[go: up one dir, main page]

JP4749559B2 - Dehumidifying air conditioner - Google Patents

Dehumidifying air conditioner Download PDF

Info

Publication number
JP4749559B2
JP4749559B2 JP2001024893A JP2001024893A JP4749559B2 JP 4749559 B2 JP4749559 B2 JP 4749559B2 JP 2001024893 A JP2001024893 A JP 2001024893A JP 2001024893 A JP2001024893 A JP 2001024893A JP 4749559 B2 JP4749559 B2 JP 4749559B2
Authority
JP
Japan
Prior art keywords
passage
air
room
sensible heat
dehumidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001024893A
Other languages
Japanese (ja)
Other versions
JP2002224529A (en
Inventor
浩志 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2001024893A priority Critical patent/JP4749559B2/en
Publication of JP2002224529A publication Critical patent/JP2002224529A/en
Application granted granted Critical
Publication of JP4749559B2 publication Critical patent/JP4749559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1008Rotary wheel comprising a by-pass channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、たとえばボイラーの廃熱などの低温の廃熱であっても高能率の空調を行うことのできる除湿空調装置に関するものである。
【0002】
【従来の技術】
除湿空調装置は外気の湿気を吸着あるいは吸収によって除湿し、乾燥空気を作ってこれを冷却し供給するものである。このような除湿空調装置はフロンを使用しない点や、駆動エネルギー源として熱を使うためガスの燃焼熱や排熱あるいは太陽熱など多種のエネルギーを用いることができ、よって二酸化炭素の排出を減少することができ、夏場の電力ピークを抑制することができるなど、多くの特徴を有している。
【0003】
従来の除湿空調装置について図4に沿って説明する。1はブロアであり、大気OAを除湿ローター2の吸着ゾーン3へ送る。これによって空気は温度が上昇するとともに乾燥空気となる。ここで除湿ローター2は、ハニカム(蜂の巣)状に形成された紙にシリカゲルやゼオライトなどの吸湿剤を担持したものであり、モーター(図示せず)によってベルト等(図示せず)を介して回転駆動されるものである。
【0004】
除湿ローター2の吸着ゾーン3を出た空気は、直交形顕熱交換素子4の一方の通路5を通過し、これによって乾燥空気の温度が下がる。ここで直交形顕熱交換素子4は、図2に示すように波状に形成されたアルミ箔や合成樹脂フィルムと平面状のアルミ箔や合成樹脂フィルムを交互にかつ波の方向が交互になるように積層して構成されたものであり、互いに直交する2つの通路を有し、それぞれの通路の間で顕熱交換が行われる。またその2つの通路を通過する気体がそれぞれ混合することはない。
【0005】
直交形顕熱交換素子4の一方の通路5を出た乾燥空気は水噴霧ノズル6に入る。水噴霧ノズル6は、ここを通過する空気に水を噴霧し、水の気化熱によって冷却するものである。水噴霧ノズル6を出てさらに温度の下がった空気を供給空気SAとして室内に供給する。
【0006】
室内の空気RAはブロア7によって吸引され、先ず水噴霧ノズル8の設けられた管路に入る。室内の空気は一般的には相対湿度100%ではないため、水噴霧ノズル8によって水が気化され冷却される。
【0007】
水噴霧ノズル8によって冷却された空気は直交形顕熱交換素子4の他方の通路9を通過し、直交形顕熱交換素子4の一方の通路5の温度を下げるとともに温度が上昇してヒーター10に入る。ここでヒーター10は、天然ガスやプロパンガスなどの可燃性ガスを燃焼するガスバーナーや温水の通されるラジエターである。あるいはヒーター10は加熱手段であれば、他の燃焼機器からの高温排気ガス、または高温排気ガスと空気との混合ガスのような手段であってもよい。
【0008】
ヒーター10によって加熱された空気は、除湿ローター2の脱着ゾーン11を通り、除湿ローター2の吸湿剤に吸着された湿分を脱着し、ブロア7によって排気EAとして大気へ放出される。
【0009】
【発明が解決しようとする課題】
以上のような従来の除湿空調装置はヒーター10を通って加熱された空気によって除湿ローター2の脱着を行っている。除湿ローター2の脱着を行うには、吸着ゾーン3を通る空気より脱着ゾーン11を通る空気の方が相対湿度が低くなる必要があり、この相対湿度の差が大きい程脱着効果が高い。
【0010】
従ってガスボイラーの排気ガスのように相対湿度が高くかつ温度が90〜100℃程度のガスを脱着ゾーン11に送ることよって脱着を行うのは困難で、このような排気ガスの廃熱を利用することが難しいという問題がある。
【0011】
特に近年注目されているマイクロガスタービン発電機で天然ガスを燃焼するものは、エネルギー効率を高めるために排気ガスの熱で温水をつくり、供給するようにしているが、このような装置の排気ガスは相対湿度がほぼ100%で温度が90〜100℃程度であり、除湿ローター2の脱着が極めて困難である。
【0012】
このような装置は発電とともに温水を供給することで総合的な熱効率は70%程度になるのであるが、残りの30%のエネルギーは排気ガスから熱として放出されており、このエネルギーを利用して空調を行えば総合的な熱効率は95%を超えるようになる。
【0013】
本発明は低温で相対湿度の高いボイラーやコジェネマイクロガスタービン発電機の排気ガスの熱などを利用して高効率で空調機能を発揮する除湿空調装置を提供しようとするものである。
【0014】
【課題を解決するための手段】
本件発明は以上のような課題を解決するため、顕熱交換手段を乾燥空気と室内空気との間で熱交換する領域と、廃熱供給源からの空気と室内からの還流空気との間で顕熱交換する領域とに分け、廃熱供給源からの空気と顕熱交換した室内空気を吸着ローターの脱着ゾーンに供給するようにした。
【0015】
【発明の実施の形態】
本発明の請求項1に記載の発明は、室内からの空気を加湿冷却する加湿冷却手段と、加湿冷却された室内からの空気と室内へ供給する空気との間で顕熱交換する顕熱交換手段と、顕熱交換手段へ送られる外気の湿気を吸着して乾燥させる除湿ローターとを有し、室内からの還流空気と廃熱発生源からの熱風との間で顕熱交換するよう顕熱交換手段の一部の領域を分け、顕熱交換手段の領域を分けられた部分を通過し加熱された室内からの還流空気によって除湿ローターを脱着するようにしたものであり、排熱発生源からの熱風が多湿であった場合に、除湿ローターの脱着空気は熱風の有する潜熱でも加熱されるという作用を有する。
【0016】
【実施例】
以下本発明の除湿空調装置の実施例について図1に沿って詳細に説明する。ここで、ブロア1、除湿ローター2、吸着ゾーン3、直交形顕熱交換素子4、一方の通路5、ブロア7、水噴霧ノズル8、他方の通路9、脱着ゾーン11については従来の除湿空調装置を示す図3と同一のものであり、冗長性を避けるため重複した説明を省略する。
【0017】
12は第1仕切板であり、直交形顕熱交換素子4の他方の通路9入口を非加湿通路13と加湿通路14とに分割している。そして分割された加湿通路14には水噴霧ノズル8が設けられている。この水噴霧ノズル8による噴霧量は、相対湿度が100%の空気中に水の微粒子が浮遊する状態になるまでとする。ここで非加湿通路13と加湿通路14には双方とも部屋からの戻り空気が流れる。
【0018】
15は第2仕切り板であり、直交形顕熱交換素子4の一方の通路5入口を非加熱通路16と加熱通路17とに分割している。非加熱通路16には除湿ローター2の吸着ゾーン3を通った空気を通し、加熱通路17にはマイクロガスタービン(図示せず)の排気ガス管22を連通する。
【0019】
18は排気通路であり、加湿通路14出口と加熱通路17出口とが開口している。19は脱着通路であり、非加湿通路13の出口と連通している。またブロア7は脱着通路19と排気通路18との両方の空気を外に送るものである。
【0020】
排気通路18は底面が傾斜しており、ここに溜まった結露水の排出を容易にしている。また排気通路18の出口には気水分離を行うデフューザー20が設けられ、さらに脱着通路19と排気通路18とを通過する空気の量の比を調節するバルブ21が設けられている。
【0021】
本発明の除湿空調装置は以上のように構成され、以下その動作について説明する。
【0022】
ブロア1,7を起動し、次にマイクロガスタービンを点火し、水噴霧ノズル8に水を送る。すると外気OAはブロア1に吸引されてブロア1に入り、ブロア1に押し出されて除湿ローター2の吸着ゾーン3に入る。ここで、外気の湿気が除湿ローター2に吸着され、乾燥空気となるとともに吸着熱によって温度が上昇する。
【0023】
温度の上がった乾燥空気は直交形顕熱交換素子4の一方の通路5の非加熱通路16に入る。ここで、乾燥空気はその顕熱を直交形顕熱交換素子4に与え、温度が下がる。つまり直交形顕熱交換素子4の非加熱通路16を出た乾燥空気は室内空気RA及び水噴霧ノズル8によって噴霧された水の気化熱によって温度が下がり、快適な供給空気SAとなって室内に供給される。
【0024】
室内の空気RAは、ブロア7の吸引によって直交形顕熱交換素子4の他方の通路9の非加湿通路13と加湿通路14に入る。そして脱着通路19及び排気通路18を通過してブロア7の吸い込み口に入り、大気へ放出される。
【0025】
つまり室内の空気RAの一部は冷却通路14に入り、冷却通路14内の空気は水噴霧ノズル8によって加湿され温度が下がるとともに、水の微粒子が浮遊した状態となる。
【0026】
この水の微粒子は冷却通路14を通過する間に、直交形顕熱交換素子4の一方の通路5を通過する空気によって気化され、気化熱を奪い排気通路18に入る。そして直交形顕熱交換素子4の一方の通路5と他方の通路9との間は顕熱交換のみが行われ、両気体の混合はないため、当然一方の通路5内の空気と冷却通路14内の空気とが混合することもない。従って、直交形顕熱交換素子4の一方の通路5を通過する空気は加湿されることなく冷却される。
【0027】
ここでこの冷却について詳細に説明すると、冷却通路14の入り口付近では冷却効果が高く、ここでの熱交換は冷却通路14内の空気と非加熱通路16内の空気との間で行われる。従って、非加熱通路16内の温度が効果的に下がり、室内へ供給される。
【0028】
一方マイクロガスタービンの排気は燃料中の水素原子の酸化によって多量の水分が含まれており、燃料が天然ガスの場合は水分が最も多くなり、排気ガスの相対湿度はほぼ100%になる。従って、この空気が非冷却通路13内を通過する室内空気と顕熱交換を行うと、排気ガス中の水分は凝縮する。
【0029】
このため排気ガスの有する90〜100℃の顕熱と潜熱とによって非冷却通路13内を通過する室内空気が加熱され脱着ゾーン19に入る。つまり室内空気RAは単なる顕熱によって加熱されるより効果的に加熱され脱着ゾーン19へ入るため、排気ガスの温度があまり高くなくても除湿ローター2の湿分を脱着するのに十分な温度になる。
【0030】
例えば温度100℃・湿度40%の空気が熱交換によって温度70℃・湿度100%になったとすると温度は30℃しか変化していないのであるが、そのカロリー差は107Kcalとなり、大きなエネルギーを取り出すことができる。これは顕熱のみが下がって30℃の温度差があった場合に比較して4〜5倍のエネルギーを取り出したことになる。
【0031】
このように直交形顕熱交換素子4の加熱通路17を出た空気は、温度が85℃まで上昇し除湿ローター2の脱着ゾーン11を通過し、除湿ローター2の持つ湿分を脱着する。除湿ローター2の脱着ゾーン11を出た高温多湿空気はブロア7を通過して排気EAとなって大気に放出される。また排気通路18を通過した空気も、ブロア7によって除湿ローター2の脱着ゾーン11を出た高温多湿空気とともに排気EAとなって大気に放出される。
【0032】
そしてバルブ21を調節することによって、排気通路18内に流れる空気の量を調節することができ、この調節と水噴霧ノズル8からの噴霧量によって供給空気SAの温度を制御することができる。
【0033】
以上の実施例では室内空気RAを非加湿通路13及び加湿通路14の両方に供給するようにしていたが、この空気量が不足する場合には外気を加湿通路14に供給するようにしてもよい。
【0034】
また排熱源としてマイクロガスタービンの温水ボイラーを通過した排気ガスを利用する例を示したが、直燃焼式のボイラーの排気ガスなども使用することができる。
【0035】
さらに静止形顕熱交換素子として直交形熱交換素子の例を示したが、流れの方向が斜めであるものや、流れの方向が対向するものなどを用いることができる。
【0036】
【発明の効果】
本発明の除湿空調装置は排熱発生源からの熱風として室内空気の絶対湿度より高い絶対湿度を有する空気を用い、この高温・多湿空気と室内空気との間で顕熱交換をするようにしているため、排熱源などから供給される高温・多湿空気の持つ顕熱だけでなく潜熱をも利用して除湿ローターの脱着を行うことができ、排熱源からの空気の温度が低くても十分な脱着を行うことができる。つまり例えばボイラーの排熱などの従来使用が困難であったような排熱を利用することができる。
【0037】
しかも供給空気の温度を顕熱交換によって下げるようにしているため、供給空気の湿度が上がることはなく快適性の高い空気を供給することができる。そしてその顕熱交換を行う手段によって潜熱を回収するようにしているため、部品点数が少なく構造が簡単である。
【0038】
また1つの静止形顕熱交換素子の領域を分けることによって排熱回収(室内冷気による供給空気の冷却)と間接気化冷却と排熱源からの潜熱の回収を行っており、装置全体がコンパクトかつ低コストで実現できる。
【0039】
特に熱交換器として静止形顕熱交換素子を使用しているため、熱交換を行う気体間で湿気の持ち込みがなく、供給空気の湿度を低く維持することができる。
【0040】
そして外気の湿度が低い場合には、加湿冷却を付加することもでき、この場合いはさらに供給空気の温度を低くすることができる。
【図面の簡単な説明】
【図1】本発明の除湿空調装置の実施例1を示すフロー図である。
【図2】本発明に用いられる除湿空調装置に用いられる直交形熱交換器を示す斜視図である。
【図3】従来の除湿空調装置の例を示すフロー図である。
【符号の説明】
1 ブロア
2 除湿ローター
3 吸着ゾーン
4 直交形顕熱交換素子
5 一方の通路
7 ブロア
8 水噴霧ノズル
9 他方の通路
11 脱着ゾーン
12 第1仕切板
13 非加湿通路
14 加湿通路
15 第2仕切り板
16 非加熱通路
17 加熱通路
18 排気通路
19 脱着通路
20 デフューザー
21 バルブ
22 排気ガス管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dehumidifying air conditioner that can perform highly efficient air conditioning even with low-temperature waste heat such as boiler waste heat.
[0002]
[Prior art]
The dehumidifying air conditioner dehumidifies external moisture by adsorption or absorption, creates dry air, cools and supplies it. Such dehumidifying air conditioners do not use chlorofluorocarbons, and because they use heat as a driving energy source, they can use various types of energy such as gas combustion heat, exhaust heat, or solar heat, thus reducing carbon dioxide emissions. It has many features such as being able to suppress power peaks in summer.
[0003]
A conventional dehumidifying air conditioner will be described with reference to FIG. Reference numeral 1 denotes a blower that sends the atmospheric OA to the adsorption zone 3 of the dehumidifying rotor 2. As a result, the air rises in temperature and becomes dry air. Here, the dehumidifying rotor 2 is a paper in which a honeycomb (honeycomb) -like paper is loaded with a moisture absorbent such as silica gel or zeolite, and is rotated by a motor (not shown) via a belt or the like (not shown). It is driven.
[0004]
The air that has exited the adsorption zone 3 of the dehumidifying rotor 2 passes through one passage 5 of the orthogonal sensible heat exchange element 4, thereby lowering the temperature of the dry air. Here, in the orthogonal sensible heat exchange element 4, as shown in FIG. 2, the corrugated aluminum foil or synthetic resin film and the flat aluminum foil or synthetic resin film alternate and the wave directions alternate. And has two passages orthogonal to each other, and sensible heat exchange is performed between the passages. Further, the gases passing through the two passages are not mixed.
[0005]
Dry air that has exited one passage 5 of the orthogonal sensible heat exchange element 4 enters a water spray nozzle 6. The water spray nozzle 6 sprays water onto the air passing therethrough and cools it with the heat of vaporization of water. The air that has exited the water spray nozzle 6 and further cooled down is supplied to the room as supply air SA.
[0006]
The indoor air RA is sucked by the blower 7 and first enters a pipe line provided with the water spray nozzle 8. Since indoor air is generally not 100% relative humidity, water is vaporized and cooled by the water spray nozzle 8.
[0007]
The air cooled by the water spray nozzle 8 passes through the other passage 9 of the orthogonal sensible heat exchange element 4, lowers the temperature of one passage 5 of the orthogonal sensible heat exchange element 4, and increases the temperature to increase the heater 10. to go into. Here, the heater 10 is a gas burner that burns combustible gas such as natural gas or propane gas, or a radiator through which hot water is passed. Alternatively, as long as the heater 10 is a heating unit, it may be a unit such as high-temperature exhaust gas from another combustion device or a mixed gas of high-temperature exhaust gas and air.
[0008]
The air heated by the heater 10 passes through the desorption zone 11 of the dehumidification rotor 2, desorbs moisture adsorbed by the moisture absorbent of the dehumidification rotor 2, and is released to the atmosphere as exhaust EA by the blower 7.
[0009]
[Problems to be solved by the invention]
The conventional dehumidifying air conditioner as described above desorbs the dehumidifying rotor 2 with air heated through the heater 10. In order to desorb the dehumidifying rotor 2, the air passing through the desorption zone 11 needs to have a lower relative humidity than the air passing through the adsorption zone 3, and the larger the difference in relative humidity, the higher the desorption effect.
[0010]
Therefore, it is difficult to perform desorption by sending a gas having a high relative humidity and a temperature of about 90 to 100 ° C. to the desorption zone 11 like the exhaust gas of a gas boiler, and the waste heat of such an exhaust gas is used. There is a problem that it is difficult.
[0011]
In particular, micro gas turbine generators that have been attracting attention in recent years are designed to produce and supply hot water using the heat of exhaust gas in order to increase energy efficiency. Has a relative humidity of almost 100% and a temperature of about 90 to 100 ° C., so that the dehumidifying rotor 2 is extremely difficult to desorb.
[0012]
Such a device supplies hot water together with power generation, so that the overall thermal efficiency is about 70%, but the remaining 30% of the energy is released as heat from the exhaust gas. If air conditioning is performed, the overall thermal efficiency will exceed 95%.
[0013]
The present invention is intended to provide a dehumidifying air conditioner that exhibits a high efficiency air conditioning function by utilizing the heat of exhaust gas from a boiler or a cogeneration micro gas turbine generator with low relative humidity.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the present invention solves the problem of the sensible heat exchange means between the region where heat is exchanged between the dry air and the room air, the air from the waste heat supply source, and the reflux air from the room. It was divided into areas where sensible heat was exchanged, and air from the waste heat supply source and room air sensible heat exchanged were supplied to the desorption zone of the adsorption rotor.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The invention according to claim 1 of the present invention is a sensible heat exchange for exchanging sensible heat between humidifying and cooling means for humidifying and cooling air from the room and air supplied to the room after being humidified and cooled. And a dehumidification rotor that adsorbs and dries the moisture of the outside air sent to the sensible heat exchange means, and sensible heat is exchanged between the reflux air from the room and the hot air from the waste heat generation source. A part of the exchange means is divided and the dehumidification rotor is desorbed by the reflux air from the heated room that passes through the divided part of the sensible heat exchange means. When the hot air is humid, the desorption air of the dehumidifying rotor is heated by the latent heat of the hot air.
[0016]
【Example】
Hereinafter, an embodiment of the dehumidifying air conditioner of the present invention will be described in detail with reference to FIG. Here, a conventional dehumidifying air conditioner is used for the blower 1, the dehumidifying rotor 2, the adsorption zone 3, the orthogonal sensible heat exchange element 4, the one passage 5, the blower 7, the water spray nozzle 8, the other passage 9, and the desorption zone 11. FIG. 3 is the same as FIG. 3, and redundant description is omitted to avoid redundancy.
[0017]
Reference numeral 12 denotes a first partition plate that divides the inlet of the other passage 9 of the orthogonal sensible heat exchange element 4 into a non-humidifying passage 13 and a humidifying passage 14. The divided humidification passage 14 is provided with a water spray nozzle 8. The amount of spray by the water spray nozzle 8 is set until the water fine particles are suspended in the air having a relative humidity of 100%. Here, return air from the room flows through both the non-humidifying passage 13 and the humidifying passage 14.
[0018]
Reference numeral 15 denotes a second partition plate that divides the inlet of one passage 5 of the orthogonal sensible heat exchange element 4 into a non-heating passage 16 and a heating passage 17. Air that has passed through the adsorption zone 3 of the dehumidifying rotor 2 is passed through the non-heating passage 16, and an exhaust gas pipe 22 of a micro gas turbine (not shown) is connected to the heating passage 17.
[0019]
Reference numeral 18 denotes an exhaust passage, and an outlet of the humidifying passage 14 and an outlet of the heating passage 17 are opened. A desorption passage 19 communicates with the outlet of the non-humidification passage 13. The blower 7 sends air from both the desorption passage 19 and the exhaust passage 18 to the outside.
[0020]
The bottom surface of the exhaust passage 18 is inclined to facilitate the discharge of the condensed water accumulated therein. Further, a diffuser 20 for separating air and water is provided at the outlet of the exhaust passage 18, and a valve 21 for adjusting the ratio of the amount of air passing through the desorption passage 19 and the exhaust passage 18 is provided.
[0021]
The dehumidifying air conditioner of the present invention is configured as described above, and the operation thereof will be described below.
[0022]
The blowers 1 and 7 are started, then the micro gas turbine is ignited and water is sent to the water spray nozzle 8. Then, the outside air OA is sucked into the blower 1 and enters the blower 1, and is pushed out to the blower 1 and enters the adsorption zone 3 of the dehumidifying rotor 2. Here, the humidity of the outside air is adsorbed by the dehumidifying rotor 2 to become dry air, and the temperature rises due to the heat of adsorption.
[0023]
The dry air whose temperature has risen enters the non-heated passage 16 of one passage 5 of the orthogonal sensible heat exchange element 4. Here, the dry air gives the sensible heat to the orthogonal sensible heat exchange element 4 and the temperature drops. That is, the temperature of the dry air that has exited the non-heating passage 16 of the orthogonal sensible heat exchange element 4 is lowered by the heat of vaporization of the water sprayed by the room air RA and the water spray nozzle 8, and becomes a comfortable supply air SA. Supplied.
[0024]
The indoor air RA enters the non-humidification passage 13 and the humidification passage 14 of the other passage 9 of the orthogonal sensible heat exchange element 4 by suction of the blower 7. Then, it passes through the desorption passage 19 and the exhaust passage 18 and enters the suction port of the blower 7 and is released to the atmosphere.
[0025]
That is, part of the indoor air RA enters the cooling passage 14, and the air in the cooling passage 14 is humidified by the water spray nozzle 8 to lower the temperature, and the water fine particles float.
[0026]
While passing through the cooling passage 14, the fine water particles are vaporized by the air passing through one passage 5 of the orthogonal sensible heat exchange element 4, deprived of vaporization heat, and enter the exhaust passage 18. Since only the sensible heat exchange is performed between the one passage 5 and the other passage 9 of the orthogonal sensible heat exchange element 4 and there is no mixing of both gases, the air in the one passage 5 and the cooling passage 14 are naturally. There is no mixing with the air inside. Therefore, the air passing through the one passage 5 of the orthogonal sensible heat exchange element 4 is cooled without being humidified.
[0027]
This cooling will be described in detail here. The cooling effect is high near the entrance of the cooling passage 14, and heat exchange here is performed between the air in the cooling passage 14 and the air in the non-heating passage 16. Therefore, the temperature in the non-heating passage 16 is effectively lowered and supplied to the room.
[0028]
On the other hand, the exhaust gas from the micro gas turbine contains a large amount of moisture due to oxidation of hydrogen atoms in the fuel. When the fuel is natural gas, the moisture content is the highest, and the relative humidity of the exhaust gas is almost 100%. Accordingly, when this air exchanges sensible heat with room air passing through the non-cooling passage 13, moisture in the exhaust gas is condensed.
[0029]
For this reason, the indoor air passing through the non-cooling passage 13 is heated and enters the desorption zone 19 by the sensible heat of 90 to 100 ° C. and the latent heat of the exhaust gas. In other words, the indoor air RA is heated more effectively than sensible heat and enters the desorption zone 19, so that the temperature of the dehumidification rotor 2 can be sufficiently desorbed even if the temperature of the exhaust gas is not so high. Become.
[0030]
For example, if air at a temperature of 100 ° C and humidity of 40% is changed to a temperature of 70 ° C and humidity of 100% due to heat exchange, the temperature changes only 30 ° C, but the calorie difference is 107 Kcal, and a large amount of energy is taken out. Can do. This means that 4 to 5 times as much energy was taken out as compared with the case where only the sensible heat decreased and there was a temperature difference of 30 ° C.
[0031]
Thus, the temperature of the air that has exited the heating passage 17 of the orthogonal sensible heat exchange element 4 rises to 85 ° C., passes through the desorption zone 11 of the dehumidifying rotor 2, and desorbs the moisture of the dehumidifying rotor 2. The hot and humid air that has exited the desorption zone 11 of the dehumidifying rotor 2 passes through the blower 7 and becomes exhaust EA and is released to the atmosphere. Also, the air that has passed through the exhaust passage 18 is discharged into the atmosphere as exhaust EA together with the hot and humid air that has left the desorption zone 11 of the dehumidifying rotor 2 by the blower 7.
[0032]
By adjusting the valve 21, the amount of air flowing into the exhaust passage 18 can be adjusted, and the temperature of the supply air SA can be controlled by this adjustment and the spray amount from the water spray nozzle 8.
[0033]
In the above embodiment, the indoor air RA is supplied to both the non-humidifying passage 13 and the humidifying passage 14, but when the air amount is insufficient, the outside air may be supplied to the humidifying passage 14. .
[0034]
Moreover, although the example which utilizes the exhaust gas which passed the hot water boiler of the micro gas turbine as an exhaust heat source was shown, the exhaust gas of a direct combustion type boiler etc. can also be used.
[0035]
Furthermore, although an example of an orthogonal heat exchange element has been shown as a stationary sensible heat exchange element, an element having an oblique flow direction, an element having an opposite flow direction, or the like can be used.
[0036]
【The invention's effect】
The dehumidifying air conditioner of the present invention uses air having an absolute humidity higher than the absolute humidity of room air as hot air from the exhaust heat generation source, and performs sensible heat exchange between the high-temperature / humidity air and room air. Therefore, the dehumidification rotor can be desorbed using not only the sensible heat of high-temperature and humid air supplied from an exhaust heat source but also latent heat, and even if the temperature of the air from the exhaust heat source is low Desorption can be performed. In other words, exhaust heat that has been difficult to use in the past, such as boiler exhaust heat, can be used.
[0037]
Moreover, since the temperature of the supply air is lowered by sensible heat exchange, the humidity of the supply air does not increase, and highly comfortable air can be supplied. Since the latent heat is recovered by means for performing sensible heat exchange, the number of parts is small and the structure is simple.
[0038]
In addition, by dividing the area of one static sensible heat exchange element, exhaust heat recovery (cooling of the supply air by indoor air), indirect evaporative cooling, and recovery of latent heat from the exhaust heat source are performed, making the entire device compact and low It can be realized at a cost.
[0039]
In particular, since a static sensible heat exchange element is used as a heat exchanger, moisture is not brought in between the gases that exchange heat, and the humidity of the supply air can be kept low.
[0040]
When the humidity of the outside air is low, humidification cooling can be added. In this case, the temperature of the supply air can be further lowered.
[Brief description of the drawings]
FIG. 1 is a flowchart showing a first embodiment of a dehumidifying air conditioner according to the present invention.
FIG. 2 is a perspective view showing an orthogonal heat exchanger used in the dehumidifying air conditioner used in the present invention.
FIG. 3 is a flowchart showing an example of a conventional dehumidifying air conditioner.
[Explanation of symbols]
1 Blower 2 Dehumidifying Rotor 3 Adsorption Zone 4 Orthogonal Sensible Heat Exchange Element 5 One Passage 7 Blower 8 Water Spray Nozzle 9 Other Passage 11 Desorption Zone 12 First Partition Plate 13 Non-Humidifying Passage 14 Humidification Passage 15 Second Partition Plate 16 Non-heating passage 17 Heating passage 18 Exhaust passage 19 Desorption passage 20 Diffuser 21 Valve 22 Exhaust gas pipe

Claims (1)

空気中の湿気を吸着して乾燥させる吸着ゾーンと吸着された湿気を脱着する脱着ゾーンとを有する除湿ローターと、2つの流路間で顕熱交換を行う直交型熱交換器を設け、前記除湿ロータの吸着ゾーンを通過することによって乾燥した外気を前記直交型熱交換器の一方の通路に通して室内に供給し、室内からの還気を前記直交型熱交換器の他方の通路に通して前記除湿ロータの脱着ゾーンに送るようにし、前記直交型熱交換器の室内からの還気の通過する通路は2つに分割され、その一方であって前記除湿ロータから供給される乾燥空気の流れの上流側に位置する通路を非加湿通路とし、その下流側に位置する通路に水を噴射して加湿冷却する加湿通路とし、これによって前記除湿ロータによって乾燥され室内に供給される空気を冷却し、前記加湿通路を通過した空気を外部に放出し、前記直交型熱交換器の一方の通路は2つに分割され、その一方であって前記室内からの還気の流れの上流側に位置する通路に乾燥した空気を流して非加熱通路とし、その他方であって前記室内からの還気の流れの下流に位置する通路に廃熱源からの熱風を送って加熱通路とし、前記加熱通路から出た空気を外部に放出するようにするとともに、前記加熱通路を通過する熱風と前記非加湿通路を通過する空気とを顕熱交換し非加湿通路を通過する空気を前記除湿ロータの脱着ゾーンに送るようにしたことを特徴とする除湿空調装置。 A dehumidification rotor having an adsorption zone for adsorbing and drying moisture in the air and a desorption zone for desorbing the adsorbed moisture, and an orthogonal heat exchanger for performing sensible heat exchange between two flow paths, The outside air dried by passing through the adsorption zone of the rotor is supplied to the room through one passage of the orthogonal heat exchanger, and the return air from the room is supplied to the other passage of the orthogonal heat exchanger. The passage through which the return air from the orthogonal heat exchanger chamber passes is divided into two, one of which is the flow of dry air supplied from the dehumidification rotor The non-humidifying passage is a passage located upstream of the air passage, and a humidifying passage is formed by injecting water into the passage located downstream thereof to humidify and cool, thereby cooling the air dried by the dehumidifying rotor and supplied to the room. ,in front The air that has passed through the humidification passage is discharged to the outside, and one passage of the orthogonal heat exchanger is divided into two, one of which is a passage located upstream of the flow of return air from the room Air that flows out from the heating passage by flowing dry air into a non-heating passage and sending hot air from a waste heat source to the other passage downstream of the return air flow from the room. So that the hot air passing through the heating passage and the air passing through the non-humidifying passage are sensible heat exchanged and the air passing through the non-humidifying passage is sent to the desorption zone of the dehumidifying rotor. A dehumidifying air conditioner characterized by that.
JP2001024893A 2001-01-31 2001-01-31 Dehumidifying air conditioner Expired - Lifetime JP4749559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001024893A JP4749559B2 (en) 2001-01-31 2001-01-31 Dehumidifying air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001024893A JP4749559B2 (en) 2001-01-31 2001-01-31 Dehumidifying air conditioner

Publications (2)

Publication Number Publication Date
JP2002224529A JP2002224529A (en) 2002-08-13
JP4749559B2 true JP4749559B2 (en) 2011-08-17

Family

ID=18889970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001024893A Expired - Lifetime JP4749559B2 (en) 2001-01-31 2001-01-31 Dehumidifying air conditioner

Country Status (1)

Country Link
JP (1) JP4749559B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3596547B2 (en) * 2003-03-10 2004-12-02 ダイキン工業株式会社 Humidity control device
WO2017138718A1 (en) * 2016-02-12 2017-08-17 주식회사 경동나비엔 Air conditioner and method for controlling same
KR101782838B1 (en) * 2016-02-12 2017-10-23 주식회사 경동나비엔 Air conditioner and the method thereof
KR102046214B1 (en) * 2016-03-23 2019-12-04 주식회사 경동나비엔 Air conditioner and the method thereof
KR101957240B1 (en) * 2016-04-05 2019-03-13 주식회사 경동나비엔 Air conditioner
KR102180663B1 (en) 2017-08-31 2020-11-19 주식회사 경동나비엔 Air conditioner and the method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036305B1 (en) * 1970-12-16 1975-11-22
JP2950444B2 (en) * 1991-10-26 1999-09-20 株式会社西部技研 Deodorizing and dehumidifying cooling method and deodorizing and dehumidifying cooling device
JPH05301014A (en) * 1992-04-23 1993-11-16 Osaka Gas Co Ltd Open adsorption type air conditioner
JPH078740A (en) * 1993-06-22 1995-01-13 Sanden Corp Dehumidifying air conditioner
JP3860374B2 (en) * 1999-01-20 2006-12-20 松下エコシステムズ株式会社 Air conditioner
JP2000283497A (en) * 1999-03-31 2000-10-13 Osaka Gas Co Ltd Adsorption dehumidification type air conditioner
JP2001263726A (en) * 2000-03-23 2001-09-26 Toto Ltd Air-conditioning system
JP2002310452A (en) * 2001-04-06 2002-10-23 Ntt Power & Building Facilities Inc Heat and electric power parallel supply system having prime mover generator and desiccant air conditioner

Also Published As

Publication number Publication date
JP2002224529A (en) 2002-08-13

Similar Documents

Publication Publication Date Title
CN100510558C (en) Single runner two stage dehumidify air-conditioner driven by solar
TW536578B (en) Co-generation system and dehumidification air-conditioner
JP4340756B2 (en) Dehumidifying air conditioner
JP4607356B2 (en) Dehumidifying air conditioner
JP4749559B2 (en) Dehumidifying air conditioner
JP2002054838A (en) Dehumidifying air conditioning apparatus
JP2003166730A (en) Dehumidifying air conditioner
JP4414110B2 (en) Dehumidifying air conditioner
JP2004093017A (en) Dehumidifying air conditioner
JP3336539B2 (en) Dehumidifier and dehumidifying air conditioner using the same
JP2002333161A (en) Dehumidifying air conditioning system
EP1191204B1 (en) A co-generation system and a dehumidification air-conditioner
JP3300780B1 (en) Internal combustion engine cogeneration system
JP4436900B2 (en) Desiccant air conditioner
JP3327543B1 (en) Gas turbine cogeneration air conditioner
JP3319466B1 (en) Dehumidifying air conditioner
JP2000283497A (en) Adsorption dehumidification type air conditioner
KR100457719B1 (en) A co-generation system and a dehumidification air-conditioner
JP4500461B2 (en) Dehumidifying device and dehumidifying air conditioner using the same
JP4348531B2 (en) Dehumidifying air conditioner
JP4698901B2 (en) Dehumidifying air conditioner
JP2004177010A (en) Dehumidifying air conditioner
JP3300782B2 (en) Internal combustion engine cogeneration system
JP2004211939A (en) Dehumidifying air conditioner
JP2003035414A (en) Forced air supply type combustion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110518

R150 Certificate of patent or registration of utility model

Ref document number: 4749559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term