0034]
On the other hand, the optical glass of Comparative Example 1 having a small content of ZnO and Y 2 O 3 had high Tg and TL of 644 ° C. and 1100 ° C., and was not suitable for precision press molding. Further, the optical glass of Comparative Example 2 containing a large amount of Li 2 O as 3.0% was devitrified during melting. The refractive index of the optical glass of Comparative Example 3 containing ZnO and Ta 2 O 5 as large as 20.0% and 5.0% did not reach the expected value. As in Comparative Example 3, ZnO was as high as 20.0%, and the optical glass of Comparative Example 4 containing no Y 2 O 3 and having a small total amount of La 2 O 3 and Y 2 O 3 had a desired refractive index. And the TL was also high. The optical glass of Comparative Example 5 containing a large amount of Gd 2 O 5 at 36.4% had a TL of 1080 ° C. and was not suitable for precision press molding.
[0035]
【The invention's effect】
In the optical glass of the present invention, B 2 O 3 , Li 2 O, ZnO, ZrO 2 , La 2 O 3 , Y 2 O 3 , Gd 2 O, Ta 2 O 5 , Nb 2 O 5 , Bi 2 O 3 , WO 3, each glass component SiO 2 by incorporating a specific amount, high refractive index and low dispersion (n d: 1.766 or more, [nu d: 49.0 or higher) can be achieved, yet low Tg and low T L (Tg: 640 ° C. or less, T L : 1030 ° C. or less), and excellent precision press moldability can be obtained.
[0036]
Further, since the optical element of the present invention is manufactured by precision press-molding the optical glass, the production efficiency is high and the cost can be reduced.

Claims (4)

wt%で、
:27〜34%、
LiO:0.2〜2%、
ZnO:7〜15%、
ZrO:5〜10%、
La:35〜53%、
:8〜15%、
Gd:0〜1%(ゼロを含み、1%を含まず)
ただし、La+Y+Gd:45〜54%、
Ta:0〜1%(ゼロを含む)、
Nb:0〜1%(ゼロを含む)、
Bi:0〜1%(ゼロを含む)、
WO:0〜1%(ゼロを含む)、
ただし、Ta+Nb+Bi+WO:0.5〜3%、
SiO:0〜5%(ゼロを含む)、
のガラス成分を含有することを特徴とする光学ガラス。
In wt%,
B 2 O 3: 27~34%,
Li 2 O: 0.2~2%,
ZnO: 7 to 15%,
ZrO 2: 5~10%,
La 2 O 3 : 35-53%,
Y 2 O 3: 8~15%,
Gd 2 O 3: 0~1% (including zero, not including 1%)
However, La 2 O 3 + Y 2 O 3 + Gd 2 O 3 : 45 to 54%,
Ta 2 O 5: 0~1% (including zero),
Nb 2 O 5: 0~1% (including zero),
Bi 2 O 3: 0~1% (including zero),
WO 3: 0~1% (including zero),
However, Ta 2 O 5 + Nb 2 O 5 + Bi 2 O 3 + WO 3: 0.5~3%,
SiO 2 : 0 to 5% (including zero),
An optical glass characterized by containing the following glass component.
wt%で、
GeO:3%以下、
TiO:1%以下、
Al:3%以下、
MgO:3%以下、
CaO:3%以下、
SrO:3以下、
BaO:3%以下、
NaO:1%以下、
O:1%以下、
のガラス成分の1種または2種以上をさらに含有する請求項1記載の光学ガラス。
In wt%,
GeO 2 : 3% or less,
TiO 2 : 1% or less,
Al 2 O 3 : 3% or less,
MgO: 3% or less,
CaO: 3% or less,
SrO: 3 or less,
BaO: 3% or less,
Na 2 O: 1% or less,
K 2 O: 1% or less,
The optical glass according to claim 1, further comprising one or more of the following glass components.
請求項1又は2記載の光学ガラスを精密プレス成形して作製したことを特徴とする光学素子。An optical element produced by precision press molding the optical glass according to claim 1 or 2. 前記光学素子がレンズである請求項3記載の光学素子。The optical element according to claim 3, wherein the optical element is a lens.
JP2003025371A 2003-02-03 2003-02-03 Optical glass and optical element produced from it Pending JP2004231501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025371A JP2004231501A (en) 2003-02-03 2003-02-03 Optical glass and optical element produced from it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025371A JP2004231501A (en) 2003-02-03 2003-02-03 Optical glass and optical element produced from it

Publications (1)

Publication Number Publication Date
JP2004231501A true JP2004231501A (en) 2004-08-19

Family

ID=32953671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025371A Pending JP2004231501A (en) 2003-02-03 2003-02-03 Optical glass and optical element produced from it

Country Status (1)

Country Link
JP (1) JP2004231501A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306648A (en) * 2005-04-27 2006-11-09 Nihon Yamamura Glass Co Ltd Optical glass
JP2013116850A (en) * 2007-06-25 2013-06-13 Nippon Electric Glass Co Ltd Optical glass for mold press forming
JP2014529574A (en) * 2011-09-07 2014-11-13 成都光明光▲電▼股▲分▼有限公司 Optical glass and optical element
JP2015030631A (en) * 2013-07-31 2015-02-16 株式会社オハラ Optical glass and optical element
JP2015044724A (en) * 2013-07-31 2015-03-12 株式会社オハラ Optical glass, preform, and optical element
JP2016138039A (en) * 2015-01-21 2016-08-04 株式会社オハラ Optical glass, preform and optical element
JP2016222512A (en) * 2015-06-02 2016-12-28 光ガラス株式会社 Optical glass, optical element prepared with optical glass, and optical device
JP2017171578A (en) * 2017-06-23 2017-09-28 株式会社オハラ Optical glass and optical element
JP2018065747A (en) * 2018-01-18 2018-04-26 Hoya株式会社 Glass, glass material for press molding, optical element blank, and optical element
CN109650716A (en) * 2019-01-22 2019-04-19 成都光明光电股份有限公司 A kind of colouless optical glass and its gas preform, element and instrument
CN110183105A (en) * 2019-06-13 2019-08-30 湖北新华光信息材料有限公司 Optical glass and preparation method thereof and optical element
CN111453988A (en) * 2019-01-22 2020-07-28 成都光明光电股份有限公司 Optical glass and glass prefabricated member, element and instrument thereof
CN111453989A (en) * 2019-01-22 2020-07-28 成都光明光电股份有限公司 Lanthanide optical glass and glass preform, element and instrument thereof
CN112125513A (en) * 2020-09-28 2020-12-25 成都光明光电股份有限公司 Optical glass and optical element
CN112142322A (en) * 2020-09-29 2020-12-29 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument
CN112174517A (en) * 2020-09-29 2021-01-05 成都光明光电股份有限公司 Optical glass and optical element

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006306648A (en) * 2005-04-27 2006-11-09 Nihon Yamamura Glass Co Ltd Optical glass
JP2013116850A (en) * 2007-06-25 2013-06-13 Nippon Electric Glass Co Ltd Optical glass for mold press forming
JP2014529574A (en) * 2011-09-07 2014-11-13 成都光明光▲電▼股▲分▼有限公司 Optical glass and optical element
JP2015030631A (en) * 2013-07-31 2015-02-16 株式会社オハラ Optical glass and optical element
JP2015044724A (en) * 2013-07-31 2015-03-12 株式会社オハラ Optical glass, preform, and optical element
JP2016138039A (en) * 2015-01-21 2016-08-04 株式会社オハラ Optical glass, preform and optical element
JP2016222512A (en) * 2015-06-02 2016-12-28 光ガラス株式会社 Optical glass, optical element prepared with optical glass, and optical device
JP2017171578A (en) * 2017-06-23 2017-09-28 株式会社オハラ Optical glass and optical element
JP2018065747A (en) * 2018-01-18 2018-04-26 Hoya株式会社 Glass, glass material for press molding, optical element blank, and optical element
CN109650716A (en) * 2019-01-22 2019-04-19 成都光明光电股份有限公司 A kind of colouless optical glass and its gas preform, element and instrument
CN111453988A (en) * 2019-01-22 2020-07-28 成都光明光电股份有限公司 Optical glass and glass prefabricated member, element and instrument thereof
CN111453989A (en) * 2019-01-22 2020-07-28 成都光明光电股份有限公司 Lanthanide optical glass and glass preform, element and instrument thereof
CN110183105A (en) * 2019-06-13 2019-08-30 湖北新华光信息材料有限公司 Optical glass and preparation method thereof and optical element
CN110183105B (en) * 2019-06-13 2022-04-05 湖北新华光信息材料有限公司 Optical glass, method for producing same, and optical element
CN112125513A (en) * 2020-09-28 2020-12-25 成都光明光电股份有限公司 Optical glass and optical element
CN112125513B (en) * 2020-09-28 2022-04-15 成都光明光电股份有限公司 Optical glass and optical element
CN112142322A (en) * 2020-09-29 2020-12-29 成都光明光电股份有限公司 Optical glass, glass preform, optical element and optical instrument
CN112174517A (en) * 2020-09-29 2021-01-05 成都光明光电股份有限公司 Optical glass and optical element

Similar Documents

Publication Publication Date Title
JP5358888B2 (en) Optical glass and optical element
JP4759986B2 (en) Optical glass and optical element
JP2005047732A (en) Optical glass and optical element
US20090288450A1 (en) Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the element
US20050049132A1 (en) Optical glass, shapable glass material for press-shaping, optical element and process for producing optical element
JP2009179510A (en) Optical glass, glass gob for press molding, optical device, method for producing the same, and method for producing optical device blank
WO2013031385A1 (en) Optical glass
JP4034589B2 (en) Optical glass
JP2005179142A (en) Optical glass, glass gob for press molding and optical device
JP5109488B2 (en) Optical glass and optical element produced therefrom
JP2003321245A (en) Optical glass for press molding
JP2006111482A (en) Optical glass and optical element
JP2004231501A (en) Optical glass and optical element produced from it
JP4810901B2 (en) Optical glass and optical element
US9034779B2 (en) Optical glass
JP3100726B2 (en) Optical glass for precision press molding
JP4997990B2 (en) Optical glass and optical element
JP2006151758A (en) Optical glass for precision press molding
JP2011219278A (en) Optical glass
JP2008179500A (en) Optical glass and optical device
JP2002211949A (en) Optical glass for press molding, preform material for press molding and optical element using the same
JP2007008761A (en) Optical glass and optical element
JP2007145615A (en) Optical glass and optical element
JP4655502B2 (en) Optical glass and optical element
EP2338846B1 (en) Optical glass and optical element

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050325

A621 Written request for application examination

Effective date: 20050329

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20070823

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080201

A02 Decision of refusal

Effective date: 20080401

Free format text: JAPANESE INTERMEDIATE CODE: A02