JP2004231501A - Optical glass and optical element produced from it - Google Patents
Optical glass and optical element produced from it Download PDFInfo
- Publication number
- JP2004231501A JP2004231501A JP2003025371A JP2003025371A JP2004231501A JP 2004231501 A JP2004231501 A JP 2004231501A JP 2003025371 A JP2003025371 A JP 2003025371A JP 2003025371 A JP2003025371 A JP 2003025371A JP 2004231501 A JP2004231501 A JP 2004231501A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- less
- optical
- content
- range
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005304 optical glass Substances 0.000 title claims abstract description 28
- 230000003287 optical effect Effects 0.000 title claims description 17
- 239000011521 glass Substances 0.000 claims description 38
- 238000000465 moulding Methods 0.000 claims description 28
- 229910021193 La 2 O 3 Inorganic materials 0.000 claims description 10
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 claims description 7
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 6
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 6
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 6
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 5
- 239000006185 dispersion Substances 0.000 abstract description 7
- 229910052688 Gadolinium Inorganic materials 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 14
- 230000000052 comparative effect Effects 0.000 description 7
- 230000009477 glass transition Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000005498 polishing Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004031 devitrification Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Inorganic materials [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000006025 fining agent Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Inorganic materials [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
- C03C3/064—Glass compositions containing silica with less than 40% silica by weight containing boron
- C03C3/068—Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/12—Silica-free oxide glass compositions
- C03C3/14—Silica-free oxide glass compositions containing boron
- C03C3/15—Silica-free oxide glass compositions containing boron containing rare earths
- C03C3/155—Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は光学ガラス及びこれから作製される光学素子に関し、より詳細には高屈折率で低分散で、ガラス転移温度および液相温度が比較的低く、精密プレス成形に適した光学ガラス及びこれから作製される光学素子に関するものである。
【0002】
【従来の技術】
デジタルカメラなどの光学機器において機器の小型・軽量化を図るために非球面レンズを使用することが近年多くなってきた。しかし、従来の切削・研磨によってレンズを非球面形状に加工することは難しく、必然的に生産コストが高くなっていた。そこで、非球面形状など加工困難な形状のガラスの成形を比較的容易にできる技術として、精密プレス成形法(モールド成形法)が注目されている。この成形法によれば、従来は必要であったレンズの研磨および切削工程などが不要となり低コスト化が図れる。
【0003】
ところが、精密プレス成形法でガラスを成形する場合には、プレス金型をガラス転移温度(以下「Tg」と記すことがある)近傍またはそれ以上の温度にする必要がある一方、ガラスのTgが高いほどプレス金型の表面酸化や金属組成の変化が生じ、金型の劣化が激しくなって金型寿命が短くなる。金型劣化を抑制するための方策としては、成形雰囲気を窒素などの不活性雰囲気に制御することが考えられるが、生産コストの上昇を招く。したがって、精密プレス成形法に用いるガラスとしてはTgのできるだけ低いものが望ましい。また、ガラスの成形性の観点からは液相温度(以下「TL」と記すことがある)は低い方が望ましく、加えて液相温度におけるガラスの粘性は高い方が望ましい。
【0004】
このような精密プレス成形法に適した光学ガラスは従来から種々提案されている。例えば特許文献1には、高屈折率・低分散、比較的低Tg、TLを目的とした精密プレス成形用の光学ガラスが提案されている。
【0005】
【特許文献1】
特開2002−249337号公報(特許請求の範囲、
【0005】〜
【0039】)
【0006】
【発明が解決しようとする課題】
しかしながら、本発明者が特許文献1に記載の実施例を追試してみたところ、得られた光学ガラスは高屈折率・低分散ではあったがTLが1040℃以上と未だ満足できる水準ではなかった。
【0007】
本発明はこのような従来の問題に鑑みてなされたものであり、その目的とするところは屈折率(nd)が1.766以上、アッベ数(νd)が49.0以上,ガラス転移温度(Tg)が640℃以下、液相温度(TL)が1030℃以下である光学ガラスを提供することにある。
【0008】
また本発明の目的は、上記の屈折率及びアッベ数を有し、生産性が高く低コスト化が図れる光学素子を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は前記目的を達成すべく鋭意検討を重ねた結果、TLの上昇をもたらす一つの要因がGd2O3であることを突き止めた。そして、Gd2O3の含有量を少なくできないかさらに検討を重ねたところ、Gd2O3以外のガラス成分の種類やその含有量を最適に組み合わせることにより高屈折率・低分散で、比較的低Tg、TLの精密プレス成形に適した光学ガラスが得られることを実験的に見出し本発明をなすに至った。すなわち、本発明の光学ガラスは、wt%で、B2O3:27〜34%、Li2O:0.2〜2%、ZnO:7〜15%、ZrO2:5〜10%、La2O3:35〜53%、Y2O3:8〜15%、Gd2O3:0〜1%(ゼロを含み、1%を含まず)、ただし、La2O3+Y2O3+Gd2O3:45〜54%、Ta2O5:0〜1%(ゼロを含む)、Nb2O5:0〜1%(ゼロを含む)、Bi2O3:0〜1%(ゼロを含む)、WO3:0〜1%(ゼロを含む)、ただし、Ta2O5+Nb2O5+Bi2O3+WO3:0.5〜3%、SiO2:0〜5%(ゼロを含む)のガラス成分を含有することを特徴とする。なお、本明細書において特段の説明のない限り以下の「%」は「wt%」を意味するものとする。
【0010】
ここでガラスの粘性の増大や高屈折率化、光学恒数の調整などの観点から、GeO2:3%以下、TiO2:1%以下、Al2O3:3%以下、MgO:3%以下、CaO:3%以下、SrO:3以下、BaO:3%以下、Na2O:1%以下、K2O:1%以下のガラス成分の1種または2種以上をさらに含有させてもよい。
【0011】
また本発明によれば、前記光学ガラスを精密プレス成形して作製したことを特徴とする光学素子が提供される。このような光学素子としてはレンズが好ましい。
【0012】
【発明の実施の形態】
本発明の光学ガラスの各成分を前記のように限定した理由について以下説明する。まずB2O3はガラスを形成する主成分であり、B2O3の含有量が27%未満であるとガラスが失透しやすくなる。他方、含有量が34%を超えると所期の屈折率が得られない。そこで含有量を27〜34%の範囲と定めた。より好ましい含有量は29〜33%の範囲である。
【0013】
Li2OはガラスのTgを効果的に下げる効果を有し、Li2Oを0.2%以上含有させることによりTgを640℃以下に調整しやすくなる。他方、含有量が2%を超えるとガラスが急激に失透しやすくなる。また粘性が小さくなり成形が困難となる。そこで含有量を0.2〜2%の範囲と定めた。より好ましい含有量は0.2〜1%の範囲である。
【0014】
ZnOはガラスのTgを効果的に下げる効果を有し、その含有量が7%未満であるとその効果が得られない。他方、含有量が15%を超えると所期の屈折率とアッベ数を得にくくなる。そこで含有量を7〜15%の範囲と定めた。より好ましい含有量は7.5〜12%の範囲である。
【0015】
ZrO2はガラスを安定させ液相温度を下げる効果を有するが、その含有量が5%未満ではその効果が十分には得られない。他方、含有量が10%を超えるとガラスが急激に失透しやすくなる。そこで含有量を5〜10%の範囲と定めた。より好ましい含有量は6〜7%の範囲である。
【0016】
La2O3は屈折率を高める効果を有し、その含有量が35%未満であるとその効果が得られない。他方、含有量が53%を超えるとガラスが失透しやすくなる。そこで含有量を35〜53%の範囲と定めた。より好ましい含有量は47〜52%の範囲である。
【0017】
Y2O3は、La2O3より劣るものの屈折率を高める効果を有する。またガラスを安定させる効果も有する。含有量が8%未満であるとこれらの効果が十分には得られない。他方、含有量が15%を超えるとガラスが失透しやすくなる。そこで含有量を8〜15%の範囲と定めた。より好ましい範囲は9〜10%の範囲である。
【0018】
Gd2O3も屈折率を高める効果を有するもののLa2O3やY2O3に比べてその能力は劣り、またGd2O3は添加すると液相温度の上昇を招く。そこでGd2O3の含有量を1%未満と定めた。より好ましくは実質的に含有しないようにすることである。
【0019】
またLa2O3とY2O3とGd2O3は総量が45%未満であると、所期の光学恒数を得ることが困難となる。他方、総量が54%を超えるとガラスが失透しやすくなる。そこで総量を45〜54%の範囲と定めた。より好ましい総量は47〜52%の範囲である。
【0020】
Ta2O5、Nb2O5、Bi2O3、WO3は、いずれもガラスの屈折率を高める効果を有し、これらの総量が0.5%未満であるとその効果が十分には得られない。他方、総量が3%を超えると所期のアッベ数を得にくくなる。そこで総量を0.5〜3%の範囲と定めた。より好ましい総量は0.5〜2.5%の範囲である。また、これらのガラス成分のうちTa2O5、Nb2O5、WO3を1%を超えて含有させても前記効果は向上は得られない。またBi2O3を1%を超えて含有させるとガラスが着色しやすくなる。そこで、これらの各ガラス成分の含有量を1%以下と定めた。
【0021】
SiO2はガラスの粘性を高くする効果を有するが、その含有量が5%を超えるとガラスが失透しやすくなる。そこで、SiO2の含有量を5%以下と定めた。より好ましい含有量は1〜4%の範囲である。
【0022】
また、本発明の光学ガラスでは、GeO2:3%以下、TiO2:1%以下、Al2O3:3%以下、MgO:3%以下、CaO:3%以下、SrO:3以下、BaO:3%以下、Na2O:1%以下、K2O:1%以下のガラス成分の1種または2種以上をさらに含有させてもよい。
【0023】
GeO2、TiO2、Al2O3、MgO、CaO、SrO、BaO、Na2O、K2Oを含有させることにより光学恒数を所期の範囲に調整できる。しかし、GeO2及びTiO2では、その含有量がそれぞれ3%及び1%を超えるとアッベ数が低下し所期の値が得られないおそれがある。したがって、GeO2及びTiO2の含有量はそれぞれ3%以下及び1%以下が望ましい。他方、Al2O3、MgO、CaO、SrO、BaOではその含有量がそれぞれ3%を超えると、またNa2O、K2Oではその含有量が1%を超えると、ガラスの屈折率が低下するおそれがある。したがって、Al2O3、MgO、CaO、SrO、BaOではその含有量を3%以下、またNa2O、K2Oではその含有量を1%以下とするのが望ましい。
【0024】
また清澄剤として、As2O3、Sb2O3、SnO2の各ガラス成分の1種または2種以上を前記ガラス成分の総量100重量部に対して0.5重量部以下の範囲で含有させてもよい。含有量を0.5重量部以下としたのは、0.5重量部を含有させることで充分な清澄作用が得られるからである。
【0025】
その他必要により、従来公知のガラス成分及び添加剤を本発明の効果を害しない範囲で添加してももちろん構わない。
【0026】
本発明の光学素子は前記光学ガラスを精密プレス成形することによって作製される。この精密プレス成形法としては、溶融したガラスをノズルから、所定温度に加熱された金型へ滴下しプレス成形する精密ダイレクトプレス成形法、及びプリフォーム材を金型に載置してガラス軟化点以上に加熱してプレス成形する再加熱成形法が挙げられる。このような方法によれば研磨、研削工程が不要となり、生産性が向上する。これらの中でも精密ダイレクトプレス成形法が本発明の光学素子の製造方法としてより好ましい。
【0027】
成形条件としては、ガラス成分や成形品の形状などにより異なるが一般に、金型温度は600〜700℃の範囲が好ましく、中でもガラス転移温度に近い高温域が好ましい。プレス時間は数秒〜数十秒の範囲が好ましく、長時間プレスするほど高精度の成形ができる。またプレス圧力は200kgf/cm2〜600kgf/cm2の範囲が好ましく、高圧力でプレスするほど高精度の成形ができる。成形時のガラスの粘度としては102〜1012poiseの範囲が好ましい。
【0028】
本発明の光学素子は、例えばデジタルカメラのレンズやレーザービームプリンタなどのコリメータレンズなどとして用いることができる。
【0029】
【実施例】
以下に本発明を実施例により更に具体的に説明する。なお、本発明はこれら実施例に何ら限定されるものではない。
【0030】
実施例1〜10、比較例1〜5
酸化物原料、炭酸塩など一般的なガラス原料を用いて、表1に示す目標組成となるように、ガラスの原料を調合し、粉末で十分に混合して調合原料とした。これを1,150〜1,350℃に加熱された電気炉中の白金坩堝に投入し、溶融清澄後、撹拌均質化して予め加熱された鉄製又はカーボン製の鋳型に鋳込み、徐冷して各サンプルを製造した。これら各サンプルについてのd線に対する屈折率(nd)およびアッベ数(νd)、ガラス転移温度(Tg)、液相温度(TL)を測定した。なお、これらの測定は日本光学硝子工業会規格(JOGIS)の試験方法に準じて行った。Tgの測定は熱機械的分析装置「TMA/SS6000」(Seiko Instruments Inc.社製)を用いて毎分5℃の昇温条件で行った。TLは500〜1150℃の温度勾配のついた失透試験炉に2時間入れた後、取り出して失透の有無を顕微鏡で観察し特定した。測定結果を表1及び表2に合わせて示す。
【0031】
【表1】
【0032】
【表2】
【0033】
表1から明らかなように、実施例1〜10の光学ガラスは高屈折率(1.766〜1.770)、低分散(アッベ数:49.4〜49.8)であった。またガラス転移温度(Tg)が639℃以下、液相温度(TL)が1030℃以下と精密プレス成形に適したものであった。
【0034】
これに対し、ZnOとY2O3の含有量が少ない比較例1の光学ガラスは、Tg及びTLが644℃及び1100℃と高く精密プレス成形に適さないものであった。また、Li2Oを3.0%と多く含有した比較例2の光学ガラスは溶融中に失透した。ZnO及びTa2O5を20.0%及び5.0%と多く含有した比較例3の光学ガラスは屈折率が所期の値に達しなかった。比較例3と同様にZnOが20.0%と多く、さらにY2O3を含有せずLa2O3とY2O3の総量の少ない比較例4の光学ガラスは、屈折率が所期の値に達せずまたTLも高かった。そして、Gd2O5を36.4%と多量に含有させた比較例5の光学ガラスは、TLが1080℃と高く精密プレス成形に適さないものであった。
【0035】
【発明の効果】
本発明の光学ガラスでは、B2O3、Li2O、ZnO、ZrO2、La2O3、Y2O3、Gd2O、Ta2O5、Nb2O5、Bi2O3、WO3、SiO2の各ガラス成分を特定量含有させることにより、高屈折率・低分散(nd:1.766以上,νd:49.0以上)が達成でき、しかも低Tg及び低TL(Tg:640℃以下,TL:1030℃以下)とすることができ優れた精密プレス成形性が得られる。
【0036】
また本発明の光学素子は、前記光学ガラスを精密プレス成形することにより作製するので、生産効率が高く低コスト化が図れる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical glass and an optical element produced therefrom, and more particularly to an optical glass suitable for precision press molding and having a high refractive index, low dispersion, a relatively low glass transition temperature and a liquidus temperature, and an optical glass produced therefrom. Optical element.
[0002]
[Prior art]
In recent years, an aspheric lens has been frequently used in optical devices such as digital cameras in order to reduce the size and weight of the devices. However, it is difficult to process the lens into an aspherical shape by conventional cutting and polishing, and the production cost is inevitably increased. Therefore, a precision press molding method (mold molding method) has attracted attention as a technique that can relatively easily form glass having a difficult-to-process shape such as an aspherical shape. According to this molding method, the steps of polishing and cutting the lens, which were conventionally required, are not required, and the cost can be reduced.
[0003]
However, when molding glass by the precision press molding method, it is necessary to set the temperature of the press die to a temperature close to or higher than the glass transition temperature (hereinafter, sometimes referred to as “Tg”), while the Tg of the glass is The higher the temperature, the more the surface oxidation of the press die and the change in the metal composition occur, and the more severe the deterioration of the die, the shorter the life of the die. As a measure for suppressing mold deterioration, it is conceivable to control the molding atmosphere to an inert atmosphere such as nitrogen, but this leads to an increase in production cost. Therefore, it is desirable that the glass used in the precision press molding method has a Tg as low as possible. Further, from the viewpoint of the moldability of the glass, it is desirable that the liquidus temperature (hereinafter sometimes referred to as “ TL ”) be low, and that the viscosity of the glass at the liquidus temperature be high.
[0004]
Various optical glasses suitable for such a precision press molding method have been conventionally proposed. For example, Patent Document 1 proposes an optical glass for precision press molding for the purpose of high refractive index, low dispersion, relatively low Tg and TL .
[0005]
[Patent Document 1]
JP-A-2002-249337 (claims,
[0005]
[0039]
[0006]
[Problems to be solved by the invention]
However, when the present inventor additionally tested the example described in Patent Document 1, the obtained optical glass had a high refractive index and a low dispersion, but had a TL of 1040 ° C. or higher, which was not yet a satisfactory level. Was.
[0007]
The present invention has been made in view of such conventional problems, the refractive index and it is an object of (n d) is 1.766 or more and an Abbe's number ([nu d) is 49.0 or more, the glass transition An object of the present invention is to provide an optical glass having a temperature (T g ) of 640 ° C. or less and a liquidus temperature (T L ) of 1030 ° C. or less.
[0008]
Another object of the present invention is to provide an optical element having the above-mentioned refractive index and Abbe number, which can achieve high productivity and low cost.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor has found that one factor that causes an increase in TL is Gd 2 O 3 . Further studies were conducted to determine whether the content of Gd 2 O 3 could be reduced. As a result, a glass material other than Gd 2 O 3 was optimally combined with the type and content thereof to achieve a high refractive index and a low dispersion, and a relatively high refractive index. The present inventors have experimentally found that an optical glass suitable for precision press molding with low Tg and TL can be obtained, and have accomplished the present invention. That is, the optical glass of the present invention, in wt%, B 2 O 3: 27~34%, Li 2 O: 0.2~2%, ZnO: 7~15%, ZrO 2: 5~10%, La 2 O 3 : 35 to 53%, Y 2 O 3 : 8 to 15%, Gd 2 O 3 : 0 to 1% (including zero and not including 1%), provided that La 2 O 3 + Y 2 O 3 + Gd 2 O 3: 45~54% , Ta 2 O 5: ( including zero) 0~1%, Nb 2 O 5 : 0~1% ( including zero), Bi 2 O 3: 0~1 % ( including zero), WO 3: 0~1% (including zero), however, Ta 2 O 5 + Nb 2 O 5 + Bi 2 O 3 + WO 3: 0.5~3%, SiO 2: 0~5% ( (Including zero). In the present specification, unless otherwise specified, the following “%” means “wt%”.
[0010]
Here, from the viewpoint of increasing the viscosity of the glass, increasing the refractive index, adjusting the optical constant, and the like, GeO 2 : 3% or less, TiO 2 : 1% or less, Al 2 O 3 : 3% or less, MgO: 3% hereinafter, CaO: 3% or less, SrO: 3 or less, BaO: 3% or less, Na 2 O: 1% or less, K 2 O: even further contain one or more of 1% or less of the glass component Good.
[0011]
Further, according to the present invention, there is provided an optical element characterized in that the optical glass is manufactured by precision press molding. As such an optical element, a lens is preferable.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The reason why each component of the optical glass of the present invention is limited as described above will be described below. First, B 2 O 3 is a main component forming glass, and if the content of B 2 O 3 is less than 27%, the glass is apt to be devitrified. On the other hand, if the content exceeds 34%, the desired refractive index cannot be obtained. Therefore, the content was determined to be in the range of 27 to 34%. A more preferred content is in the range of 29-33%.
[0013]
Li 2 O has an effect of effectively lowering the Tg of the glass, and by including Li 2 O in an amount of 0.2% or more, it becomes easy to adjust the Tg to 640 ° C. or less. On the other hand, if the content exceeds 2%, the glass tends to rapidly devitrify. In addition, the viscosity becomes small and molding becomes difficult. Therefore, the content is set in the range of 0.2 to 2%. A more preferred content is in the range of 0.2-1%.
[0014]
ZnO has the effect of effectively lowering the Tg of glass, and if its content is less than 7%, the effect cannot be obtained. On the other hand, if the content exceeds 15%, it becomes difficult to obtain the desired refractive index and Abbe number. Therefore, the content is set in the range of 7 to 15%. A more preferred content is in the range of 7.5 to 12%.
[0015]
ZrO 2 has the effect of stabilizing the glass and lowering the liquidus temperature, but if its content is less than 5%, the effect cannot be obtained sufficiently. On the other hand, if the content exceeds 10%, the glass tends to rapidly devitrify. Therefore, the content is set in the range of 5 to 10%. A more preferred content is in the range of 6-7%.
[0016]
La 2 O 3 has an effect of increasing the refractive index, and if the content is less than 35%, the effect cannot be obtained. On the other hand, if the content exceeds 53%, the glass tends to be devitrified. Therefore, the content is set in the range of 35 to 53%. A more preferred content is in the range of 47-52%.
[0017]
Y 2 O 3 is inferior to La 2 O 3 but has an effect of increasing the refractive index. It also has the effect of stabilizing the glass. If the content is less than 8%, these effects cannot be sufficiently obtained. On the other hand, if the content exceeds 15%, the glass tends to be devitrified. Therefore, the content is set in the range of 8 to 15%. A more preferred range is from 9 to 10%.
[0018]
Although Gd 2 O 3 also has the effect of increasing the refractive index, its performance is inferior to La 2 O 3 and Y 2 O 3 , and the addition of Gd 2 O 3 causes an increase in the liquidus temperature. Therefore, the content of Gd 2 O 3 was determined to be less than 1%. More preferably, it is substantially not contained.
[0019]
If the total amount of La 2 O 3 , Y 2 O 3 and Gd 2 O 3 is less than 45%, it becomes difficult to obtain the desired optical constant. On the other hand, if the total amount exceeds 54%, the glass tends to be devitrified. Therefore, the total amount is set in the range of 45 to 54%. A more preferred total is in the range of 47-52%.
[0020]
Ta 2 O 5 , Nb 2 O 5 , Bi 2 O 3 , and WO 3 all have the effect of increasing the refractive index of glass. When the total amount is less than 0.5%, the effect is not sufficiently achieved. I can't get it. On the other hand, if the total amount exceeds 3%, it becomes difficult to obtain the desired Abbe number. Therefore, the total amount is set in the range of 0.5 to 3%. A more preferred total is in the range of 0.5-2.5%. Further, even if Ta 2 O 5 , Nb 2 O 5 , or WO 3 is contained in more than 1% of these glass components, the above effect cannot be improved. When Bi 2 O 3 is contained in an amount exceeding 1%, the glass is easily colored. Therefore, the content of each of these glass components was determined to be 1% or less.
[0021]
SiO 2 has the effect of increasing the viscosity of glass, but if its content exceeds 5%, the glass tends to devitrify. Therefore, the content of SiO 2 is determined to be 5% or less. A more preferred content is in the range of 1-4%.
[0022]
In the optical glass of the present invention, GeO 2 : 3% or less, TiO 2 : 1% or less, Al 2 O 3 : 3% or less, MgO: 3% or less, CaO: 3% or less, SrO: 3 or less, BaO : 1% or less, Na 2 O: 1% or less, K 2 O: 1% or less.
[0023]
By including GeO 2 , TiO 2 , Al 2 O 3 , MgO, CaO, SrO, BaO, Na 2 O, and K 2 O, the optical constant can be adjusted to a desired range. However, if the content of GeO 2 and TiO 2 exceeds 3% and 1%, respectively, the Abbe number decreases, and the desired values may not be obtained. Therefore, the contents of GeO 2 and TiO 2 are desirably 3% or less and 1% or less, respectively. On the other hand, when the content of each of Al 2 O 3 , MgO, CaO, SrO, and BaO exceeds 3%, and when the content of Na 2 O, K 2 O exceeds 1%, the refractive index of the glass increases. It may decrease. Therefore, the content of Al 2 O 3 , MgO, CaO, SrO, and BaO is desirably 3% or less, and the content of Na 2 O, K 2 O is desirably 1% or less.
[0024]
Further, as a fining agent, one or more of each glass component of As 2 O 3 , Sb 2 O 3 , and SnO 2 is contained in a range of 0.5 parts by weight or less based on 100 parts by weight of the total amount of the glass components. You may let it. The content is set to 0.5 part by weight or less because a sufficient clarifying action can be obtained by containing 0.5 part by weight.
[0025]
If necessary, a conventionally known glass component and additive may be added as long as the effects of the present invention are not impaired.
[0026]
The optical element of the present invention is produced by precision press molding the optical glass. As the precision press molding method, there is a precision direct press molding method in which molten glass is dropped from a nozzle into a mold heated to a predetermined temperature and press molded, and a glass softening point in which a preform material is placed on a mold and placed on a mold. The reheat molding method of heating and press molding is mentioned above. According to such a method, polishing and grinding steps are not required, and productivity is improved. Among these, the precision direct press molding method is more preferable as the method for producing the optical element of the present invention.
[0027]
The molding conditions vary depending on the glass component, the shape of the molded product, and the like. Generally, the mold temperature is preferably in the range of 600 to 700 ° C., and particularly preferably a high temperature range close to the glass transition temperature. The pressing time is preferably in the range of several seconds to several tens of seconds, and the higher the pressing time, the higher the precision of molding. The pressing pressure is preferably in the range of 200 kgf / cm 2 to 600 kgf / cm 2 , and the higher the pressure, the higher the precision of molding. The viscosity of the glass at the time of molding is preferably in the range of 10 2 to 10 12 poise.
[0028]
The optical element of the present invention can be used, for example, as a lens of a digital camera or a collimator lens of a laser beam printer.
[0029]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.
[0030]
Examples 1 to 10, Comparative Examples 1 to 5
Glass raw materials were prepared using a general glass raw material such as an oxide raw material and a carbonate so as to have a target composition shown in Table 1, and were sufficiently mixed with powder to obtain a prepared raw material. This is put into a platinum crucible in an electric furnace heated to 1,150 to 1,350 ° C., melted and clarified, stirred and homogenized, cast into a pre-heated iron or carbon mold, gradually cooled, and cooled. Samples were produced. Refractive index at the d-line of the respective samples (n d) and Abbe number ([nu d), glass transition temperature (Tg), was measured liquidus temperature (T L). In addition, these measurements were performed according to the test method of the Japan Optical Glass Industry Association standard (JOGIS). The Tg was measured using a thermomechanical analyzer “TMA / SS6000” (manufactured by Seiko Instruments Inc.) at a temperature rising rate of 5 ° C./min. The TL was placed in a devitrification test furnace having a temperature gradient of 500 to 1150 ° C. for 2 hours, taken out, and observed by a microscope for the presence or absence of devitrification. The measurement results are shown in Tables 1 and 2.
[0031]
[Table 1]
[0032]
[Table 2]
[0033]
As is clear from Table 1, the optical glasses of Examples 1 to 10 had a high refractive index (1.766 to 1.770) and a low dispersion (Abbe number: 49.4 to 49.8). Further, the glass transition temperature (Tg) was 639 ° C. or less, and the liquidus temperature (T L ) was 1030 ° C. or less, which was suitable for precision press molding.
[0034]
On the other hand, the optical glass of Comparative Example 1 having a small content of ZnO and Y 2 O 3 had high Tg and TL of 644 ° C. and 1100 ° C., and was not suitable for precision press molding. Further, the optical glass of Comparative Example 2 containing a large amount of Li 2 O as 3.0% was devitrified during melting. The refractive index of the optical glass of Comparative Example 3 containing ZnO and Ta 2 O 5 as large as 20.0% and 5.0% did not reach the expected value. As in Comparative Example 3, ZnO was as high as 20.0%, and the optical glass of Comparative Example 4 containing no Y 2 O 3 and having a small total amount of La 2 O 3 and Y 2 O 3 had a desired refractive index. And the TL was also high. The optical glass of Comparative Example 5 containing a large amount of Gd 2 O 5 at 36.4% had a TL of 1080 ° C. and was not suitable for precision press molding.
[0035]
【The invention's effect】
In the optical glass of the present invention, B 2 O 3 , Li 2 O, ZnO, ZrO 2 , La 2 O 3 , Y 2 O 3 , Gd 2 O, Ta 2 O 5 , Nb 2 O 5 , Bi 2 O 3 , WO 3, each glass component SiO 2 by incorporating a specific amount, high refractive index and low dispersion (n d: 1.766 or more, [nu d: 49.0 or higher) can be achieved, yet low Tg and low T L (Tg: 640 ° C. or less, T L : 1030 ° C. or less), and excellent precision press moldability can be obtained.
[0036]
Further, since the optical element of the present invention is manufactured by precision press-molding the optical glass, the production efficiency is high and the cost can be reduced.
Claims (4)
B2O3:27〜34%、
Li2O:0.2〜2%、
ZnO:7〜15%、
ZrO2:5〜10%、
La2O3:35〜53%、
Y2O3:8〜15%、
Gd2O3:0〜1%(ゼロを含み、1%を含まず)
ただし、La2O3+Y2O3+Gd2O3:45〜54%、
Ta2O5:0〜1%(ゼロを含む)、
Nb2O5:0〜1%(ゼロを含む)、
Bi2O3:0〜1%(ゼロを含む)、
WO3:0〜1%(ゼロを含む)、
ただし、Ta2O5+Nb2O5+Bi2O3+WO3:0.5〜3%、
SiO2:0〜5%(ゼロを含む)、
のガラス成分を含有することを特徴とする光学ガラス。In wt%,
B 2 O 3: 27~34%,
Li 2 O: 0.2~2%,
ZnO: 7 to 15%,
ZrO 2: 5~10%,
La 2 O 3 : 35-53%,
Y 2 O 3: 8~15%,
Gd 2 O 3: 0~1% (including zero, not including 1%)
However, La 2 O 3 + Y 2 O 3 + Gd 2 O 3 : 45 to 54%,
Ta 2 O 5: 0~1% (including zero),
Nb 2 O 5: 0~1% (including zero),
Bi 2 O 3: 0~1% (including zero),
WO 3: 0~1% (including zero),
However, Ta 2 O 5 + Nb 2 O 5 + Bi 2 O 3 + WO 3: 0.5~3%,
SiO 2 : 0 to 5% (including zero),
An optical glass characterized by containing the following glass component.
GeO2:3%以下、
TiO2:1%以下、
Al2O3:3%以下、
MgO:3%以下、
CaO:3%以下、
SrO:3以下、
BaO:3%以下、
Na2O:1%以下、
K2O:1%以下、
のガラス成分の1種または2種以上をさらに含有する請求項1記載の光学ガラス。In wt%,
GeO 2 : 3% or less,
TiO 2 : 1% or less,
Al 2 O 3 : 3% or less,
MgO: 3% or less,
CaO: 3% or less,
SrO: 3 or less,
BaO: 3% or less,
Na 2 O: 1% or less,
K 2 O: 1% or less,
The optical glass according to claim 1, further comprising one or more of the following glass components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003025371A JP2004231501A (en) | 2003-02-03 | 2003-02-03 | Optical glass and optical element produced from it |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003025371A JP2004231501A (en) | 2003-02-03 | 2003-02-03 | Optical glass and optical element produced from it |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004231501A true JP2004231501A (en) | 2004-08-19 |
Family
ID=32953671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003025371A Pending JP2004231501A (en) | 2003-02-03 | 2003-02-03 | Optical glass and optical element produced from it |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004231501A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306648A (en) * | 2005-04-27 | 2006-11-09 | Nihon Yamamura Glass Co Ltd | Optical glass |
JP2013116850A (en) * | 2007-06-25 | 2013-06-13 | Nippon Electric Glass Co Ltd | Optical glass for mold press forming |
JP2014529574A (en) * | 2011-09-07 | 2014-11-13 | 成都光明光▲電▼股▲分▼有限公司 | Optical glass and optical element |
JP2015030631A (en) * | 2013-07-31 | 2015-02-16 | 株式会社オハラ | Optical glass and optical element |
JP2015044724A (en) * | 2013-07-31 | 2015-03-12 | 株式会社オハラ | Optical glass, preform, and optical element |
JP2016138039A (en) * | 2015-01-21 | 2016-08-04 | 株式会社オハラ | Optical glass, preform and optical element |
JP2016222512A (en) * | 2015-06-02 | 2016-12-28 | 光ガラス株式会社 | Optical glass, optical element prepared with optical glass, and optical device |
JP2017171578A (en) * | 2017-06-23 | 2017-09-28 | 株式会社オハラ | Optical glass and optical element |
JP2018065747A (en) * | 2018-01-18 | 2018-04-26 | Hoya株式会社 | Glass, glass material for press molding, optical element blank, and optical element |
CN109650716A (en) * | 2019-01-22 | 2019-04-19 | 成都光明光电股份有限公司 | A kind of colouless optical glass and its gas preform, element and instrument |
CN110183105A (en) * | 2019-06-13 | 2019-08-30 | 湖北新华光信息材料有限公司 | Optical glass and preparation method thereof and optical element |
CN111453988A (en) * | 2019-01-22 | 2020-07-28 | 成都光明光电股份有限公司 | Optical glass and glass prefabricated member, element and instrument thereof |
CN111453989A (en) * | 2019-01-22 | 2020-07-28 | 成都光明光电股份有限公司 | Lanthanide optical glass and glass preform, element and instrument thereof |
CN112125513A (en) * | 2020-09-28 | 2020-12-25 | 成都光明光电股份有限公司 | Optical glass and optical element |
CN112142322A (en) * | 2020-09-29 | 2020-12-29 | 成都光明光电股份有限公司 | Optical glass, glass preform, optical element and optical instrument |
CN112174517A (en) * | 2020-09-29 | 2021-01-05 | 成都光明光电股份有限公司 | Optical glass and optical element |
-
2003
- 2003-02-03 JP JP2003025371A patent/JP2004231501A/en active Pending
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306648A (en) * | 2005-04-27 | 2006-11-09 | Nihon Yamamura Glass Co Ltd | Optical glass |
JP2013116850A (en) * | 2007-06-25 | 2013-06-13 | Nippon Electric Glass Co Ltd | Optical glass for mold press forming |
JP2014529574A (en) * | 2011-09-07 | 2014-11-13 | 成都光明光▲電▼股▲分▼有限公司 | Optical glass and optical element |
JP2015030631A (en) * | 2013-07-31 | 2015-02-16 | 株式会社オハラ | Optical glass and optical element |
JP2015044724A (en) * | 2013-07-31 | 2015-03-12 | 株式会社オハラ | Optical glass, preform, and optical element |
JP2016138039A (en) * | 2015-01-21 | 2016-08-04 | 株式会社オハラ | Optical glass, preform and optical element |
JP2016222512A (en) * | 2015-06-02 | 2016-12-28 | 光ガラス株式会社 | Optical glass, optical element prepared with optical glass, and optical device |
JP2017171578A (en) * | 2017-06-23 | 2017-09-28 | 株式会社オハラ | Optical glass and optical element |
JP2018065747A (en) * | 2018-01-18 | 2018-04-26 | Hoya株式会社 | Glass, glass material for press molding, optical element blank, and optical element |
CN109650716A (en) * | 2019-01-22 | 2019-04-19 | 成都光明光电股份有限公司 | A kind of colouless optical glass and its gas preform, element and instrument |
CN111453988A (en) * | 2019-01-22 | 2020-07-28 | 成都光明光电股份有限公司 | Optical glass and glass prefabricated member, element and instrument thereof |
CN111453989A (en) * | 2019-01-22 | 2020-07-28 | 成都光明光电股份有限公司 | Lanthanide optical glass and glass preform, element and instrument thereof |
CN110183105A (en) * | 2019-06-13 | 2019-08-30 | 湖北新华光信息材料有限公司 | Optical glass and preparation method thereof and optical element |
CN110183105B (en) * | 2019-06-13 | 2022-04-05 | 湖北新华光信息材料有限公司 | Optical glass, method for producing same, and optical element |
CN112125513A (en) * | 2020-09-28 | 2020-12-25 | 成都光明光电股份有限公司 | Optical glass and optical element |
CN112125513B (en) * | 2020-09-28 | 2022-04-15 | 成都光明光电股份有限公司 | Optical glass and optical element |
CN112142322A (en) * | 2020-09-29 | 2020-12-29 | 成都光明光电股份有限公司 | Optical glass, glass preform, optical element and optical instrument |
CN112174517A (en) * | 2020-09-29 | 2021-01-05 | 成都光明光电股份有限公司 | Optical glass and optical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5358888B2 (en) | Optical glass and optical element | |
JP4759986B2 (en) | Optical glass and optical element | |
JP2005047732A (en) | Optical glass and optical element | |
US20090288450A1 (en) | Optical glass, precision press-molding preform, process for producing the preform, optical element and process for producing the element | |
US20050049132A1 (en) | Optical glass, shapable glass material for press-shaping, optical element and process for producing optical element | |
JP2009179510A (en) | Optical glass, glass gob for press molding, optical device, method for producing the same, and method for producing optical device blank | |
WO2013031385A1 (en) | Optical glass | |
JP4034589B2 (en) | Optical glass | |
JP2005179142A (en) | Optical glass, glass gob for press molding and optical device | |
JP5109488B2 (en) | Optical glass and optical element produced therefrom | |
JP2003321245A (en) | Optical glass for press molding | |
JP2006111482A (en) | Optical glass and optical element | |
JP2004231501A (en) | Optical glass and optical element produced from it | |
JP4810901B2 (en) | Optical glass and optical element | |
US9034779B2 (en) | Optical glass | |
JP3100726B2 (en) | Optical glass for precision press molding | |
JP4997990B2 (en) | Optical glass and optical element | |
JP2006151758A (en) | Optical glass for precision press molding | |
JP2011219278A (en) | Optical glass | |
JP2008179500A (en) | Optical glass and optical device | |
JP2002211949A (en) | Optical glass for press molding, preform material for press molding and optical element using the same | |
JP2007008761A (en) | Optical glass and optical element | |
JP2007145615A (en) | Optical glass and optical element | |
JP4655502B2 (en) | Optical glass and optical element | |
EP2338846B1 (en) | Optical glass and optical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20050325 |
|
A621 | Written request for application examination |
Effective date: 20050329 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Effective date: 20070823 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071204 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20071206 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080201 |
|
A02 | Decision of refusal |
Effective date: 20080401 Free format text: JAPANESE INTERMEDIATE CODE: A02 |