[go: up one dir, main page]

JP4766940B2 - Method for producing hydrocarbon oil - Google Patents

Method for producing hydrocarbon oil Download PDF

Info

Publication number
JP4766940B2
JP4766940B2 JP2005204591A JP2005204591A JP4766940B2 JP 4766940 B2 JP4766940 B2 JP 4766940B2 JP 2005204591 A JP2005204591 A JP 2005204591A JP 2005204591 A JP2005204591 A JP 2005204591A JP 4766940 B2 JP4766940 B2 JP 4766940B2
Authority
JP
Japan
Prior art keywords
oil
catalyst
mass
heavy
pore diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005204591A
Other languages
Japanese (ja)
Other versions
JP2006052390A (en
Inventor
芳範 加藤
洋 水谷
和幸 桐山
敏之 廣瀬
貴志 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2005204591A priority Critical patent/JP4766940B2/en
Publication of JP2006052390A publication Critical patent/JP2006052390A/en
Application granted granted Critical
Publication of JP4766940B2 publication Critical patent/JP4766940B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

本発明は、硫黄分を含有する重質油の水素化処理方法に関し、詳しくは該重質油として減圧軽油と常圧残油の混合油用い、それを水素化処理する効率的で経済性に優れた水素化処理方法であって、特定の範囲内にある平均細孔径の触媒を複数種類組合せて使用することにより、高度に脱硫処理された流動接触分解プロセス用原料油を製造する方法に関する。   TECHNICAL FIELD The present invention relates to a method for hydrotreating heavy oil containing sulfur, and more specifically, using a mixed oil of reduced pressure light oil and atmospheric residual oil as the heavy oil, and hydrotreating it efficiently and economically. The present invention relates to an excellent hydrotreating method, which relates to a method for producing a feedstock for fluid catalytic cracking process that is highly desulfurized by using a combination of plural kinds of catalysts having an average pore diameter within a specific range.

ガソリン等の燃料油中に含有される硫黄分はその燃焼過程で硫黄酸化物(SOx)として大気中に排出され、酸性雨の原因となることが良く知られている。そこで、地球規模での環境保全の観点から燃料油中の硫黄分の低減が求められている。また、近年ではガソリン自動車排ガス中に含まれる環境汚染物質である窒素酸化物(NOx)の低減が強く求められており、これを達成するためにも脱NOx触媒の活性劣化を引き起こすガソリン中の硫黄分を大幅に低減することが必要である。   It is well known that sulfur contained in fuel oil such as gasoline is discharged into the atmosphere as sulfur oxide (SOx) during the combustion process, causing acid rain. Therefore, reduction of the sulfur content in fuel oil is required from the viewpoint of environmental conservation on a global scale. In recent years, there has been a strong demand for reduction of nitrogen oxide (NOx), which is an environmental pollutant contained in gasoline automobile exhaust gas, and in order to achieve this, sulfur in gasoline that causes the activity of the NOx removal catalyst to deteriorate. It is necessary to significantly reduce the minutes.

一方、ガソリン需要増に対応するため流動接触分解(FCC)装置が開発され、現在ではガソリン製造における中心的な役割を担っている。また、近年では重質炭化水素油から付加価値の高い軽質炭化水素油を生産するプロセスとしてのFCC装置の関心も高く、より高い経済性を求め、FCC原料油として従来の減圧軽油留分の他、常圧残油留分等の残渣油を混合した原料油も使用されている。   On the other hand, fluid catalytic cracking (FCC) equipment has been developed to meet the increasing demand for gasoline, and now plays a central role in gasoline production. In recent years, there has been a great interest in FCC equipment as a process for producing light hydrocarbon oils with high added value from heavy hydrocarbon oils, seeking higher economic efficiency. In addition to conventional vacuum gas oil fractions as FCC feedstocks. In addition, a raw material oil mixed with a residual oil such as a normal pressure residual oil fraction is also used.

通常、FCC装置の原料油として用いられる減圧軽油留分には多量の硫黄化合物が含有されるため、未処理のままFCC原料油として使用すると製造されるガソリン留分の硫黄濃度は非常に高い値となる。また、より重質である常圧残油を原料油として混合すると、更に多量の硫黄化合物を含むため、製造されたガソリン中の硫黄濃度は更に高くなる。このため、FCC装置の原料油として減圧軽油及び常圧残油を使用する場合には、それぞれ別々の重油水素化処理装置(重油間接脱硫装置及び重油直接脱硫装置)により水素化処理(水素化脱硫)を行い、それぞれ硫黄濃度を低減した後にFCC原料油として使用される。近年では、ガソリン中の硫黄濃度のより一層の低硫黄濃度化が要望されているため、これまで以上に減圧軽油及び常圧残油を深度に脱硫することが重要となっている。   Usually, since the vacuum gas oil fraction used as the feedstock for FCC equipment contains a large amount of sulfur compounds, the sulfur concentration of the gasoline fraction produced when used as an untreated FCC feedstock is very high. It becomes. In addition, when a heavier atmospheric residual oil is mixed as a raw material oil, since a larger amount of sulfur compound is contained, the sulfur concentration in the produced gasoline is further increased. For this reason, when vacuum gas oil and atmospheric residue are used as feedstock for the FCC unit, hydroprocessing (hydrodesulfurization) is performed using separate heavy oil hydrotreating units (heavy oil indirect desulfurization unit and heavy oil direct desulfurization unit). Are used as FCC feedstocks after reducing the sulfur concentration. In recent years, there has been a demand for further lower sulfur concentration in gasoline, and therefore it has become more important to desulfurize vacuum gas oil and atmospheric residue at a greater depth than ever.

これまで、FCC原料油の水素化処理方法については多数の報告がなされている。例えば、FCC用原料油の水素化処理方法であって、水素化処理帯域を比較的反応温度が高く脱硫、脱窒素処理を行なう第一工程と、より反応温度が低く芳香族二環以上の核水添を行なう第二工程により、減圧軽油や常圧残油などを水素化処理してFCC用原料油を得る水素化処理方法が提案されている(特許文献1参照)。しかしながら、この方法では脱硫活性が十分では無く、その運転制御が複雑で経済性に優れているとは言い難い。   So far, many reports have been made on the hydrotreating method of FCC feedstock. For example, in a method for hydrotreating FCC feedstock, a hydrotreating zone having a relatively high reaction temperature and a first step in which desulfurization and denitrogenation are performed, and a nucleus having at least a lower reaction temperature and an aromatic bicycle or more There has been proposed a hydrotreating method for obtaining a FCC feedstock by hydrotreating a vacuum gas oil or an atmospheric residue at a second step of hydrogenation (see Patent Document 1). However, this method does not have sufficient desulfurization activity, and its operation control is complicated and it is difficult to say that it is economical.

また、従来の方法では、高付加価値化を図るため減圧軽油と常圧残油とを、上記のように、それぞれ別の重油水素化処理装置により水素化脱硫した後、得られた生成油を混合してFCC原料油として用いているので、少なくとも2つの水素化処理装置が必要であり、プロセスとしての経済性が低下するばかりか、それぞれの付帯装置まで含めるとその運転は複雑であり生産性を考慮すると決して効率的では無い。   In addition, in the conventional method, in order to increase the added value, the depressurized gas oil and the atmospheric residual oil are hydrodesulfurized using separate heavy oil hydrotreating apparatuses as described above, and then the resulting oil is used. Since they are mixed and used as FCC feedstock, at least two hydrotreaters are required, which not only reduces the economic efficiency of the process, but also includes the associated devices, making the operation complicated and productive. Is not efficient.

また、従来、2種の原料油の水素化処理を1つのプロセスで行う方法として、減圧軽油と軽質軽油を混合して水素化処理する方法が提案されている(特許文献2参照)。しかし、この方法では、減圧軽油と、ニッケルやバナジウム等の金属分を含有する重質油である常圧残油とを組合せて1つのプロセスで水素化処理することは行われていない。FCCプロセスの原料油としては、従来から、減圧軽油に加えて、常圧残油等の金属分を含有する残渣油の水素化処理油を混合した原料油が使用されており、常圧残油等の重質油の効率的な脱硫も望まれている。   Conventionally, as a method for performing hydrogenation treatment of two kinds of raw material oils in one process, a method of performing hydrogenation treatment by mixing vacuum gas oil and light gas oil has been proposed (see Patent Document 2). However, in this method, hydrogenation is not performed in one process by combining a vacuum gas oil and a normal pressure residual oil that is a heavy oil containing a metal such as nickel or vanadium. As a feedstock for the FCC process, a feedstock mixed with a hydrotreated oil of residual oil containing metal components such as atmospheric residue in addition to vacuum gas oil has been used. Efficient desulfurization of heavy oil such as is also desired.

更に、残油に重質油を添加して水素化処理する方法として、残油を主成分として、204℃ないし残油の沸点の範囲を有する希釈剤をブレンドすることにより、水素化処理する脱硫及び脱金属方法が提案されている(特許文献3)。しかし、この方法で使用する水素化処理触媒は、シリカ、アルミナおよびシリカーアルミナからなる一般的な水素化処理触媒を使用しており、ガソリン中の硫黄分の低減が求められている近年においては、単に異なる燃料油を混合して脱硫するだけでは、求められている低硫黄ガソリンを製造することは難しい。特許文献3に記載されている生成油の硫黄分、ニッケル、バナジウム含有量は高く、近年の低硫黄ガソリンを得るためには、触媒プロセスを含めた更なる最適な製造方法が望まれている。   Further, as a method of adding a heavy oil to the residual oil and performing a hydrogenation treatment, desulfurization is performed by hydrotreating by blending a diluent having a residual oil as a main component and having a boiling point range of 204 ° C. to the residual oil. And a metal removal method have been proposed (Patent Document 3). However, the hydrotreating catalyst used in this method is a general hydrotreating catalyst composed of silica, alumina, and silica-alumina, and in recent years there has been a demand for reducing the sulfur content in gasoline. It is difficult to produce the required low sulfur gasoline by simply mixing different fuel oils and desulfurizing them. The product oil described in Patent Document 3 has a high sulfur content, nickel content, and vanadium content, and in order to obtain recent low-sulfur gasoline, a further optimum production method including a catalytic process is desired.

特開平8−183964号公報JP-A-8-183964 特開平6−192663号公報JP-A-6-192663 特開平4−239094号公報Japanese Patent Laid-Open No. 4-290994

本発明は、上記従来の状況に鑑み、減圧軽油や常圧残油などの、硫黄分を含有する少なくとも2種類の重質油を、平均細孔径が特定の範囲にある触媒を複数種類組合せることで、FCC用原料油として好適に脱硫された水素化処理油を効率良く得ることのできる炭化水素油の製造方法を提供することを目的とする。   In view of the above-described conventional situation, the present invention combines at least two kinds of heavy oils containing sulfur, such as vacuum gas oil and atmospheric residual oil, with a plurality of types of catalysts having an average pore diameter in a specific range. Thus, an object of the present invention is to provide a method for producing a hydrocarbon oil that can efficiently obtain a hydrotreated oil that has been suitably desulfurized as an FCC feedstock.

本発明者らは、重質油から高度に脱硫処理されたFCC用原料油を効率良く製造する方法を開発すべく鋭意研究した結果、特定の硫黄分を含有する重質油を高温加圧下、触媒の共存下で水素化処理する方法において、原料の重質油を、減圧軽油と常圧残油を含む少なくとも2種類の重質油の混合油とし、平均細孔径が特定の範囲にある触媒を複数種類組合せて使用することで、効率良くFCC用原料油となる炭化水素油を製造できることを発見し、本発明を提案するに至った。   As a result of earnest research to develop a method for efficiently producing a feedstock for FCC that has been highly desulfurized from heavy oil, the present inventors have conducted research on heavy oil containing a specific sulfur content under high temperature and pressure. In the method of hydrotreating in the presence of a catalyst, the raw heavy oil is a mixed oil of at least two heavy oils including a vacuum gas oil and an atmospheric residual oil, and the average pore diameter is in a specific range It was discovered that by using a combination of a plurality of types, it is possible to efficiently produce a hydrocarbon oil that becomes a feedstock for FCC, and the present invention has been proposed.

すなわち、本発明の上記目的は、硫黄含有量が4.5質量%以下である重質油を高温加圧下、触媒の共存下で水素化処理する方法において、
(1)重質油が、減圧軽油:常圧残油の混合比率(質量比)が50:50〜90:10である混合油を70質量%以上含み、
(2)(a)重質油から金属分を除去する脱金属触媒と、(b)少なくとも2種類の、重質油からの脱硫触媒とを組合せ、
(3)(a)脱金属触媒の平均細孔直径が15〜25nm、細孔容積0.6〜0.8ml/g、触媒強度がSCSで9N/mm以上、
(b)重質油の脱硫触媒の平均細孔直径が6〜15nm、比表面積150〜350m/g、平均細孔直径±1.5nmの細孔が占める容積が全細孔容積の少なくとも50%以上であり、
(4)反応温度が300〜500℃、水素分圧が3〜20MPa、水素/油比が400〜3000m/m、液空間速度が0.1〜3.0h−1の条件により水素化処理を行う炭化水素油の製造方法によって達成された。
That is, the above-mentioned object of the present invention is a method for hydrotreating heavy oil having a sulfur content of 4.5% by mass or less in the presence of a catalyst under high temperature and pressure,
(1) The heavy oil contains 70% by mass or more of a mixed oil having a mixing ratio (mass ratio) of reduced pressure gas oil: normal pressure residual oil of 50:50 to 90:10 ,
(2) (a) and demetallization catalyst for removing metal values from heavy oil, of at least two (b), combines the desulfurization catalyst from heavy oil,
(3) (a) The average pore diameter of the demetallized catalyst is 15 to 25 nm, the pore volume is 0.6 to 0.8 ml / g, the catalyst strength is 9 N / mm or more by SCS,
(B) The heavy oil desulfurization catalyst has an average pore diameter of 6 to 15 nm, a specific surface area of 150 to 350 m 2 / g, and a volume occupied by pores having an average pore diameter of ± 1.5 nm is at least 50 of the total pore volume. % Or more,
(4) reaction temperature 300 to 500 ° C., a hydrogen partial pressure of 3 to 20 mPa, hydrogen / oil ratio is 400~3000m 3 / m 3, hydrogenated liquid hourly space velocity is the condition of 0.1~3.0H -1 It has been achieved by a process for producing hydrocarbon oils to be treated.

本発明によれば、減圧軽油及び常圧残油を含む少なくとも2種類の重質油の混合油を原料とし、平均細孔径が特定の範囲にある触媒を複数種類組合せて使用することで、効率的に深度脱硫することができる。したがって、従来のように減圧軽油と常圧残油とにそれぞれ別個の水素化処理装置を要することなく深度脱硫され、ニッケル、バナジウム等の金属化合物を低減したFCC用原料油を効率良く提供することができる。本発明においては、後記実施例及び比較例により具体的に示すように、水素化処理の原料油として減圧軽油と常圧残油とを混合して用いることにより、その相乗効果により、各原料油を個別に水素化処理するときに比較して、より効果的に水素化脱硫反応を進行すると共に、この効果を高めるための最適な触媒を組合せて使用することで、FCC用原料油として好適に脱硫された水素化処理油を効率良く製造することが可能となる。   According to the present invention, by using a mixed oil of at least two types of heavy oils including a vacuum gas oil and a normal pressure residual oil as a raw material, and using a combination of a plurality of types of catalysts having an average pore diameter in a specific range, Can be deeply desulfurized. Accordingly, it is possible to efficiently provide a feedstock for FCC that is deeply desulfurized without requiring separate hydrotreating equipment for reduced pressure gas oil and atmospheric residual oil as in the past, and reduced in metal compounds such as nickel and vanadium. Can do. In the present invention, as specifically shown in Examples and Comparative Examples described later, by using a mixture of a vacuum gas oil and a normal pressure residual oil as a feedstock for hydrotreating, each feedstock oil is obtained by its synergistic effect. Compared to when hydrotreating each separately, the hydrodesulfurization reaction proceeds more effectively, and it is suitable as a feedstock for FCC by using an optimal catalyst in combination with this catalyst to enhance this effect. It becomes possible to efficiently produce the desulfurized hydrotreated oil.

本発明では、硫黄分を含有する少なくとも2種類の重質油として減圧軽油と常圧残油とを用い、それらを混合し、該混合油を含む原料油を高温加圧下、平均細孔径が特定の範囲にある触媒を複数種類組合せて使用することで、高度に水素化脱硫され、FCCプロセスで用いられる触媒を被毒させる物質を低減した炭化水素油の製造方法を提供するものである。   In the present invention, vacuum gas oil and atmospheric residual oil are used as at least two types of heavy oils containing sulfur, they are mixed, and the raw material oil containing the mixed oil is identified under an average pore size under high pressure. The present invention provides a method for producing a hydrocarbon oil that is highly hydrodesulfurized by using a combination of a plurality of types of catalysts in the above range and has reduced substances that poison the catalyst used in the FCC process.

本発明で原料油として使用される重質油の硫黄含有量は、4.5質量%以下が好ましく、3質量%以下がより好ましい。硫黄含有量が4.5質量%以下であれば、水素化処理油中の硫黄含有量が好適に低減されるとともに、FCCで生成されるガソリン中の硫黄含有量も好適に低減される。   The sulfur content of the heavy oil used as the raw material oil in the present invention is preferably 4.5% by mass or less, and more preferably 3% by mass or less. When the sulfur content is 4.5% by mass or less, the sulfur content in the hydrotreated oil is suitably reduced, and the sulfur content in gasoline produced by FCC is also suitably reduced.

本発明で原料油として使用される減圧軽油としては特に制限はなく、従来の重油間接脱硫装置の原料油として使用されている減圧蒸留装置によって分留された成分であり、沸点範囲が320〜550℃で硫黄分が1.0〜3.5質量%である減圧軽油が好適に使用することができる。   There is no restriction | limiting in particular as a vacuum gas oil used as a raw material oil by this invention, It is a component fractionated by the vacuum distillation apparatus currently used as a raw material oil of the conventional heavy oil indirect desulfurization apparatus, The boiling point range is 320-550. A vacuum gas oil having a sulfur content of 1.0 to 3.5% by mass at ° C. can be suitably used.

本発明で使用される常圧残油に関しても特に制限はなく、従来の重油直接脱硫装置の原料油として使用されている常圧蒸留装置によって分留された残渣成分であり、沸点範囲が320℃以上で硫黄分が2.0〜4.5質量%、ニッケル及びバナジウムの含有量が10〜150ppmである常圧残油を好適に使用することができる。   There is no particular limitation on the atmospheric residual oil used in the present invention, and it is a residue component fractionated by an atmospheric distillation apparatus used as a raw oil for a conventional heavy oil direct desulfurization apparatus, and has a boiling point range of 320 ° C. Thus, an atmospheric residual oil having a sulfur content of 2.0 to 4.5 mass% and nickel and vanadium contents of 10 to 150 ppm can be preferably used.

本発明の原料油には少なくとも2種類の重質油を使用するが、特に減圧軽油と常圧残油の混合油のみに限定されず、原油から蒸留処理して得られる留分としては重質軽油や減圧残油等を混合した原料油を使用することもできる。   Although at least two types of heavy oils are used as the raw material oil of the present invention, it is not particularly limited to only a mixed oil of reduced pressure light oil and atmospheric residual oil, and the fraction obtained by distillation from crude oil is heavy. It is also possible to use a raw material oil mixed with light oil, vacuum residue, or the like.

本発明では、硫黄分を含有する少なくとも2種類の重質油を混合し、高温加圧下、触媒の共存下で水素化処理の原料油として使用されるが、この際の重質油の混合比率としては特に制限は無く、減圧軽油と常圧残油の比率(質量)で5:95〜95:5の範囲で混合することが好ましく、50:50〜90:10がより好ましい。重質軽油や減圧残油等を混合する場合には、通常、重質軽油と減圧残油の和が減圧軽油と常圧残油の和の比率(質量)で0:100〜30:70が好ましく、重質軽油と減圧軽油の和が常圧残油と減圧残油の和に対する比率(質量)として10:90〜90:10が更に好ましく、50:50〜90:10がより好ましい。   In the present invention, at least two kinds of heavy oils containing sulfur are mixed and used as a raw material oil for hydroprocessing under high temperature and pressure in the presence of a catalyst. The mixing ratio of heavy oils at this time There is no restriction | limiting in particular, It is preferable to mix in the range of 5: 95-95: 5 by the ratio (mass) of vacuum gas oil and a normal-pressure residual oil, and 50: 50-90: 10 is more preferable. When mixing heavy gas oil, vacuum residue, etc., the sum of heavy gas oil and vacuum residue is usually from 0: 100 to 30:70 in the ratio (mass) of the sum of vacuum gas oil and atmospheric residue. Preferably, the sum of heavy gas oil and vacuum gas oil is more preferably 10:90 to 90:10, and more preferably 50:50 to 90:10, as the ratio (mass) to the sum of atmospheric residue and vacuum residue.

本発明における減圧軽油と常圧残油の混合方法に関しては、それぞれが十分に混合した状態で水素化処理装置に提供できれば良く、特に混合方法は制限されない。また、減圧軽油及び常圧残油以外の重質油を混合する場合も同様で、特に混合方法にはよらず好適に使用することができる。   Regarding the mixing method of the vacuum gas oil and the atmospheric residual oil in the present invention, it is only necessary to provide the hydrotreating apparatus in a sufficiently mixed state and the mixing method is not particularly limited. The same applies to the case of mixing heavy oil other than vacuum gas oil and atmospheric residue, and it can be suitably used regardless of the mixing method.

本発明では、上記のように、硫黄含有量が4.5質量%以下である重質油を高温加圧下、触媒の共存下で水素化処理を行うが、その際、重質油から金属分を除去する脱金属触媒と重質油の脱硫触媒とを組合せて使用する。   In the present invention, as described above, heavy oil having a sulfur content of 4.5% by mass or less is hydrotreated under high temperature and pressure in the presence of a catalyst. A demetallation catalyst for removing water and a heavy oil desulfurization catalyst are used in combination.

脱金属触媒は、硫黄分、アスファルテン分、ニッケルやバナジウム等の重金属分を含有する重質炭化水素油から効果的に除去するために、触媒床前段部分に充填する。耐火性無機酸化物担体としてはアルミナ、シリカ、アルミナ−シリカ等が単独であるいは混合物として用いられ、更にこれらに酸化ホウ素、酸化亜鉛等の各種金属を混合したものも使用することができる。担持する水素化活性成分としてはモリブデン、タングステン等の周期律表第6族金属やコバルト、ニッケル等の周期律表第8族金属を使用することができる。   In order to effectively remove heavy metal oil containing heavy metals such as sulfur, asphaltene, nickel and vanadium, the demetallation catalyst is packed in the upstream part of the catalyst bed. As the refractory inorganic oxide carrier, alumina, silica, alumina-silica or the like may be used alone or as a mixture, and those obtained by mixing various metals such as boron oxide and zinc oxide may also be used. As the hydrogenation active component to be supported, a periodic table group 6 metal such as molybdenum or tungsten, or a periodic table group 8 metal such as cobalt or nickel can be used.

脱金属触媒においては、平均細孔直径が15〜25nm、好ましくは18〜23nmである。平均細孔直径が15nm未満では十分な脱金属活性が得られず、25nmを越えると水素化処理活性及び触媒強度が低下する。脱金属触媒の細孔容積は0.6〜0.8ml/g、好ましくは0.65〜0.8ml/gである。細孔容積がこの範囲にあれば、十分な触媒寿命と触媒強度を有し、安定した運転が可能となる。   In the metal removal catalyst, the average pore diameter is 15 to 25 nm, preferably 18 to 23 nm. When the average pore diameter is less than 15 nm, sufficient metal removal activity cannot be obtained, and when it exceeds 25 nm, the hydrotreating activity and the catalyst strength are lowered. The pore volume of the demetallation catalyst is 0.6 to 0.8 ml / g, preferably 0.65 to 0.8 ml / g. If the pore volume is in this range, the catalyst has sufficient catalyst life and catalyst strength, and stable operation is possible.

触媒強度はSCS(Side Crushing Strength)で9N/mm以上、好ましくは13N/mm以上である。SCSは、触媒を横置きにして過重を加え、触媒が破壊される荷質量を求め、触媒長さで割った値であり、触媒単位長さ当たりの破壊強度を示している。SCSが9N/mm以上であれば、反応装置内での触媒割れが起こりにくくなり、継続的な運転が可能となる。   The catalyst strength is 9 N / mm or more, preferably 13 N / mm or more in terms of SCS (Side Crushing Strength). The SCS is a value obtained by adding the excess weight with the catalyst placed horizontally, obtaining the load mass at which the catalyst is destroyed, and dividing by the catalyst length, indicating the breaking strength per unit length of the catalyst. If the SCS is 9 N / mm or more, catalyst cracks are less likely to occur in the reactor, and continuous operation is possible.

脱金属触媒の下流には、重質油の脱硫触媒を充填する。脱硫触媒の耐火性無機酸化物担体としてはアルミナ、シリカ、チタニア、マグネシア等が単独であるいは混合物として用いられ、更にこれらにジルコニア、酸化ホウ素、酸化亜鉛等の各種酸化物やYゼオライト、ZSM−5ゼオライト等の各種ゼオライトを混合したものも使用することができる。担持する水素化活性成分としてはモリブデン、タングステン等の周期律表第6族金属やコバルト、ニッケル等の周期律表第8族金属を使用することができ、また必要に応じてこれらの金属の他、リンや鉄、白金等を使用することもできる。   A heavy oil desulfurization catalyst is filled downstream of the demetallation catalyst. As the refractory inorganic oxide carrier for the desulfurization catalyst, alumina, silica, titania, magnesia and the like are used alone or as a mixture. What mixed various zeolites, such as a zeolite, can also be used. As the hydrogenation active component to be supported, metals of Group 6 of the periodic table such as molybdenum and tungsten and metals of Group 8 of the periodic table such as cobalt and nickel can be used. Phosphorus, iron, platinum or the like can also be used.

重質油の脱硫触媒においては、平均細孔直径が6〜15nm、好ましくは7〜12nmである。平均細孔径がこの範囲にあれば、安定した耐金属性能を有し、十分な脱硫性能を得ることができる。脱硫触媒の比表面積は150〜350m2/g、好ましくは200〜320m2/gである。比表面積がこの範囲にあれば、十分な脱硫性能を得ることができる。脱硫触媒の平均細孔直径±1.5nmの細孔が占める容積が全細孔容積の少なくとも50%以上、好ましくは60%以上必要である。50%以上ならば十分な脱硫活性を示すことができる。 In the heavy oil desulfurization catalyst, the average pore diameter is 6 to 15 nm, preferably 7 to 12 nm. If the average pore diameter is within this range, it has stable metal resistance and sufficient desulfurization performance can be obtained. The specific surface area of the desulfurization catalyst is 150 to 350 m 2 / g, preferably 200 to 320 m 2 / g. If the specific surface area is within this range, sufficient desulfurization performance can be obtained. The volume occupied by pores having an average pore diameter of ± 1.5 nm of the desulfurization catalyst needs to be at least 50% or more, preferably 60% or more of the total pore volume. If it is 50% or more, sufficient desulfurization activity can be exhibited.

重質油の脱金属触媒及び脱硫触媒としては、特に新触媒、再生触媒等の違いに関係なく使用可能である。また、重質油の脱金属触媒及び脱硫触媒の充填割合は、その運転条件に合わせて適時比率を変更することができ、脱金属触媒の比率を増加させると金属による活性劣化を防ぐことが可能となり、脱硫触媒の比率を増加させると脱硫活性の向上を図ることができる。   As the demetallation catalyst and desulfurization catalyst for heavy oil, it can be used regardless of the difference between the new catalyst and the regenerated catalyst. The ratio of heavy metal demetalization catalyst and desulfurization catalyst filling can be changed in a timely manner according to the operating conditions, and increasing the ratio of demetalization catalyst can prevent deterioration of activity due to metal. Thus, the desulfurization activity can be improved by increasing the ratio of the desulfurization catalyst.

本発明の炭化水素油の製造は、通常の水素化脱硫装置及びその運転条件により好適に実施することができる。   The production of the hydrocarbon oil of the present invention can be preferably carried out with a normal hydrodesulfurization apparatus and its operating conditions.

すなわち、原料油の水素化処理の反応条件は、反応温度が300〜500℃、好ましくは350〜450℃、水素分圧が3〜20MPa、好ましくは5〜17MPa、より好ましくは8〜15MPa、水素/油比が400〜3000m3/m3、好ましくは500〜1800m3/m3、液空間速度が0.1〜3.0h-1、好ましくは0.2〜2.0h-1であり、かかる反応条件から目標とする生成油硫黄量と触媒活性とを考慮して適時反応条件を選定すればよい。 That is, the reaction conditions for the hydrotreating of the feedstock are as follows: the reaction temperature is 300 to 500 ° C., preferably 350 to 450 ° C., the hydrogen partial pressure is 3 to 20 MPa, preferably 5 to 17 MPa, more preferably 8 to 15 MPa, hydrogen / oil ratio 400~3000m 3 / m 3, preferably 500~1800m 3 / m 3, the liquid hourly space velocity 0.1~3.0h -1, preferably 0.2~2.0h -1, From these reaction conditions, the reaction conditions may be selected in a timely manner in consideration of the target amount of produced oil sulfur and catalyst activity.

反応温度が300℃以上であれば、水素化処理装置に充填された水素化処理触媒の活性が十分発揮され、原料油として硫黄分を含有する少なくとも2種類の重質油を混合した効果が十分に発揮され、500℃以下であれば、重質油の熱分解が進行しすぎることなく水素化処理装置の運転を円滑に行うことができ、また水素化処理触媒の活性劣化を抑制できる。
水素分圧が3MPa以上であれば、水素化反応が十分に進行し、原料油として2種類の重質油を混合した効果が十分に発揮される。20MPa以下にすれば、装置建設費用及び運転費用の増大を避けることができ、経済的である。
水素/油比が400m3/m3以上であれば、水素化処理触媒の水素化活性が発揮され、原料油として2種類の重質油を混合した効果が十分に発揮される。3000m3/m3以下にすれば、経済性の著しい低下を防ぐことができる。
液空間速度が0.1h-1以上であれば、経済性を確保でき、3.0h-1以下であれば、原料油として2種類の重質油を混合した効果が十分に発揮される。
If the reaction temperature is 300 ° C. or higher, the hydrotreating catalyst charged in the hydrotreating apparatus is fully active, and the effect of mixing at least two heavy oils containing sulfur as the feedstock is sufficient. If the temperature is 500 ° C. or less, the hydroprocessing apparatus can be operated smoothly without excessive thermal decomposition of the heavy oil, and the activity deterioration of the hydroprocessing catalyst can be suppressed.
When the hydrogen partial pressure is 3 MPa or more, the hydrogenation reaction proceeds sufficiently, and the effect of mixing two types of heavy oils as the raw material oil is sufficiently exhibited. If it is 20 MPa or less, it is possible to avoid an increase in equipment construction cost and operation cost, which is economical.
When the hydrogen / oil ratio is 400 m 3 / m 3 or more, the hydrogenation activity of the hydrotreating catalyst is exhibited, and the effect of mixing two types of heavy oils as the raw material oil is sufficiently exhibited. If the 3000 m 3 / m 3 or less, it is possible to prevent a significant reduction in economic efficiency.
If the liquid hourly space velocity is 0.1 h -1 or more, it can be secured economics, if 3.0 h -1 or less, two types of effects mixed with heavy oil as the feedstock is sufficiently exhibited.

本発明により得られる水素化処理油中の硫黄分含有量は0.15質量%以下が好ましく、0.10質量%以下がより好ましく、0.05質量%以下が更に好ましい。硫黄分含有量が0.15質量%未満であれば、2種類の重質油を混合した効果が十分に発揮される。   The sulfur content in the hydrotreated oil obtained by the present invention is preferably 0.15% by mass or less, more preferably 0.10% by mass or less, and further preferably 0.05% by mass or less. If the sulfur content is less than 0.15% by mass, the effect of mixing two kinds of heavy oils is sufficiently exhibited.

また、水素化処理油中のニッケル及びバナジウムの含有量は10ppm以下が好ましく、1ppm以下がより好ましい。10ppm以上では、FCCプロセスで用いられる触媒の被毒物質となり触媒の活性を低下させる。   Further, the content of nickel and vanadium in the hydrotreated oil is preferably 10 ppm or less, and more preferably 1 ppm or less. If it is 10 ppm or more, it becomes a poison for the catalyst used in the FCC process, and the activity of the catalyst is lowered.

また、水素化処理油中の潜在スラッジは0.3質量%以下、実在スラッジは0.2質量%以下が好ましく、潜在スラッジが0.2質量%以下、実在スラッジが0.08質量%以下がより好ましい。潜在スラッジが0.3質量%以下および実在スラッジが0.2質量%以下ならば安定した運転を継続することが可能である。   Further, the latent sludge in the hydrotreated oil is preferably 0.3% by mass or less, the actual sludge is preferably 0.2% by mass or less, the latent sludge is 0.2% by mass or less, and the actual sludge is 0.08% by mass or less. More preferred. If the latent sludge is 0.3% by mass or less and the actual sludge is 0.2% by mass or less, stable operation can be continued.

上記の方法により、原料油として少なくとも減圧軽油と常圧残油との混合油を使用して高温加圧下、触媒の共存下で水素化処理することにより、これらの重質油から、効率良く、経済性に優れた方法で脱硫されたFCC用低硫黄原料油を安定して製造することができる。これにより、FCCプロセスから極低硫黄濃度である高品質のガソリン留分を得ることができる。   By the above method, by using a mixed oil of at least a vacuum gas oil and a normal pressure residual oil as a raw material oil and hydrotreating under high temperature and pressure in the presence of a catalyst, these heavy oils are efficiently obtained. A low-sulfur feedstock for FCC desulfurized by an economical method can be stably produced. Thereby, a high quality gasoline fraction having an extremely low sulfur concentration can be obtained from the FCC process.

次に、本発明について実施例及び比較例により説明するが、本発明はこれらの実施例により限定されるものではない。   Next, although an example and a comparative example explain the present invention, the present invention is not limited by these examples.

実施例1
原料油として、表1に示す減圧軽油(硫黄分濃度:2.40質量%)65質量%と常圧残油(硫黄分濃度:3.20質量%)35質量%とを混合(混合油の硫黄含有量:2.70質量%)し、反応温度=398℃、水素分圧=13.2MPa、水素/油比=674Nm3/kl、LHSV=0.142h-1、の条件下、水素化処理を実施した。その際、重質油から金属分を除去する脱金属触媒としてリアクター入口からアルミナ担体に、モリブデンを酸化モリブデンとして9質量%及びニッケルを酸化ニッケルとして2質量%の割合で担持した触媒(平均細孔直径が18nm、細孔容積0.7ml/g、SCS12N/mm)と、脱硫触媒としてアルミナ担体に、モリブデンを酸化モリブデンとして12質量%及びニッケルを酸化ニッケルとして4質量%の割合で担持した触媒(平均細孔直径が8.5nm、比表面積273m2/g、平均細孔直径±1.5nmの細孔が占める容積が全細孔容積の81%)と、アルミナ担体に、モリブデンを酸化モリブデンとして15質量%、ニッケルを酸化ニッケルとして3質量%の割合で担持した触媒(平均細孔直径が10nm、比表面積198m2/g、平均細孔直径±1.5nmの細孔が占める容積が全細孔容積の78%)の3種類の触媒をこの順序で組合せて使用した。
得られた生成油を分留処理し、得られたFCC原料油留分(沸点:353℃以上)について硫黄分、ニッケル及びバナジウム含有量、潜在スラッジ量、実在スラッジ量の分析を行った。結果を表2に示した。
Example 1
As raw material oil, 65% by mass of vacuum gas oil (sulfur content concentration: 2.40% by mass) shown in Table 1 and 35% by mass of atmospheric residue (sulfur content concentration: 3.20% by mass) are mixed (of mixed oil). Sulfur content: 2.70% by mass), hydrogenation under conditions of reaction temperature = 398 ° C., hydrogen partial pressure = 13.2 MPa, hydrogen / oil ratio = 674 Nm 3 / kl, LHSV = 0.142 h −1 Processing was carried out. At that time, as a demetallation catalyst for removing metal from heavy oil, a catalyst (average pores) supported on alumina support from the reactor inlet at a ratio of 9% by mass of molybdenum as molybdenum oxide and 2% by mass of nickel as nickel oxide. 18 nm diameter, pore volume 0.7 ml / g, SCS 12 N / mm), catalyst supporting alumina as a desulfurization catalyst, 12% by mass of molybdenum as molybdenum oxide and 4% by mass of nickel as nickel oxide ( The average pore diameter is 8.5 nm, the specific surface area is 273 m 2 / g, and the volume occupied by pores with an average pore diameter of ± 1.5 nm is 81% of the total pore volume). 15% by mass, catalyst supported at a rate of 3% by mass with nickel as nickel oxide (average pore diameter 10 nm, specific surface area 198 2 / g, the volume occupied by the pores having an average pore diameter ± 1.5 nm is used in combination three types of catalytic 78%) of the total pore volume in this order.
The obtained product oil was subjected to fractional distillation treatment, and the obtained FCC feedstock oil fraction (boiling point: 353 ° C. or higher) was analyzed for sulfur content, nickel and vanadium content, latent sludge amount, and actual sludge amount. The results are shown in Table 2.

実施例2
表1に示す減圧軽油(硫黄分濃度:2.40質量%)65質量%と常圧残油(硫黄分濃度:3.16質量%)35質量%とを混合(混合油の硫黄含有量:2.67質量%)し、原料油とし、反応処理温度=362℃、LHSV=0.130h-1とし、重質油から金属分を除去する脱金属触媒としてリアクター入口から、アルミナ担体に、モリブデンを酸化モリブデンとして9質量%及びニッケルを酸化ニッケルとして2質量%の割合で担持した触媒(平均細孔直径が21nm、細孔容積0.71ml/g、SCS16N/mm)と、脱硫触媒としてアルミナ担体に、モリブデンを酸化モリブデンとして15質量%及びニッケルを酸化ニッケルとして3質量%の割合で担持した触媒(平均細孔直径が10.5nm、比表面積182m2/g、平均細孔直径±1.5nmの細孔が占める容積が全細孔容積の72%)と、アルミナ担体に、モリブデンを酸化モリブデンとして12質量%、ニッケルを酸化ニッケルとして4質量%の割合で担持した触媒(平均細孔直径が8.5nm、比表面積273m2/g、平均細孔直径±1.5nmの細孔が占める容積が全細孔容積の80%)の3種類の触媒をこの順序で組合せて使用した以外は実施例1と同様にした。得られた生成油のFCC原料油留分中の硫黄分、ニッケル及びバナジウム含有量、潜在スラッジ量、実在スラッジ量の分析結果を表2に示した。
Example 2
65% by mass of vacuum gas oil (sulfur content concentration: 2.40% by mass) shown in Table 1 and 35% by mass of normal pressure residual oil (sulfur content concentration: 3.16% by mass) (sulfur content of mixed oil: 2.67% by mass), raw material oil, reaction processing temperature = 362 ° C., LHSV = 0.130 h −1 , molybdenum removal catalyst from the reactor inlet as a demetallation catalyst for removing metal from heavy oil, molybdenum support Catalyst having an average pore diameter of 21 nm, pore volume of 0.71 ml / g, SCS16 N / mm, and an alumina support as a desulfurization catalyst. to 15% by weight and 3% by weight percentage in supported catalyst (average pore diameter 10.5nm nickel as nickel oxide of molybdenum as molybdenum oxide, a specific surface area of 182m 2 / g, Rights The volume occupied by pores with a pore diameter of ± 1.5 nm is 72% of the total pore volume), and the alumina carrier carries molybdenum at a rate of 12% by mass as molybdenum oxide and nickel at 4% by mass as nickel oxide. Three types of catalysts (in this order, the average pore diameter is 8.5 nm, the specific surface area is 273 m 2 / g, the average pore diameter is ± 1.5 nm and the volume occupied by the pores is 80% of the total pore volume). The procedure was the same as in Example 1 except that these were used in combination. Table 2 shows the analysis results of the sulfur content, nickel and vanadium contents, latent sludge content, and actual sludge content in the FCC feedstock fraction of the resulting product oil.

実施例3
表1に示す減圧軽油(硫黄分濃度:2.75質量%)50質量%と常圧残油(硫黄分濃度:2.92質量%)50質量%とを混合して原料油とし、反応処理温度=390℃、水素分圧=11.5MPa、水素/油比=972Nm3/kl、LHSV=0.25h-1とした以外は実施例1と同様にした。得られた生成油のFCC原料油留分中の硫黄分、ニッケル及びバナジウム含有量、潜在スラッジ量、実在スラッジ量の分析結果を表2に示した。
Example 3
50% by mass of vacuum gas oil (sulfur concentration: 2.75% by mass) and 50% by mass of residual atmospheric pressure (sulfur concentration: 2.92% by mass) shown in Table 1 are used as raw material oil for reaction treatment Example 1 was repeated except that the temperature was 390 ° C., the hydrogen partial pressure was 11.5 MPa, the hydrogen / oil ratio was 972 Nm 3 / kl, and LHSV was 0.25 h −1 . Table 2 shows the analysis results of the sulfur content, nickel and vanadium contents, latent sludge content, and actual sludge content in the FCC feedstock fraction of the resulting product oil.

Figure 0004766940
Figure 0004766940

Figure 0004766940
Figure 0004766940

比較例1
実施例1の原料油として使用した減圧軽油及び常圧残油をそれぞれ別々に実施例1の条件で水素化処理し、得られた減圧軽油から生成油のFCC原料油留分と、常圧残油から得られた生成油のFCC原料油留分を65質量%と35質量%の割合で混合した後、硫黄分分析を行なった。結果を表3に示した。
Comparative Example 1
The vacuum gas oil and atmospheric residue used as the feedstock of Example 1 were separately hydrotreated under the conditions of Example 1, and the FCC feedstock fraction of the product oil was obtained from the vacuum gas oil obtained, and the atmospheric residue. After the FCC feedstock fraction of the product oil obtained from the oil was mixed at a ratio of 65% by mass and 35% by mass, sulfur content analysis was performed. The results are shown in Table 3.

比較例2
実施例2の原料油として使用した減圧軽油及び常圧残油をそれぞれ別々に実施例2の条件で水素化処理し、減圧軽油から得られた生成油のFCC原料油留分と、常圧残油から得られた生成油のFCC原料油留分を65質量%と35質量%の割合で混合した後、硫黄分分析を行なった。結果を表3に示した。
Comparative Example 2
The vacuum gas oil and the atmospheric residue used as the feedstock of Example 2 were separately hydrogenated under the conditions of Example 2, and the FCC feedstock fraction of the product oil obtained from the vacuum gas oil and the atmospheric residue After the FCC feedstock fraction of the product oil obtained from the oil was mixed at a ratio of 65% by mass and 35% by mass, sulfur content analysis was performed. The results are shown in Table 3.

比較例3
実施例3の原料油として使用した減圧軽油及び常圧残油をそれぞれ別々に実施例3の条件で水素化処理し、減圧軽油から得られた生成油のFCC原料油留分と、常圧残油から得られた生成油のFCC原料油留分を50質量%と50質量%の割合で混合した後、硫黄分分析を行なった。結果を表3に示した。
Comparative Example 3
The vacuum gas oil and the atmospheric residue used as the feedstock of Example 3 were separately hydrotreated under the conditions of Example 3, respectively, and the FCC feedstock fraction of the product oil obtained from the vacuum gas oil and the atmospheric residue After mixing the FCC feedstock fraction of the product oil obtained from the oil at a ratio of 50 mass% and 50 mass%, sulfur content analysis was performed. The results are shown in Table 3.

Figure 0004766940
Figure 0004766940

上記実施例と比較例とを比較すると、表2及び3から明らかなように、いずれの場合においても実施例における生成油のFCC原料油留分中の硫黄濃度が比較例に比べて低いことが確認された。このことは、水素化処理の原料油として減圧軽油と常圧残油とを混合して用いることにより、その相乗効果により、各原料油を個別に水素化処理するときに比較して、より効果的に水素化脱硫反応が進行することが示された。
また、ニッケル、バナジウム含有量についても、比較例に比べ実施例は低い値を示しており、これは、減圧軽油と常圧残油とを混合して用いることで、その相乗効果により、各原料油を個別に処理するときに比較して、より脱金属反応が進行することが示された。
Comparing the above examples and comparative examples, as is clear from Tables 2 and 3, in any case, the sulfur concentration in the FCC feedstock fraction of the product oil in the examples is lower than in the comparative examples. confirmed. This is because, by using a mixture of vacuum gas oil and atmospheric residual oil as feedstock for hydrotreating, the synergistic effect makes it more effective than when hydrotreating each feedstock individually. It was shown that hydrodesulfurization reaction proceeds.
Moreover, also about nickel and vanadium content, the Example has shown the low value compared with the comparative example, and this is using each vacuum feed oil and a normal-pressure residual oil by mixing and using each raw material by the synergistic effect. It has been shown that the demetallation reaction proceeds more than when the oils are treated individually.

Claims (1)

硫黄含有量が4.5質量%以下である重質油を高温加圧下、触媒の共存下で水素化処理する方法において、
(1)重質油が、減圧軽油:常圧残油の混合比率(質量比)が50:50〜90:10である混合油を70質量%以上含み、
(2)(a)重質油から金属分を除去する脱金属触媒と、(b)少なくとも2種類の、重質油からの脱硫触媒とを組合せ、
(3)(a)脱金属触媒の平均細孔直径が15〜25nm、細孔容積0.6〜0.8ml/g、触媒強度がSCSで9N/mm以上、
(b)重質油の脱硫触媒の平均細孔直径が6〜15nm、比表面積150〜350m/g、平均細孔直径±1.5nmの細孔が占める容積が全細孔容積の少なくとも50%以上であり、
(4)反応温度が300〜500℃、水素分圧が3〜20MPa、水素/油比が400〜3000m/m、液空間速度が0.1〜3.0h−1の条件により水素化処理を行う炭化水素油の製造方法。
In a method of hydrotreating heavy oil having a sulfur content of 4.5% by mass or less under high temperature and pressure in the presence of a catalyst,
(1) The heavy oil contains 70% by mass or more of a mixed oil having a mixing ratio (mass ratio) of reduced pressure gas oil: normal pressure residual oil of 50:50 to 90:10 ,
(2) (a) and demetallization catalyst for removing metal values from heavy oil, of at least two (b), combines the desulfurization catalyst from heavy oil,
(3) (a) The average pore diameter of the demetallized catalyst is 15 to 25 nm, the pore volume is 0.6 to 0.8 ml / g, the catalyst strength is 9 N / mm or more by SCS,
(B) The heavy oil desulfurization catalyst has an average pore diameter of 6 to 15 nm, a specific surface area of 150 to 350 m 2 / g, and a volume occupied by pores having an average pore diameter of ± 1.5 nm is at least 50 of the total pore volume. % Or more,
(4) reaction temperature 300 to 500 ° C., a hydrogen partial pressure of 3 to 20 mPa, hydrogen / oil ratio is 400~3000m 3 / m 3, hydrogenated liquid hourly space velocity is the condition of 0.1~3.0H -1 A method for producing a hydrocarbon oil to be treated.
JP2005204591A 2004-07-15 2005-07-13 Method for producing hydrocarbon oil Active JP4766940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005204591A JP4766940B2 (en) 2004-07-15 2005-07-13 Method for producing hydrocarbon oil

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004208196 2004-07-15
JP2004208196 2004-07-15
JP2005204591A JP4766940B2 (en) 2004-07-15 2005-07-13 Method for producing hydrocarbon oil

Publications (2)

Publication Number Publication Date
JP2006052390A JP2006052390A (en) 2006-02-23
JP4766940B2 true JP4766940B2 (en) 2011-09-07

Family

ID=36030062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005204591A Active JP4766940B2 (en) 2004-07-15 2005-07-13 Method for producing hydrocarbon oil

Country Status (1)

Country Link
JP (1) JP4766940B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5563491B2 (en) * 2011-01-14 2014-07-30 出光興産株式会社 Method for hydrotreating heavy hydrocarbon oil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2958234B2 (en) * 1994-02-19 1999-10-06 株式会社コスモ総合研究所 Hydrotreating method for heavy hydrocarbon oil
JP4408527B2 (en) * 2000-05-11 2010-02-03 財団法人石油産業活性化センター Heavy hydrocarbon oil hydrotreating catalyst and hydrotreating method using the same
JP4174265B2 (en) * 2002-08-21 2008-10-29 コスモ石油株式会社 Depressurized gas oil hydrotreating catalyst, its production method, and depressurized gas oil hydrotreating method

Also Published As

Publication number Publication date
JP2006052390A (en) 2006-02-23

Similar Documents

Publication Publication Date Title
Kressmann et al. Recent developments in fixed-bed catalytic residue upgrading
EP2880132B1 (en) Residue hydrocracking
US6328880B1 (en) Process for hydrotreating hydrocarbon oil
JPS5850636B2 (en) Desulfurization treatment method for heavy hydrocarbon oil
AU2012350179A1 (en) Method for the hydroconversion of petroleum feedstocks in fixed beds for the production of fuel oils having a low sulphur content
JPH0598270A (en) Method for catalytic hydrotreatment of heavy hydrocarbon oil
CN106147839B (en) A kind of method for reducing content of sulfur in gasoline
WO2016194686A1 (en) Method for producing hydrotreated oil and method for producing catalytic cracked oil
JP2005528468A (en) Selective hydrodesulfurization of naphtha stream
JP4578182B2 (en) Method for hydrotreating heavy hydrocarbon oil
WO2004078887A1 (en) Method of hydrotreating gas oil fraction
JP6181378B2 (en) Hydrotreating method
JP4576334B2 (en) Hydrotreating process for diesel oil fraction
JP5406629B2 (en) Method for producing highly aromatic hydrocarbon oil
CN101376831B (en) Hydrogenation method for hydrocarbon oil containing acid
JP4766940B2 (en) Method for producing hydrocarbon oil
JP4680520B2 (en) Low sulfur gas oil production method and environmentally friendly gas oil
JP4217336B2 (en) Fuel oil desulfurization method and fuel oil desulfurization system
JP5082138B2 (en) Operation method of direct desulfurization equipment
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
JP6812265B2 (en) How to treat pyrolyzed heavy light oil
JP2002322484A (en) Hydrogenating process
CN116023992B (en) A hydrocracking method for producing low aromatic and high paraffin content diesel from heavy distillate oil
JP2012197350A (en) Hydrorefining method of heavy oil
JP6025657B2 (en) Method for producing lubricating base oil

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110607

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R150 Certificate of patent or registration of utility model

Ref document number: 4766940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250