[go: up one dir, main page]

JP4436900B2 - Desiccant air conditioner - Google Patents

Desiccant air conditioner Download PDF

Info

Publication number
JP4436900B2
JP4436900B2 JP2000086351A JP2000086351A JP4436900B2 JP 4436900 B2 JP4436900 B2 JP 4436900B2 JP 2000086351 A JP2000086351 A JP 2000086351A JP 2000086351 A JP2000086351 A JP 2000086351A JP 4436900 B2 JP4436900 B2 JP 4436900B2
Authority
JP
Japan
Prior art keywords
air
rotor
temperature
sensible heat
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000086351A
Other languages
Japanese (ja)
Other versions
JP2001272055A (en
Inventor
昭雄 児玉
正 平山
元信 後藤
勉 広瀬
浩志 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seibu Giken Co Ltd
Original Assignee
Seibu Giken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seibu Giken Co Ltd filed Critical Seibu Giken Co Ltd
Priority to JP2000086351A priority Critical patent/JP4436900B2/en
Publication of JP2001272055A publication Critical patent/JP2001272055A/en
Application granted granted Critical
Publication of JP4436900B2 publication Critical patent/JP4436900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1004Bearings or driving means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/104Heat exchanger wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1072Rotary wheel comprising two rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1076Rotary wheel comprising three rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、除湿した空気を水の気化冷却により温度を下げて供給するデシカント空調装置に関する。
【0002】
【従来の技術】
デシカント空調装置はフロンを使用しない冷房装置であり、また除湿運転を行っても供給空気の温度が下がらないため梅雨時期でも快適な空気を供給可能にすることができるということで最近注目を集めている。
【0003】
図4に一般的なオープンサイクルデシカント空調装置の概要を示す。図4において1は除湿ローターであり、セラミック繊維紙やガラス繊維紙を段加工(コルゲート加工)して平らな紙とともに巻回し、蜂の巣状(ハニカム状)に形成し、その上にシリカゲルを合成担持させたり、ゼオライトを担持させたものである。
【0004】
また除湿ローター1は吸着ゾーン2と脱着ゾーン3とに分割され、連続的に吸着・脱着が行われるように回転可能に設けられている。
【0005】
4は顕熱交換ローターで、アルミニウムやステンレスあるいは銅などの金属シートあるいはポリプロピレンやポリエステルなどの合成樹脂シートをコルゲート加工して平らなシートとともに巻回し、ハニカム状に形成したものである。
【0006】
また顕熱交換ローター4は相互に熱交換を行う第1流路5および第2流路6に分割され、第1流路5および第2流路6間で連続的に熱交換が行われるように回転可能に設けられている。
【0007】
7および8は蒸発冷却器であり、9は加熱器である。加熱器9には太陽熱温水器やボイラーからの蒸気が供給され、ここを通過する空気を加熱する。
【0008】
そして除湿ローター1の吸着ゾーン2を出た高温低湿空気が顕熱交換器4の第1流路5に入って冷却され、第1流路5を出た空気を蒸発冷却器7でさらに冷却して室内へ供給するよう構成されている。
【0009】
また室内の空気は蒸発冷却器8で冷却されて顕熱交換器4の第2流路6に入り、顕熱交換ローター4を冷却し、第2流路を出て温度が高くなった空気を加熱器9でさらに温め、除湿ローター1の脱着ゾーン3に通して除湿ローター1に吸着した湿気を脱着する。
【0010】
このようにして従来のデシカント空調装置はフロンなどの環境に悪影響を及ぼすガスを使用することなく、加熱器9に投入される熱エネルギーで冷房を行うことができる。
【0011】
【発明が解決しようとする課題】
従来のデシカント空調装置は以上のように環境に対して悪影響を及ぼすことが小さく好ましいのではあるが、供給空気の湿度は外気の空気条件によって殆ど決まってしまい、あまり湿度を下げることができないという問題がある。
【0012】
つまり、吸着式の除湿手段を用いる場合には吸着熱を発生し、ある値以上空気の乾燥度を上げることができず、このため乾燥空気内で水を気化して温度を下げるのにも限度があった。
【0013】
本発明は以上の点に着目し、吸着式の除湿手段を用いて極めて湿度の低い空気をつくり、これに気化冷却手段を組合せた場合には低温の供給空気を得ることの可能なデシカント空調装置を提供しようとするものである。
【0014】
【課題を解決するための手段】
本件発明は以上のような課題を解決するため、外気を第1の除湿手段で除湿し、除湿によって温度の上がった乾燥空気を外気と顕熱交換することによって温度を下げ、温度の下がった乾燥空気をさらに第2の除湿手段で除湿し、除湿によって温度の上がった乾燥空気を室内空気と顕熱交換することによって温度を下げ、室内へ供給するようにした。
【0015】
【発明の実施の形態】
本発明の請求項1に記載の発明は、外気を第1の除湿手段で除湿し、除湿によって温度の上がった乾燥空気を外気と顕熱交換することによって温度を下げ、温度の下がった乾燥空気をさらに第2の除湿手段で除湿し、除湿によって温度の上がった乾燥空気を室内空気と顕熱交換することによって温度を下げ、室内へ供給するようにしたものであり、第1の除湿手段で温度が上昇した空気を一旦冷却して第2の除湿手段に入れているため極めて高い乾燥度の空気を供給可能であるという作用を有する。
【0016】
【実施例】
以下本発明のデシカント空調装置の実施例を図に沿って詳細に説明する。また上記に説明の従来のデシカント空調装置と同一の構成部分については同一の番号を付与し、重複説明を避ける。
【0017】
図1において1は除湿ローターであり、吸着ゾーン2と脱着ゾーン3とに分割され、連続的に吸着・脱着が行われるように回転可能に設けられている。
【0018】
4は顕熱交換ローターで、相互に熱交換を行う第1流路5および第2流路6に分割され、第1流路5および第2流路6間で連続的に熱交換が行われるように回転可能に設けられている。
【0019】
7および8は蒸発冷却器であり、9は加熱器である。加熱器9には太陽熱温水器やボイラーからの蒸気が供給され、ここを通過する空気を加熱する。
【0020】
10は除湿ローターであり、除湿ローター1と同じものである。また除湿ローター10は吸着ゾーン11と脱着ゾーン12とに分割され、連続的に吸着・脱着が行われるように回転可能に設けられている。
【0021】
13は顕熱交換ローターであり、顕熱交換ローター4と同じものである。また顕熱交換ローター13は相互に熱交換を行う第1流路14および第2流路15に分割され、第1流路14および第2流路15間で連続的に熱交換が行われるように回転可能に設けられている。
【0022】
16は加熱器であり、加熱器9と同じものである。加熱器16には加熱器9と同様太陽熱温水器やボイラーからの蒸気が供給され、ここを通過する空気を加熱する。
【0023】
そして除湿ローター1の吸着ゾーン2を出た高温低湿空気が顕熱交換器4の第1流路5に入って冷却され、第1流路5を出た空気を除湿ローター10の吸着ゾーン11に入れて除湿し、吸着ゾーン11を出た空気を顕熱交換ローター13の第1流路14を通して冷却した後、蒸発冷却器7でさらに冷却して室内へ供給するよう構成されている。
【0024】
また室内の空気は蒸発冷却器8で冷却されて顕熱交換器13の第2流路15に入り、加熱器16を通って除湿ローター10の脱着ゾーン12に入った後、大気へ放出される。
【0025】
顕熱交換器4の第2流路6には大気が通され、第2流路6を出た後に加熱器9を通って、除湿ローター1の脱着ゾーン3を出て大気へ放出される。
【0026】
本発明のデシカント空調は以上のように構成され、次にその動作について図2の空気線図を用いて説明する。
【0027】
先ず外気Aを除湿ローター1の吸着ゾーン2へ通し、吸着熱で温度の上がった乾燥空気Bを顕熱交換ローター4の第1流路5に通して温度を下げ空気Cとする。図2の空気線図上では、温度35℃、相対湿度60%程度の空気A(外気)が温度68℃、相対湿度8%程度まで乾燥した空気Bとなる。顕熱交換ローター4では顕熱のみ下がるので、空気線図上では空気Bから空気Cへ水平に移動する。
【0028】
温度の下がった乾燥空気を除湿ローター10の吸着ゾーン11に通し、さらに乾燥度を上げる。吸着ゾーン11で吸着熱によって温度64℃程度まで温度が上がり、相対湿度5%程度まで乾燥した乾燥空気Dを顕熱交換ローター13の第1流路14に通し、温度37℃程度まで温度を下げ空気Eとする。
【0029】
温度の下がって、極めて乾燥度の高い空気Eを蒸発冷却器7に通して水の気化熱による冷却を行い、温度17℃、相対湿度90%の空気Fとして室内へ供給する。
【0030】
室内で温度28℃まで温度の上昇した空気Gは絶対湿度は殆ど上昇せず、よって相対湿度は50%近くまで下がる。この空気Gを蒸発冷却器8に通し、相対湿度がほぼ100%になるようにすると温度は20℃まで下がり空気Hとなる。
【0031】
この空気Hを顕熱交換ローター13の第2流路15に通し、空気Hによって顕熱交換ローター13を冷却すると、空気Hは反対に温度が57℃まで上昇して空気Iとなる。この空気Iは除湿ローター10の脱着に必用な風量に応じて一部大気へ放出してもよい。つまり加熱器16を通過する風量を下げた方が加熱器16に供給される熱量の低減が期待でき、冷房成績係数(COP)が上がる。
【0032】
空気Iは加熱器16を通過して温度が80℃まで上昇し、空気Jとなる。この空気Jを除湿ローター10の脱着ゾーン12に通して、除湿ローター10に吸着した湿気を脱着する。脱着後の空気は温度が50℃まで下がり、相対湿度が27%まで上昇して空気Kとなる。この空気Kは大気へ放出される。
【0033】
また大気Aは顕熱交換ローター4の第2流路6を通り、顕熱交換ローター4を冷却する。逆に大気Aは顕熱交換ローター4より熱せられて温度が62℃まで上昇し、空気Lとなる。この空気Lは加熱器9の能力に応じて一部大気へ放出してもよい。つまり加熱器9の能力が低い場合には加熱器9を通過する風量を下げた方が加熱器9による温度上昇を期待でき、脱着特性が上がる。
【0034】
空気Lは加熱器9を通過して温度が80℃まで上昇し、空気Mとなる。この空気Mを除湿ローター1の脱着ゾーン3に通して、除湿ローター1に吸着した湿気を脱着する。脱着後の空気は温度が40℃まで下がり、相対湿度が60%まで上昇して空気Nとなる。この空気Nは大気へ放出される。
【0035】
このように本発明のデシカント空調装置は除湿ローター1を通って乾燥した空気を冷却した後にさらに除湿するようにしているため、極めて乾燥度の高い空気を発生することができ、この乾燥空気を用いると蒸発冷却器7の効果が高くなって温度の低い空気を供給することができる。
【0036】
本発明のデシカント空調装置と従来のデシカント空調装置との比較を図3を用いて行う。図3は本発明のデシカント空調装置と従来のデシカント空調装置の顕熱交換ローターの温度効率ηを0.85と0.9にして冷房成績係数(COP)と供給空気の絶対湿度を取ったもので、これから外気条件が低湿度領域ではCOPが減少するが、高湿度領域では冷房能力を著しく改善していることが判る。
【0037】
図3において、Tは外気温度を示し、Tは室内空気Gの温度、Hは同湿度を示す。またTは加熱器16を出た空気Jの温度を示す。そしてUは除湿ローター1の吸着ゾーンを流れる空気の流速を表し、U/Uは再生空気流量比すなわち除湿ローター1の吸着ゾーンと脱着ゾーン2とを流れる空気の流速比を表す。Lは除湿ローター1の幅を表す。またCEは冷却効果即ち外気と室内空気のエンタルピー差を示す。
【0038】
【発明の効果】
本発明のデシカント空調装置は上記の如く構成したので、外気が高湿度領域では冷房能力を著しく改善することができるものである。この特性は夏場において高温・多湿になる我が国には適した特性である。
【0039】
さらに本発明のデシカント空調装置は加熱器に太陽熱ヒーターや排熱源から供給される熱水を用いることによって、冷房時の実質的な消費電力を極めて小さなものにすることができる。
【図面の簡単な説明】
【図1】本発明のデシカント空調装置の実施例を示す説明図である。
【図2】本発明のデシカント空調装置の特性を示す空気線図である。
【図3】本発明のデシカント空調装置の特性を示す効率線図である。
【図4】従来のデシカント空調装置の説明図である。
【符号の説明】
1、10 除湿ローター
2、11 吸着ゾーン
3、12 脱着ゾーン
4、13 顕熱交換ローター
5、14 第1流路
6、15 第2流路
7、8 蒸発冷却器
9、16 加熱器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desiccant air conditioner that supplies dehumidified air at a reduced temperature by evaporative cooling of water.
[0002]
[Prior art]
The desiccant air conditioner is a cooling device that does not use chlorofluorocarbon, and has attracted attention recently because it can supply comfortable air even during the rainy season because the temperature of the supplied air does not decrease even if dehumidifying operation is performed. Yes.
[0003]
FIG. 4 shows an outline of a general open cycle desiccant air conditioner. In FIG. 4, reference numeral 1 denotes a dehumidification rotor, which is stepped (corrugated) ceramic fiber paper or glass fiber paper and wound with flat paper to form a honeycomb shape (honeycomb shape) on which silica gel is synthetically supported. Or zeolite is supported.
[0004]
Further, the dehumidification rotor 1 is divided into an adsorption zone 2 and a desorption zone 3 and is rotatably provided so as to be continuously adsorbed and desorbed.
[0005]
Reference numeral 4 denotes a sensible heat exchange rotor, which is formed into a honeycomb shape by corrugating a metal sheet such as aluminum, stainless steel or copper or a synthetic resin sheet such as polypropylene or polyester together with a flat sheet.
[0006]
The sensible heat exchange rotor 4 is divided into a first flow path 5 and a second flow path 6 that exchange heat with each other, so that heat exchange is continuously performed between the first flow path 5 and the second flow path 6. It is provided rotatably.
[0007]
7 and 8 are evaporative coolers, and 9 is a heater. Steam from a solar water heater or boiler is supplied to the heater 9 to heat the air passing therethrough.
[0008]
The high-temperature and low-humidity air that has exited the adsorption zone 2 of the dehumidifying rotor 1 enters the first flow path 5 of the sensible heat exchanger 4 and is cooled, and the air that has exited the first flow path 5 is further cooled by the evaporative cooler 7. To supply indoors.
[0009]
Also, the indoor air is cooled by the evaporative cooler 8 and enters the second flow path 6 of the sensible heat exchanger 4 to cool the sensible heat exchange rotor 4, and the air whose temperature has increased through the second flow path is removed. The heater 9 is further heated, and the moisture adsorbed on the dehumidification rotor 1 is desorbed through the desorption zone 3 of the dehumidification rotor 1.
[0010]
In this way, the conventional desiccant air conditioner can perform cooling with the thermal energy supplied to the heater 9 without using a gas that adversely affects the environment such as Freon.
[0011]
[Problems to be solved by the invention]
Although the conventional desiccant air-conditioning apparatus is preferable because it does not adversely affect the environment as described above, the humidity of the supply air is almost determined by the air condition of the outside air, and the humidity cannot be lowered much. There is.
[0012]
In other words, when using an adsorption-type dehumidifying means, heat of adsorption is generated, and the dryness of air cannot be increased beyond a certain value. Therefore, there is a limit to lowering the temperature by evaporating water in the dry air. was there.
[0013]
The present invention pays attention to the above points, and desiccant air conditioner capable of producing air with extremely low humidity using an adsorption-type dehumidifying means and obtaining low-temperature supply air when combined with a vaporization cooling means. Is to provide.
[0014]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention dehumidifies the outside air with the first dehumidifying means, and reduces the temperature by exchanging the sensible heat with the dry air whose temperature has been increased by dehumidification, and drying at a reduced temperature. The air was further dehumidified by the second dehumidifying means, and the temperature was lowered by sensible heat exchange of the dried air whose temperature was increased by dehumidification with room air, and the air was supplied to the room.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the invention according to claim 1 of the present invention, the outside air is dehumidified by the first dehumidifying means, and the temperature is lowered by exchanging the sensible heat of the dried air whose temperature has been increased by the dehumidification with the outside air. Is further dehumidified by the second dehumidifying means, and the sensible heat exchange of the dried air whose temperature has been increased by dehumidification is reduced to supply the indoor air, and the first dehumidifying means Since the air whose temperature has risen is once cooled and placed in the second dehumidifying means, it has an effect that it can supply air with extremely high dryness.
[0016]
【Example】
Embodiments of the desiccant air conditioner according to the present invention will be described below in detail with reference to the drawings. Moreover, the same number is given about the same component as the conventional desiccant air conditioner explained above, and duplication description is avoided.
[0017]
In FIG. 1, reference numeral 1 denotes a dehumidification rotor, which is divided into an adsorption zone 2 and a desorption zone 3, and is rotatably provided so as to be continuously adsorbed and desorbed.
[0018]
Reference numeral 4 denotes a sensible heat exchange rotor, which is divided into a first flow path 5 and a second flow path 6 that perform heat exchange with each other, and heat exchange is continuously performed between the first flow path 5 and the second flow path 6. It is provided so that it can rotate.
[0019]
7 and 8 are evaporative coolers, and 9 is a heater. Steam from a solar water heater or boiler is supplied to the heater 9 to heat the air passing therethrough.
[0020]
Dehumidification rotor 10 is the same as dehumidification rotor 1. The dehumidification rotor 10 is divided into an adsorption zone 11 and a desorption zone 12, and is rotatably provided so as to be continuously adsorbed and desorbed.
[0021]
Reference numeral 13 denotes a sensible heat exchange rotor, which is the same as the sensible heat exchange rotor 4. The sensible heat exchange rotor 13 is divided into a first flow path 14 and a second flow path 15 that exchange heat with each other, and heat exchange is continuously performed between the first flow path 14 and the second flow path 15. It is provided rotatably.
[0022]
Reference numeral 16 denotes a heater, which is the same as the heater 9. Similarly to the heater 9, the heater 16 is supplied with steam from a solar water heater or a boiler, and heats the air passing therethrough.
[0023]
The high-temperature and low-humidity air that has exited the adsorption zone 2 of the dehumidifying rotor 1 enters the first flow path 5 of the sensible heat exchanger 4 and is cooled, and the air that has exited the first flow path 5 enters the adsorption zone 11 of the dehumidifying rotor 10. It is configured to dehumidify and cool the air exiting the adsorption zone 11 through the first flow path 14 of the sensible heat exchange rotor 13, and then further cooled by the evaporative cooler 7 and supplied to the room.
[0024]
The indoor air is cooled by the evaporative cooler 8, enters the second flow path 15 of the sensible heat exchanger 13, enters the desorption zone 12 of the dehumidifying rotor 10 through the heater 16, and is then released to the atmosphere. .
[0025]
The atmosphere passes through the second flow path 6 of the sensible heat exchanger 4, exits the second flow path 6, passes through the heater 9, exits the desorption zone 3 of the dehumidifying rotor 1, and is released to the atmosphere.
[0026]
The desiccant air conditioner of the present invention is configured as described above. Next, the operation thereof will be described with reference to the air diagram of FIG.
[0027]
First, the outside air A is passed through the adsorption zone 2 of the dehumidifying rotor 1, and the dry air B whose temperature has been increased by the heat of adsorption is passed through the first flow path 5 of the sensible heat exchange rotor 4 to reduce the temperature to the air C. On the air diagram of FIG. 2, air A (outside air) having a temperature of 35 ° C. and a relative humidity of about 60% becomes air B dried to a temperature of 68 ° C. and a relative humidity of about 8%. Since only the sensible heat falls in the sensible heat exchange rotor 4, it moves horizontally from the air B to the air C on the air diagram.
[0028]
The dried air whose temperature has decreased is passed through the adsorption zone 11 of the dehumidifying rotor 10 to further increase the dryness. The temperature rises to about 64 ° C. by the heat of adsorption in the adsorption zone 11, and the dry air D dried to about 5% relative humidity is passed through the first flow path 14 of the sensible heat exchange rotor 13, and the temperature is lowered to about 37 ° C. Let it be air E.
[0029]
As the temperature drops, air E with extremely high dryness is passed through the evaporative cooler 7 and cooled by the heat of vaporization of water, and supplied to the room as air F having a temperature of 17 ° C. and a relative humidity of 90%.
[0030]
The air G whose temperature has increased to 28 ° C. in the room hardly increases the absolute humidity, and therefore the relative humidity decreases to nearly 50%. If the air G is passed through the evaporative cooler 8 so that the relative humidity is approximately 100%, the temperature is lowered to 20 ° C. and becomes air H.
[0031]
When this air H is passed through the second flow path 15 of the sensible heat exchange rotor 13 and the sensible heat exchange rotor 13 is cooled by the air H, the temperature of the air H increases to 57 ° C. to become air I. This air I may be partially released to the atmosphere according to the air volume necessary for desorption of the dehumidifying rotor 10. In other words, a reduction in the amount of air passing through the heater 16 can be expected to reduce the amount of heat supplied to the heater 16, and the cooling coefficient of performance (COP) increases.
[0032]
The air I passes through the heater 16, the temperature rises to 80 ° C., and becomes air J. This air J is passed through the desorption zone 12 of the dehumidifying rotor 10 to desorb the moisture adsorbed on the dehumidifying rotor 10. The temperature of the air after desorption decreases to 50 ° C., the relative humidity increases to 27%, and becomes air K. This air K is released to the atmosphere.
[0033]
The atmosphere A passes through the second flow path 6 of the sensible heat exchange rotor 4 and cools the sensible heat exchange rotor 4. On the contrary, the atmosphere A is heated by the sensible heat exchange rotor 4, the temperature rises to 62 ° C., and becomes air L. This air L may be partially released to the atmosphere according to the capability of the heater 9. That is, when the capacity of the heater 9 is low, the temperature rise by the heater 9 can be expected by reducing the air volume passing through the heater 9, and the desorption characteristics are improved.
[0034]
The air L passes through the heater 9, the temperature rises to 80 ° C., and becomes air M. This air M is passed through the desorption zone 3 of the dehumidifying rotor 1 to desorb the moisture adsorbed on the dehumidifying rotor 1. The temperature of the air after desorption decreases to 40 ° C., the relative humidity increases to 60%, and becomes air N. This air N is released to the atmosphere.
[0035]
Thus, since the desiccant air conditioner of the present invention further dehumidifies after cooling the dried air through the dehumidifying rotor 1, it can generate highly dry air, and this dry air is used. As a result, the effect of the evaporative cooler 7 is enhanced and air having a low temperature can be supplied.
[0036]
A comparison between the desiccant air conditioner of the present invention and a conventional desiccant air conditioner is performed with reference to FIG. FIG. 3 shows the cooling coefficient of performance (COP) and the absolute humidity of the supply air with the temperature efficiency η of the sensible heat exchange rotor of the desiccant air conditioner of the present invention and the conventional desiccant air conditioner set to 0.85 and 0.9. Thus, it can be seen that the COP decreases when the outside air condition is in the low humidity region, but the cooling capacity is remarkably improved in the high humidity region.
[0037]
In FIG. 3, T 1 indicates the outside air temperature, T 5 indicates the temperature of the indoor air G, and H 5 indicates the same humidity. T 8 indicates the temperature of the air J exiting the heater 16. U 1 represents the flow velocity of the air flowing through the adsorption zone of the dehumidification rotor 1, and U 1 / U 8 represents the regenerative air flow ratio, that is, the flow velocity ratio of the air flowing through the adsorption zone and the desorption zone 2 of the dehumidification rotor 1. L represents the width of the dehumidifying rotor 1. CE represents a cooling effect, that is, an enthalpy difference between outside air and room air.
[0038]
【The invention's effect】
Since the desiccant air conditioner of the present invention is configured as described above, the cooling capacity can be remarkably improved when the outside air is in a high humidity region. This characteristic is suitable for Japan, which is hot and humid in summer.
[0039]
Furthermore, the desiccant air conditioner of the present invention can use the hot water supplied from a solar heater or an exhaust heat source for the heater, so that the substantial power consumption during cooling can be made extremely small.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an embodiment of a desiccant air conditioner according to the present invention.
FIG. 2 is an air line diagram showing characteristics of the desiccant air conditioner of the present invention.
FIG. 3 is an efficiency diagram showing characteristics of the desiccant air conditioner of the present invention.
FIG. 4 is an explanatory diagram of a conventional desiccant air conditioner.
[Explanation of symbols]
1, 10 Dehumidification rotor 2, 11 Adsorption zone 3, 12 Desorption zone 4, 13 Sensible heat exchange rotor 5, 14 First flow path 6, 15 Second flow path 7, 8 Evaporative cooler 9, 16 Heater

Claims (2)

外気を第1の除湿ロータで除湿し、除湿による吸着熱よって温度の上がった乾燥空気を外気と第1の顕熱交換ロータ顕熱交換することによって温度を下げ、温度の下がった乾燥空気をさらに第2の除湿ロータで除湿し、除湿による吸着熱よって温度の上がった乾燥空気を室内空気と第2の顕熱交換ロータで顕熱交換することによって温度を下げ、室内へ供給するようにし、前記第1の顕熱交換ロータを通過して温度の上昇した外気を第1の加熱器で加熱して前記第1の除湿ロータの脱着空気とし、前記第2の顕熱交換ロータを通過して温度の上昇した室内空気の一部を大気に放出するとともに残りの空気を第2の加熱器で加熱して前記第2の除湿ロータの脱着空気としたことを特徴とするデシカント空調装置。Outside air dehumidified in the first dehumidification rotor, the adsorption heat Thus dry air raised in temperature due to the dehumidification lower the temperature by the outside air and that the first sensible heat exchanger rotor sensible heat exchange, the drying air lowered in temperature Furthermore dehumidified in the second dehumidification rotor, lowering the temperature by sensible heat exchange adsorption heat Thus dry air rose temperature by dehumidified indoor air and the second sensible heat exchange rotor, so as to supply to the room The outside air that has passed through the first sensible heat exchange rotor and has risen in temperature is heated by a first heater to be desorbed air from the first dehumidifying rotor, and passes through the second sensible heat exchange rotor. A desiccant air conditioner characterized in that a part of the indoor air whose temperature has risen is discharged to the atmosphere and the remaining air is heated by a second heater to be desorbed air of the second dehumidifying rotor . 乾燥空気を室内に供給する前に蒸発冷却手段で冷却するようにした請求項1記載のデシカント空調装置。The desiccant air conditioner according to claim 1, wherein the desiccant air conditioner is cooled by evaporative cooling means before supplying the dry air into the room.
JP2000086351A 2000-03-27 2000-03-27 Desiccant air conditioner Expired - Fee Related JP4436900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000086351A JP4436900B2 (en) 2000-03-27 2000-03-27 Desiccant air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000086351A JP4436900B2 (en) 2000-03-27 2000-03-27 Desiccant air conditioner

Publications (2)

Publication Number Publication Date
JP2001272055A JP2001272055A (en) 2001-10-05
JP4436900B2 true JP4436900B2 (en) 2010-03-24

Family

ID=18602533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000086351A Expired - Fee Related JP4436900B2 (en) 2000-03-27 2000-03-27 Desiccant air conditioner

Country Status (1)

Country Link
JP (1) JP4436900B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127544A (en) * 2003-10-21 2005-05-19 Koji Kiyuuyanai Air conditioning system
RU2716552C1 (en) * 2019-07-22 2020-03-12 Владимир Евгеньевич Воскресенский Plenum air conditioner with non-fluid rotary heating and cooling
CA3146595A1 (en) * 2021-01-25 2022-07-25 Broan-Nutone Llc Energy recovery wheel assembly
CN114791134B (en) * 2022-06-24 2022-09-20 浙江捷峰环境科技有限公司 Multidirectional energy-saving double-rotating-wheel dehumidifier capable of recovering sensible heat and dehumidification method

Also Published As

Publication number Publication date
JP2001272055A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
US6675601B2 (en) Air conditioner
CN100510558C (en) Single runner two stage dehumidify air-conditioner driven by solar
CN100494793C (en) A Two-Stage Rotary Dehumidification Air-Conditioning Device Utilizing Low-grade Heat Sources
JP4340756B2 (en) Dehumidifying air conditioner
JP2012026700A (en) Desiccant air-conditioning system
JP2011036768A (en) Dehumidifier
JP2017533401A (en) Dehumidification system and method
JPWO2010044392A1 (en) Painting equipment
JP2002147794A (en) Dehumidifying air conditioner
JP3821031B2 (en) Desiccant air conditioning system
JP2003279070A (en) Hybrid type desciccant air-conditioning system
JP4436900B2 (en) Desiccant air conditioner
WO2000053978A1 (en) Dehumidifier
JP2002054838A (en) Dehumidifying air conditioning apparatus
JP4414110B2 (en) Dehumidifying air conditioner
US11815286B1 (en) Dual-wheel HVAC system and method having improved dew point control
JP4749559B2 (en) Dehumidifying air conditioner
CN214791585U (en) A high temperature heat pump hot water type low temperature regeneration runner dehumidification fresh air system
JP2003214655A (en) Desiccant air conditioner
WO2005123225A1 (en) Dehumidifier
JP2002276998A (en) Desiccant dehumidifier
JP5917787B2 (en) Air conditioning system
JP2002333161A (en) Dehumidifying air conditioning system
JP2011094904A (en) Desiccant type ventilation fan
JP2003214654A (en) Desiccant air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091229

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees