[go: up one dir, main page]

JP4794972B2 - Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including the same - Google Patents

Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including the same Download PDF

Info

Publication number
JP4794972B2
JP4794972B2 JP2005297069A JP2005297069A JP4794972B2 JP 4794972 B2 JP4794972 B2 JP 4794972B2 JP 2005297069 A JP2005297069 A JP 2005297069A JP 2005297069 A JP2005297069 A JP 2005297069A JP 4794972 B2 JP4794972 B2 JP 4794972B2
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
alloy material
phase
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005297069A
Other languages
Japanese (ja)
Other versions
JP2006164952A (en
Inventor
俊忠 佐藤
正樹 長谷川
輝明 山本
靖彦 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2005297069A priority Critical patent/JP4794972B2/en
Publication of JP2006164952A publication Critical patent/JP2006164952A/en
Application granted granted Critical
Publication of JP4794972B2 publication Critical patent/JP4794972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、高容量かつ長寿命である非水電解質二次電池に関し、詳しくは非水電解質二次電池用負極の改良に関する。   The present invention relates to a non-aqueous electrolyte secondary battery having a high capacity and a long life, and more particularly to improvement of a negative electrode for a non-aqueous electrolyte secondary battery.

非水電解質二次電池の負極として、高電圧で高エネルギー密度を実現可能な金属リチウムを用いる研究開発が多く行われてきた。そして現在、リチウムを可逆的に吸蔵および放出し、サイクル寿命と安全性に優れた黒鉛材料を負極に用いたリチウムイオン電池が実用化されている。   Many researches and developments have been made using metallic lithium capable of realizing a high energy density at a high voltage as a negative electrode of a nonaqueous electrolyte secondary battery. Currently, lithium ion batteries that use a graphite material that reversibly occludes and releases lithium and has excellent cycle life and safety as a negative electrode have been put into practical use.

しかし、黒鉛材料を負極に用いた電池において、達成されている黒鉛の実用容量は約350mAh/gであり、黒鉛材料の理論容量(372mAh/g)にかなり接近している。そのため、負極に黒鉛材料を用いる限り、将来の飛躍的な容量向上は望めない。一方、携帯機器の高機能化に伴い、そのエネルギー源となる非水電解質二次電池に要求される容量は増大する傾向にある。よって、さらなる高容量化を実現するためには、黒鉛以上の容量を有する負極材料が必要となる。   However, in a battery using a graphite material as a negative electrode, the achieved practical capacity of graphite is about 350 mAh / g, which is quite close to the theoretical capacity of graphite material (372 mAh / g). Therefore, as long as a graphite material is used for the negative electrode, future dramatic capacity improvement cannot be expected. On the other hand, the capacity required for a non-aqueous electrolyte secondary battery serving as an energy source tends to increase as the functionality of portable devices increases. Therefore, in order to realize a further increase in capacity, a negative electrode material having a capacity higher than that of graphite is required.

高容量を与える材料として、現在、ケイ素やスズを含む合金材料(合金形成材料)が注目されている。ケイ素、スズ等の金属元素は、リチウムイオンを電気化学的に吸蔵および放出可能であり、黒鉛材料に比べて非常に大きな容量の充放電が可能である。例えばケイ素であれば、その理論放電容量は4199mAh/gであり、黒鉛の11倍の高容量を有することが知られている。   At present, an alloy material (alloy forming material) containing silicon or tin is attracting attention as a material that provides high capacity. Metal elements such as silicon and tin can occlude and release lithium ions electrochemically, and can be charged and discharged with a much larger capacity than graphite materials. For example, silicon is known to have a theoretical discharge capacity of 4199 mAh / g, which is 11 times higher than that of graphite.

一方、合金材料は、リチウムを吸蔵する際に、リチウム−ケイ素、リチウム−スズといったリチウム合金を形成する。リチウム合金の形成は、合金の結晶構造の変化に基づく非常に大きな膨張を伴う。例えばケイ素の体積は、最大限までリチウムを充電することにより、理論上4.1倍に膨張する。そのため活物質、すなわち合金材料が負極の集電体から剥がれ落ち、電気的な導通が失われ、電池特性、特に高率放電特性や充放電サイクル特性が低下する。黒鉛の場合、リチウムが黒鉛層間に挿入されるインターカレーション反応を利用するため、黒鉛の体積は1.1倍しか膨張しない。   On the other hand, the alloy material forms lithium alloys such as lithium-silicon and lithium-tin when occludes lithium. The formation of a lithium alloy involves a very large expansion based on changes in the crystal structure of the alloy. For example, the volume of silicon expands theoretically by a factor of 4.1 by charging lithium to the maximum. Therefore, the active material, that is, the alloy material is peeled off from the current collector of the negative electrode, the electric conduction is lost, and battery characteristics, particularly high rate discharge characteristics and charge / discharge cycle characteristics are deteriorated. In the case of graphite, since the intercalation reaction in which lithium is inserted between graphite layers is used, the volume of graphite expands only 1.1 times.

上記のような膨張を緩和し、かつ高容量を得る観点から、黒鉛と合金材料とを組み合わせて用いる検討が多く試みられている。しかし、単に黒鉛と合金材料とを混合した場合、合金材料が極板内で不均一な方向に膨張するため、周りの黒鉛が応力を受けて移動し、剥離に至る。その結果、合金材料を単独で用いた負極と同様に電子伝導性が低下し、電池の高率放電特性や充放電サイクル特性が低下する。   Many attempts have been made to use a combination of graphite and an alloy material from the viewpoint of alleviating the above expansion and obtaining a high capacity. However, when graphite and an alloy material are simply mixed, the alloy material expands in a non-uniform direction within the electrode plate, so that the surrounding graphite moves under stress, leading to peeling. As a result, similarly to the negative electrode using the alloy material alone, the electron conductivity is lowered, and the high rate discharge characteristics and charge / discharge cycle characteristics of the battery are lowered.

特許文献1においては、ケイ素化合物の粒径RSiと炭素材料の粒径Rcとの比:RSi/Rcを1以下に制御することで、大きく膨張する合金材料の影響を緩和し、電池特性を向上させる提案がなされている。しかし、粒径制御によって合金の膨張の影響を緩和したとしても、合金粒子の割れなどによる集電劣化は抑制することができない。また、充放電サイクル毎に合金粒子の割れが生じ、合金材料の表面積が増大するため、合金表面における皮膜生成の副反応も問題となる。よって、特許文献1の提案は、実用に適さない。   In Patent Document 1, the ratio of the silicon compound particle size RSi to the carbon material particle size Rc: By controlling RSi / Rc to 1 or less, the influence of the greatly expanding alloy material is alleviated and the battery characteristics are improved. Proposals have been made. However, even if the influence of the expansion of the alloy is mitigated by controlling the particle size, the current collection deterioration due to cracking of the alloy particles cannot be suppressed. Further, cracking of the alloy particles occurs every charge / discharge cycle, and the surface area of the alloy material increases, so that a side reaction of film formation on the alloy surface becomes a problem. Therefore, the proposal of Patent Document 1 is not suitable for practical use.

特許文献2においては、炭素粒子中にLiと電気化学的に反応可能な金属粒子あるいは金属酸化物粒子を埋設することが提案されている。この提案では、金属粒子あるいは金属酸化物粒子を炭素粒子の表面に固定することで、膨張に伴う剥離を抑制している。この場合、初期の充放電サイクルでは高い効果が得られるが、やがて膨張と収縮の繰り返しによって金属粒子または金属酸化物粒子が炭素粒子から離脱する。その結果、負極の膨張率が増大し、極板全体で剥離が生じるようになる。
特開2000−357515号公報 特開2000−243396号公報
In Patent Document 2, it is proposed to embed metal particles or metal oxide particles capable of electrochemically reacting with Li in carbon particles. In this proposal, the metal particles or metal oxide particles are fixed to the surface of the carbon particles, thereby suppressing separation due to expansion. In this case, a high effect can be obtained in the initial charge / discharge cycle, but the metal particles or the metal oxide particles are eventually detached from the carbon particles by repeated expansion and contraction. As a result, the expansion coefficient of the negative electrode increases, and peeling occurs across the entire electrode plate.
JP 2000-357515 A JP 2000-243396 A

上述のように、高容量な合金材料を負極材料として使いこなす観点から、合金材料と黒鉛材料との併用が広く検討がされているが、いずれの提案も合金材料の不均一な膨張による影響を十分に低減できていない。すなわち、従来の提案の場合、負極内粒子間の電気的導通の切断や、合金材料および黒鉛材料の集電体からの剥離が発生し、結局、負極の電子伝導性が低下し、電池特性も低下する。   As described above, the combined use of an alloy material and a graphite material has been widely studied from the viewpoint of using a high-capacity alloy material as a negative electrode material, but both proposals are sufficiently affected by the uneven expansion of the alloy material. It has not been reduced. In other words, in the case of the conventional proposal, the disconnection of the electrical continuity between the particles in the negative electrode and the separation of the alloy material and the graphite material from the current collector occur, eventually resulting in a decrease in the electronic conductivity of the negative electrode and the battery characteristics. descend.

上記を鑑み、本発明は、Siを含み、Liを電気化学的に吸蔵および放出可能な合金材料と黒鉛材料とを活物質として用いる場合における、上述のような合金材料の膨張に伴う電池特性の低下を抑制することを目的とする。   In view of the above, the present invention provides battery characteristics associated with expansion of an alloy material as described above when an alloy material containing Si and electrochemically occluding and releasing Li and a graphite material are used as active materials. The purpose is to suppress the decrease.

すなわち、本発明は、Liを電気化学的に吸蔵および放出可能な少なくとも1種の合金材料と黒鉛とを含み、合金材料は、Siを主体とするA相と、少なくとも1種の遷移金属元素とSiとの金属間化合物からなるB相とを含み、A相およびB相の少なくとも一方が、微結晶または非晶質の領域からなり、A相とB相との合計重量に占めるA相の割合が、40重量%より多く、95重量%以下であり、合金材料と黒鉛との合計重量に占める黒鉛の割合は、50重量%以上、95重量%以下である非水電解質二次電池用負極に関する。   That is, the present invention includes at least one alloy material capable of electrochemically inserting and extracting Li and graphite, and the alloy material includes an A phase mainly composed of Si, and at least one transition metal element. A ratio of the A phase to the total weight of the A phase and the B phase, including at least one of the A phase and the B phase including a B phase composed of an intermetallic compound with Si. However, it is more than 40% by weight and 95% by weight or less, and the ratio of graphite to the total weight of the alloy material and graphite is 50% by weight or more and 95% by weight or less. .

合金材料は、黒鉛の粒子が形成する間隙に存在することが望ましい。
合金材料の最大粒径は、10μm以下であることが望ましい。
合金材料の少なくとも一部は、黒鉛表面に結着剤を介して接着していることが望ましい。
合金材料の平均粒径Ralloyと、黒鉛の平均粒径Rgraphiteとの比:Ralloy/Rgraphiteは、0.15〜0.90の範囲にあることが望ましい。
本発明の負極は、導電助材を更に含むことができる。導電助材の比表面積は10m2/g以上であることが望ましい。
The alloy material is preferably present in the gap formed by the graphite particles.
The maximum particle size of the alloy material is desirably 10 μm or less.
It is desirable that at least a part of the alloy material is bonded to the graphite surface via a binder.
The ratio of the average particle size Ralloy of the alloy material to the average particle size Rgraphite of graphite: Ralloy / Rgraphite is preferably in the range of 0.15 to 0.90.
The negative electrode of the present invention can further contain a conductive additive. The specific surface area of the conductive additive is desirably 10 m 2 / g or more.

導電助材は、アスペクト比が10以上の炭素繊維であることが望ましい。炭素繊維の少なくとも一方の端部は、合金材料に付着もしくは結合しているか、または黒鉛に付着もしくは結合していることが望ましい。
炭素繊維の少なくとも一部は、その一方の端部が合金材料に付着もしくは結合し、他方の端部が黒鉛に付着もしくは結合していることが特に好ましい。
炭素繊維は、合金材料および黒鉛の少なくとも一方を、炭化水素気流下で加熱することにより得ることができる。
合金材料と黒鉛と導電助材との合計重量に占める導電助材の割合は、10重量%以下であることが望ましい。
The conductive aid is desirably carbon fiber having an aspect ratio of 10 or more. It is desirable that at least one end of the carbon fiber is attached or bonded to the alloy material, or attached or bonded to graphite.
It is particularly preferable that at least a part of the carbon fiber has one end attached to or bonded to the alloy material and the other end attached to or bonded to the graphite.
The carbon fiber can be obtained by heating at least one of the alloy material and graphite under a hydrocarbon stream.
The ratio of the conductive additive to the total weight of the alloy material, graphite, and conductive additive is desirably 10% by weight or less.

本発明は、また、Liを電気化学的に吸蔵および放出可能な正極、上記の負極および非水電解液から構成される非水電解質二次電池であって、負極は、Liを電気化学的に吸蔵および放出可能な少なくとも1種の合金材料と黒鉛とを含み、合金材料は、Siを主体とするA相と、少なくとも1種の遷移金属元素とSiとの金属間化合物からなるB相とを含み、A相およびB相の少なくとも一方が、微結晶または非晶質の領域からなり、A相とB相との合計重量に占めるA相の割合が、40重量%より多く、95重量%以下であり、合金材料と黒鉛との合計重量に占める黒鉛の割合は、50重量%以上、95重量%以下である非水電解質二次電池に関する。   The present invention is also a nonaqueous electrolyte secondary battery composed of a positive electrode capable of electrochemically inserting and extracting Li, the negative electrode described above, and a nonaqueous electrolytic solution, wherein the negative electrode includes Li electrochemically. The alloy material includes at least one kind of occluding and releasing alloy material and graphite, and the alloy material includes an A phase mainly composed of Si and a B phase composed of an intermetallic compound of at least one transition metal element and Si. And at least one of the A phase and the B phase is composed of a microcrystalline or amorphous region, and the proportion of the A phase in the total weight of the A phase and the B phase is more than 40 wt% and not more than 95 wt% The ratio of graphite to the total weight of the alloy material and graphite relates to a non-aqueous electrolyte secondary battery having a weight ratio of 50 wt% or more and 95 wt% or less.

本発明によれば、合金材料と黒鉛材料とを併用した負極において、合金材料の膨張に伴う電池特性の低下を抑制できるため、高容量で、サイクル特性に優れた非水電解質二次電池を実現できる。   According to the present invention, in a negative electrode using a combination of an alloy material and a graphite material, it is possible to suppress a decrease in battery characteristics due to expansion of the alloy material, thereby realizing a high capacity non-aqueous electrolyte secondary battery with excellent cycle characteristics. it can.

本発明に係るLiを電気化学的に吸蔵および放出可能な合金材料は、従来の合金材料とは異なる特徴を有する。本発明に係る合金材料は、Siを主体とするA相と、遷移金属元素とSiとの金属間化合物からなるB相とを含む。この合金材料は、膨張が緩和されているだけでなく、その膨張および収縮に伴う負極の電子伝導性の低下を抑制する。よって、この合金材料と黒鉛とを含む本発明の非水電解質二次電池用負極は、高容量でサイクル特性に優れた電池を与える。   The alloy material capable of electrochemically inserting and extracting Li according to the present invention has characteristics different from those of conventional alloy materials. The alloy material according to the present invention includes an A phase mainly composed of Si and a B phase composed of an intermetallic compound of a transition metal element and Si. This alloy material is not only moderated in expansion, but also suppresses a decrease in electronic conductivity of the negative electrode accompanying expansion and contraction. Therefore, the negative electrode for a non-aqueous electrolyte secondary battery of the present invention containing this alloy material and graphite gives a battery with high capacity and excellent cycle characteristics.

A相は、Liの吸蔵および放出を担う相であり、電気化学的にLiと反応可能な相である。A相は、Siを主体とする相であればよいが、好ましくはSi単体からなる相である。A相がSi単体からなる場合、単位重量もしくは単位体積あたりの合金材料が吸蔵および放出するLi量を非常に多量にすることができる。ただし、Si単体は半導体であるため、電子伝導性に乏しい。よって、微量の添加元素、例えばリン(P)や水素(H)等、あるいは遷移金属元素等を5重量%程度までA相に含ませることが有効である。   The A phase is a phase responsible for insertion and extraction of Li, and is a phase that can electrochemically react with Li. The A phase may be a phase mainly composed of Si, but is preferably a phase composed of Si alone. When the A phase is composed of Si alone, the amount of Li absorbed and released by the alloy material per unit weight or unit volume can be made extremely large. However, since Si simple substance is a semiconductor, it has poor electronic conductivity. Therefore, it is effective to add a trace amount of additive elements such as phosphorus (P), hydrogen (H), etc., or transition metal elements to the A phase up to about 5% by weight.

B相は、遷移金属元素とSiとの金属間化合物からなる。Siを含む金属間化合物は、A相との親和性が高く、A相とB相との界面での割れなどが生じにくい。また、B相は、Si単体相に比較して電子伝導性が高く、かつ硬度も高い。よって、B相は、A相の低い電子伝導性を補うとともに、膨張応力に対抗して、合金粒子の形状を維持させるように働く。B相は、複数種存在していても構わない。すなわち、組成の異なる2種以上の金属間化合物がB相として存在してもよい。例えば、MSi2とMSi(Mは遷移金属)とが合金材料の粒子内に存在してもよい。また、それぞれ異なる遷移金属元素を含む金属間化合物、例えばM1Si2とM2Si2(M1とM2は異なる遷移金属)とが合金材料の粒子内に存在してもよい。 The B phase is composed of an intermetallic compound of a transition metal element and Si. The intermetallic compound containing Si has a high affinity with the A phase, and cracks at the interface between the A phase and the B phase hardly occur. In addition, the B phase has higher electron conductivity and higher hardness than the Si single phase. Therefore, the B phase works to supplement the low electronic conductivity of the A phase and to maintain the shape of the alloy particles against the expansion stress. There may be a plurality of B phases. That is, two or more types of intermetallic compounds having different compositions may exist as the B phase. For example, MSi 2 and MSi (M is a transition metal) may be present in the alloy material particles. Further, intermetallic compounds containing different transition metal elements, for example, M 1 Si 2 and M 2 Si 2 (M 1 and M 2 are different transition metals) may exist in the alloy material particles.

遷移金属元素は、好ましくはTi、Zr、Ni、Co、Mn、FeおよびCuよりなる群から選ばれる少なくとも1種であり、特に好ましくはTiおよびZrよりなる群から選ばれる少なくとも1種である。これらの元素のケイ化物は、他の元素のケイ化物よりも高い電子伝導性を有し、かつ高い硬度を有する。   The transition metal element is preferably at least one selected from the group consisting of Ti, Zr, Ni, Co, Mn, Fe and Cu, and particularly preferably at least one selected from the group consisting of Ti and Zr. These element silicides have higher electronic conductivity and higher hardness than silicides of other elements.

A相および/またはB相は、微結晶または非晶質の領域からなる。結晶質な合金材料を用いた場合、Liの吸蔵に伴い合金粒子が割れを引き起こしやすく、急速に負極の集電性が低下し、電池特性が低下する。一方、微結晶または非晶質の合金材料を用いる場合、Liの吸蔵に伴う膨張による合金粒子の割れが発生しにくい。   The A phase and / or the B phase are composed of microcrystalline or amorphous regions. When a crystalline alloy material is used, the alloy particles are liable to crack with the occlusion of Li, and the current collecting property of the negative electrode is rapidly reduced, resulting in a deterioration in battery characteristics. On the other hand, when a microcrystalline or amorphous alloy material is used, cracking of the alloy particles due to expansion accompanying the occlusion of Li hardly occurs.

本発明では、結晶粒(結晶子)の直径が50nm以下である合金材料を微結晶であると定義する。合金材料が微結晶の領域を有する場合、X線回折測定で得られる合金粒子の回折スペクトルの中には、シャープではないが、半価幅を求め得る比較的明瞭なピークが一つ以上観測される。合金材料の結晶粒(結晶子)の直径は、X線回折測定で得られる合金粒子の回折スペクトルの中で最も強度の大きなピークの半価幅を求めることにより、その半価幅とScherrerの式から算出することができる。   In the present invention, an alloy material having a crystal grain (crystallite) diameter of 50 nm or less is defined as a microcrystal. If the alloy material has a microcrystalline region, one or more peaks that are not sharp but can be obtained with a half-value width are observed in the diffraction spectrum of alloy particles obtained by X-ray diffraction measurement. The The diameter of the crystal grain (crystallite) of the alloy material is obtained by calculating the half width of the peak with the highest intensity in the diffraction spectrum of the alloy particle obtained by X-ray diffraction measurement. It can be calculated from

一方、合金材料が非晶質な領域を有する場合、X線回折測定で得られる合金粒子の回折スペクトルの2θ=15〜40°の範囲には、半価幅を認識できない程度のブロードなハローパターンが観測される。   On the other hand, when the alloy material has an amorphous region, a broad halo pattern in which the half width cannot be recognized in the range of 2θ = 15 to 40 ° of the diffraction spectrum of the alloy particle obtained by X-ray diffraction measurement. Is observed.

A相とB相との合計重量に占めるA相の割合は、40重量%より多く、95重量%以下である。A相の割合を40重量%より多くすることにより、効果的に高容量を達成することができる。また、A相の割合を95重量%以下とすることにより、A相の低い電子伝導性を補うとともに合金材料の粒子の形状を維持させる効果を高く維持できる他、合金材料の粒子を微結晶または非晶質にすることが容易となる。これらの効果を顕著にする観点からは、A相とB相との合計重量に占めるA相の割合は、65重量%以上、85重量%以下が望ましく、70重量%以上、80重量%以下であることが特に好ましい。
また、A相の割合が95重量%より大きくなると、合金材料の粒子を微結晶または非晶質にすることが困難になり、本発明にそぐわない。逆にA相の割合が40重量%より小さいと、従来の黒鉛を負極に用いた電池に比べて容量が低くなり、本発明に適さない。
The proportion of the A phase in the total weight of the A phase and the B phase is more than 40% by weight and 95% by weight or less. By increasing the proportion of the A phase to more than 40% by weight, a high capacity can be effectively achieved. In addition, by making the ratio of the A phase 95% by weight or less, the low electron conductivity of the A phase can be supplemented and the effect of maintaining the shape of the alloy material particles can be maintained high. It becomes easy to make it amorphous. From the viewpoint of prominent these effects, the ratio of the A phase to the total weight of the A phase and the B phase is preferably 65% by weight or more and 85% by weight or less, and 70% by weight or more and 80% by weight or less. It is particularly preferred.
On the other hand, if the proportion of the A phase exceeds 95% by weight, it becomes difficult to make the alloy material particles microcrystalline or amorphous, which is not suitable for the present invention. On the other hand, if the proportion of the A phase is less than 40% by weight, the capacity is lower than that of a battery using conventional graphite as a negative electrode, which is not suitable for the present invention.

本発明に係る合金材料に含まれるSiの含有量は、60重量%以上であることが好ましい。合金全体に占めるSiの割合が60重量%以上である場合、残部を占める遷移金属とSiとが金属間化合物(ケイ化物)を形成したときに、A相の割合が40重量%を上回り、効果的に高容量を実現することが可能となる。   The content of Si contained in the alloy material according to the present invention is preferably 60% by weight or more. When the proportion of Si in the whole alloy is 60% by weight or more, when the transition metal occupying the balance and Si form an intermetallic compound (silicide), the proportion of the A phase exceeds 40% by weight, and the effect Therefore, it is possible to realize a high capacity.

本発明の負極は、上記のような合金材料と黒鉛とを含む。合金材料および黒鉛の両方の能力をバランスよく発揮させる観点から、合金材料と黒鉛との合計重量に占める黒鉛の割合は、50重量%以上、95重量%以下であり、65重量%以上、85重量%以下が好ましい。黒鉛が50重量%より少ない場合、合金材料に接する黒鉛の量が少なくなり、合金材料同士の接触点が多くなる。そのため、合金材料の膨張によって負極内部に空隙が生成し易くなり、負極全体の膨張が大きくなる。一方、黒鉛が95重量%より多い場合、合金材料の容量への寄与が極めて小さくなり、黒鉛だけを用いた負極と同程度の容量しか得られない。   The negative electrode of the present invention includes the above alloy material and graphite. From the viewpoint of exerting both the alloy material and graphite in a well-balanced manner, the ratio of graphite to the total weight of the alloy material and graphite is 50% by weight or more and 95% by weight or less, and 65% by weight or more and 85% by weight. % Or less is preferable. When the amount of graphite is less than 50% by weight, the amount of graphite in contact with the alloy material decreases, and the number of contact points between the alloy materials increases. For this reason, voids are easily generated inside the negative electrode due to the expansion of the alloy material, and the expansion of the entire negative electrode is increased. On the other hand, when the amount of graphite is more than 95% by weight, the contribution of the alloy material to the capacity becomes extremely small, and only a capacity comparable to that of the negative electrode using only graphite can be obtained.

本発明で用いる黒鉛は、一般的に非水電解質二次電池に用いることができる黒鉛材料であればどのようなものでも構わない。例えば、鱗片状黒鉛等の天然黒鉛や、様々な方法で製造される人造黒鉛を用いることができる。   The graphite used in the present invention may be any graphite material as long as it can generally be used for a non-aqueous electrolyte secondary battery. For example, natural graphite such as flaky graphite and artificial graphite produced by various methods can be used.

黒鉛の平均粒径は、5μm以上、50μm以下が好ましく、7μm以上、25μm以下が更に好ましい。黒鉛の平均粒径が微細になりすぎると、変形に追随する能力が高くなり、合金材料の膨張による極板への悪影響を緩和するが、黒鉛自身の比表面積が増加する。黒鉛と電解液等との副反応を抑制し、黒鉛表面に生成する皮膜を低減し、負極の不可逆容量を少量に制限する観点からは、黒鉛の平均粒径を5μm以上とし、黒鉛自身の比表面積をあまり増大させないことが望ましい。また、黒鉛の平均粒径が50μmより大きくなると、負極表面に凸凹が形成され易くなるとともに、負極内部の空隙が大きくなり、負極内部にある合金への集電がとりにくい。集電性に優れた負極を得る観点からは、黒鉛の平均粒径が50μm以下であることが望ましい。   The average particle size of graphite is preferably 5 μm or more and 50 μm or less, and more preferably 7 μm or more and 25 μm or less. If the average particle diameter of graphite becomes too fine, the ability to follow deformation increases, and the adverse effect on the electrode plate due to expansion of the alloy material is alleviated, but the specific surface area of graphite itself increases. From the viewpoint of suppressing side reactions between graphite and electrolyte, reducing the film formed on the graphite surface, and limiting the irreversible capacity of the negative electrode to a small amount, the average particle size of graphite should be 5 μm or more, and the ratio of graphite itself It is desirable not to increase the surface area too much. Further, when the average particle diameter of graphite is larger than 50 μm, irregularities are easily formed on the negative electrode surface, and voids in the negative electrode are increased, making it difficult to collect current to the alloy in the negative electrode. From the viewpoint of obtaining a negative electrode having excellent current collecting properties, it is desirable that the average particle size of graphite is 50 μm or less.

通常、非水電解質二次電池用負極は、金属箔からなる集電体と、その両面に担持された負極合剤層からなる。よって、黒鉛や合金材料の粒径は、負極合剤層の片面あたりの厚みよりも小さくなるように設定すればよい。   Usually, a negative electrode for a non-aqueous electrolyte secondary battery includes a current collector made of a metal foil and a negative electrode mixture layer supported on both surfaces thereof. Accordingly, the particle size of the graphite or alloy material may be set to be smaller than the thickness per one side of the negative electrode mixture layer.

合金材料は、黒鉛の粒子が形成する間隙に存在することが望ましい。図1に、本発明の負極の一例の断面写真を示す。図1の負極は、集電体1と、その片面に担持された合剤層からなる。合剤層は、大粒径の黒鉛粒子3と、その空隙を埋めるように配置された合金粒子2とで構成されている。また、合金粒子2の周囲には、適度な空隙が存在する。このような構造にすることで、合金粒子2が膨張した際に、その膨張を緩和することができるとともに、膨張時における集電も容易となる。また、上記のような構造によれば、合金材料の周囲に電解液が充分に行き渡ることが可能であり、高率放電特性や充放電サイクル特性を向上させることができる。   The alloy material is preferably present in the gap formed by the graphite particles. In FIG. 1, the cross-sectional photograph of an example of the negative electrode of this invention is shown. The negative electrode in FIG. 1 includes a current collector 1 and a mixture layer supported on one surface thereof. The mixture layer is composed of graphite particles 3 having a large particle diameter and alloy particles 2 arranged so as to fill the voids. In addition, there are appropriate voids around the alloy particles 2. By adopting such a structure, when the alloy particles 2 expand, the expansion can be relaxed, and current collection at the time of expansion also becomes easy. In addition, according to the above structure, the electrolyte can sufficiently spread around the alloy material, and high rate discharge characteristics and charge / discharge cycle characteristics can be improved.

図1のような構造を容易に得る観点から、合金材料の最大粒径は10μm以下とすることが望ましく、5μm以下とすることが更に望ましい。合金材料の最大粒径が10μmより大きいと、黒鉛粒子間に合金粒子が侵入する割合が減少し、凝集する合金材料の割合が多くなる。合金材料が凝集すると、合金粒子が膨張した際に互いに押し合い、負極に過度な膨張を発生させることがある。   From the viewpoint of easily obtaining the structure shown in FIG. 1, the maximum particle size of the alloy material is preferably 10 μm or less, and more preferably 5 μm or less. When the maximum particle size of the alloy material is larger than 10 μm, the ratio of the alloy particles entering between the graphite particles decreases, and the ratio of the alloy material that aggregates increases. When the alloy material is agglomerated, when the alloy particles expand, they may push each other and cause excessive expansion in the negative electrode.

また、合金材料の少なくとも一部は、黒鉛表面に結着剤を介して接着していることが望ましい。このような構造は、過度な膨張の緩和および集電性の維持の点で優れている。このような構造を有することで、合金材料が膨張と収縮を繰り返しても、合金材料は黒鉛粒子間に形成される空隙に安定に存在しやすい。その結果、負極合剤層の過度な膨張が抑制される。さらに、合金材料が黒鉛粒子の表面に固定されることにより、常に集電を確保することが可能になる。
このような構造を得るためには、黒鉛と結着剤とを混合した後、合金材料を加えて更に混合する手法を用いることが望ましい。黒鉛表面には官能基がほとんど存在しないため、結着剤との親和性が低い。よって、黒鉛と結着剤とを、予め強い攪拌力もしくは応力を付与しながら混合することが望ましい。一方、合金材料の表面は、一般的には酸化物などで覆われており、結着剤との親和性が高い。よって、黒鉛と結着剤との混合物に、合金材料を混合するだけで、上記構造を得ることができる。
Moreover, it is desirable that at least a part of the alloy material is bonded to the graphite surface via a binder. Such a structure is excellent in terms of alleviating excessive expansion and maintaining current collecting properties. By having such a structure, even if the alloy material repeatedly expands and contracts, the alloy material tends to exist stably in the voids formed between the graphite particles. As a result, excessive expansion of the negative electrode mixture layer is suppressed. Furthermore, current collection can always be ensured by fixing the alloy material to the surface of the graphite particles.
In order to obtain such a structure, it is desirable to use a technique in which graphite and a binder are mixed and then an alloy material is added and further mixed. Since there are almost no functional groups on the graphite surface, the affinity with the binder is low. Therefore, it is desirable to mix graphite and a binder in advance while applying a strong stirring force or stress. On the other hand, the surface of the alloy material is generally covered with an oxide or the like, and has high affinity with the binder. Therefore, the above structure can be obtained only by mixing the alloy material with the mixture of graphite and binder.

図1のような構造を容易に得る観点から、合金材料の平均粒径Ralloyと、黒鉛の平均粒径Rgraphiteとの比:Ralloy/Rgraphiteは、0.15〜0.90の範囲にあることが望ましい。例えば、黒鉛の平均粒径Rgraphiteが18μmである場合、合金材料の好ましい平均粒径Ralloyは2.7μm〜16.2μmの範囲となる。ただし、上述のように、合金材料の最大粒径は10μm以下であることが更に望ましい。よって、Ralloyの最適範囲は2.7μm以上10μm以下となる。   From the viewpoint of easily obtaining the structure as shown in FIG. 1, the ratio of the average particle diameter Ralloy of the alloy material to the average particle diameter Rgraphite of graphite: Ralloy / Rgraphite may be in the range of 0.15 to 0.90. desirable. For example, when the average particle diameter Rgraphite of graphite is 18 μm, the preferable average particle diameter Ralloy of the alloy material is in the range of 2.7 μm to 16.2 μm. However, as described above, it is more desirable that the maximum particle size of the alloy material is 10 μm or less. Therefore, the optimum range of Ralloy is 2.7 μm or more and 10 μm or less.

Ralloy/Rgraphiteが0.15より小さい場合、黒鉛粒子間の空隙に多くの数の合金粒子が挟み込まれる傾向が高くなるため、合金粒子が膨張した際に互いに押し合い、負極に比較的大きな膨張を発生させることがある。一方、Ralloy/Rgraphiteが0.9より大きい場合は、黒鉛粒子と合金粒子とがほぼ同じサイズになることから、合金粒子の膨張を緩和するための負極内部の空隙が少なくなる。Ralloy/Rgraphiteの最も好ましい範囲は、0.2〜0.4であり、この範囲において、合金材料の膨張を緩和する能力が最も高くなる。   When Ralloy / Rgraphite is less than 0.15, a large number of alloy particles are more likely to be sandwiched in the voids between the graphite particles, so that when the alloy particles expand, they press each other and generate a relatively large expansion in the negative electrode. There are things to do. On the other hand, when Ralloy / Rgraphite is larger than 0.9, the graphite particles and the alloy particles have substantially the same size, so that the voids inside the negative electrode for relaxing the expansion of the alloy particles are reduced. The most preferable range of Ralloy / Rgraphite is 0.2 to 0.4, and in this range, the ability to relax the expansion of the alloy material is the highest.

負極中には、さらに、導電助材を含めることができる。導電助材は、主に合金材料からの集電効率を向上させるために添加される。よって、導電助材は、主に合金粒子の近傍に存在することが好ましい。   The negative electrode can further contain a conductive additive. The conductive additive is added mainly to improve the current collection efficiency from the alloy material. Therefore, it is preferable that the conductive additive is mainly present in the vicinity of the alloy particles.

導電助材の比表面積は10m2/g以上であることが望ましい。比表面積が10m2/gより小さい導電助材でも集電効率を向上させることは可能であるが、少量で集電効率を向上させる効果を得る観点からは、比表面積が10m2/g以上の導電助材を用いることが望ましい。
導電助材としては、例えばカーボンブラックが好適であり、なかでもアセチレンブラックが好適である。また、アスペクト比が10以上の炭素繊維も導電助材として好適である。特に、炭素繊維は、合金材料の粒子間もしくは合金材料−黒鉛間の集電性の維持に寄与する。
The specific surface area of the conductive additive is desirably 10 m 2 / g or more. Although it is possible to improve the current collection efficiency even with a conductive auxiliary material having a specific surface area of less than 10 m 2 / g, from the viewpoint of obtaining the effect of improving the current collection efficiency with a small amount, the specific surface area is 10 m 2 / g or more. It is desirable to use a conductive aid.
As the conductive aid, for example, carbon black is preferable, and acetylene black is particularly preferable. Carbon fibers having an aspect ratio of 10 or more are also suitable as a conductive additive. In particular, the carbon fiber contributes to maintaining the current collecting property between the particles of the alloy material or between the alloy material and graphite.

炭素繊維の少なくとも一方の端部は、合金材料もしくは黒鉛の表面に付着していることが望ましく、合金材料もしくは黒鉛の表面に結合(例えば化学結合)していることが特に望ましい。これにより、合金材料が膨張もしくは収縮している最中にも、炭素繊維を介した電子の授受が安定化する。その結果、集電性が向上する。炭素繊維の一方の端部が、合金材料に付着もしくは結合し、他方の端部が近傍に存在する黒鉛に付着もしくは結合している状態が特に望ましい。炭素繊維が合金材料と黒鉛の両方と結合することにより、より強く黒鉛表面に合金材料が固定されることになる。よって、負極の膨張を緩和する効果が高くなる。   It is desirable that at least one end of the carbon fiber is attached to the surface of the alloy material or graphite, and it is particularly desirable that the carbon fiber is bonded (for example, chemically bonded) to the surface of the alloy material or graphite. This stabilizes the transfer of electrons via the carbon fiber even while the alloy material is expanding or contracting. As a result, current collection is improved. It is particularly desirable that one end of the carbon fiber is attached or bonded to the alloy material and the other end is attached or bonded to the graphite present in the vicinity. When the carbon fiber is bonded to both the alloy material and graphite, the alloy material is more strongly fixed to the graphite surface. Therefore, the effect of reducing the expansion of the negative electrode is enhanced.

炭素繊維には、気相成長炭素繊維(VGCF)やカーボンナノチューブを用いることができる。例えば、合金材料および黒鉛の少なくとも一方と炭素繊維とを結着剤とともに混練することで、負極に炭素繊維を導電助材として付与できる。また、炭素繊維は、合金材料および黒鉛の少なくとも一方を、炭化水素気流下で加熱することにより、合金材料もしくは黒鉛の表面に成長させることができる。加熱雰囲気は、還元性雰囲気であることが望ましい。炭化水素には、例えばメタン、エタン、エチレン、アセチレンなどを用いることができる。加熱温度は、400〜800℃が好適である。なお、炭化水素の代わりに一酸化炭素を用いてもよい。加熱温度が400℃より低い場合、炭素繊維が生成しにくく、負極に充分な導電性を付与できない場合がある。逆に、加熱温度が800℃より高い場合、導電性の高い炭素繊維は生成するが、合金材料の結晶化が進行し、電極特性が低下する場合がある。   As the carbon fiber, vapor grown carbon fiber (VGCF) or carbon nanotube can be used. For example, carbon fiber can be imparted to the negative electrode as a conductive additive by kneading at least one of the alloy material and graphite and carbon fiber together with a binder. In addition, the carbon fiber can be grown on the surface of the alloy material or graphite by heating at least one of the alloy material and graphite in a hydrocarbon stream. The heating atmosphere is desirably a reducing atmosphere. As the hydrocarbon, for example, methane, ethane, ethylene, acetylene, or the like can be used. 400-800 degreeC is suitable for heating temperature. Carbon monoxide may be used instead of hydrocarbon. When the heating temperature is lower than 400 ° C., carbon fibers are hardly formed, and sufficient conductivity may not be imparted to the negative electrode. Conversely, when the heating temperature is higher than 800 ° C., highly conductive carbon fibers are produced, but the crystallization of the alloy material proceeds, and the electrode characteristics may deteriorate.

放電容量の低下や、副反応による不可逆容量の増加を抑制する観点から、合金材料と黒鉛と導電助材との合計重量に占める導電助材の割合は、10重量%以下であることが望ましく、5重量%以下であることが更に望ましい。   From the viewpoint of suppressing a decrease in discharge capacity and an increase in irreversible capacity due to side reactions, the ratio of the conductive additive to the total weight of the alloy material, graphite, and conductive additive is desirably 10% by weight or less, It is further desirable that the amount be 5 wt% or less.

負極中には、黒鉛材料、合金材料等を互いに固着させるとともに、合剤層を集電体に固着させるための結着剤が含まれる。結着剤としては、負極の使用電位範囲においてLiに対して電気化学的に不活性であり、他の物質にできるだけ影響を及ぼさない材料が選択される。例えば、スチレン−ブタジエン共重合ゴム、ポリアクリル酸、ポリエチレン、ポリウレタン、ポリメタクリル酸メチル、ポリフッ化ビニリデン、ポリ4フッ化エチレン、カルボキシメチルセルロース、メチルセルロース等が結着剤として適している。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。結着剤の添加量は、合剤層の構造維持の観点からは多いほど好ましいが、電池容量の向上および放電特性の向上の観点からは少ない方が好ましい。   The negative electrode includes a binder for fixing the graphite material, the alloy material, and the like to each other and fixing the mixture layer to the current collector. As the binder, a material that is electrochemically inactive with respect to Li in the working potential range of the negative electrode and does not affect other substances as much as possible is selected. For example, styrene-butadiene copolymer rubber, polyacrylic acid, polyethylene, polyurethane, polymethyl methacrylate, polyvinylidene fluoride, polytetrafluoroethylene, carboxymethylcellulose, methylcellulose and the like are suitable as the binder. These may be used alone or in combination. The amount of the binder added is preferably as large as possible from the viewpoint of maintaining the structure of the mixture layer, but is preferably as small as possible from the viewpoint of improving battery capacity and improving discharge characteristics.

本発明の負極が、金属箔からなる集電体と、その両面に担持された負極合剤層からなる場合、集電体には、銅箔または銅合金箔を用いることが望ましい。銅合金箔の場合、銅の含有量は90重量%以上であることが好ましい。集電体の強度あるいは柔軟性を向上させる観点からは、集電体にP、Ag、Cr等の元素を含ませることが有効である。   When the negative electrode of the present invention is composed of a current collector made of a metal foil and a negative electrode mixture layer supported on both surfaces thereof, it is desirable to use a copper foil or a copper alloy foil as the current collector. In the case of a copper alloy foil, the copper content is preferably 90% by weight or more. From the viewpoint of improving the strength or flexibility of the current collector, it is effective to include an element such as P, Ag, or Cr in the current collector.

集電体の厚みは、6μm以上40μm以下であることが好ましい。厚みが6μmより薄い集電体は、取り扱いが困難であるし、集電体に必要な強度も維持しにくく、合剤層の膨張および収縮によって切れたり、シワがよることがある。一方、40μmより厚い集電体では、電池に占める集電体の体積割合が大きくなり、電池の種類によっては容量の点で不利となる。また、分厚い集電体は曲げにくい等、取り扱いも困難である。   The thickness of the current collector is preferably 6 μm or more and 40 μm or less. A current collector having a thickness of less than 6 μm is difficult to handle, and it is difficult to maintain the strength required for the current collector, and the current collector may be broken or wrinkled by expansion and contraction of the mixture layer. On the other hand, when the current collector is thicker than 40 μm, the volume ratio of the current collector to the battery becomes large, which is disadvantageous in terms of capacity depending on the type of battery. Also, thick current collectors are difficult to handle, such as difficult to bend.

負極合剤層は、合金材料、黒鉛、結着剤等の混合物からなり、必要に応じてその他の添加剤、例えば導電助材を含む。負極合剤層の厚みは、集電体の片面あたり、一般に10μm以上100μm以下であり、50μm以上100μm以下であることが多い。合剤層の厚みは10μmより薄くてもよいが、負極中に占める集電体の体積割合が大きくなりすぎないように配慮する必要がある。また、合剤層の厚みは100μmより厚くてもよいが、集電体近傍まで電解液が浸み渡りにくくなるため、高率放電特性が低下することがある。   The negative electrode mixture layer is made of a mixture of an alloy material, graphite, a binder, and the like, and includes other additives such as a conductive additive as necessary. The thickness of the negative electrode mixture layer is generally from 10 μm to 100 μm, and often from 50 μm to 100 μm per side of the current collector. Although the thickness of the mixture layer may be thinner than 10 μm, it is necessary to consider that the volume ratio of the current collector in the negative electrode does not become too large. Moreover, although the thickness of the mixture layer may be thicker than 100 μm, the high-rate discharge characteristics may be deteriorated because the electrolyte solution hardly penetrates to the vicinity of the current collector.

負極合剤層の密度は、放電状態において0.8g/cm3〜2g/cm3であることが好ましい。負極合剤層の空孔率は70%以下であることが望ましい。なお、空孔率は、(負極合剤層の測定密度)/(負極合剤層の真密度)×100(%)で算出される。負極合剤層の真密度は、負極合剤の原料(合金材料、黒鉛、結着剤等)それぞれの真密度と混合比から算出される。 Density of the negative electrode mixture layer is preferably in the discharged state is 0.8g / cm 3 ~2g / cm 3 . The porosity of the negative electrode mixture layer is desirably 70% or less. The porosity is calculated by (measured density of negative electrode mixture layer) / (true density of negative electrode mixture layer) × 100 (%). The true density of the negative electrode mixture layer is calculated from the true density and mixing ratio of each negative electrode material (alloy material, graphite, binder, etc.).

本発明の非水電解質二次電池は、上記の負極と、Liを電気化学的に吸蔵および放出可能な正極と、非水電解液とを具備する。
正極は、非水電解質二次電池の正極として提案されているものであれば、特に限定なく用いることができる。正極の製造法は従来通りに行えばよい。例えば、正極活物質と、カーボンブラックなどの導電剤と、ポリフッ化ビニリデンなどの結着剤とを、液相中で混合し、得られたペーストをAl等からなる正極集電体上に塗布し、乾燥し、圧延することによって正極が得られる。
The non-aqueous electrolyte secondary battery of the present invention includes the above-described negative electrode, a positive electrode capable of electrochemically inserting and extracting Li, and a non-aqueous electrolyte.
If a positive electrode is proposed as a positive electrode of a nonaqueous electrolyte secondary battery, it can be used without limitation. The manufacturing method of the positive electrode may be performed as usual. For example, a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride are mixed in a liquid phase, and the obtained paste is applied onto a positive electrode current collector made of Al or the like. The positive electrode is obtained by drying and rolling.

正極活物質としては、非水電解質二次電池の正極活物質として提案されているものであれば、特に限定なく用いることができるが、リチウム含有遷移金属化合物が好ましい。リチウム含有遷移金属化合物の代表的な例としては、LiCoO2、LiNiO2、LiMn24、LiMnO2などを挙げることができるが、これらに限定されない。前記の化合物の遷移金属元素を異種の金属元素に置換した化合物も好ましく用いられる。例えば、LiCo1-xMgx2、LiNi1-yCoy2、LiNi1-y-zCoyMnz2(x、y、zは全て整数)等が挙げられる。 Any positive electrode active material can be used without particular limitation as long as it is proposed as a positive electrode active material for a non-aqueous electrolyte secondary battery, but a lithium-containing transition metal compound is preferred. Representative examples of the lithium-containing transition metal compound include, but are not limited to, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and LiMnO 2 . A compound obtained by substituting a transition metal element of the above compound with a different metal element is also preferably used. For example, LiCo 1-x Mg x O 2, LiNi 1-y Co y O 2, LiNi 1-yz Co y Mn z O 2 (x, y, z are all integers), and the like.

非水電解液としては、非水電解質二次電池の電解液として提案されているものであれば、特に限定なく用いることができるが、非水溶媒とそれに可溶なリチウム塩からなる電解液が好ましい。非水溶媒としては、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート類とジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート類との混合溶媒が一般的に用いられる。さらには非水溶媒にγ−ブチルラクトンやジメトキシエタンなどが混合されていても構わない。また、リチウム塩としては無機リチウムフッ化物やリチウムイミド化合物等が挙げられる。前者としては、LiPF6、LiBF4等が挙げられ、後者としてはLiN(CF3SO23等が挙げられる。さらにはリチウム塩にLiClO4やLiCF3SO3等を混合してもよい。非水電解液はゲル状電解質でもよく、固体電解質を用いてもよい。 Any non-aqueous electrolyte can be used without particular limitation as long as it is proposed as an electrolyte for a non-aqueous electrolyte secondary battery. However, an electrolyte composed of a non-aqueous solvent and a lithium salt soluble therein can be used. preferable. As the non-aqueous solvent, a mixed solvent of cyclic carbonates such as ethylene carbonate and propylene carbonate and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is generally used. Furthermore, γ-butyl lactone, dimethoxyethane, or the like may be mixed in a non-aqueous solvent. Examples of the lithium salt include inorganic lithium fluoride and a lithium imide compound. Examples of the former include LiPF 6 and LiBF 4 , and examples of the latter include LiN (CF 3 SO 2 ) 3 . Furthermore, LiClO 4 , LiCF 3 SO 3, or the like may be mixed in the lithium salt. The non-aqueous electrolyte may be a gel electrolyte or a solid electrolyte.

正極と負極との内部短絡を防ぐために、これらの間にはセパレータが設置される。セパレータの材質としては、非水電解液を適度に通過させ、かつ正極と負極との接触を妨げるものであればどのようなものでも構わない。非水電解質二次電池には、ポリエチレン、ポリプロピレン等からなる微多孔性フィルムが一般的に用いられており、その厚みは10μm以上30μm以下が一般的である。   In order to prevent an internal short circuit between the positive electrode and the negative electrode, a separator is installed between them. As the material of the separator, any material can be used as long as it allows a non-aqueous electrolyte to pass through appropriately and prevents the contact between the positive electrode and the negative electrode. A microporous film made of polyethylene, polypropylene, or the like is generally used for the nonaqueous electrolyte secondary battery, and the thickness is generally 10 μm or more and 30 μm or less.

本発明は、円筒型、扁平型、コイン型、角形等の様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。本発明は、金属製の電池缶やラミネートフィルム製のケースに、電極、電解液等の発電要素を収容した電池を含め、様々な封止形態の電池に適用可能であり、電池の封止形態は特に限定されない。   The present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited. INDUSTRIAL APPLICABILITY The present invention can be applied to batteries of various sealing forms, including batteries that contain power generation elements such as electrodes and electrolytes in metal battery cans and laminated film cases. Is not particularly limited.

次に、本発明を実施例および比較例に基づいて具体的に説明するが、下記の実施例は本発明の好ましい形態を例示するものであり、本発明が下記の実施例に限られるわけではない。   Next, the present invention will be specifically described based on examples and comparative examples. However, the following examples illustrate preferred modes of the present invention, and the present invention is not limited to the following examples. Absent.

《実施例1》
実施例および比較例においては、以下の要領で負極および円筒型電池を作製し、そのサイクル寿命と放電容量について評価した。
(1)合金材料の製造
金属Ti(純度99.9%、粒径100−150μm)と、金属Si(純度99.9%、平均粒形3μm)とを、重量比がTi:Si=9.2:90.8になるように秤量して混合した。
Example 1
In Examples and Comparative Examples, negative electrodes and cylindrical batteries were produced in the following manner, and their cycle life and discharge capacity were evaluated.
(1) Production of Alloy Material Metal Ti (purity 99.9%, particle size 100-150 μm) and metal Si (purity 99.9%, average particle size 3 μm) are in a weight ratio of Ti: Si = 9. 2: Weighed and mixed to 90.8.

この混合粉を3.5kg秤量し、振動ミル装置(中央化工機(株)製、FV−20)に投入し、さらにステンレス鋼製ボール(直径2cm)をミル装置内容量の70体積%を占めるように投入した。容器内部を真空に引いた後、Ar(純度99.999%、日本酸素)を導入して、1気圧になるようにした。ミル装置の作動条件は、振幅8mm、回転数1200rpmとした。これらの条件でメカニカルアロイング操作を80時間行った。   3.5 kg of this mixed powder is weighed and put into a vibration mill device (FV-20, manufactured by Chuo Kako Co., Ltd.), and a stainless steel ball (diameter 2 cm) occupies 70% by volume of the mill device content. I put it in. After the inside of the container was evacuated, Ar (purity 99.999%, Japanese oxygen) was introduced so that the pressure became 1 atm. The operating conditions of the mill device were an amplitude of 8 mm and a rotation speed of 1200 rpm. Under these conditions, mechanical alloying operation was performed for 80 hours.

上記操作によって得られたTi−Si合金を回収し、粒度分布を調べたところ0.5μm〜80μmの広い粒度分布を有することが判明した。このTi−Si合金を篩い(10μmメッシュサイズ)で分級することによって、最大粒径10μm、平均粒径8μmの合金材料(以下、合金aという)を得た。   When the Ti—Si alloy obtained by the above operation was collected and the particle size distribution was examined, it was found to have a wide particle size distribution of 0.5 μm to 80 μm. By classifying the Ti—Si alloy with a sieve (10 μm mesh size), an alloy material (hereinafter referred to as alloy a) having a maximum particle size of 10 μm and an average particle size of 8 μm was obtained.

合金aをX線回折測定で分析したところ、図2のようなXRDプロファイルが得られた。合金aは、図2からわかるように、微結晶な合金材料であり、Scherrerの式に基づいて強度の最も大きなピークの半価幅から算出した結晶粒(結晶子)の粒径は10nmであった。
ここで、最大ピークは、2θ=28〜29°付近に観測され、そのピークの半価幅は0.5であった。なお、半価幅は、図2からバックグラウンドを引いて得られた図3から算出した。
When the alloy a was analyzed by X-ray diffraction measurement, an XRD profile as shown in FIG. 2 was obtained. As can be seen from FIG. 2, the alloy a is a microcrystalline alloy material, and the crystal grain size (crystallite) calculated from the half-value width of the peak with the highest intensity based on Scherrer's formula was 10 nm. It was.
Here, the maximum peak was observed in the vicinity of 2θ = 28 to 29 °, and the half width of the peak was 0.5. The half width was calculated from FIG. 3 obtained by subtracting the background from FIG.

X線回折測定の結果から、合金aの中には、Si単体相(A相)とTiSi2相(B相)とが存在していると推定された。合金aの中にこれらの2相のみが存在すると仮定し、Si単体相とTiSi2相との存在割合を計算すると、Si:TiSi2=80:20(重量比)であることが判明した。 From the results of the X-ray diffraction measurement, it was estimated that the Si a phase (A phase) and TiSi 2 phase (B phase) exist in the alloy a. Assuming that only these two phases are present in the alloy a and calculating the abundance ratio of the Si simple phase and the TiSi 2 phase, it was found that Si: TiSi 2 = 80: 20 (weight ratio).

合金aの断面を透過電子顕微鏡(TEM)で観察したところ、非晶質領域と、粒径10nm程度の結晶粒(結晶子)からなるSi単体相と、粒径15〜20nm程度の結晶粒(結晶子)を有するTiSi2相とが、それぞれ存在していることが判明した。 When the cross section of the alloy a was observed with a transmission electron microscope (TEM), an Si region composed of an amorphous region, crystal grains having a particle size of about 10 nm (crystallites), and crystal grains having a particle size of about 15 to 20 nm ( It has been found that there are TiSi 2 phases having crystallites).

(2)負極の作製
上記で得た合金aと、黒鉛とを、表1記載の重量比で混合した。合金aと黒鉛との合計100重量部に対して、結着剤としてポリアクリル酸(分子量15万、和光純薬工業(株)製)を5重量部添加し、純水とともに充分に混練することで、負極合剤ペーストを得た。その際、合金aの全量とポリアクリル酸を2.5重量部とを均一になるまで混練し、その後、黒鉛と残りのポリアクリル酸を添加して混練した。ここで、黒鉛には、ティムカル社製の平均粒径20μmの鱗片状黒鉛(KS−44)を用いた。
(2) Production of Negative Electrode Alloy a obtained above and graphite were mixed at a weight ratio shown in Table 1. 5 parts by weight of polyacrylic acid (molecular weight 150,000, manufactured by Wako Pure Chemical Industries, Ltd.) is added as a binder to a total of 100 parts by weight of alloy a and graphite, and sufficiently kneaded with pure water. Thus, a negative electrode mixture paste was obtained. At that time, the whole amount of the alloy a and 2.5 parts by weight of polyacrylic acid were kneaded until uniform, and then graphite and the remaining polyacrylic acid were added and kneaded. Here, scaly graphite (KS-44) having an average particle diameter of 20 μm manufactured by Timcal Corporation was used as graphite.

負極合剤ペーストを厚み10μmの電解銅箔(古河サーキットフォイル(株)製)からなる集電体の両面に塗布し、乾燥し、圧延した。その結果、集電体と、その両面に担持された負極合剤層からなる負極が得られた。
得られた負極の断面を走査電子顕微鏡(SEM)によって観察したところ、図1とほぼ同様の構造が形成されていることが確認できた。負極合剤層の密度は1.3〜1.4g/cm3であり、負極合剤層の空孔率は40〜45%であった。
The negative electrode mixture paste was applied to both sides of a current collector made of an electrolytic copper foil (manufactured by Furukawa Circuit Foil Co., Ltd.) having a thickness of 10 μm, dried and rolled. As a result, a negative electrode comprising a current collector and a negative electrode mixture layer carried on both surfaces thereof was obtained.
When the cross section of the obtained negative electrode was observed with a scanning electron microscope (SEM), it was confirmed that a structure substantially the same as that in FIG. 1 was formed. The density of the negative electrode mixture layer was 1.3 to 1.4 g / cm 3 , and the porosity of the negative electrode mixture layer was 40 to 45%.

(3)正極の作製
正極活物質であるLiCoO2を、Li2CO3とCoCO3とを所定のモル比で混合し、950℃で加熱することによって合成し、これを45μm以下の大きさに分級したものを用いた。正極活物質100重量部に対して、導電剤としてアセチレンブラックを5重量部、結着剤としてポリフッ化ビニリデン4重量部、分散媒として適量のN―メチル−2−ピロリドンを加え、充分に混合し、正極合剤ペーストを得た。
正極合剤ペーストを厚み15μmのアルミニウム箔(昭和電工(株)製)からなる集電体の両面に塗布し、乾燥し、圧延した。その結果、集電体と、その両面に担持された正極合剤層からなる正極が得られた。
(3) Production of positive electrode LiCoO 2 which is a positive electrode active material was synthesized by mixing Li 2 CO 3 and CoCO 3 at a predetermined molar ratio and heating at 950 ° C., and this was made into a size of 45 μm or less. What was classified was used. To 100 parts by weight of the positive electrode active material, 5 parts by weight of acetylene black as a conductive agent, 4 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersion medium are added and mixed thoroughly. A positive electrode mixture paste was obtained.
The positive electrode mixture paste was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm (manufactured by Showa Denko KK), dried and rolled. As a result, a positive electrode comprising a current collector and a positive electrode mixture layer carried on both surfaces thereof was obtained.

(4)円筒型電池の作製
図4に示すような円筒型のリチウムイオン二次電池を作製した。
正極35と負極36とを、それぞれ所定のサイズに裁断した。正極の集電体には、アルミニウム製の正極リード35aの一端を接続した。負極の集電体には、ニッケル製の負極リード36aの一端を接続した。その後、正極35と負極36とを、両極板より幅広で厚さ20μmのポリエチレン樹脂製微多孔フィルムからなるセパレータ37を介して捲回し、極板群を構成した。極板群の外面はセパレータ37で介装した。この極板群の上下に、それぞれ上部絶縁リング38aおよび下部絶縁リング38bを配して、電池缶31の内空間に収容した。次いで、非水電解液を電池缶内に注液し、極板群に含浸させた。正極リード35aの他端は、周縁に絶縁パッキン33が配された封口板32の裏面に溶接した。負極リード36aの他端は、電池缶の内底面に溶接した。最後に電池缶31の開口を、封口板32で塞いだ。こうして、円筒型のリチウムイオン二次電池(電池1〜9)を完成した。電池1〜9のうち、電池1〜6は実施例となり、電池7〜9は比較例となる。
非水電解液には、エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合非水溶媒に六フッ化リン酸リチウムを1モル/Lの濃度で溶解したものを用いた。
(4) Production of Cylindrical Battery A cylindrical lithium ion secondary battery as shown in FIG. 4 was produced.
The positive electrode 35 and the negative electrode 36 were each cut into a predetermined size. One end of an aluminum positive electrode lead 35a was connected to the positive electrode current collector. One end of a nickel negative electrode lead 36a was connected to the negative electrode current collector. Thereafter, the positive electrode 35 and the negative electrode 36 were wound through a separator 37 made of a polyethylene resin microporous film having a width wider than both electrode plates and a thickness of 20 μm, thereby constituting an electrode plate group. The outer surface of the electrode plate group was interposed with a separator 37. An upper insulating ring 38 a and a lower insulating ring 38 b are arranged above and below the electrode plate group, respectively, and accommodated in the inner space of the battery can 31. Next, a non-aqueous electrolyte was poured into the battery can and impregnated into the electrode plate group. The other end of the positive electrode lead 35a was welded to the back surface of the sealing plate 32 having the insulating packing 33 disposed on the periphery. The other end of the negative electrode lead 36a was welded to the inner bottom surface of the battery can. Finally, the opening of the battery can 31 was closed with a sealing plate 32. Thus, cylindrical lithium ion secondary batteries (batteries 1 to 9) were completed. Among the batteries 1 to 9, the batteries 1 to 6 are examples, and the batteries 7 to 9 are comparative examples.
As the non-aqueous electrolyte, a solution obtained by dissolving lithium hexafluorophosphate at a concentration of 1 mol / L in a mixed non-aqueous solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used.

(5)電池の評価
〈i〉放電容量
20℃に設定した恒温槽の中で、円筒型電池の定電流充電を、充電電流0.2C(1Cは1時間率電流)で電池電圧が4.05Vになるまで行い、次いで定電圧充電を4.05Vで、電流値が0.01Cになるまで行った。その後、円筒型電池の放電を、0.2Cの電流で電池電圧が2.5Vになるまで行った。このときの放電容量を表1に示す。
(5) Battery evaluation <i> Discharge capacity In a constant temperature bath set at 20 ° C., constant current charging of a cylindrical battery was performed at a charging current of 0.2 C (1 C is a 1 hour rate current) and a battery voltage of 4. This was performed until the voltage reached 05 V, and then constant voltage charging was performed at 4.05 V until the current value reached 0.01 C. Thereafter, the cylindrical battery was discharged at a current of 0.2 C until the battery voltage reached 2.5V. The discharge capacity at this time is shown in Table 1.

〈ii〉サイクル寿命
20℃に設定した恒温槽の中で、上記放電容量を測定後の電池の充放電サイクルを以下の条件で繰り返した。
定充電電流を、充電電流1Cで電池電圧が4.05Vになるまで行い、次いで定電圧充電を4.05Vで、電流値が0.05Cになるまで行い、その後、円筒型電池の放電を、1Cの電流で電池電圧が2.5Vになるまで行う操作を繰り返した。そして、2サイクル目の放電容量に対する100サイクル目の放電容量の割合を百分率で求め、容量維持率(%)とした。結果を表1に示す。容量維持率が100%に近いほどサイクル寿命が良好であることを示す。
<Ii> Cycle life In a thermostat set to 20 ° C., the charge / discharge cycle of the battery after measuring the discharge capacity was repeated under the following conditions.
Constant charging current is performed until the battery voltage reaches 4.05 V at a charging current of 1 C, and then constant voltage charging is performed at 4.05 V until the current value reaches 0.05 C. Thereafter, the cylindrical battery is discharged. The operation performed until the battery voltage became 2.5 V with a current of 1 C was repeated. And the ratio of the discharge capacity of the 100th cycle with respect to the discharge capacity of the 2nd cycle was calculated | required in percentage, and it was set as the capacity | capacitance maintenance factor (%). The results are shown in Table 1. The closer the capacity retention rate is to 100%, the better the cycle life.

《比較例1》
負極の作製において、合金aを用いず、黒鉛のみを用いたこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池(電池10)を作製した。結着剤(ポリアクリル酸)は、黒鉛100重量部あたり、5重量部を添加した。
<< Comparative Example 1 >>
In the production of the negative electrode, a cylindrical lithium ion secondary battery (battery 10) was produced in the same manner as in Example 1 except that only the graphite was used without using the alloy a. The binder (polyacrylic acid) was added in an amount of 5 parts by weight per 100 parts by weight of graphite.

《比較例2》
負極の作製において、黒鉛を用いず、合金aのみを用い、導電助材として比表面積70m2/gのアセチレンブラック(電気化学工業(株)製のデンカブラック)を黒鉛100重量部あたり10重量部添加したこと以外、実施例1と同様にして、円筒型のリチウムイオン二次電池(電池11)を作製した。結着剤(ポリアクリル酸)は、合金aの100重量部あたり、5重量部を添加した。
比較例1、2の電池について、実施例1と同様の評価を行った。結果を表2に示す。
<< Comparative Example 2 >>
In the production of the negative electrode, graphite is not used but only alloy a is used, and 10 parts by weight of acetylene black (DENKA BLACK manufactured by Denki Kagaku Kogyo Co., Ltd.) having a specific surface area of 70 m 2 / g is used as a conductive additive. A cylindrical lithium ion secondary battery (battery 11) was produced in the same manner as in Example 1 except for the addition. The binder (polyacrylic acid) was added in an amount of 5 parts by weight per 100 parts by weight of the alloy a.
The batteries of Comparative Examples 1 and 2 were evaluated in the same manner as in Example 1. The results are shown in Table 2.

実施例1において、合金aと黒鉛との合計重量に占める黒鉛の割合が50重量%〜95重量%である負極を用いた電池1〜6の場合、特に比較例1に比べて容量が向上し、かつ比較例2に比べてサイクル寿命が向上することがわかる。
また、比較例1および2の電池を100サイクル後に分解し、その膨張度合いを評価したところ、それぞれの充放電前の負極厚みに比べて比較例1では1.1倍、比較例2では3.2倍に膨張していた。これに対し、例えば実施例1の電池3を100サイクル後に分解し、その膨張度合いを評価したところ、約1.5倍の膨張が確認された。すなわち、実施例の電池は、高容量を維持しながらも合金による膨張を抑制できていることが判明した。
In Example 1, in the case of the batteries 1 to 6 using the negative electrode in which the ratio of the graphite to the total weight of the alloy a and the graphite is 50% by weight to 95% by weight, the capacity is particularly improved as compared with the comparative example 1. And it turns out that a cycle life improves compared with the comparative example 2.
Moreover, when the batteries of Comparative Examples 1 and 2 were disassembled after 100 cycles and the degree of expansion was evaluated, 1.1 times in Comparative Example 1 and 3 in Comparative Example 2 compared to the thickness of the negative electrode before charging and discharging. It had expanded twice. On the other hand, for example, when the battery 3 of Example 1 was disassembled after 100 cycles and the degree of expansion was evaluated, expansion of about 1.5 times was confirmed. That is, it was found that the batteries of the examples were able to suppress expansion due to the alloy while maintaining a high capacity.

《実施例2》
負極の作製において、黒鉛(ティムカル社製のKS−44)とTi−Si合金(合金a)との混合重量比を80:20に固定し、合金aと黒鉛(KS−44)との合計100重量部に対して、表3記載の割合(重量部)で導電助材として上述のアセチレンブラック(電気化学工業(株)製のデンカブラック、比表面積70m2/g)または比表面積が14m2/gの黒鉛(ティムカル社製のKS4)を添加し、結着剤としてポリアクリル酸を5重量部添加した。
上記以外は、実施例1と同様にして、円筒型のリチウムイオン二次電池(電池12〜20)を作製した。その際、合金aの全量と、ポリアクリル酸を3重量部と、所定の添加量のアセチレンブラックまたはKS4を均一になるまで混練し、その後、黒鉛(KS−44)と残りのポリアクリル酸を添加して混練した。
実施例2の電池12〜20について、実施例1と同様の評価を行った。結果を表3に示す。
Example 2
In preparation of the negative electrode, the mixing weight ratio of graphite (KS-44 manufactured by Timcal) and Ti—Si alloy (alloy a) was fixed at 80:20, and the total of alloy a and graphite (KS-44) was 100. The above-mentioned acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd., specific surface area 70 m 2 / g) or specific surface area of 14 m 2 / weight per part by weight as a conductive additive in the proportions (parts by weight) shown in Table 3. g of graphite (KS4 manufactured by Timcal) was added, and 5 parts by weight of polyacrylic acid was added as a binder.
Except for the above, a cylindrical lithium ion secondary battery (batteries 12 to 20) was produced in the same manner as in Example 1. At that time, the total amount of the alloy a, 3 parts by weight of polyacrylic acid, and a predetermined addition amount of acetylene black or KS4 are kneaded until uniform, and then graphite (KS-44) and the remaining polyacrylic acid are mixed. Added and kneaded.
The batteries 12 to 20 of Example 2 were evaluated in the same manner as in Example 1. The results are shown in Table 3.

本実施例の電池は、負極が導電助材としてアセチレンブラックまたはKS4を含んでいることにより、特性が向上し、特にサイクル寿命の向上が顕著であった。また、導電助材の添加量が2重量部程度の少量であっても、未添加の場合(実施例1の電池3)に比べて容量が増加した。
本実施例の負極の断面をSEMで観察したところ、合金aの粒子の周囲に適量の導電助材が配置されていることがわかった。このような導電助材の配置により、負極の導電性が充分に確保され、その結果、合金aの容量が最大限発揮されたものと考えられる。
In the battery of this example, since the negative electrode contained acetylene black or KS4 as a conductive additive, the characteristics were improved, and the cycle life was particularly improved. Further, even when the conductive additive was added in a small amount of about 2 parts by weight, the capacity increased as compared with the case where the conductive additive was not added (battery 3 of Example 1).
When the cross-section of the negative electrode of this example was observed with an SEM, it was found that an appropriate amount of conductive additive was disposed around the particles of the alloy a. It is considered that the conductivity of the negative electrode is sufficiently ensured by such an arrangement of the conductive aid, and as a result, the capacity of the alloy a is maximized.

《実施例3》
〈i〉電池21
実施例1と同様の操作によって得られた0.5μm〜80μmの広い粒度分布を有するTi−Si合金を、第1の篩い(45μmメッシュサイズ)を通して45μmより大きな粒子を除去し、次いで第2の篩い(20μmメッシュサイズ)を通すことによって20μmより小さな粒子を除去し、20〜45μmの粒度分布を有し、平均粒径32μmの合金材料(以下、合金bという)を得た。
合金bを用いたこと以外、実施例1の電池3と同様にして、円筒型のリチウムイオン二次電池(電池21)を作製した。
Example 3
<I> Battery 21
A Ti—Si alloy having a wide particle size distribution of 0.5 μm to 80 μm obtained by the same operation as in Example 1 is passed through a first sieve (45 μm mesh size) to remove particles larger than 45 μm, and then a second Particles smaller than 20 μm were removed by passing through a sieve (20 μm mesh size) to obtain an alloy material (hereinafter referred to as alloy b) having a particle size distribution of 20 to 45 μm and an average particle size of 32 μm.
A cylindrical lithium ion secondary battery (battery 21) was produced in the same manner as the battery 3 of Example 1 except that the alloy b was used.

〈ii〉電池22
実施例1と同様の操作によって得られた0.5μm〜80μmの広い粒度分布を有するTi−Si合金を、第1の篩い(20μmメッシュサイズ)を通して大きな粒子を除去し、次いで第2の篩い(10μmメッシュサイズ)を通して小さな粒子を除去し、10〜20μmの粒度分布を有し、平均粒径13μmの合金材料(以下、合金cという)を得た。
合金cを用いたこと以外、実施例1の電池3と同様にして、円筒型のリチウムイオン二次電池(電池22)を作製した。
<Ii> Battery 22
A Ti—Si alloy having a wide particle size distribution of 0.5 μm to 80 μm obtained by the same operation as in Example 1 was passed through a first sieve (20 μm mesh size) to remove large particles, and then a second sieve ( Small particles were removed through a 10 μm mesh size) to obtain an alloy material (hereinafter referred to as alloy c) having a particle size distribution of 10 to 20 μm and an average particle size of 13 μm.
A cylindrical lithium ion secondary battery (battery 22) was produced in the same manner as the battery 3 of Example 1 except that the alloy c was used.

〈iii〉電池23
実施例1と同様の操作によって得られた0.5μm〜80μmの広い粒度分布を有するTi−Si合金を篩い(10μmメッシュサイズ)で分級することによって、最大粒径10μm、平均粒径8μmの合金材料(以下、合金dという)を得た。
合金dを用いたこと以外、実施例1の電池3と同様にして、円筒型のリチウムイオン二次電池(電池23)を作製した。
実施例3の電池21〜23について、実施例1と同様の評価を行った。結果を表4に示す。
<Iii> Battery 23
An alloy having a maximum particle size of 10 μm and an average particle size of 8 μm is obtained by classifying a Ti—Si alloy having a wide particle size distribution of 0.5 μm to 80 μm obtained by the same operation as in Example 1 with a sieve (10 μm mesh size). A material (hereinafter referred to as alloy d) was obtained.
A cylindrical lithium ion secondary battery (battery 23) was produced in the same manner as the battery 3 of Example 1 except that the alloy d was used.
The batteries 21 to 23 in Example 3 were evaluated in the same manner as in Example 1. The results are shown in Table 4.

本実施例における電池は、初期容量こそ大きな容量が得られるが、充放電サイクル特性が低い傾向にあった。特に電池21および電池22の場合、比較例2に比べても悪い結果であった。これらの電池21〜22で用いた負極の断面をSEMで観察したところ、黒鉛粒子と合金粒子とがそれぞれ凝集して存在しており、図1で示したような構造になっていないことが判明した。
電池21および電池22を100サイクル後に分解して負極を観察したところ、ほとんどの合剤が剥がれ落ち、集電体との接触が困難であった。さらに、集電体にもシワの発生や端部に亀裂が観察された。合金材料の膨張応力によって集電体が変形を受け、その結果シワや切断といった不具合につながったと考えられる。また、実施例23においても一部に合剤の剥がれが確認された。
In the battery of this example, the initial capacity is large, but the charge / discharge cycle characteristics tend to be low. In particular, in the case of the battery 21 and the battery 22, even when compared with the comparative example 2, the result was bad. When the cross section of the negative electrode used in these batteries 21 to 22 was observed with an SEM, it was found that the graphite particles and the alloy particles were present in an aggregated state and did not have the structure shown in FIG. did.
When the battery 21 and the battery 22 were disassembled after 100 cycles and the negative electrode was observed, most of the mixture was peeled off and it was difficult to contact the current collector. Furthermore, wrinkles and cracks were observed at the ends of the current collector. It is considered that the current collector was deformed by the expansion stress of the alloy material, resulting in defects such as wrinkles and cutting. Moreover, in Example 23, peeling of the mixture was confirmed in part.

《比較例3》
実施例1で用いたTi−Si合金(合金a)を電気炉中に導入し、真空下、1000℃で3時間の熱処理を行った。その結果、合金aは結晶性の高い合金材料(以下、合金e)へ変化した。合金eをX線回折測定で分析し、Scherrerの式に基づいて強度の最も大きなピークの半価幅から算出した結晶粒(結晶子)の粒径は1μmであった。ただし、合金eの粒度分布は、合金aと同様のままで変化していなかった。よって、合金eの平均粒径は8μm、最大粒径は10μmのままだった。
合金eを用いたこと以外、実施例1の電池3と同様にして、円筒型のリチウムイオン二次電池(電池24)を作製し、実施例1と同様の評価を行った。結果を表5に示す。
<< Comparative Example 3 >>
The Ti—Si alloy (alloy a) used in Example 1 was introduced into an electric furnace, and heat treatment was performed at 1000 ° C. for 3 hours under vacuum. As a result, the alloy a was changed to an alloy material with high crystallinity (hereinafter, alloy e). The alloy e was analyzed by X-ray diffraction measurement, and the grain size of the crystal grain (crystallite) calculated from the half-value width of the peak with the highest intensity based on the Scherrer equation was 1 μm. However, the particle size distribution of the alloy e remained the same as that of the alloy a and did not change. Therefore, the average particle diameter of the alloy e remained at 8 μm and the maximum particle diameter remained at 10 μm.
A cylindrical lithium ion secondary battery (battery 24) was produced in the same manner as the battery 3 of Example 1 except that the alloy e was used, and the same evaluation as in Example 1 was performed. The results are shown in Table 5.

電池24は、高容量ではあるが、充放電サイクル特性が低い。電池24を100サイクル後に分解して負極を観察したところ、合金粒子がさらに微粉化してサブミクロンサイズの粒子になっていた。これは熱処理によって肥大化したSi結晶相がLiの挿入によって膨張し、破壊されたためと考えている。   The battery 24 has a high capacity but low charge / discharge cycle characteristics. When the battery 24 was disassembled after 100 cycles and the negative electrode was observed, the alloy particles were further pulverized into submicron-sized particles. This is thought to be because the Si crystal phase enlarged by the heat treatment was expanded and destroyed by the insertion of Li.

《実施例4》
合金材料の製造において、金属Tiの代わりに、遷移金属MとしてZr、Ni、Co、Mn、FeまたはCu(いずれも純度99.9%、粒径100−150μm)を用いたこと以外、実施例1と同様の合成方法で合金材料を製造した。得られた合金材料は、実施例1と同様の篩いを通し、最大粒径8μm、平均粒径5μmとした。以下、Zr、Ni、Co、Mn、FeおよびCuを用いた合金材料を、それぞれ合金f、g、h、i、jおよびkと称する。
Example 4
In the production of the alloy material, except that Zr, Ni, Co, Mn, Fe or Cu (all of which purity is 99.9% and particle size is 100 to 150 μm) is used as the transition metal M instead of the metal Ti. The alloy material was manufactured by the synthesis method similar to 1. The obtained alloy material was passed through the same sieve as in Example 1 to obtain a maximum particle size of 8 μm and an average particle size of 5 μm. Hereinafter, alloy materials using Zr, Ni, Co, Mn, Fe, and Cu are referred to as alloys f, g, h, i, j, and k, respectively.

合金f〜kをX線回折測定で分析したところ、いずれも図2のようなXRDプロファイルが得られ、微結晶な合金材料であることがわかった。また、Scherrerの式に基づいて強度の最も大きなピークの半価幅から算出した結晶粒(結晶子)の粒径は、9〜25nmの範囲であった。
X線回折測定の結果から、合金f〜kの中には、Si単体相(A相)とMSi2相(B相)とが存在していると推定された。合金f〜kの中にこれらの2相のみが存在すると仮定し、Si単体相とMSi2相との存在割合を計算したところ、Si:MSi2の重量比は表6記載のようであった(Si相:65−83重量%)。
When the alloys f to k were analyzed by X-ray diffraction measurement, an XRD profile as shown in FIG. 2 was obtained, and it was found that the alloys were microcrystalline alloy materials. Moreover, the grain size of the crystal grains (crystallites) calculated from the half-value width of the peak with the highest intensity based on Scherrer's formula was in the range of 9 to 25 nm.
From the result of the X-ray diffraction measurement, it was estimated that Si single phase (A phase) and MSi 2 phase (B phase) existed in the alloys f to k. Assuming that only these two phases exist in the alloys f to k and calculating the abundance ratio of the Si simple substance phase and the MSi 2 phase, the weight ratio of Si: MSi 2 was as shown in Table 6. (Si phase: 65-83 wt%).

合金f〜kを用いたこと以外、実施例1の電池3と同様にして、円筒型のリチウムイオン二次電池(電池25〜30)を作製し、実施例1と同様の評価を行った。結果を表6に示す。   A cylindrical lithium ion secondary battery (batteries 25 to 30) was produced in the same manner as the battery 3 of Example 1 except that the alloys f to k were used, and the same evaluation as in Example 1 was performed. The results are shown in Table 6.

電池25〜30の結果より、どの合金材料を用いても、高容量および長寿命を両立する電池が得られることが判明した。なお、特に良好な充放電サイクル特性を示した合金材料は、Ti−Si合金(合金a)、Zr−Si合金(合金f)であった。これらの材料は、他の合金材料に比較して、合金粉末自体の電子伝導性が高く、その結果、膨張にも影響されず、良好な充放電サイクル特性が得られたものと想定される。   From the results of the batteries 25 to 30, it was found that a battery having both a high capacity and a long life can be obtained by using any alloy material. The alloy materials that showed particularly good charge / discharge cycle characteristics were Ti—Si alloy (alloy a) and Zr—Si alloy (alloy f). It is assumed that these materials have higher electron conductivity of the alloy powder itself than other alloy materials, and as a result, good charge / discharge cycle characteristics are obtained without being affected by expansion.

《実施例5》
実施例1と同様の操作によって得られた0.5μm〜80μmの広い粒度分布を有するTi−Si合金を、各種篩いを用いて分級し、平均粒径が2μm、5μmもしくは7μmであり、かつ最大粒径が10μm以下である合金材料を得た。
一方、黒鉛(KS−44)についても、解砕処理と篩いによる分級を行って、平均粒径が8μm、13μm、16μmもしくは20μm(未処理)の黒鉛材料を得た。
上記の合金材料と黒鉛材料とを、表7に示す組み合わせで、黒鉛:合金=80:20(重量比)で混合したこと以外、実施例1の電池3と同様にして、円筒型のリチウムイオン二次電池(電池31〜38)を作製し、実施例1と同様の評価を行った。合金材料の平均粒径Ralloyと、黒鉛の平均粒径Rgraphiteとの比:Ralloy/Rgraphiteとともに結果を表7に示す。
Example 5
Ti-Si alloys having a wide particle size distribution of 0.5 μm to 80 μm obtained by the same operation as in Example 1 are classified using various sieves, and the average particle size is 2 μm, 5 μm, or 7 μm, and the maximum An alloy material having a particle size of 10 μm or less was obtained.
On the other hand, graphite (KS-44) was also crushed and classified by sieving to obtain a graphite material having an average particle size of 8 μm, 13 μm, 16 μm, or 20 μm (untreated).
Cylindrical lithium ions in the same manner as the battery 3 of Example 1, except that the above alloy materials and graphite materials were mixed in the combinations shown in Table 7 at a ratio of graphite: alloy = 80: 20 (weight ratio). Secondary batteries (batteries 31 to 38) were produced and evaluated in the same manner as in Example 1. Table 7 shows the results together with the ratio of the average particle diameter Ralloy of the alloy material and the average particle diameter Rgraphite of the graphite: Ralloy / Rgraphite.

電池36および電池38では、サイクル寿命が相対的に低くなった。電池36および電池38では、Ralloy/Rgraphite値が0.15より低い値である。これらの電池の負極断面をSEMで観察したところ、黒鉛粒子間に挟み込まれた状態で、複数の合金粒子が凝集体を形成していた。そのため、100サイクル後の電池を分解し、負極を観察したところ、負極合剤の一部が集電体から剥離していた。
一方、Ralloy/Rgraphite値が0.15〜0.9の範囲の場合、高容量と良好なサイクル寿命が得られた。また、Ralloy/Rgraphite値が0.2〜0.4の範囲の場合、特に高容量で長寿命が得られた。これらの電池の負極断面を観察したことろ、黒鉛粒子間に合金粒子が均一に分散しており、図1に示したような構造が確認された。
In the battery 36 and the battery 38, the cycle life was relatively low. In the battery 36 and the battery 38, the Ralloy / Rgraphite value is lower than 0.15. When the negative electrode cross section of these batteries was observed with an SEM, a plurality of alloy particles formed aggregates while being sandwiched between graphite particles. Therefore, when the battery after 100 cycles was disassembled and the negative electrode was observed, a part of the negative electrode mixture was peeled from the current collector.
On the other hand, when the Ralloy / Rgraphite value was in the range of 0.15 to 0.9, high capacity and good cycle life were obtained. Further, when the Ralloy / Rgraphite value was in the range of 0.2 to 0.4, a long life was obtained particularly at a high capacity. Observation of the negative electrode cross section of these batteries revealed that the alloy particles were uniformly dispersed among the graphite particles, and the structure as shown in FIG. 1 was confirmed.

《実施例6》
実施例1の電池1〜6と同様に、合金aと黒鉛(KS−44)とを、表8記載の重量比で用いた。また、合金aと黒鉛との合計100重量部に対して、結着剤としてポリアクリル酸(分子量15万、和光純薬工業(株)製)5重量部を用いた。ただし、予め黒鉛とポリアクリル酸とを、それぞれ全量、純水とともに充分に混練した。その後、黒鉛とポリアクリル酸と純水との混合物に、合金aを加え、さらに混練することで負極合剤ペーストを得た。このペーストを用いたこと以外、実施例1と同様に負極を得た。
Example 6
Similar to the batteries 1 to 6 of Example 1, alloy a and graphite (KS-44) were used in the weight ratios shown in Table 8. Further, 5 parts by weight of polyacrylic acid (molecular weight: 150,000, manufactured by Wako Pure Chemical Industries, Ltd.) was used as a binder with respect to a total of 100 parts by weight of alloy a and graphite. However, graphite and polyacrylic acid were kneaded in advance together with the total amount of pure water. Thereafter, an alloy a was added to a mixture of graphite, polyacrylic acid and pure water, and further kneaded to obtain a negative electrode mixture paste. A negative electrode was obtained in the same manner as in Example 1 except that this paste was used.

得られた負極の断面をSEMにより観察したところ、図1とほぼ同様の構造が形成されていることが確認できた。さらに、複数の接点で黒鉛表面と合金aとが接着していることが確認された。負極合剤層の密度は1.3g/cm3であり、負極合剤層の空孔率は45%であった。
得られた負極を用いて、実施例1と同様にして、円筒型のリチウムイオン電池(電池39〜44)を作製した。電池39〜44について実施例1と同様の評価を行った。結果を表8に示す。
When the cross section of the obtained negative electrode was observed by SEM, it was confirmed that a structure substantially similar to that shown in FIG. 1 was formed. Furthermore, it was confirmed that the graphite surface and the alloy a were adhered at a plurality of contacts. The density of the negative electrode mixture layer was 1.3 g / cm 3 , and the porosity of the negative electrode mixture layer was 45%.
Cylindrical lithium ion batteries (batteries 39 to 44) were produced in the same manner as in Example 1 using the obtained negative electrode. Evaluation similar to Example 1 was performed about the batteries 39-44. The results are shown in Table 8.

電池39〜44は、実施例1の電池1〜6に比較して、僅かではあるが、高容量であり、かつサイクル特性も向上している。これらの電池を評価後に分解して調べたところ、負極の膨張は1.3〜1.4倍と低くなっていた。また、電池4と電池42において、それぞれ分解後の負極のSEM観察を行ったところ、電池4の負極は合剤表面の一部が膨らんでいた。一方、電池42では、ほぼ平滑な表面を維持していた。実施例6の電池では、黒鉛表面に合金材料が結着剤を介して固定化されたため、過度な膨張が抑制されたと考えられる。   The batteries 39 to 44 have a small capacity but a high cycle characteristic as compared with the batteries 1 to 6 of Example 1. When these batteries were disassembled and evaluated after evaluation, the expansion of the negative electrode was as low as 1.3 to 1.4 times. In addition, in the battery 4 and the battery 42, SEM observation of the negative electrode after decomposition was performed. As a result, a part of the mixture surface of the negative electrode of the battery 4 was swollen. On the other hand, the battery 42 maintained a substantially smooth surface. In the battery of Example 6, since the alloy material was fixed on the graphite surface via the binder, it is considered that excessive expansion was suppressed.

《実施例7》
(電池45)
合金aと黒鉛との合計100重量部に対して、さらに炭素繊維としてVGCF(昭和電工(株)製、平均長さ20μm、アスペクト比500)を3重量部添加したこと以外、実施例1の電池4と同様に、負極を作製した。この負極を用いて、実施例1と同様にして、電池45を作製した。
Example 7
(Battery 45)
The battery of Example 1 except that 3 parts by weight of VGCF (manufactured by Showa Denko KK, average length 20 μm, aspect ratio 500) is further added as a carbon fiber to 100 parts by weight of the alloy a and graphite. Similarly to 4, a negative electrode was produced. Using this negative electrode, a battery 45 was produced in the same manner as in Example 1.

(電池46)
合金aをSiO2ボートに載せ、管状炉内に設置した。炉内部は、真空度3.0×10-1Paに維持した。真空状態の炉内に、ヘリウムと水素との混合ガスとともに、メタンを10sccmの流量で流通させた。この状態で500℃で30分間、合金aを加熱した。その結果、合金aの表面に、アスペクト比20〜100程度の炭素繊維を成長させることができた。生成した炭素繊維の量は、合金aの100重量部あたり、6重量部であった。こうして得られた合金aと炭素繊維との複合材料を合金aの代わりに用いたこと以外、実施例1の電池4と同様に負極を作製し、その負極を用いて、実施例1と同様にして、電池電池46を作製した。
(Battery 46)
Alloy a was placed on a SiO 2 boat and placed in a tubular furnace. The inside of the furnace was maintained at a vacuum degree of 3.0 × 10 −1 Pa. In a vacuum furnace, methane was circulated at a flow rate of 10 sccm together with a mixed gas of helium and hydrogen. In this state, the alloy a was heated at 500 ° C. for 30 minutes. As a result, carbon fibers having an aspect ratio of about 20 to 100 could be grown on the surface of the alloy a. The amount of carbon fiber produced was 6 parts by weight per 100 parts by weight of alloy a. A negative electrode was prepared in the same manner as the battery 4 of Example 1 except that the composite material of the alloy a and carbon fiber thus obtained was used instead of the alloy a, and the negative electrode was used in the same manner as in Example 1. Thus, a battery battery 46 was produced.

(電池47)
黒鉛と合金aとを、黒鉛:合金a=70:30の重量比で混合し、メカノフュージョン装置((株)ホソカワミクロン製)で複合化を行った。得られた複合材料をSEMで観察したところ、黒鉛表面が合金aで覆われていることが判明した。複合材料の平均粒径は、約28μmであった。この複合材料を合金aの代わりに用いたこと以外、電池48と同様の条件で、複合材料の表面に炭素繊維を析出させた。SEM観察によると、炭素繊維のアスペクト比は20〜100程度であり、炭素繊維の一部は合金aの表面だけでなく、黒鉛の表面にも付着していた。生成した炭素繊維の量は、合金aの100重量部あたり、6重量部であった。こうして得られた合金aと黒鉛と炭素繊維との複合材料を、合金aと黒鉛の代わりに用いたこと以外、実施例1の電池4と同様に負極を作製し、その負極を用いて、実施例1と同様にして、電池電池47を作製した。
電池45〜47について、実施例1と同様の評価を行った。結果を表9に示す。
(Battery 47)
Graphite and alloy a were mixed at a weight ratio of graphite: alloy a = 70: 30, and composited with a mechanofusion apparatus (manufactured by Hosokawa Micron Corporation). When the obtained composite material was observed by SEM, it was found that the graphite surface was covered with the alloy a. The average particle size of the composite material was about 28 μm. Carbon fibers were deposited on the surface of the composite material under the same conditions as in the battery 48 except that this composite material was used instead of the alloy a. According to SEM observation, the aspect ratio of the carbon fiber was about 20 to 100, and a part of the carbon fiber was adhered not only to the surface of the alloy a but also to the surface of graphite. The amount of carbon fiber produced was 6 parts by weight per 100 parts by weight of alloy a. A negative electrode was produced in the same manner as the battery 4 of Example 1 except that the composite material of alloy a, graphite, and carbon fiber thus obtained was used in place of the alloy a and graphite, and the negative electrode was used. In the same manner as in Example 1, a battery battery 47 was produced.
The batteries 45 to 47 were evaluated in the same manner as in Example 1. The results are shown in Table 9.

表9に示すように、電池45〜47は、いずれも電池4と比較して、充放電サイクル特性が向上した。すなわち、負極への炭素繊維の混入は、充放電サイクル特性の向上に効果的であった。また、合金材料や黒鉛に炭素繊維が結合している方が、充放電サイクル特性の向上が大きかった。これは集電性が向上したためと考えられる。   As shown in Table 9, the batteries 45 to 47 all had improved charge / discharge cycle characteristics compared to the battery 4. That is, mixing of the carbon fiber into the negative electrode was effective in improving charge / discharge cycle characteristics. Further, when the carbon fiber was bonded to the alloy material or graphite, the charge / discharge cycle characteristics were greatly improved. This is thought to be due to the improvement in current collection.

本発明の非水電解質二次電池用負極は、高容量および良好な充放電サイクル特性を両立する優れた非水電解質二次電池を与える。本発明は、全ての形態の非水電解質二次電池に適用可能であり、例えば実施例で挙げた円筒型のみでなく、コイン型、角型、扁平型などの形状を有し、かつ捲回型、積層型などの極板群構造を有する電池にも適用可能である。本発明の非水電解質二次電池は、移動体通信機器、携帯電子機器などの主電源に有用である。   The negative electrode for a non-aqueous electrolyte secondary battery of the present invention provides an excellent non-aqueous electrolyte secondary battery having both high capacity and good charge / discharge cycle characteristics. The present invention can be applied to all forms of non-aqueous electrolyte secondary batteries. For example, the present invention has not only the cylindrical shape mentioned in the embodiment but also a coin shape, a square shape, a flat shape, etc. The present invention can also be applied to a battery having an electrode plate group structure such as a mold or a stacked type. The nonaqueous electrolyte secondary battery of the present invention is useful as a main power source for mobile communication devices, portable electronic devices and the like.

本発明の負極の一例の断面写真(倍率1000倍)である。It is a cross-sectional photograph (1000-times multiplication factor) of an example of the negative electrode of this invention. 本発明に係るTi−Si合金のXRDプロファイルである。3 is an XRD profile of a Ti—Si alloy according to the present invention. 図2のXRDプロファイルからバックグラウンドを引いた図である。FIG. 3 is a diagram in which a background is subtracted from the XRD profile of FIG. 2. 本発明の実施例で作製した円筒型電池の縦断面図である。It is a longitudinal cross-sectional view of the cylindrical battery produced in the Example of this invention.

符号の説明Explanation of symbols

1 集電体
2 合金粒子
3 黒鉛粒子
31 電池缶
32 封口板
33 絶縁パッキン
35 正極
35a 正極リード
36 負極
36a 負極リード
37 セパレータ
38a 上部絶縁リング
38b 下部絶縁リング
DESCRIPTION OF SYMBOLS 1 Current collector 2 Alloy particle 3 Graphite particle 31 Battery can 32 Sealing plate 33 Insulation packing 35 Positive electrode 35a Positive electrode lead 36 Negative electrode 36a Negative electrode lead 37 Separator 38a Upper insulating ring 38b Lower insulating ring

Claims (11)

Liを電気化学的に吸蔵および放出可能な少なくとも1種の合金材料と黒鉛とを含み、
前記合金材料は、Siを主体とするA相と、少なくとも1種の遷移金属元素とSiとの金属間化合物からなるB相とを含み、
前記A相および前記B相の少なくとも1種が、微結晶または非晶質の領域からなり、
前記A相と前記B相との合計重量に占める前記A相の割合が、40重量%より多く、95重量%以下であり、
前記合金材料と前記黒鉛との合計重量に占める前記黒鉛の割合は、50重量%以上、95重量%以下である、非水電解質二次電池用負極。
Including at least one alloy material capable of electrochemically inserting and extracting Li and graphite;
The alloy material includes an A phase mainly composed of Si, and a B phase composed of an intermetallic compound of at least one transition metal element and Si,
At least one of the A phase and the B phase is composed of a microcrystalline or amorphous region;
The proportion of the A phase in the total weight of the A phase and the B phase is more than 40% by weight and 95% by weight or less,
The negative electrode for a non-aqueous electrolyte secondary battery, wherein a ratio of the graphite to a total weight of the alloy material and the graphite is 50% by weight or more and 95% by weight or less.
前記合金材料が、前記黒鉛の粒子が形成する間隙に存在する、請求項1記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the alloy material is present in a gap formed by the graphite particles. 前記合金材料の最大粒径は、10μm以下である、請求項2記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 2, wherein the alloy material has a maximum particle size of 10 μm or less. 結着剤を更に含み、前記合金材料の少なくとも一部が、前記黒鉛表面に前記結着剤を介して接着している、請求項1記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, further comprising a binder, wherein at least a part of the alloy material is adhered to the graphite surface via the binder. 前記合金材料の平均粒径Ralloyと、前記黒鉛の平均粒径Rgraphiteとの比:Ralloy/Rgraphiteが、0.15〜0.90の範囲にある、請求項1記載の非水電解質二次電池用負極。   The ratio of the average particle diameter Ralloy of the alloy material to the average particle diameter Rgraphite of the graphite: Ralloy / Rgraphite is in the range of 0.15 to 0.90. Negative electrode. 導電助材を更に含み、前記導電助材の比表面積が10m2/g以上である、請求項1記載の非水電解質二次電池用負極。 The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, further comprising a conductive additive, wherein the specific surface area of the conductive additive is 10 m 2 / g or more. 前記導電助材は、アスペクト比が10以上の炭素繊維であり、前記炭素繊維の少なくとも一方の端部は、前記合金材料に付着もしくは結合している、請求項6記載の非水電解質二次電池用負極。   The non-aqueous electrolyte secondary battery according to claim 6, wherein the conductive additive is a carbon fiber having an aspect ratio of 10 or more, and at least one end of the carbon fiber is attached or bonded to the alloy material. Negative electrode. 前記炭素繊維の少なくとも一部は、その一方の端部が前記合金材料に付着もしくは結合し、他方の端部が前記黒鉛に付着もしくは結合している、請求項7記載の非水電解質二次電池用負極。   The non-aqueous electrolyte secondary battery according to claim 7, wherein at least a part of the carbon fiber has one end attached or bonded to the alloy material and the other end attached or bonded to the graphite. Negative electrode. 前記炭素繊維は、前記合金材料および前記黒鉛の少なくとも一方を、炭化水素気流下で加熱することにより得られる、請求項8記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 8, wherein the carbon fiber is obtained by heating at least one of the alloy material and the graphite in a hydrocarbon stream. 前記合金材料と前記黒鉛と前記導電助材との合計重量に占める前記導電助材の割合は、10重量%以下である、請求項6記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 6, wherein a ratio of the conductive additive to a total weight of the alloy material, the graphite, and the conductive additive is 10% by weight or less. Liを電気化学的に吸蔵および放出可能な正極、負極および非水電解液から構成される非水電解質二次電池において、
前記負極は、Liを電気化学的に吸蔵および放出可能な少なくとも1種の合金材料と黒鉛とを含み、
前記少なくとも1種の合金材料は、Siを主体とするA相と、少なくとも1種の遷移金属元素とSiとの金属間化合物からなるB相とを含み、
前記A相および前記B相の少なくとも1種が、微結晶または非晶質の領域からなり、
前記A相と前記B相との合計重量に占める前記A相の割合が、40重量%より多く、95重量%以下であり、
前記合金材料と前記黒鉛との合計重量に占める前記黒鉛の割合は、50重量%以上、95重量%以下である、非水電解質二次電池。

In a non-aqueous electrolyte secondary battery composed of a positive electrode, a negative electrode, and a non-aqueous electrolyte capable of electrochemically inserting and extracting Li,
The negative electrode includes at least one alloy material capable of electrochemically inserting and extracting Li and graphite.
The at least one alloy material includes an A phase mainly composed of Si, and a B phase composed of an intermetallic compound of at least one transition metal element and Si,
At least one of the A phase and the B phase is composed of a microcrystalline or amorphous region;
The proportion of the A phase in the total weight of the A phase and the B phase is more than 40% by weight and 95% by weight or less,
The ratio of the said graphite to the total weight of the said alloy material and the said graphite is a nonaqueous electrolyte secondary battery which is 50 to 95 weight%.

JP2005297069A 2004-11-15 2005-10-12 Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including the same Active JP4794972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005297069A JP4794972B2 (en) 2004-11-15 2005-10-12 Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004330608 2004-11-15
JP2004330608 2004-11-15
JP2005297069A JP4794972B2 (en) 2004-11-15 2005-10-12 Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including the same

Publications (2)

Publication Number Publication Date
JP2006164952A JP2006164952A (en) 2006-06-22
JP4794972B2 true JP4794972B2 (en) 2011-10-19

Family

ID=36666680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005297069A Active JP4794972B2 (en) 2004-11-15 2005-10-12 Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including the same

Country Status (1)

Country Link
JP (1) JP4794972B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131429B2 (en) * 2006-12-15 2013-01-30 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same
KR100972187B1 (en) * 2008-01-15 2010-07-26 한국과학기술원 Anode active material for lithium secondary battery, preparation method thereof and lithium secondary battery comprising same
JP5673545B2 (en) * 2009-09-25 2015-02-18 日本ゼオン株式会社 Lithium ion secondary battery negative electrode and lithium ion secondary battery
JP5754855B2 (en) * 2012-04-25 2015-07-29 信越化学工業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2013235685A (en) * 2012-05-07 2013-11-21 Furukawa Electric Co Ltd:The Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries arranged by use thereof, and lithium ion secondary battery arranged by use thereof
WO2014122748A1 (en) * 2013-02-07 2014-08-14 株式会社日立製作所 Negative electrode active material for lithium secondary cell, and lithium secondary cell
JP2015060640A (en) * 2013-09-17 2015-03-30 中央電気工業株式会社 Alloy-graphite composite particle and method for producing the same
WO2015163398A1 (en) * 2014-04-25 2015-10-29 三井金属鉱業株式会社 Negative electrode active substance for non-aqueous electrolyte secondary batteries
JP6596815B2 (en) 2014-11-27 2019-10-30 株式会社村田製作所 Secondary battery active material, secondary battery electrode, secondary battery, electric vehicle and electronic device
JP6459479B2 (en) * 2014-12-17 2019-01-30 日産自動車株式会社 Negative electrode for electric device and electric device using the same
JP6488690B2 (en) * 2014-12-17 2019-03-27 日産自動車株式会社 Negative electrode for electric device and electric device using the same
KR102323025B1 (en) * 2015-02-26 2021-11-10 일진전기 주식회사 Negative electrode plate for secondary battery and secondary battery comprising the same
EP3306733B1 (en) * 2015-05-29 2022-04-20 Nec Corporation Lithium ion secondary battery
JP7520006B2 (en) * 2018-12-19 2024-07-22 ノボニクス バッテリー テクノロジー ソリューションズ インコーポレイテッド Electrochemically active dispersions and composites for anodes in rechargeable batteries - Patents.com
JP2021150111A (en) * 2020-03-18 2021-09-27 日本製鉄株式会社 Electrode active material layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2006164952A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
US7537862B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP5043344B2 (en) Anode for non-aqueous electrolyte secondary battery
JP5200339B2 (en) Nonaqueous electrolyte secondary battery
KR101648250B1 (en) Nanoscale particles used in negative electrode for lithium ion secondary battery and method for manufacturing same
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP6652121B2 (en) Non-aqueous electrolyte secondary battery
JP4809617B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4474184B2 (en) Method for producing active material for lithium secondary battery and method for producing lithium secondary battery
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2004146253A (en) Negative electrode and battery, and manufacturing method of these
JP2005123175A (en) COMPOSITE PARTICLE AND PROCESS FOR PRODUCING THE SAME, Anode Material and Anode for Lithium Ion Secondary Battery, and Lithium Ion Secondary Battery
KR20060051615A (en) Anode active material and nonaqueous electrolyte secondary battery for nonaqueous electrolyte secondary battery
JP4794972B2 (en) Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including the same
JP2009245940A (en) Nonaqueous electrolyte secondary battery
JP2004127535A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
JP2013235685A (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries arranged by use thereof, and lithium ion secondary battery arranged by use thereof
JP2007250390A (en) Negative electrode, secondary battery and manufacturing method of negative electrode
US10050260B2 (en) Anode compositions for rechargeable batteries and methods of making same
JP2023534039A (en) Electrode material containing silicon oxide and single-walled carbon nanotubes
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3769277B2 (en) Nonaqueous electrolyte secondary battery
JP4984402B2 (en) Nonaqueous electrolyte secondary battery
JP2022102228A (en) Negative electrode for secondary battery, slurry for negative electrode, and method for manufacturing negative electrode
JP3848187B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2014197497A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110727

R150 Certificate of patent or registration of utility model

Ref document number: 4794972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3