[go: up one dir, main page]

JP4744686B2 - Operational amplifier - Google Patents

Operational amplifier Download PDF

Info

Publication number
JP4744686B2
JP4744686B2 JP2000371904A JP2000371904A JP4744686B2 JP 4744686 B2 JP4744686 B2 JP 4744686B2 JP 2000371904 A JP2000371904 A JP 2000371904A JP 2000371904 A JP2000371904 A JP 2000371904A JP 4744686 B2 JP4744686 B2 JP 4744686B2
Authority
JP
Japan
Prior art keywords
electrode
semiconductor element
power supply
output terminal
lower power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000371904A
Other languages
Japanese (ja)
Other versions
JP2002175052A (en
Inventor
文彦 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2000371904A priority Critical patent/JP4744686B2/en
Priority to US10/007,466 priority patent/US6424219B1/en
Publication of JP2002175052A publication Critical patent/JP2002175052A/en
Application granted granted Critical
Publication of JP4744686B2 publication Critical patent/JP4744686B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/3061Bridge type, i.e. two complementary controlled SEPP output stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/3022CMOS common source output SEPP amplifiers
    • H03F3/3023CMOS common source output SEPP amplifiers with asymmetrical driving of the end stage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Amplifiers (AREA)
  • Liquid Crystal (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は液晶パネル駆動装置に関し、特に入力信号を演算増幅する演算増幅器及びそれを用いた液晶パネル駆動用回路に関する。
【0002】
【従来の技術】
一般に、液晶パネルは、毎秒数十フレーム(数十枚)の書き込みを行う必要がある。このため、液晶パネル駆動用回路からの出力信号は、液晶パネルの対向電極の電位に対し、走査ライン毎あるいはフレーム毎に交流駆動を行っている。この液晶パネルの対向電極の電位に対し交流駆動を行う液晶パネル駆動用演算増幅器及び液晶パネル駆動用回路について、図7及び図8を参照して説明する。
【0003】
図7は従来の液晶パネル駆動用演算増幅器の一例を示す構成図である。図7に示すように、従来の液晶パネル駆動用演算増幅器1aは、高位側電源(VDD)8および低位側電源(VSS)9間に接続され、それぞれ正入力端子VI1と負入力端子VI2ならびに正入力端子VI3と負入力端子VI4に供給されるアナログ入力の差電圧を増幅し差動型入力段出力端子101,102へ出力する差動型入力段回路2,3と、同様に高位側電源8および低位側電源9間に一方を接続され且つ他方を演算増幅器1aの出力端子VO1,VO2にそれぞれ接続する出力段FET11,12およびFET13,14と、同様に高位側電源8および低位側電源9間に接続され、出力端子101,102からの差動出力に基いてそれぞれ出力段FET11,12およびFET13,14への駆動出力を出力端子105,106ならびに107,108を介して供給する駆動段回路4,5とを有しており、機能的には出力インピーダンスの変換回路として用いられる。
【0004】
この液晶パネル駆動用演算増幅器1aの差動型入力段回路2,3は、入力レンジが低位側電源レベル(VSS)から高位側電源レベル(VDD)まで確保することができる。また、出力段FET11は、ゲート電極が駆動段回路4の出力端子VO1に接続され、ソース電極とドレイン電極とがそれぞれ高位側電源8と出力端子VO1に接続される。出力段FET13も駆動段回路5と出力端子VO2に同様に接続される。さらに、出力段FET12,14は低位側電源9と出力端子VO2に接続される。
【0005】
図8は従来の演算増幅器を使用した液晶パネル駆動用回路の一例を示す構成図である。図8に示すように、かかる液晶パネル駆動用回路40aは、正極側入力および負極側入力のディジタルデータをそれぞれD/A変換する正側D/Aコンバータ41および負側D/Aコンバータ42と、これらのD/Aコンバータ41,42の変換出力を外部からの制御入力によりスイッチングするスイッチ手段43,44と、これらスイッチ手段43,44で切替られた出力を演算増幅する上述(図7)の演算増幅器1aと、この演算増幅器1aの出力VO1,VO2を外部からの制御入力によりスイッチングして出力端子OUT1,OUT2に供給するスイッチ手段47,48とを有している。
【0006】
これらD/Aコンバータ41,42は、それぞれ入力されるデジタルデータに応じて、中間電位から高位側電源および中間電位から低位側電源のアナログデータに変換する。また、各スイッチ手段43,44,47,48は、相反する動作を行う一対のスイッチSおよびSbから構成される。さらに、演算増幅器1aは信号の負帰還を行っており、各出力VO1,VO2が正側入力VI1,VI3に対する負側入力VI2,VI4にフィードバックされる。
【0007】
かかる液晶パネル駆動用回路40aの動作は、まずスイッチ手段43,44,47,48における各スイッチSがON(このとき、スイッチSbはOFF)の時、正極側D/Aコンバータ41から出力されたアナログ信号及び負極側D/Aコンバータ42から出力されたアナログ信号がそれぞれ演算増幅器1aに入力され、それぞれがインピーダンス変換され、出力信号として、スイッチ手段47または48を介し出力端子OUT1またはOUT2に出力される。なお、液晶パネル駆動用回路40aの出力は、パネルの各素子を駆動するために多数個設けられるが、説明を簡略化するために、便宜的に2個で説明している。
【0008】
また、スイッチ手段43,44,47,48における各スイッチSbがON(このとき、スイッチSはOFF)の時も同様であり、正極側D/Aコンバータ41で選択されたアナログ信号はインピーダンス変換され、出力端子OUT2に、また負極側D/Aコンバータ42で選択されたアナログ信号もインピーダンス変換され、出力端子OUT1にそれぞれ出力される。
【0009】
この液晶パネル駆動用回路40aは、数十回正極側または負極側のアナログ信号を出力、すなわちパネルに対して書き込みを行う。走査ラインが切り替われば、正極側を出力していた端子と負極側を出力していた端子とを入れ替えることにより、交流駆動を行う。
【0010】
図9は従来の液晶パネル駆動用回路の出力波形のタイミング図である。図9に示すように、スイッチS,Sbが相反する切替動作を行うと、出力端子OUT1,OUT2に出力される液晶パネル充放電のための信号波形は、高位側電源電圧VDDから低位側電源電圧VSSに、また低位側電源電圧VSSから高位側電源電圧VDDに変化する。
【0011】
【発明が解決しようとする課題】
上述した液晶パネルは容量性の負荷である。このため、入力するアナログ信号の変化によって液晶パネルを駆動することは、液晶パネルの容量性負荷を充放電することである。
【0012】
また、液晶パネル駆動用回路は、前述したように、正極側あるいは負極側電圧を数十回出力した後、出力極性を入れ替えて負極側あるいは正極側電圧を数十回出力し、その繰り返し動作を行う。
【0013】
かかる容量性負荷の充放電は、高位側電源と低位側電源の間で行われるため、高位側電源と低位側電源との電位差をVDD、書き込み振幅をVpp、書き込み周波数をf(Hz)、液晶パネルの容量性負荷の容量値をCとすると、1出力あたりの消費電力Pは、次の式で表わすことができる。
【0014】
P=C×f×Vpp×VDD
しかるに、上述した従来の演算増幅器及びそれを用いた液晶パネル用駆動回路は、正極性側あるいは負極性側出力電圧だけを数十回書き込むにも拘わらず、高位側電源と低位側電源との電位差がVDD(VSSを0Vとしたとき)であるために、消費電力Pが大きくなってしますという問題がある。
【0015】
また、液晶パネルの交流駆動を行う際には、液晶パネルの表示ムラを極力抑制する必要がある。
【0016】
本発明の目的は、液晶パネルの交流駆動を行う際に消費されるパネル負荷充放電電力を削減するとともに、交流駆動を行う際に発生する液晶パネルの表示ムラを極力抑制することのできる演算増幅器及びそれを用いた液晶パネル駆動用回路を提供することにある。
【0017】
【課題を解決するための手段】
本発明は、消費電力を小さくすると同時に、交流駆動を行う際に発生する液晶パネルの表示ムラを従来例と同様に極力抑制するものであり、その解決手段として、高位側電源,低位側電源の他に、中位側電源およびスイッチ手段を設けたことにある。特に、最終的に出力するトランジスタ段についてみると、正極側を駆動する出力トランジスタ段を高位側電源と中位側電源の間に接続し且つ負極側を駆動する出力トランジスタ段を中位側電源と低位側電源の間に接続する。
【0018】
かかる手段を使用することにより、充放電は高位側電源から中位側電源の間または中位側電源から低位側電源の間で行われ、高位側電源と中位側電源との電位差または中位側電源と低位側電源との電位差をVDD/2、書き込み振幅をVpp、書き込み周波数をf(Hz)、液晶パネルの容量性負荷の容量値をCとすると、1出力あたりの消費電力Pは、つぎの式で表わすことができる。
【0019】
P=C×f×Vpp×(VDD/2)
また、本発明は、正極側書き込み時に使用する差動型入力段回路と負極側書き込み時に使用する差動型入力段回路とを同一とすることにより、交流駆動を行う際に発生する液晶パネルの表示ムラを極力抑制することができる。
【0020】
【発明の実施の形態】
以下、図面を参照し、本発明の演算増幅器及びそれを用いた液晶パネル駆動用回路の実施形態について説明する。
【0021】
図1は本発明の一実施形態を示すパネル駆動用演算増幅器の構成図である。図1に示すように、本実施の形態における液晶パネル駆動用演算増幅器1は、高位側電源(VDD)8および低位側電源(VSS)9間に接続され、それぞれ正入力端子VI1と負入力端子VI2ならびに正入力端子VI3と負入力端子VI4に供給されるアナログ入力の差電圧を増幅し差動型入力段出力端子101,102へ出力する差動型入力段回路2,3と、高位側(VDD)電源8および中位側(VDD/2)電源10間に直列に接続され且つそれらの接続点に出力端子VO1を接続した出力段FET11,12と、中位側(VDD/2)電源10および低位側(VSS)電源9間に直列に接続され且つそれらの接続点に出力端子VO2を接続した出力段FET13,14と、差動入力段出力101,102および駆動段入力103,104間に接続されるとともに、外部から供給される所定の制御信号によってオン・オフを制御され且つ互いに相反する動作をするスイッチS1,S1bおよびスイッチS2b,S2からなるスイッチ手段6,7と、高位側電源8および低位側電源9間に接続され、入力端子103,104からの信号に基いてそれぞれ出力段FET11,12およびFET13,14への駆動出力を出力端子105,106ならびに107,108を介して供給する駆動段回路4,5とを有しており、機能的には出力インピーダンスの変換回路として用いられる。なお、これら差動型入力段回路2,3は入力レンジが低位側電源レベル(VSS)から高位側電源レベル(VDD)まで確保できる。
【0022】
このパネル駆動用演算増幅器1は、スイッチ手段6,7と中位側電源10を追加したことにあり、スイッチ手段6,7はその構成スイッチS1,S2が同相でオン・オフし、またこれらのスイッチS1,S2とは逆相でオフ・オンするスイッチS1b,S2bが同相でオン・オフする。さらに、中位側電源10を設けることにより、出力端子VO1,VO2における出力電圧の立ち上げを高速化し、パネル負荷充放電電力を削減するとともに、交流駆動を行う際に発生する液晶パネルの表示ムラを抑制している。
【0023】
図2は図1における演算増幅器の駆動段回路の第1の例を示す詳細図である。図2に示すように、演算増幅器における駆動段回路4は、ゲート電極が入力端子103に接続され、ソース電極が低位側電源9(VSS)に接続されたFET15と、ゲート電極とドレイン電極とがFET15のドレイン電極に接続され、ソース電極が高位側電源8(VDD)に接続されたFET16と、ゲート電極がFET15のドレイン電極とFET16のゲート,ドレイン電極に接続され、ソース電極が高位側電源8に接続されたFET17と、ゲート,ドレイン電極が出力端子105に接続され、ソース電極がFET17のドレイン電極に接続されたFET18と、ゲート電極がFET15のドレイン電極とFET16のゲート,ドレイン電極とFET17のゲート電極に接続され且つソース電極が高位側電源8に接続され、ドレイン電極が出力端子106に接続されたFET19と、一端をFET18のゲート,レイン電極及び出力端子105に接続され、他端を低位側電源9に接続された定電流源I1と、一端をFET19のドレイン電極及び出力端子106に接続され、他端を低位側電源9に接続された定電流源I2とで構成される。
【0024】
同様に、駆動段回路5は、ゲート電極が入力端子104に接続され、ソース電極が低位側電源9に接続されたFET20と、ゲート電極とドレイン電極とがFET20のドレイン電極に接続され、ソース電極が高位側電源8に接続されたFET21と、ゲート電極がFET20のドレイン電極とFET21のゲート,ドレイン電極に接続され、ソース電極が高位側電源8に接続されたFET22と、ゲート,ドレイン電極が出力端子108及びFET22のドレイン電極に接続されたFET23と、ゲート電極がFET20のドレイン電極とFET21のゲート,ドレイン電極とFET22のゲート電極に接続され且つソース電極が高位側電源8に接続され、ドレイン電極が出力端子107に接続されたFET24と、一端をFET23のソース電極に接続され、他端を低位側電源9に接続された定電流源I3と、一端をFET24のドレイン電極及び出力端子107に接続され、他端を低位側電源9に接続された定電流源I4とで構成される。
【0025】
これら駆動段回路4,5の動作は、前述した差動型入力段回路2,3からの出力信号101,102をスイッチ手段6,7によって切換えられた入力103,104が供給されると、その信号を駆動段回路4,5内で変換し、最終の出力FET11,12および出力FET13,14への出力信号105,106および107,108として伝達される。
【0026】
例えば、差動型入力段回路2または3の正入力端子VI1,負入力端子VI2または正入力端子VI3,負入力端子VI4において、負入力端子VI2、VI4の電位レベルに比べ、正入力端子VI1,VI3の電位レベルが大きくなった場合、それぞれの差動型入力段回路2,3の出力信号101,102は、立ち下がりの信号になる。その信号は、駆動段回路4,5内で変換され、最終段の出力FET11,12および13,14への立ち下がり信号として出力される。すると、最終段の出力FET11,12および13,14は、それぞれFET11と13が低抵抗、FET12,14が高抵抗となり、負荷に対しての充電信号として出力される。
【0027】
同様に、差動型入力段回路2または3の正入力端子VI1,負入力端子VI2または正入力端子VI3,負入力端子VI4において、負入力端子VI2,VI4の電位レベルに比べ、正入力端子VI1,VI3の電位レベルが小さくなった場合、それぞれの差動型入力段回路2,3の出力信号101,102は、立ち上がりの信号になる。その信号は、駆動段回路4,5内で変換され、最終段の出力FET11,12および13,14への立ち上がり信号として出力される。すると、最終段の出力FET11,12および13,14は、それぞれFET11と13が高抵抗、FET12,14が低抵抗となり、負荷に対しての放電信号として出力される。
【0028】
従って、これらの駆動段回路4,5を使用すれば、負荷に対するプッシュープル動作が可能である。
【0029】
また、かかる駆動段回路4,5を使用すると、最終段の出力FET12および13のソース電極電位がバックゲート電極電位に対して浮いていたとしても、動作的に支障がない。その理由は、最終段の出力FET11,12またはFET13,14それぞれに流れる定常電流は、駆動段回路4,5内のFET18,23とカレントミラーを構成されている出力段FET11,14で決定されるからである。その場合、出力段FET12,13のソース電極電位がバックゲート電極電位に対し浮いたとしても、問題は生じない。
【0030】
図3は図1における演算増幅器の駆動段回路の第2の例を示す詳細図である。図3に示すように、演算増幅器における駆動段回路4は、ゲート電極が入力端子103に接続され、ソース電極が低位側電源9(VSS)に接続されたFET25と、ゲート電極とドレイン電極とがFET25のドレイン電極に接続され、ソース電極が低位側電源9に接続されたFET26と、ゲート電極がFET25のドレイン電極とFET26のゲート,ドレイン電極に接続され、ソース電極が低位側電源9に接続されたFET27と、ゲート,ドレイン電極がFET27のドレイン電極及び出力端子105に接続されたFET28と、ゲート電極がFET25のドレイン電極とFET26のゲート,ドレイン電極とFET27のゲート電極に接続され且つソース電極が低位側電源9に接続され、ドレイン電極が出力端子106に接続されたFET29と、一端をFET25のドレイン電極とFET26のゲート,ドレイン電極とFET27及びFET29のゲート電極に接続され、他端を高位側電源8に接続された定電流源I5と、一端をFET28のソース電極に接続され、他端を高位側電源8に接続された定電流源I6と、一端をFET29のドレイン電極及び出力端子106に接続された定電流源I7とで構成される。
【0031】
同様に、駆動段回路5は、ゲート電極が入力端子104に接続され、ソース電極が低位側電源9に接続されたFET30と、ゲート電極とドレイン電極とがFET30のドレイン電極に接続され、ソース電極が低位側電源9に接続されたFET31と、ゲート電極がFET30のドレイン電極とFET31のゲート,ドレイン電極に接続され、ソース電極が低位側電源9に接続されたFET32と、ゲート,ドレイン電極が出力端子108に接続され、ソース電極がFET32のドレイン電極に接続されたFET33と、ゲート電極がFET30のドレイン電極とFET31のゲート,ドレイン電極とFET32のゲート電極に接続され且つソース電極が低位側電源9に接続され、ドレイン電極が出力端子107に接続されたFET34と、一端をFET30のドレイン電極とFET31のゲート,ドレイン電極とFET32及びFET34のゲート電極に接続され、他端を高位側電源8に接続された定電流源I8と、一端をFET33のゲート,ドレイン電極及び出力端子108に接続され、他端を高位側電源8に接続された定電流源I9と、一端をFET34のドレイン電極及び出力端子107に接続された定電流源I10とで構成される。
【0032】
この場合の駆動段回路4,5の動作は、前述した図2の第1の例と同様であるので、説明は省略する。
【0033】
図4は図1における演算増幅器の駆動段回路の第3の例を示す詳細図である。図4に示すように、この場合の演算増幅器における駆動段回路は、前述した図3の第2の例における駆動段回路4と、前述した図2の第1の例における駆動段回路5とを組合わせたものである。
【0034】
すなわち、駆動段回路4は、ゲート電極を入力端子103に且つソース電極を低位側電源9に接続したFET55と、ゲート,ドレイン電極をFET25のドレイン電極に且つソース電極を低位側電源9に接続したFET26と、ゲート電極をFET26のゲート電極に接続し、ソース電極を低位側電源9に接続したFET27と、ゲート,ドレイン電極をFET27のドレイン電極及び出力端105に接続したFET28と、ゲート電極をFET27のゲーの電極に且つソース電極を低位側電源9に接続し、ドレイン電極を出力端106に接続したFET29と、FET25のドレイン電極と高位側電源8間に接続した定電流源I5と、FET28のソース電極と高位側電源8間に接続した定電流源I6と、出力端106と高位側電源8間に接続した定電流源I7とで構成する。
【0035】
一方、駆動段回路5は、ゲート電極を入力端子104に接続し、ソース電極を低位側電源9に接続したFET20と、ゲート,ドレイン電極をFET20のドレイン電極に接続し、ソース電極を高位側電源8に接続したFET21と、ゲート電極をFET21のゲート電極と接続し、ソース電極を高位側電源8に接続したFET22と、ゲート,ドレイン電極をFET22のドレイン電極及び出力端108に接続したFET23と、ゲート電極をFET22のゲート電極に且つソース電極を高位側電源に接続し、ドレイン電極を出力端107に接続したFET24と、FET23のソース電極と低位側電源9間に接続した定電流源I3と、FET24のドレイン電極と低位側電源9間に接続した定電流源I4とで構成する。
【0036】
なお、これらの駆動段回路4,5の回路動作については、第1の例と同様であるので、その説明を省略する。
【0037】
また、上述した2と図3の駆動段回路を図4とは逆に組合せて構成することもできる。例えば、第1の駆動段回路として図2の駆動段回路4を用い、第2の駆動段回路として図3の駆動段回路5を用いて実現することもできる。
【0038】
図5は図1における演算増幅器の差動型入力段回路の一例を示す詳細図である。図5に示すように、上述した演算増幅器1の差動型入力段回路2,3はつぎのように形成される。
【0039】
例えば、差動型入力段回路2は、ソース電極が共通接続され、ゲート電極がそれぞれ第1の正入力端子VI1と第1の負入力端子VI2とに接続されたFET1および2(MOSトランジスタ:以下同様)と、ゲート,ドレイン電極をFET1のドレイン電極に接続し、ソース電極を高位側電源(VDD)8に接続したFET2(MOSトランジスタ:以下同様)と、ゲート,ドレイン電極をFET2のドレイン電極に接続し、ソース電極を高位側電源8に接続したFET3と、ゲート電極をFET2のゲート,ドレイン電極及びFET1のドレイン電極に接続し、ソース電極を高位側電源8に接続したFET1と、ゲート電極をFET3のゲート,ドレイン電極及びFET2のドレイン電極に接続し、ソース電極を高位側電源8に且つドレイン電極を第1の出力端子に接続したFET4と、ソース電極を共通接続し、ゲート電極をそれぞれ第1の負入力端子VI2と第1の正入力端子VI1に接続したFET5及びFET6と、ゲート,ドレイン電極をFET1及びFET5のドレイン電極に接続し、ソース電極を低位側電源9に接続したFET3と、ゲート電極をFET1,FET5のドレイン電極及びFET3ゲート,ドレイン電極に接続し、ソース電極を低位側電源9に接続するとともに、ドレイン電極を第1の出力端子101及びFET6のドレイン電極に接続したFET4と、一端をFET1,2のソース電極に接続し且つ他端を低位側電源9に接続した第1の定電流源I11と、一端をFET5,6のソース電極に接続し且つ他端を高位側電源8に接続した第2の定電流源I12とで構成される。
【0040】
同様に、差動型入力段回路3は、ソース電極を共通接続し、ゲート電極をそれぞれ第2の正入力端子VI3と第2の負入力端子VI4とに接続したFET5および6と、ゲート,ドレイン電極をFET5のドレイン電極に接続し、ソース電極を高位側電源8に接続したFET8と、ゲート,ドレイン電極をFET6のドレイン電極に接続し、ソース電極を高位側電源8に接続したFET9と、ゲート電極をFET8のゲート,ドレイン電極及びFET5のドレイン電極に接続し、ソース電極を高位側電源8に接続したFET7と、ゲート電極をFET9のゲート,ドレイン電極及びFET6のドレイン電極に且つソース電極を高位側電源8に接続し、ドレイン電極を第2の出力端子102に接続したFET10と、ソース電極を共通接続し、ゲート電極がそれぞれ第2の負入力端子VI4と第2の正入力端子VI3とに接続されたFET11およびFET12と、ゲート,ドレイン電極をFET7およびFET11のドレイン電極に接続し、ソース電極を低位側電源9に接続したFET7と、ゲート電極をFET7,FET11のドレイン電極及びFET7のゲート,ドレイン電極に且つソース電極を低位側電源9に接続し、ドレイン電極を第2の出力端子102及びFET12のドレイン電極に接続したFET8と、一端をFET5,6のソース電極に接続し且つ他端を低位側電源9に接続した第3の定電流源I13と、一端をFET11,12のソース電極に接続し且つ他端を高位側電源8に接続した第4の定電流源I14とで構成される。
【0041】
上述の例では、差動型入力段回路2,3を形成する半導体素子としてMOSFETの例を取り上げたが、ベース電極,エミッタ電極およびコレクタ電極を備えるバイポーラトランジスタにより形成しても良いし、また高位側電源および低位側電源を入れ換えて構成しても良い。さらに、液晶パネル駆動用の演算増幅器の形成にあたっては、上述した差動型入力段回路2,3と、前述した図2から図5の駆動段回路4,5とを組合わせて形成することもできる。
【0042】
図6は本発明の演算増幅器を使用した液晶パネル駆動用回路の1例を示す構成図である。図6に示すように、液晶パネル駆動用回路40は、中位側電源電位から高位側電源電位までのデジタル・アナログ変換を行う正極側D/Aコンバータ41と、低位側電源電位から中位側電源電位までのデジタル・アナログ変換を行う負極側D/Aコンバータ42と、これらのD/Aコンバータ41,42の変換出力を外部からの制御入力によりスイッチングするスイッチ手段43,44と、これらスイッチ手段43,44で切替られた出力を正入力端子VO1,VO3に入力し、演算増幅して出力のインピーダンス変換を行って出力端子VO1,VO2に出力する上述(図1)の演算増幅器1と、この演算増幅器1の出力VO1VO2を外部からの制御入力によりスイッチングして演算増幅器1の負入力端子VO2,VO4に供給するスイッチ手段45,46と、演算増幅器1の出力VO1,VO2を外部からの制御入力によりスイッチングして出力端子OUT1,OUT2に供給するスイッチ手段47,48とを有している。なお、これらのうち、D/Aコンバータ41,42と、スイッチ手段43,44およびスイッチ手段47,48とは、前述した図8の従来例と同様であるので、ここではその説明を省略する。
【0043】
本実施の形態では、新たな演算増幅器1と、スイッチ手段45,46とを設けたことにあり、特にスイッチ手段45は演算増幅器1の負入力端子VI2と出力端子VO1,VO2に接続され且つ相補動作するスイッチS,Sbで形成したことにあり、同様にスイッチ手段46は演算増幅器1の負入力端子VI4と出力端子VO1,VO2に接続され且つ相補動作するスイッチS,Sbで形成したことにある。
【0044】
この液晶パネル駆動用回路40の動作は、まずスイッチ手段43〜48におけるスイッチSおよび演算増幅器1内のスイッチS1,S2(図1参照)がON(S1b,S2bはOFF)の時、正極側D/Aコンバータ41から出力されたアナログ信号と、負極側D/Aコンバータ42から出力されたアナログ信号がそれぞれ演算増幅器1の正入力端子VI1,VI2に入力される。すなわち、正極側のアナログ信号は、図1中の演算増幅器1における差動入力段回路2,駆動段回路4に入力され、インピーダンス変換され、出力信号として出力端子OUT1に出力される。一方、負極側のアナログ信号は、図1中の演算増幅器1における差動入力段回路3,駆動段回路5に入力されるので、インピーダンス変換され、出力信号として出力端子OUT2に出力される。
【0045】
次に、スイッチ手段43〜48におけるスイッチSbおよび演算増幅器1内のスイッチS1b,S2b(図1参照)がON(S1,S2はOFF)の時、正極側D/Aコンバータ41から出力されたアナログ信号と、負極側D/Aコンバータ42から出力されたアナログ信号がそれぞれ演算増幅器1の正入力端子VI1,VI2に入力される。すなわち、正極側のアナログ信号は、図1中の演算増幅器1における差動入力段回路2,駆動段回路5に入力され、インピーダンス変換され、出力信号として出力端子OUT2に出力される。一方、負極側のアナログ信号は、図1中の演算増幅器1における差動入力段回路3,駆動段回路4に入力され、インピーダンス変換され、出力信号として出力端子OUT1に出力される。
【0046】
かかる液晶パネル駆動用回路40は、数十回正極側または負極側のアナログ信号を出力端子OUT1,OUT2に出力(パネルに対して書き込みを行う)し、操作ラインが切り替われば、正極側のアナログ信号を出力していた端子と、負極側アナログ信号を出力していた端子とを入れ替え、交流駆動を行う。
【0047】
以上説明した動作をタイミングチャートで示すと、前述した図9の従来駆動と同様となる。
【0048】
要するに、上述した演算増幅器1およびスイッチ手段43〜48を使用することにより、出力端子OUT1,OUT2における充放電は高位側電源から中位側電源の間または中位側電源から低位側電源の間で行われ、仮に高位側電源と中位側電源との電位差または中位側電源と低位側電源との電位差をVDD/2(ボルト)、書き込み振幅をVpp、書き込み周波数をf(Hz)、液晶パネルの容量性負荷の値をCとすれば、1出力あたりの消費電力Pは、つぎの式で表わすことができる。
【0049】
P=C×f×Vpp×(VDD/2)
従って、本実施形態の液晶パネル駆動回路40を用いると、従来の液晶パネル駆動回路を使用した場合と比べて、1/2の負荷消費電力にすることができる。しかも、正極側書き込み時に使用する差動型入力段回路と負極側書き込み時に使用する差動型入力段回路とが同一であるため、交流駆動を行う際に発生する液晶パネルの表示ムラを従来通り極力抑制することができる。
【0050】
また、液晶パネル駆動回路は、上述した液晶パネル駆動回路40を複数個用いて形成するとができる。
【0051】
さらに、この液晶パネル駆動回路は、複数個の液晶パネル駆動用回路を設けて形成される。
【0052】
【発明の効果】
以上説明のように、本発明の液晶パネル駆動用演算増幅器及びその演算増幅器を用いた液晶パネル駆動回路は、演算増幅器の差動段出力を駆動段回路に供給する経路をスイッチ手段により切換え、しかも出力段FETを高位側電源,低位側電源の他に中位側電源を用いて駆動することにより、負荷を充放電する場合に発生する負荷電力を小さくでき、しかもパネル表示時の色ムラを極力抑制できるという効果がある。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すパネル駆動用演算増幅器の構成図である。
【図2】図1における演算増幅器の駆動段回路の第1の例を示す詳細図である。
【図3】図1における演算増幅器の駆動段回路の第2の例を示す詳細図である。
【図4】図1における演算増幅器の駆動段回路の第3の例を示す詳細図である。
【図5】図1における演算増幅器の差動型入力段回路の一例を示す詳細図である。
【図6】本発明の他の実施形態を示す演算増幅器を使用した液晶パネル駆動用回路の構成図である。
【図7】従来の液晶パネル駆動用演算増幅器の一例を示す構成図である。
【図8】従来の演算増幅器を使用した液晶パネル駆動用回路の一例を示す構成図である。
【図9】従来の液晶パネル駆動用回路の出力波形のタイミング図である。
【符号の説明】
1 演算増幅器
2,3 差動型入力段回路
4,5 駆動段回路
6,7,43〜48 スイッチ手段
8 高位側電源
9 低位側電源
10 中位側電源
11〜14 出力段FET
40 液晶パネル駆動用回路
41 正側D/Aコンバータ
42 負側D/Aコンバータ
VI1,VI3 正入力端子
VI2,VI4 負入力端子
101,102 差動型入力段出力端子
103,104 駆動段入力端子
105〜108 駆動段出力端子
I1〜I14 定電流源
VO1,VO2 演算増幅器出力端子
OUT1,OUT2 液晶パネル駆動用回路出力端子
S1,S1b,S2,S2b,S,Sb スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a liquid crystal panel driving device, and more particularly to an operational amplifier for calculating and amplifying an input signal and a liquid crystal panel driving circuit using the operational amplifier.
[0002]
[Prior art]
In general, a liquid crystal panel needs to write several tens of frames (several tens) per second. For this reason, the output signal from the liquid crystal panel driving circuit performs AC driving for each scanning line or for each frame with respect to the potential of the counter electrode of the liquid crystal panel. A liquid crystal panel driving operational amplifier and a liquid crystal panel driving circuit that perform AC driving with respect to the potential of the counter electrode of the liquid crystal panel will be described with reference to FIGS.
[0003]
FIG. 7 is a block diagram showing an example of a conventional operational amplifier for driving a liquid crystal panel. As shown in FIG. 7, a conventional operational amplifier 1a for driving a liquid crystal panel is connected between a high power supply (VDD) 8 and a low power supply (VSS) 9, and has a positive input terminal VI1, a negative input terminal VI2, and a positive input terminal VI2, respectively. The differential input stage circuits 2 and 3 that amplify the differential voltage between the analog inputs supplied to the input terminal VI3 and the negative input terminal VI4 and output the amplified voltage to the differential input stage output terminals 101 and 102, as well as the higher power supply 8 And the output stages FET11, 12 and FET13, 14 having one connected between the lower power supply 9 and the other connected to the output terminals VO1, VO2 of the operational amplifier 1a, respectively, and similarly between the higher power supply 8 and the lower power supply 9 And drive outputs to the output stages FET 11 and 12 and FETs 13 and 14 based on the differential outputs from the output terminals 101 and 102, respectively. Has a drive stage circuits 4 and 5 supplied via 107 to rabbi is functionally used as a conversion circuit of the output impedance.
[0004]
The differential input stage circuits 2 and 3 of the operational amplifier 1a for driving the liquid crystal panel can secure the input range from the lower power supply level (VSS) to the higher power supply level (VDD). The output stage FET 11 has a gate electrode connected to the output terminal VO1 of the drive stage circuit 4, and a source electrode and a drain electrode connected to the high-potential power supply 8 and the output terminal VO1, respectively. The output stage FET 13 is similarly connected to the drive stage circuit 5 and the output terminal VO2. Further, the output stage FETs 12 and 14 are connected to the lower power supply 9 and the output terminal VO2.
[0005]
FIG. 8 is a block diagram showing an example of a liquid crystal panel driving circuit using a conventional operational amplifier. As shown in FIG. 8, the liquid crystal panel driving circuit 40a includes a positive side D / A converter 41 and a negative side D / A converter 42 that D / A convert digital data of the positive side input and the negative side input, respectively. The switching means 43 and 44 for switching the conversion outputs of these D / A converters 41 and 42 by an external control input, and the calculation described above (FIG. 7) for calculating and amplifying the output switched by these switching means 43 and 44 The amplifier 1a has switching means 47 and 48 for switching the outputs VO1 and VO2 of the operational amplifier 1a by an external control input and supplying them to the output terminals OUT1 and OUT2.
[0006]
These D / A converters 41 and 42 convert the intermediate potential into analog data of the higher power supply and the intermediate potential to the lower power supply according to the input digital data. Each switch means 43, 44, 47, 48 includes a pair of switches S and Sb that perform opposite operations. Further, the operational amplifier 1a performs negative feedback of the signal, and the outputs VO1, VO2 are fed back to the negative inputs VI2, VI4 with respect to the positive inputs VI1, VI3.
[0007]
The operation of the liquid crystal panel driving circuit 40a is output from the positive-side D / A converter 41 when each switch S in the switch means 43, 44, 47, 48 is ON (the switch Sb is OFF at this time). The analog signal and the analog signal output from the negative-side D / A converter 42 are input to the operational amplifier 1a, respectively, impedance converted, and output as an output signal to the output terminal OUT1 or OUT2 via the switch means 47 or 48. The Note that a large number of outputs from the liquid crystal panel driving circuit 40a are provided to drive each element of the panel. However, in order to simplify the description, two outputs are described for convenience.
[0008]
The same applies when each switch Sb in the switch means 43, 44, 47, 48 is ON (the switch S is OFF at this time), and the analog signal selected by the positive-side D / A converter 41 is impedance-converted. The analog signal selected by the negative terminal D / A converter 42 is also impedance-converted to the output terminal OUT2 and output to the output terminal OUT1.
[0009]
The liquid crystal panel driving circuit 40a outputs the analog signal on the positive electrode side or the negative electrode side several tens of times, that is, performs writing on the panel. When the scanning line is switched, AC driving is performed by switching the terminal that outputs the positive side and the terminal that outputs the negative side.
[0010]
FIG. 9 is a timing diagram of output waveforms of a conventional liquid crystal panel driving circuit. As shown in FIG. 9, when the switches S and Sb perform opposite switching operations, the signal waveform for charging / discharging the liquid crystal panel output to the output terminals OUT1 and OUT2 changes from the higher power supply voltage VDD to the lower power supply voltage. It changes to VSS and from the lower power supply voltage VSS to the higher power supply voltage VDD.
[0011]
[Problems to be solved by the invention]
The liquid crystal panel described above is a capacitive load. For this reason, driving the liquid crystal panel by a change in the input analog signal means charging / discharging the capacitive load of the liquid crystal panel.
[0012]
Further, as described above, the liquid crystal panel driving circuit outputs the positive side or negative side voltage several tens of times, then switches the output polarity and outputs the negative side or positive side voltage several tens of times, and repeats the operation. Do.
[0013]
Since charging and discharging of the capacitive load is performed between the high-order power supply and the low-order power supply, the potential difference between the high-order power supply and the low-order power supply is VDD, the write amplitude is Vpp, the write frequency is f (Hz), and the liquid crystal When the capacitance value of the capacitive load of the panel is C, the power consumption P per output can be expressed by the following equation.
[0014]
P = C × f × Vpp × VDD
However, the above-described conventional operational amplifier and the liquid crystal panel drive circuit using the same have the potential difference between the high-side power supply and the low-side power supply, although only the positive side or negative side output voltage is written several tens of times. Is VDD (when VSS is set to 0 V), there is a problem that the power consumption P is increased.
[0015]
Further, when AC driving of the liquid crystal panel is performed, it is necessary to suppress display unevenness of the liquid crystal panel as much as possible.
[0016]
An object of the present invention is to reduce the panel load charge / discharge power consumed when AC driving of a liquid crystal panel is performed, and an operational amplifier capable of suppressing display unevenness of the liquid crystal panel generated when performing AC driving as much as possible. And a liquid crystal panel driving circuit using the same.
[0017]
[Means for Solving the Problems]
The present invention reduces the power consumption and suppresses the display unevenness of the liquid crystal panel that occurs when alternating current drive is performed as much as possible in the same manner as the conventional example. In addition, a middle power supply and switch means are provided. In particular, regarding the transistor stage that finally outputs, the output transistor stage that drives the positive side is connected between the high-side power source and the middle-side power source, and the output transistor stage that drives the negative side is the middle-side power source. Connect between the lower power supplies.
[0018]
By using such means, charging / discharging is performed between the high power supply and the middle power supply or between the middle power supply and the low power supply, and the potential difference between the high power supply and the middle power supply or the Assuming that the potential difference between the side power supply and the lower power supply is VDD / 2, the writing amplitude is Vpp, the writing frequency is f (Hz), and the capacitance value of the capacitive load of the liquid crystal panel is C, the power consumption P per output is It can be expressed by the following formula.
[0019]
P = C × f × Vpp × (VDD / 2)
The present invention also provides a liquid crystal panel that is generated when AC driving is performed by making the differential input stage circuit used at the time of positive side writing the same as the differential input stage circuit used at the time of negative side writing. Display unevenness can be suppressed as much as possible.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of an operational amplifier and a liquid crystal panel driving circuit using the operational amplifier according to the present invention will be described with reference to the drawings.
[0021]
FIG. 1 is a configuration diagram of a panel driving operational amplifier showing an embodiment of the present invention. As shown in FIG. 1, a liquid crystal panel driving operational amplifier 1 according to the present embodiment is connected between a high-potential power supply (VDD) 8 and a low-potential power supply (VSS) 9, and has a positive input terminal VI1 and a negative input terminal, respectively. Differential input stage circuits 2 and 3 for amplifying the differential voltage of the analog input supplied to VI2 and positive input terminal VI3 and negative input terminal VI4 and outputting them to differential input stage output terminals 101 and 102; VDD) power supply 8 and intermediate side (VDD / 2) power supply 10 are connected in series and output stage FETs 11 and 12 having an output terminal VO1 connected to the connection point thereof, and intermediate side (VDD / 2) power supply 10 And the output stage FETs 13 and 14 connected in series between the lower power supply (VSS) power supply 9 and connected to the output terminal VO2 at their connection points, the differential input stage outputs 101 and 102, and the drive stage input 103 Switch means 6, 7 comprising switches S 1, S 1 b and switches S 2 b, S 2, which are connected between 104 and controlled to be turned on / off by a predetermined control signal supplied from the outside and operate in opposition to each other; Is connected between the low-side power supply 8 and the low-side power supply 9, and drive outputs to the output stages FET 11, 12 and FETs 13, 14 based on signals from the input terminals 103, 104 via the output terminals 105, 106 and 107, 108, respectively. Drive stage circuits 4 and 5 that are supplied in a functional manner, and are functionally used as an output impedance conversion circuit. The differential input stage circuits 2 and 3 can ensure the input range from the lower power supply level (VSS) to the higher power supply level (VDD).
[0022]
The operational amplifier 1 for driving the panel is that the switch means 6 and 7 and the middle power supply 10 are added. The switch means 6 and 7 have their constituent switches S1 and S2 turned on and off in the same phase. The switches S1b and S2b that are turned off and on in the opposite phase to the switches S1 and S2 are turned on and off in the same phase. Further, by providing the middle power supply 10, the rise of the output voltage at the output terminals VO 1 and VO 2 is speeded up, the panel load charge / discharge power is reduced, and the display unevenness of the liquid crystal panel that occurs when AC driving is performed. Is suppressed.
[0023]
FIG. 2 is a detailed diagram showing a first example of the driving stage circuit of the operational amplifier in FIG. As shown in FIG. 2, the driving stage circuit 4 in the operational amplifier includes an FET 15 having a gate electrode connected to the input terminal 103 and a source electrode connected to the lower power supply 9 (VSS), and a gate electrode and a drain electrode. The FET 16 is connected to the drain electrode of the FET 15, the source electrode is connected to the high-order power supply 8 (VDD), the gate electrode is connected to the drain electrode of the FET 15 and the gate and drain electrodes of the FET 16, and the source electrode is the high-order power supply 8. FET 17 connected to, and the gate and drain electrodes are connected to the output terminal 105, the source electrode is connected to the drain electrode of FET 17, and the gate electrode is the drain electrode of FET 15 and the gate and drain electrode of FET 16. The gate electrode and the source electrode are connected to the higher power supply 8 and the drain The FET 19 whose electrode is connected to the output terminal 106, one end connected to the gate of the FET 18, the rain electrode and the output terminal 105, the other end connected to the lower power supply 9, and one end to the drain of the FET 19 The constant current source I2 is connected to the electrode and the output terminal 106, and the other end is connected to the lower power supply 9.
[0024]
Similarly, the drive stage circuit 5 includes an FET 20 having a gate electrode connected to the input terminal 104 and a source electrode connected to the lower power supply 9, and a gate electrode and a drain electrode connected to the drain electrode of the FET 20. FET 21 connected to the higher power supply 8, the gate electrode connected to the drain electrode of FET 20 and the gate and drain electrodes of FET 21, and the FET 22 connected to the higher power supply 8 and the gate and drain electrodes output The FET 23 connected to the terminal 108 and the drain electrode of the FET 22, the gate electrode is connected to the drain electrode of the FET 20, the gate of the FET 21, the drain electrode and the gate electrode of the FET 22, and the source electrode is connected to the high-order power supply 8. Is connected to the output terminal 107, and one end of the FET is connected to the FET 23. A constant current source I3 connected to the low-side power source 9 at the other end, a constant current source connected to the drain electrode and the output terminal 107 of the FET 24 at one end, and a constant current source connected to the low-side power source 9 at the other end. Source I4.
[0025]
The operation of the drive stage circuits 4 and 5 is as follows. When the inputs 103 and 104 in which the output signals 101 and 102 from the differential input stage circuits 2 and 3 are switched by the switch means 6 and 7 are supplied. The signals are converted in the drive stage circuits 4 and 5 and transmitted as the output signals 105 and 106 and 107 and 108 to the final output FETs 11 and 12 and the output FETs 13 and 14.
[0026]
For example, in the positive input terminal VI1, the negative input terminal VI2 or the positive input terminal VI3, and the negative input terminal VI4 of the differential input stage circuit 2 or 3, the positive input terminals VI1 and VI4 are compared with the potential levels of the negative input terminals VI2 and VI4. When the potential level of VI3 increases, the output signals 101 and 102 of the differential input stage circuits 2 and 3 become falling signals. The signal is converted in the drive stage circuits 4 and 5 and output as a fall signal to the output FETs 11, 12 and 13, 14 in the final stage. Then, the output FETs 11, 12, 13, and 14 at the final stage have FETs 11 and 13 having low resistance and the FETs 12 and 14 have high resistance, respectively, and are output as charging signals for the load.
[0027]
Similarly, in the positive input terminal VI1, the negative input terminal VI2 or the positive input terminal VI3, and the negative input terminal VI4 of the differential input stage circuit 2 or 3, the positive input terminal VI1 is compared with the potential level of the negative input terminals VI2 and VI4. , VI3 become low, the output signals 101, 102 of the differential input stage circuits 2, 3 become rising signals. The signal is converted in the drive stage circuits 4 and 5 and is output as a rising signal to the output FETs 11, 12 and 13, 14 in the final stage. Then, the output FETs 11, 12, 13, and 14 at the final stage have FETs 11 and 13 having high resistance and the FETs 12 and 14 have low resistance, respectively, and are output as discharge signals to the load.
[0028]
Therefore, if these drive stage circuits 4 and 5 are used, a push-pull operation with respect to the load is possible.
[0029]
Further, when such driving stage circuits 4 and 5 are used, even if the source electrode potentials of the output FETs 12 and 13 in the final stage are floating with respect to the back gate electrode potential, there is no operational problem. The reason is that the steady-state currents flowing in the final stage output FETs 11 and 12 or FETs 13 and 14 are determined by the FETs 18 and 23 in the drive stage circuits 4 and 5 and the output stage FETs 11 and 14 constituting a current mirror. Because. In that case, even if the source electrode potentials of the output stage FETs 12 and 13 float with respect to the back gate electrode potential, no problem occurs.
[0030]
FIG. 3 is a detailed diagram showing a second example of the driving stage circuit of the operational amplifier in FIG. As shown in FIG. 3, the driving stage circuit 4 in the operational amplifier includes an FET 25 having a gate electrode connected to the input terminal 103 and a source electrode connected to the lower power supply 9 (VSS), and a gate electrode and a drain electrode. The FET 26 is connected to the drain electrode of the FET 25, the source electrode is connected to the lower power supply 9, the gate electrode is connected to the drain electrode of the FET 25, the gate and drain electrodes of the FET 26, and the source electrode is connected to the lower power supply 9. FET 27, the gate and drain electrodes of which are connected to the drain electrode of FET 27 and output terminal 105, the gate electrode of which is connected to the drain electrode of FET 25, the gate of FET 26, the drain electrode and the gate electrode of FET 27, and the source electrode of which is Connected to the lower power supply 9 and connected to the output terminal 106 at the drain electrode. FET 29, one end connected to the drain electrode of FET 25, the gate of FET 26, the drain electrode and the gate electrode of FET 27 and FET 29, the other end connected to the high-order power supply 8, and one end connected to the source of FET 28. The constant current source I6 is connected to the electrode, the other end is connected to the high-order power supply 8, and the constant current source I7 is connected to the drain electrode of the FET 29 and the output terminal 106 at one end.
[0031]
Similarly, the drive stage circuit 5 includes an FET 30 having a gate electrode connected to the input terminal 104 and a source electrode connected to the lower power supply 9, and a gate electrode and a drain electrode connected to the drain electrode of the FET 30. FET 31 connected to the lower power supply 9, the gate electrode connected to the drain electrode of FET 30 and the gate and drain electrodes of FET 31, and the FET 32 connected to the lower power supply 9 and the gate and drain electrodes output The FET 33 is connected to the terminal 108, the source electrode is connected to the drain electrode of the FET 32, the gate electrode is connected to the drain electrode of the FET 30, the gate of the FET 31, the drain electrode and the gate electrode of the FET 32, and the source electrode is the low-side power supply 9 FET 34 having a drain electrode connected to output terminal 107, and One end is connected to the drain electrode of the FET 30 and the gate of the FET 31, the drain electrode is connected to the gate electrode of the FET 32 and the FET 34, the other end is connected to the high-order power source 8, and one end is connected to the gate and drain electrode of the FET 33. The constant current source I9 is connected to the output terminal 108, and the other end is connected to the high-order power supply 8. The constant current source I10 is connected to the drain electrode of the FET 34 and the output terminal 107 at one end.
[0032]
The operation of the driving stage circuits 4 and 5 in this case is the same as that of the first example of FIG.
[0033]
FIG. 4 is a detailed diagram showing a third example of the driving stage circuit of the operational amplifier in FIG. As shown in FIG. 4, the driving stage circuit in the operational amplifier in this case includes the driving stage circuit 4 in the second example of FIG. 3 and the driving stage circuit 5 in the first example of FIG. It is a combination.
[0034]
That is, the driving stage circuit 4 has the FET 55 in which the gate electrode is connected to the input terminal 103 and the source electrode is connected to the lower power supply 9, and the gate and drain electrodes are connected to the drain electrode of the FET 25 and the source electrode is connected to the lower power supply 9. The FET 26, the gate electrode connected to the gate electrode of the FET 26, the FET 27 connected to the lower power supply 9, the FET 28 connected the gate and drain electrodes to the drain electrode of the FET 27 and the output terminal 105, and the gate electrode FET 27 FET 29 having a source electrode connected to the lower power supply 9 and a drain electrode connected to the output terminal 106, a constant current source I5 connected between the drain electrode of FET25 and the higher power supply 8, and an FET 28 A constant current source I6 connected between the source electrode and the higher power supply 8 and between the output terminal 106 and the higher power supply 8 Composed of a constant current source I7 connected.
[0035]
On the other hand, the drive stage circuit 5 has the FET 20 having the gate electrode connected to the input terminal 104, the source electrode connected to the low-side power supply 9, the gate and drain electrodes connected to the drain electrode of the FET 20, and the source electrode connected to the high-side power supply. FET 21 connected to 8, FET 22 having a gate electrode connected to the gate electrode of FET 21, FET 22 having a source electrode connected to the higher power supply 8, FET 23 having the gate and drain electrodes connected to the drain electrode of FET 22 and the output terminal 108, An FET 24 having a gate electrode connected to the gate electrode of the FET 22 and a source electrode connected to the high-side power source, and a drain electrode connected to the output terminal 107; a constant current source I3 connected between the source electrode of the FET 23 and the low-side power source 9; It comprises a constant current source I4 connected between the drain electrode of the FET 24 and the lower power supply 9.
[0036]
Note that the circuit operations of these drive stage circuits 4 and 5 are the same as those in the first example, and thus the description thereof is omitted.
[0037]
Further, the above-described drive stage circuit 2 and FIG. 3 can be combined in the reverse manner of FIG. For example, the drive stage circuit 4 of FIG. 2 can be used as the first drive stage circuit, and the drive stage circuit 5 of FIG. 3 can be used as the second drive stage circuit.
[0038]
FIG. 5 is a detailed diagram showing an example of the differential input stage circuit of the operational amplifier in FIG. As shown in FIG. 5, the differential input stage circuits 2 and 3 of the operational amplifier 1 described above are formed as follows.
[0039]
For example, the differential input stage circuit 2 includes FETs whose source electrodes are commonly connected and whose gate electrodes are respectively connected to the first positive input terminal VI1 and the first negative input terminal VI2. N 1 and N 2 ( N MOS transistor (same below) and gate and drain electrodes are FET N 1 FET connected to the drain electrode, and the source electrode connected to the higher power supply (VDD) 8 P 2 ( P MOS transistor (same below) and gate and drain electrodes are FET N FET connected to the drain electrode of 2 and the source electrode connected to the higher power supply 8 P 3 and the gate electrode is FET P 2 gate, drain electrode and FET N FET connected to the drain electrode of 1 and the source electrode connected to the higher power supply 8 P 1 and the gate electrode is FET P 3 gate, drain electrode and FET N FET having a source electrode connected to the higher power supply 8 and a drain electrode connected to the first output terminal P 4 and the source electrode are connected in common, and the gate electrode is connected to the first negative input terminal VI2 and the first positive input terminal VI1, respectively. P 5 and FET P 6 and FET for gate and drain electrodes P 1 and FET P 5 FET connected to the drain electrode, and the source electrode connected to the lower power supply 9 N 3 and the gate electrode is FET P 1, FET P 5 drain electrode and FET N 3 The gate and drain electrodes are connected, the source electrode is connected to the lower power supply 9, and the drain electrode is connected to the first output terminal 101 and the FET. P FET connected to drain electrode of 6 N 4 and one end FET N 1, N A first constant current source I11 connected to the two source electrodes and the other end connected to the lower power supply 9; P 5, P 6 and a second constant current source I12 connected to the higher power source 8 at the other end.
[0040]
Similarly, the differential input stage circuit 3 includes FETs having source electrodes connected in common and gate electrodes connected to a second positive input terminal VI3 and a second negative input terminal VI4, respectively. N 5 and N 6 and FET for gate and drain electrodes N 5 FET connected to the drain electrode, and the source electrode connected to the higher power supply 8 P 8 and the gate and drain electrodes are FET N 6 FET connected to the drain electrode, and the source electrode connected to the higher power supply 8 P 9 and the gate electrode is FET P 8 gate, drain electrode and FET N 5 FET connected to the drain electrode, and the source electrode connected to the higher power supply 8 P 7 and the gate electrode is FET P 9 gate, drain electrode and FET N FET having the drain electrode connected to the high-order power supply 8 and the drain electrode connected to the second output terminal 102 P 10 and a source electrode connected in common, and a gate electrode connected to a second negative input terminal VI4 and a second positive input terminal VI3, respectively. P 11 and FET P 12 and FET gate and drain electrodes P 7 and FET P 11 FET connected to the drain electrode, and the source electrode connected to the lower power supply 9 N 7 and the gate electrode is FET P 7, FET P 11 drain electrodes and FETs N 7 and the source electrode are connected to the lower power supply 9 and the drain electrode is connected to the second output terminal 102 and the FET. P FET connected to 12 drain electrodes N 8 and one end FET N 5, N A third constant current source I13 connected to the source electrode 6 and the other end connected to the lower power supply 9; P 11, P The fourth constant current source I14 is connected to the 12 source electrodes and the other end is connected to the high-order power source 8.
[0041]
In the above example, the MOSFET is taken as an example of the semiconductor element forming the differential input stage circuits 2 and 3, but it may be formed by a bipolar transistor having a base electrode, an emitter electrode, and a collector electrode. The side power supply and the lower power supply may be interchanged. Further, when forming the operational amplifier for driving the liquid crystal panel, the differential input stage circuits 2 and 3 described above and the drive stage circuits 4 and 5 shown in FIGS. 2 to 5 described above may be combined. it can.
[0042]
FIG. 6 is a block diagram showing an example of a liquid crystal panel driving circuit using the operational amplifier of the present invention. As shown in FIG. 6, the liquid crystal panel driving circuit 40 includes a positive-side D / A converter 41 that performs digital / analog conversion from the middle power supply potential to the high power supply potential, and a middle power supply from the low power supply potential. Negative side D / A converter 42 for performing digital / analog conversion up to the power supply potential, switch means 43 and 44 for switching the conversion output of these D / A converters 41 and 42 by an external control input, and these switch means The above-described operational amplifier 1 (FIG. 1) that inputs the output switched at 43 and 44 to the positive input terminals VO1 and VO3, performs operational amplification, converts the output impedance, and outputs it to the output terminals VO1 and VO2; A switch for switching the output VO1VO2 of the operational amplifier 1 by a control input from the outside and supplying it to the negative input terminals VO2 and VO4 of the operational amplifier 1. And it means 45 and 46, and an output VO1, VO2 of operational amplifier 1 and switching the control input from the outside and a switching means 47, 48 to the output terminal OUT1, OUT2. Of these, the D / A converters 41 and 42, the switch means 43 and 44, and the switch means 47 and 48 are the same as the conventional example of FIG.
[0043]
In the present embodiment, a new operational amplifier 1 and switch means 45 and 46 are provided. In particular, the switch means 45 is connected to the negative input terminal VI2 and the output terminals VO1 and VO2 of the operational amplifier 1 and is complementary. Similarly, the switch means 46 is formed by switches S and Sb which are connected to the negative input terminal VI4 and the output terminals VO1 and VO2 of the operational amplifier 1 and operate in a complementary manner. .
[0044]
The operation of the liquid crystal panel driving circuit 40 is as follows. First, when the switch S in the switch means 43 to 48 and the switches S1 and S2 (see FIG. 1) in the operational amplifier 1 are ON (S1b and S2b are OFF), The analog signal output from the / A converter 41 and the analog signal output from the negative D / A converter 42 are input to the positive input terminals VI1 and VI2 of the operational amplifier 1, respectively. That is, the positive-side analog signal is input to the differential input stage circuit 2 and the drive stage circuit 4 in the operational amplifier 1 in FIG. 1, impedance-converted, and output as an output signal to the output terminal OUT1. On the other hand, the negative-side analog signal is input to the differential input stage circuit 3 and the drive stage circuit 5 in the operational amplifier 1 in FIG. 1, so that the impedance is converted and output as an output signal to the output terminal OUT2.
[0045]
Next, when the switch Sb in the switch means 43 to 48 and the switches S1b and S2b (see FIG. 1) in the operational amplifier 1 are ON (S1 and S2 are OFF), the analog output from the positive-side D / A converter 41 The signal and the analog signal output from the negative-side D / A converter 42 are input to the positive input terminals VI1 and VI2 of the operational amplifier 1, respectively. That is, the positive-side analog signal is input to the differential input stage circuit 2 and the driving stage circuit 5 in the operational amplifier 1 in FIG. 1, impedance-converted, and output as an output signal to the output terminal OUT2. On the other hand, the negative-side analog signal is input to the differential input stage circuit 3 and the drive stage circuit 4 in the operational amplifier 1 in FIG. 1, impedance-converted, and output as an output signal to the output terminal OUT1.
[0046]
The liquid crystal panel driving circuit 40 outputs a positive or negative analog signal to the output terminals OUT1 and OUT2 several tens of times (writes data to the panel), and switches the positive analog signal when the operation line is switched. The terminal that has output the signal and the terminal that has output the negative-side analog signal are switched to perform AC driving.
[0047]
When the operation described above is shown in a timing chart, it is the same as the conventional driving of FIG. 9 described above.
[0048]
In short, by using the operational amplifier 1 and the switch means 43 to 48 described above, charging / discharging at the output terminals OUT1 and OUT2 is performed between the high power supply and the middle power supply or between the middle power supply and the low power supply. Temporarily, the potential difference between the higher power supply and the middle power supply or the potential difference between the middle power supply and the lower power supply is VDD / 2 (volts), the write amplitude is Vpp, the write frequency is f (Hz), and the liquid crystal panel If the value of the capacitive load is C, the power consumption P per output can be expressed by the following equation.
[0049]
P = C × f × Vpp × (VDD / 2)
Therefore, when the liquid crystal panel drive circuit 40 of the present embodiment is used, the load power consumption can be reduced to ½ compared to the case where the conventional liquid crystal panel drive circuit is used. In addition, since the differential input stage circuit used at the time of writing on the positive electrode side is the same as the differential input stage circuit used at the time of writing on the negative electrode side, the display unevenness of the liquid crystal panel that occurs when AC driving is performed as usual. It can be suppressed as much as possible.
[0050]
Further, the liquid crystal panel drive circuit can be formed using a plurality of the liquid crystal panel drive circuits 40 described above.
[0051]
Further, the liquid crystal panel driving circuit is formed by providing a plurality of liquid crystal panel driving circuits.
[0052]
【The invention's effect】
As described above, the liquid crystal panel driving operational amplifier of the present invention and the liquid crystal panel driving circuit using the operational amplifier switch the path for supplying the differential stage output of the operational amplifier to the driving stage circuit by the switch means. By driving the output stage FET using the middle power supply in addition to the high power supply and low power supply, the load power generated when charging and discharging the load can be reduced, and color unevenness during panel display is minimized. There is an effect that it can be suppressed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an operational amplifier for driving a panel showing an embodiment of the present invention.
2 is a detailed diagram showing a first example of a driving stage circuit of the operational amplifier in FIG. 1; FIG.
FIG. 3 is a detailed diagram illustrating a second example of the driving stage circuit of the operational amplifier in FIG. 1;
4 is a detailed diagram showing a third example of the driving stage circuit of the operational amplifier in FIG. 1; FIG.
5 is a detailed diagram showing an example of a differential input stage circuit of the operational amplifier in FIG. 1. FIG.
FIG. 6 is a configuration diagram of a liquid crystal panel driving circuit using an operational amplifier according to another embodiment of the present invention.
FIG. 7 is a block diagram showing an example of a conventional operational amplifier for driving a liquid crystal panel.
FIG. 8 is a block diagram showing an example of a liquid crystal panel driving circuit using a conventional operational amplifier.
FIG. 9 is a timing chart of output waveforms of a conventional liquid crystal panel driving circuit.
[Explanation of symbols]
1 operational amplifier
2,3 Differential type input stage circuit
4,5 Drive stage circuit
6, 7, 43 to 48 Switch means
8 High power supply
9 Low power supply
10 Middle power supply
11-14 Output stage FET
40 LCD panel drive circuit
41 Positive D / A Converter
42 Negative D / A Converter
VI1, VI3 positive input terminal
VI2, VI4 Negative input terminal
101,102 Differential input stage output terminal
103,104 Drive stage input terminal
105 to 108 Drive stage output terminals
I1 to I14 constant current source
VO1, VO2 operational amplifier output terminals
OUT1, OUT2 LCD panel drive circuit output terminals
S1, S1b, S2, S2b, S, Sb switch

Claims (8)

第1の正入力端子,第1の負入力端子からなる差動入力端子と第1の出力端とを備え、低位側電源および高位側電源の間に接続されて入力レンジを低位側電源レベルから高位側電源レベルまでを確保する第1の差動型入力段回路と、
第2の正入力端子,第2の負入力端子からなる差動入力端子と第2の出力端とを備え、低位側電源および高位側電源の間に接続されて入力レンジを低位側電源レベルから高位側電源レベルまでを確保する第2の差動型入力段回路と、
前記低位側電源,前記高位側電源間に接続され、第1の入力端と第3,第4の出力端を備えた第1の駆動段回路と、
前記低位側電源,前記高位側電源間に接続され、第2の入力端と第5,第6の出力端を備えた第2の駆動段回路と、
第1の電極を前記第1の駆動段回路の前記第3の出力端に且つ第2,第3電極をそれぞれ前記高位側電源と第1の出力端子に接続した第1の半導体素子と、
第1の電極を前記第1の駆動段回路の第4の出力端に且つ第2,第3の電極をそれぞれ、中位側電源と前記第1の出力端子に接続した第2の半導体素子と、
第1の電極を前記第2の駆動段回路の第5の出力端に且つ第2,第3の電極をそれぞれ前記中位側電源と第2の出力端子に接続した第3の半導体素子と、
第1の電極を前記第2の駆動段回路の第6の出力端に且つ第2,第3電極をそれぞれ前記低位側電源と前記第2の出力端子に接続した第4の半導体素子と、
前記第1の差動型入力段回路の前記第1の出力端と前記第1の駆動段回路の前記第1の入力端および前記第2の駆動段回路の前記第2の入力端とにそれぞれ接続され且つ相反動作するスイッチを備えた第1のスイッチ手段と、
前記第2の差動型入力段回路の前記第2の出力端と前記第1の駆動段回路の前記第1の入力端および前記第2の駆動段回路の前記第2の入力端とにそれぞれ接続され且つ相反動作するスイッチを備えた第2のスイッチ手段と
を有することを特徴とする演算増幅器。
A differential input terminal composed of a first positive input terminal and a first negative input terminal and a first output terminal are connected between the low-order power supply and the high-order power supply, and the input range is changed from the low-order power supply level. A first differential input stage circuit that secures up to a higher power supply level;
A differential input terminal composed of a second positive input terminal and a second negative input terminal and a second output terminal are provided, and are connected between the low-order power supply and the high-order power supply, so that the input range is changed from the low-order power supply level. A second differential input stage circuit that secures up to a higher power supply level;
A first drive stage circuit connected between the lower power supply and the higher power supply and having a first input terminal and third and fourth output terminals;
A second drive stage circuit connected between the lower power supply and the higher power supply and having a second input terminal and fifth and sixth output terminals;
A first semiconductor element having a first electrode connected to the third output terminal of the first drive stage circuit and a second and a third electrode connected to the high-order power source and a first output terminal, respectively;
A second semiconductor element having a first electrode connected to a fourth output terminal of the first drive stage circuit and a second and a third electrode connected to a middle power source and the first output terminal, respectively; ,
A third semiconductor element in which a first electrode is connected to a fifth output terminal of the second drive stage circuit and a second and a third electrode are connected to the intermediate power supply and a second output terminal, respectively;
A fourth semiconductor element having a first electrode connected to a sixth output terminal of the second drive stage circuit and a second electrode and a third electrode connected to the lower power supply and the second output terminal, respectively;
The first output terminal of the first differential input stage circuit, the first input terminal of the first drive stage circuit, and the second input terminal of the second drive stage circuit, respectively. a first switch means having a connected and reciprocal operation to Luz switch,
The second output terminal of the second differential input stage circuit, the first input terminal of the first drive stage circuit, and the second input terminal of the second drive stage circuit, respectively. operational amplifier and having a second switch means having a connected and reciprocal operation to Luz switch.
前記第1の駆動段回路は、
第1の電極を前記第1の入力端に接続し、第2の電極を前記低位側電源に接続した第5の半導体素子と、
第1,第3の電極を前記第5の半導体素子の第3の電極に接続し、第2の電極を前記高位側電源に接続した第6の半導体素子と、
第1の電極を前記第6の半導体素子の第1の電極に接続し、第2の電極を前記高位側電源に接続した第7の半導体素子と、
第1,第3の電極を前記第3の出力端に接続し、第2の電極を前記第7の半導体素子の第3の電極に接続した第8の半導体素子と、
第1の電極を前記第7の半導体素子の第1の電極に且つ第2の電極を前記高位側電源に接続し、第3の電極を前記第4の出力端に接続した第9の半導体素子と、
前記第8の半導体素子の第3の電極と前記低位側電源間および前記第4の出力端と前記低位側電源間にそれぞれ接続した第1および第2の定電流源とで構成し、
前記第2の駆動段回路は、
第1の電極を前記第2の入力端に接続し、第2の電極を前記低位側電源に接続した第10の半導体素子と、
第1,第3の電極を前記第10の半導体素子の第3の電極に接続し、第2の電極を前記高位側電源に接続した第11の半導体素子と、
第1の電極を前記第11の半導体素子の第1の電極に接続し、第2の電極を前記高位側電源に接続した第12の半導体素子と、
第1,第3の電極を前記第12の半導体素子の第3の電極及び前記第6の出力端に接続した第13の半導体素子と、
第1の電極を前記第12の半導体素子の第1の電極に且つ第2の電極を前記高位側電源に接続し、第3の電極を前記第5の出力端に接続した第14の半導体素子と、
前記第13の半導体素子の第2の電極と前記低位側電源間および前記第14の半導体素子の第3の電極と前記低位側電源間にそれぞれ接続した第3および第4の定電流源とで構成した請求項1記載の演算増幅器。
The first drive stage circuit includes:
A fifth semiconductor element having a first electrode connected to the first input end and a second electrode connected to the lower power supply;
A sixth semiconductor element in which first and third electrodes are connected to a third electrode of the fifth semiconductor element, and a second electrode is connected to the higher power supply;
A seventh semiconductor element having a first electrode connected to the first electrode of the sixth semiconductor element and a second electrode connected to the higher power supply;
An eighth semiconductor element in which first and third electrodes are connected to the third output terminal, and a second electrode is connected to a third electrode of the seventh semiconductor element;
A ninth semiconductor element in which a first electrode is connected to the first electrode of the seventh semiconductor element, a second electrode is connected to the high-order power supply, and a third electrode is connected to the fourth output terminal When,
The first and second constant current sources connected between the third electrode of the eighth semiconductor element and the lower power supply and between the fourth output terminal and the lower power supply, respectively.
The second drive stage circuit includes:
A tenth semiconductor element having a first electrode connected to the second input terminal and a second electrode connected to the lower power supply;
An eleventh semiconductor element in which first and third electrodes are connected to a third electrode of the tenth semiconductor element, and a second electrode is connected to the high-order power supply;
A twelfth semiconductor element having a first electrode connected to the first electrode of the eleventh semiconductor element and a second electrode connected to the high-order power supply;
A thirteenth semiconductor element having first and third electrodes connected to the third electrode of the twelfth semiconductor element and the sixth output end;
A fourteenth semiconductor element having a first electrode connected to the first electrode of the twelfth semiconductor element, a second electrode connected to the high-order power supply, and a third electrode connected to the fifth output terminal When,
Third and fourth constant current sources connected between the second electrode of the thirteenth semiconductor element and the lower power supply and between the third electrode of the fourteenth semiconductor element and the lower power supply, respectively. The operational amplifier according to claim 1 configured.
前記第1の駆動段回路は、
第1の電極を前記第1の入力端に接続し、第2の電極を前記低位側電源に接続した第5の半導体素子と、第1,第3の電極を前記第5の半導体素子の第3の電極に接続し、第2の電極を前記低位側電源に接続した第6の半導体素子と、
第1の電極を前記第6の半導体素子の第1の電極に接続し、第2の電極を前記低位側電源に接続し第7の半導体素子と、
第1,第3の電極を前記第7の半導体素子の第3の電極及び前記第3の出力端に接続した第8の半導体素子と、
第1の電極を前記第7の半導体素子の第1の電極に且つ第2の電極を前記低位側電源に接続し、第3の電極を前記第4の出力端に接続した第9の半導体素子と、
前記高位側電源と前記第5の半導体素子の第3の電極間,前記高位側電源と前記第8の半導体素子の第2の電極間,および前記高位側電源と前記第4の出力端間にそれぞれ接続した第1乃至第3の定電流源とで構成し、
前記第2の駆動段回路は、
第1の電極を前記第2の入力端に接続し、第2の電極を前記低位側電源に接続した第10の半導体素子と、
第1,第3の電極を前記第10の半導体素子の第3の電極に接続し、第2の電極を前記低位側電源に接続した第11の半導体素子と、
第1の電極を前記第11の半導体素子の第1の電極に接続し、第2の電極を前記低位側電源に接続した第12の半導体素子と、
第1,第3の電極を前記第6の出力端に接続し、第2の電極を前記第12の半導体素子の第3電極に接続した第13の半導体素子と、
第1の電極を前記第12の半導体素子の第1の電極に且つ第2の電極を前記低位側電源に接続し、第3の電極を前記第5の出力端に接続した第14の半導体素子と、
前記高位側電源と前記第10の半導体素子の第3の電極間,前記高位側電源と前記第13の半導体素子の第3の電極間,および前記高位側電源と前記第5の出力端間にそれぞれ接続した第4乃至第6の定電流源とで構成した請求項1記載の演算増幅器。
The first drive stage circuit includes:
A fifth semiconductor element in which a first electrode is connected to the first input terminal, a second electrode is connected to the lower power supply, and first and third electrodes are connected to the fifth semiconductor element. A sixth semiconductor element connected to the third electrode and the second electrode connected to the lower power supply;
A first electrode connected to the first electrode of the sixth semiconductor device, a seventh semiconductor element connected to the second electrode to the low-potential power supply,
An eighth semiconductor element having first and third electrodes connected to the third electrode of the seventh semiconductor element and the third output end;
A ninth semiconductor element having a first electrode connected to the first electrode of the seventh semiconductor element, a second electrode connected to the lower power supply, and a third electrode connected to the fourth output terminal When,
Between the higher power supply and the third electrode of the fifth semiconductor element, between the higher power supply and the second electrode of the eighth semiconductor element, and between the higher power supply and the fourth output terminal. The first to third constant current sources connected to each other,
The second drive stage circuit includes:
A tenth semiconductor element having a first electrode connected to the second input terminal and a second electrode connected to the lower power supply;
An eleventh semiconductor element having first and third electrodes connected to the third electrode of the tenth semiconductor element, and a second electrode connected to the lower power supply;
A twelfth semiconductor element having a first electrode connected to the first electrode of the eleventh semiconductor element and a second electrode connected to the lower power supply;
A thirteenth semiconductor element having first and third electrodes connected to the sixth output end, and a second electrode connected to the third electrode of the twelfth semiconductor element;
A fourteenth semiconductor element having a first electrode connected to the first electrode of the twelfth semiconductor element, a second electrode connected to the lower power supply, and a third electrode connected to the fifth output terminal; When,
Between the higher power supply and the third electrode of the tenth semiconductor element, between the higher power supply and the third electrode of the thirteenth semiconductor element, and between the higher power supply and the fifth output terminal. fourth to sixth constant current source and the configuration claims 1, wherein the arithmetic amplifier connected respectively.
前記第1の駆動段回路は、
第1の電極を第1の入力端に接続し、第2の電極を前記低位側電源に接続した第5の半導体素子と、第1,第3の電極を前記第5の半導体素子の第3の電極に接続し、第2の電極を前記低位側電源に接続した第6の半導体素子と、
第1の電極を前記第6の半導体素子の第1の電極に接続し、第2の電極を前記低位側電源に接続した第7の半導体素子と、
第1,第3の電極を前記第7の半導体素子の第3の電極及び前記第3の出力端に接続した第8の半導体素子と、
第1の電極を前記第7の半導体素子の第1の電極に且つ第2の電極を前記低位側電源に接続し、第3の電極を前記第4の出力端に接続した第9の半導体素子と、
前記高位側電源と前記第5の半導体素子の第3の電極間,前記高位側電源と前記第8の半導体素子の第2の電極間,および前記高位側電源と前記第4の出力端間にそれぞれ接続した第1乃至第3の定電流源とで構成し、
前記第2の駆動段回路は、
第1の電極を前記第2の入力端に接続し、第2の電極を前記低位側電源に接続した第10の半導体素子と、
第1,第3の電極を前記第10の半導体素子の第3の電極に接続し、第2の電極を前記高位側電源に接続した第11の半導体素子と、
第1の電極を前記第11の半導体素子の第1の電極に接続し、第2の電極を前記高位側電源に接続した第12の半導体素子と、
第1,第3の電極を前記第12の半導体素子の第3の電極及び前記第6の出力端に接続した第13の半導体素子と、
第1の電極を前記第12の半導体素子の第1の電極に且つ第2の電極を前記高位側電源に接続し、第3の電極を前記第5の出力端に接続した第14の半導体素子と、
前記第13の半導体素子の第2の電極と前記低位側電源間および前記第5の出力端と前記低位側電源間にそれぞれ接続した第4および第5の定電流源とで構成した請求項1記載の演算増幅器。
The first drive stage circuit includes:
A fifth semiconductor element in which the first electrode is connected to the first input terminal, the second electrode is connected to the lower power supply, and the first and third electrodes are the third of the fifth semiconductor element. A sixth semiconductor element connected to the first electrode and a second electrode connected to the lower power supply;
A seventh semiconductor element having a first electrode connected to the first electrode of the sixth semiconductor element and a second electrode connected to the lower power supply;
An eighth semiconductor element having first and third electrodes connected to the third electrode of the seventh semiconductor element and the third output end;
A ninth semiconductor element having a first electrode connected to the first electrode of the seventh semiconductor element, a second electrode connected to the lower power supply, and a third electrode connected to the fourth output terminal When,
Between the higher power supply and the third electrode of the fifth semiconductor element, between the higher power supply and the second electrode of the eighth semiconductor element, and between the higher power supply and the fourth output terminal. The first to third constant current sources connected to each other,
The second drive stage circuit includes:
A tenth semiconductor element having a first electrode connected to the second input terminal and a second electrode connected to the lower power supply;
An eleventh semiconductor element in which first and third electrodes are connected to a third electrode of the tenth semiconductor element, and a second electrode is connected to the high-order power supply;
A twelfth semiconductor element having a first electrode connected to the first electrode of the eleventh semiconductor element and a second electrode connected to the high-order power supply;
A thirteenth semiconductor element having first and third electrodes connected to the third electrode of the twelfth semiconductor element and the sixth output end;
A fourteenth semiconductor element having a first electrode connected to the first electrode of the twelfth semiconductor element, a second electrode connected to the high-order power supply, and a third electrode connected to the fifth output terminal When,
2. The fourth and fifth constant current sources connected between the second electrode of the thirteenth semiconductor element and the lower power source and between the fifth output terminal and the lower power source, respectively. The operational amplifier described.
前記第1の駆動段回路は、
第1の電極を前記第1の入力端に接続し、第2の電極を前記低位側電源に接続した第5の半導体素子と、
第1,第3の電極を前記第5の半導体素子の第3の電極に接続し、第2の電極を前記高位側電源に接続した第6の半導体素子と、
第1の電極を前記第6の半導体素子の第1の電極に接続し、第2の電極を前記高位側電源に接続した第7の半導体素子と、
第1,第3の電極を前記第3の出力端に接続し、第2の電極を前記第7の半導体素子の第3の電極に接続した第8の半導体素子と、
第1の電極を前記第7の半導体素子の第1の電極に且つ第2の電極を前記高位側電源に接続し、第3の電極を前記第4の出力端に接続した第9の半導体素子と、
前記第8の半導体素子の第3の電極と前記低位側電源間および前記第4の出力端と前記低位側電源間にそれぞれ接続した第1および第2の定電流源とで構成し、
前記第2の駆動段回路は、
第1の電極を前記第2の入力端に接続し、第2の電極を前記低位側電源に接続した第10の半導体素子と、
第1,第3の電極を前記第10の半導体素子の第3の電極に接続し、第2の電極を前記低位側電源に接続した第11の半導体素子と、
第1の電極を前記第11の半導体素子の第1の電極に接続し、第2の電極を前記低位側電源に接続した第12の半導体素子と、
第1,第3の電極を前記第6の出力端に接続し、第2の電極を前記第12の半導体素子の第3電極に接続した第13の半導体素子と、
第1の電極を前記第12の半導体素子の第1の電極に且つ第2の電極を前記低位側電源に接続し、第3の電極を前記第5の出力端に接続した第14の半導体素子と、
前記高位側電源と前記第10の半導体素子の第3の電極間,前記高位側電源と前記第13の半導体素子の第3の電極間,および前記高位側電源と前記第5の出力端間にそれぞれ接続した第3乃至第5の定電流源とで構成した請求項1記載の演算増幅器。
The first drive stage circuit includes:
A fifth semiconductor element having a first electrode connected to the first input end and a second electrode connected to the lower power supply;
A sixth semiconductor element in which first and third electrodes are connected to a third electrode of the fifth semiconductor element, and a second electrode is connected to the higher power supply;
A seventh semiconductor element having a first electrode connected to the first electrode of the sixth semiconductor element and a second electrode connected to the higher power supply;
An eighth semiconductor element in which first and third electrodes are connected to the third output terminal, and a second electrode is connected to a third electrode of the seventh semiconductor element;
A ninth semiconductor element in which a first electrode is connected to the first electrode of the seventh semiconductor element, a second electrode is connected to the high-order power supply, and a third electrode is connected to the fourth output terminal When,
The first and second constant current sources connected between the third electrode of the eighth semiconductor element and the lower power supply and between the fourth output terminal and the lower power supply, respectively.
The second drive stage circuit includes:
A tenth semiconductor element having a first electrode connected to the second input terminal and a second electrode connected to the lower power supply;
An eleventh semiconductor element having first and third electrodes connected to the third electrode of the tenth semiconductor element, and a second electrode connected to the lower power supply;
A twelfth semiconductor element having a first electrode connected to the first electrode of the eleventh semiconductor element and a second electrode connected to the lower power supply;
A thirteenth semiconductor element having first and third electrodes connected to the sixth output end, and a second electrode connected to the third electrode of the twelfth semiconductor element;
A fourteenth semiconductor element having a first electrode connected to the first electrode of the twelfth semiconductor element, a second electrode connected to the lower power supply, and a third electrode connected to the fifth output terminal; When,
Between the higher power supply and the third electrode of the tenth semiconductor element, between the higher power supply and the third electrode of the thirteenth semiconductor element, and between the higher power supply and the fifth output terminal. 2. The operational amplifier according to claim 1, wherein the operational amplifier is composed of third to fifth constant current sources connected to each other.
前記第1の差動型入力段回路は、
それぞれ第1の電極を前記第1の正入力端子と前記第1の負入力端子に接続し且つ第2の電極を共通接続した第15及び第16の半導体素子と、
第1,第3の電極を前記第15の半導体素子の第3の電極に接続し、第2の電極を前記高位側電源に接続した第17の半導体素子と、
第1,第3の電極を前記第16の半導体素子の第3の電極に接続し、第2の電極を前記高位側電源に接続した第18の半導体素子と、
第1の電極を前記第17の半導体素子の第1の電極に接続し、第2の電極を前記高位側電源に接続した第19の半導体素子と、
第1の電極を前記第18の半導体素子の第1の電極に且つ第2の電極を前記高位側電源に接続し、第3の電極を前記第1の出力端に接続した第20の半導体素子と、
前記第15,第16の半導体素子の第2の電極および前記低位側電源間に接続した第7の定電流源と、
それぞれ第1の電極を前記第1の負入力端子と前記第1の正入力端子に接続し、第2の電極を共通接続した第21及び第22の半導体素子と、
第1,第3の電極を前記第19及び第21の半導体素子の第3の電極に接続し、第2の電極を前記低位側電源に接続した第23の半導体素子と、
第1の電極を前記第23の半導体素子の第1の電極に且つ第2の電極を前記低位側電源に接続し、第3の電極を前記第1の出力端及び前記第22の半導体素子の第3の電極に接続した第24の半導体素子と、
前記高位側電源および前記第2,第22の半導体素子の第2の電極間に接続した第8の定電流源とで構成し、
前記第2の差動型入力段回路は、
それぞれ第1の電極を前記第2の正入力端子と第2の負入力端子に接続し、第2の電極を共通接続した第25及び第26の半導体素子と、
第1,第3の電極を前記第25の半導体素子の第3の電極に接続し、第2の電極を前記高位側電源に接続した第27の半導体素子と、
第1,第3の電極を前記第26の半導体素子の第3の電極に接続し、第2の電極を前記高位側電源に接続した第28の半導体素子と、
第1の電極を前記第27の半導体素子の第1の電極に接続し、第2の電極を前記高位側電源に接続した第29の半導体素子と、
第1の電極を前記第28の半導体素子の第1の電極に且つ第2の電極を前記高位側電源に接続し、第3の電極を前記第2の出力端に接続した第30の半導体素子と、
前記第25,第26の半導体素子の第2の電極および前記低位側電源間に接続した第9の定電流源と、
それぞれ第1の電極を前記第2の負入力端子と第2の正入力端子に接続し、第2の電極を共通接続した第31及び第32の半導体素子と、
第1,第3の電極を前記第29及び第31の半導体素子の第3電極に接続し、第2の電極を前記低位側電源に接続した第33の半導体素子と、
第1の電極を前記第33の半導体素子の第1の電極に且つ第2の電極を前記低位側電源に接続し、第3の電極を前記第2の出力端及び前記第32の半導体素子の第3の電極に接続した第34の半導体素子と、
前記高位側電源および前記第31,第32の半導体素子の第2の電極間に接続した第10の定電流源とで構成した請求項1乃至5のいずれか一項に記載の演算増幅器。
The first differential input stage circuit is:
Fifteenth and sixteenth semiconductor elements, each having a first electrode connected to the first positive input terminal and the first negative input terminal, and a second electrode commonly connected;
A seventeenth semiconductor element in which first and third electrodes are connected to a third electrode of the fifteenth semiconductor element, and a second electrode is connected to the high-order power supply;
An eighteenth semiconductor element in which first and third electrodes are connected to a third electrode of the sixteenth semiconductor element, and a second electrode is connected to the high-order power supply;
A nineteenth semiconductor element having a first electrode connected to the first electrode of the seventeenth semiconductor element and a second electrode connected to the high-order power supply;
A twentieth semiconductor element in which a first electrode is connected to the first electrode of the eighteenth semiconductor element, a second electrode is connected to the high-order power supply, and a third electrode is connected to the first output terminal. When,
A seventh constant current source connected between the second electrodes of the fifteenth and sixteenth semiconductor elements and the lower power supply;
21st and 22nd semiconductor elements, each having a first electrode connected to the first negative input terminal and the first positive input terminal, and a second electrode connected in common,
A 23rd semiconductor element having a first electrode connected to a third electrode of the nineteenth and twenty-first semiconductor elements and a second electrode connected to the lower power supply;
The first electrode is connected to the first electrode of the twenty- third semiconductor element, the second electrode is connected to the lower power supply, and the third electrode is connected to the first output terminal and the twenty-second semiconductor element. A twenty-fourth semiconductor element connected to the third electrode;
The high-potential power supply and the second 1, constituted by the eighth constant current source connected between the second electrode of the semiconductor element 22,
The second differential input stage circuit is:
25th and 26th semiconductor elements, each having a first electrode connected to the second positive input terminal and a second negative input terminal, and a second electrode connected in common,
A first, a third electrode connected to the third electrode of the second 25 semiconductor devices, the 27 semiconductor element connected to the second electrode to the high-potential power supply,
A first, a third electrode connected to the third electrode of the semiconductor element of the first 26, second 28 semiconductor element connecting a second electrode to said high-potential power supply,
A first electrode connected to the first electrode of the semiconductor element of the first 27 and second 29 semiconductor element connecting a second electrode to said high-potential power supply,
A thirty- third semiconductor element in which a first electrode is connected to the first electrode of the twenty-eighth semiconductor element, a second electrode is connected to the high-order power supply, and a third electrode is connected to the second output terminal. When,
A ninth constant current source connected between the second electrodes of the 25th and 26th semiconductor elements and the lower power supply;
31st and 32nd semiconductor elements, each having a first electrode connected to the second negative input terminal and a second positive input terminal, and a second electrode connected in common;
A first, a third electrode connected to the third electrode of the first 29 and second 31 semiconductor devices, the 33 semiconductor element connected to the second electrode to the low-potential power supply,
The first electrode is connected to the first electrode of the 33rd semiconductor element, the second electrode is connected to the lower power supply, and the third electrode is connected to the second output terminal and the 32nd semiconductor element. A thirty- fourth semiconductor element connected to the third electrode;
6. The operational amplifier according to claim 1, wherein the operational amplifier includes the high-order power source and a tenth constant current source connected between second electrodes of the 31st and 32nd semiconductor elements.
請求項1乃至請求項のいずれか1つに記載の前記演算増幅器は、前記半導体素子のそれぞれを、第1の電極がゲート電極、第2の電極がソース電極、第3の電極がドレイン電極を備えるFETにより形成した演算増幅器。The operational amplifier according to any one of claims 1 to 6, respectively, the first electrode the gate electrode of the semiconductor element, the second electrode is a source electrode, a third electrode is a drain electrode An operational amplifier formed by an FET comprising: 請求項1乃至請求項のいずれか1つに記載の演算増幅器は、前記半導体素子のそれぞれを、第1の電極としてベース電極、第2の電極としてエミッタ電極、第3の電極としてコレクタ電極を備えるバイポーラトランジスタにより形成した演算増幅器。The operational amplifier according to any one of claims 1 to 6, each of the semiconductor element, a base electrode as a first electrode, an emitter electrode as a second electrode, a collector electrode as a third electrode An operational amplifier formed by a bipolar transistor provided.
JP2000371904A 2000-12-06 2000-12-06 Operational amplifier Expired - Fee Related JP4744686B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2000371904A JP4744686B2 (en) 2000-12-06 2000-12-06 Operational amplifier
US10/007,466 US6424219B1 (en) 2000-12-06 2001-12-05 Operational amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000371904A JP4744686B2 (en) 2000-12-06 2000-12-06 Operational amplifier

Publications (2)

Publication Number Publication Date
JP2002175052A JP2002175052A (en) 2002-06-21
JP4744686B2 true JP4744686B2 (en) 2011-08-10

Family

ID=18841546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000371904A Expired - Fee Related JP4744686B2 (en) 2000-12-06 2000-12-06 Operational amplifier

Country Status (2)

Country Link
US (1) US6424219B1 (en)
JP (1) JP4744686B2 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3700558B2 (en) * 2000-08-10 2005-09-28 日本電気株式会社 Driving circuit
JP3908013B2 (en) * 2001-11-19 2007-04-25 Necエレクトロニクス株式会社 Display control circuit and display device
JP3888350B2 (en) * 2003-12-10 2007-02-28 セイコーエプソン株式会社 Operational amplifier and driving circuit using the same
TWI310926B (en) 2005-01-24 2009-06-11 Himax Tech Inc Source driver and source driving method
TWI309101B (en) * 2005-08-16 2009-04-21 Realtek Semiconductor Corp Voltage converting circuit, voltage converting apparatus, and related circuit systems
US20070250202A1 (en) 2006-04-17 2007-10-25 Tokyo Electron Limited Coating and developing system, method of controlling coating and developing system and storage medium
JP2007287909A (en) * 2006-04-17 2007-11-01 Tokyo Electron Ltd Application/development device, control method for application/development device, and storage medium
JP4861791B2 (en) * 2006-10-27 2012-01-25 ルネサスエレクトロニクス株式会社 Operational amplifier and display device
JP4275166B2 (en) * 2006-11-02 2009-06-10 Necエレクトロニクス株式会社 Data driver and display device
JP4680960B2 (en) 2007-06-22 2011-05-11 パナソニック株式会社 Display device drive circuit and display device
JP2009042428A (en) * 2007-08-08 2009-02-26 Nec Electronics Corp Amplifier circuit and display device
JP4466735B2 (en) 2007-12-28 2010-05-26 ソニー株式会社 SIGNAL LINE DRIVE CIRCUIT, DISPLAY DEVICE, AND ELECTRONIC DEVICE
JP2009194485A (en) * 2008-02-12 2009-08-27 Nec Electronics Corp Operational amplifier circuit and display
JP4526581B2 (en) * 2008-08-06 2010-08-18 ルネサスエレクトロニクス株式会社 Liquid crystal display panel driver and liquid crystal display device
TWI355799B (en) * 2008-08-08 2012-01-01 Orise Technology Co Ltd Output stage circuit and operational amplifier
JP2010122510A (en) * 2008-11-20 2010-06-03 Oki Semiconductor Co Ltd Operational amplifier and driving device for display panel
JP5236434B2 (en) * 2008-11-21 2013-07-17 ラピスセミコンダクタ株式会社 Display panel drive voltage output circuit
JP5172748B2 (en) * 2009-03-11 2013-03-27 ルネサスエレクトロニクス株式会社 Display panel driver and display device using the same
JP5328461B2 (en) * 2009-04-21 2013-10-30 ルネサスエレクトロニクス株式会社 Operational amplifier
JP5288479B2 (en) * 2009-04-27 2013-09-11 ルネサスエレクトロニクス株式会社 Display panel driver
JP2011008028A (en) * 2009-06-25 2011-01-13 Sony Corp Signal line driving circuit, display device, and electronic equipment
JP5241036B2 (en) * 2009-07-07 2013-07-17 ルネサスエレクトロニクス株式会社 Liquid crystal display driver and liquid crystal display device
JP2011050040A (en) * 2009-07-31 2011-03-10 Renesas Electronics Corp Operational amplifier and semiconductor device using the same
JP5208882B2 (en) 2009-08-10 2013-06-12 ルネサスエレクトロニクス株式会社 Power supply circuit for display device
JP5702570B2 (en) * 2009-11-27 2015-04-15 ローム株式会社 Operational amplifier, liquid crystal driving device using the same, parameter setting circuit, semiconductor device, and power supply device
JP5374356B2 (en) * 2009-12-28 2013-12-25 ラピスセミコンダクタ株式会社 Driving circuit and display device
TW201126500A (en) * 2010-01-28 2011-08-01 Novatek Microelectronics Corp Two-channel operational amplifier circuit
TW201241815A (en) * 2011-04-01 2012-10-16 Fitipower Integrated Tech Inc Source driver of LCD panel
TWI479803B (en) * 2012-03-14 2015-04-01 Novatek Microelectronics Corp Output stage circuit
TWI460703B (en) * 2012-08-29 2014-11-11 Au Optronics Corp Driving circuit and driving method for display
TWI575500B (en) * 2015-02-12 2017-03-21 瑞鼎科技股份有限公司 Amplifier circuit applied in source driver of liquid crystal display
KR102611010B1 (en) * 2018-12-24 2023-12-07 주식회사 엘엑스세미콘 Source driving circuit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204470A (en) * 1995-01-27 1996-08-09 Nec Corp Operational amplifier
JPH0993055A (en) * 1995-09-25 1997-04-04 Nec Corp Operational amplifier
JPH09312557A (en) * 1996-05-23 1997-12-02 Nec Eng Ltd Operational amplifier with changeover switch
JPH10177367A (en) * 1996-12-18 1998-06-30 Nec Corp Liquid crystal driving circuit
JPH11305735A (en) * 1998-04-17 1999-11-05 Sharp Corp Differential amplifier circuit, operational amplifier circuit using same, and liquid crystal driving circuit using the operational amplifier circuit
JP2001125543A (en) * 1999-10-27 2001-05-11 Nec Corp Liquid crystal driving circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797631A (en) * 1987-11-24 1989-01-10 Texas Instruments Incorporated Folded cascode amplifier with rail-to-rail common-mode range
US6066985A (en) * 1998-09-10 2000-05-23 Seiko Epson Corporation Large swing input/output analog buffer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08204470A (en) * 1995-01-27 1996-08-09 Nec Corp Operational amplifier
JPH0993055A (en) * 1995-09-25 1997-04-04 Nec Corp Operational amplifier
JPH09312557A (en) * 1996-05-23 1997-12-02 Nec Eng Ltd Operational amplifier with changeover switch
JPH10177367A (en) * 1996-12-18 1998-06-30 Nec Corp Liquid crystal driving circuit
JPH11305735A (en) * 1998-04-17 1999-11-05 Sharp Corp Differential amplifier circuit, operational amplifier circuit using same, and liquid crystal driving circuit using the operational amplifier circuit
JP2001125543A (en) * 1999-10-27 2001-05-11 Nec Corp Liquid crystal driving circuit

Also Published As

Publication number Publication date
US6424219B1 (en) 2002-07-23
US20020067207A1 (en) 2002-06-06
JP2002175052A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
JP4744686B2 (en) Operational amplifier
JP4095174B2 (en) Liquid crystal display device
US7170351B2 (en) Differential AB class amplifier circuit and drive circuit using the same
EP0631269B1 (en) Liquid crystal driving power supply circuit
JP5328461B2 (en) Operational amplifier
KR20010029617A (en) Output circuit
US6917242B2 (en) Power amplifier
US7391264B2 (en) Amplifier
US6388477B1 (en) Switchable voltage follower and bridge driver using the same
US8558826B2 (en) Display device and driving circuit for display device
US7295042B2 (en) Buffer
US20030112064A1 (en) Power amplifier
US7116136B2 (en) Gate driver with level shift between static wells with no power supply
JPH08271856A (en) Driving voltage generating device for liquid crystal display device
JP2009003260A5 (en)
US20090073152A1 (en) Drive circuit and drive device for liquid crystal display
TW201543807A (en) Operational amplifier
JP4536452B2 (en) Semiconductor integrated circuit and method for supplying power supply voltage to semiconductor integrated circuit
US20050168284A1 (en) Operational amplifier with self control circuit for realizing high slew rate throughout full operating range
JP3212950B2 (en) Drive power supply for liquid crystal display
WO2000041027A1 (en) Liquid-crystal display, electronic device, and power supply circuit for driving liquid-crystal display
JP3642343B2 (en) Display device drive circuit
JPH04242788A (en) Liquid crystal driving circuit
JP2004048863A (en) Three-phase current controller
JP2009159344A (en) Oscillation circuit

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050518

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070703

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071114

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110506

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees