[go: up one dir, main page]

JP4740471B2 - Seedling culture soil - Google Patents

Seedling culture soil Download PDF

Info

Publication number
JP4740471B2
JP4740471B2 JP2001136807A JP2001136807A JP4740471B2 JP 4740471 B2 JP4740471 B2 JP 4740471B2 JP 2001136807 A JP2001136807 A JP 2001136807A JP 2001136807 A JP2001136807 A JP 2001136807A JP 4740471 B2 JP4740471 B2 JP 4740471B2
Authority
JP
Japan
Prior art keywords
fiber
heat
soil
seedling culture
seedling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001136807A
Other languages
Japanese (ja)
Other versions
JP2002058339A (en
Inventor
好信 大前
比佐志 凪
茂治 元岡
一徳 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MINORU SANGYO KABUSHIKI KAISHA
Kuraray Co Ltd
Original Assignee
MINORU SANGYO KABUSHIKI KAISHA
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MINORU SANGYO KABUSHIKI KAISHA, Kuraray Co Ltd filed Critical MINORU SANGYO KABUSHIKI KAISHA
Priority to JP2001136807A priority Critical patent/JP4740471B2/en
Publication of JP2002058339A publication Critical patent/JP2002058339A/en
Application granted granted Critical
Publication of JP4740471B2 publication Critical patent/JP4740471B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、育苗用培土およびその固化方法に関する。より詳細には、本発明は、強力の高い根鉢を形成する育苗用培土およびその固化方法に関する。本発明の育苗用培土は、容積が10cm3以下の植物育成用容器に充填して用いるのに特に適しており、前記小さな植物育成用容器への充填性が良好で、しかも移植機による苗植え付け時に崩壊することのない強力の高い根鉢を形成することができる。
【0002】
【従来の技術】
我が国では、就農人口の減少、就農人員の高齢化などに伴って、農作業の省力化、機械化が進められている。その1つとして、小さな容器で育てた苗を移植機で根鉢ごと容器からから抜き取って、田畑に自動的に植え付ける方法が広く採用されるようになっている。この方法による場合は、通常“セル”、“ポット”などと称されるプラスチック等からなる小さな容器または該小容器を連結して設けたトレーに培土を自動的に土詰めした後に野菜、草花、果樹、樹木などの植物の種子を播いて所定期間育苗するか、或いは種子を加えた培土を前記小さな容器またはそれを連結してなるトレーに自動的に土詰めした後に所定期間育苗し、それを根鉢ごと小容器から抜き取って移植機で田畑に植え付けることが一般に行われている。
根鉢は、培土の自己接着力と植物の根の絡みによる強力でその形を維持しているが、根鉢強力が低く、わずかな衝撃で根鉢の形が崩れてしまい、移植機による苗の植え付けが困難であった。
【0003】
そこで、移植機による植え付けを可能にすることを目的として、育苗用培土の根鉢強力を向上させる方法が従来から提案されており、そのような従来技術としては、酢酸ビニル−アクリル酸メチル共重合体ケン化物、ポリアクリル酸ナトリウム架橋物、ビニルアルコール−アクリル酸共重合体などのようなイオン性吸水性樹脂を培土に混合したもの(特開昭58−31919号公報)、培土に寒天ゲル、ベントナイト、澱粉等の結合剤を添加したもの(特開平5−7427号公報)、培土に長さ2〜20mmのセルロース繊維を添加したもの(特開平8−130976号公報)などが知られている。これらの従来技術による場合は、ある程度の根鉢強力の向上は認められるものの、未だその効果は十分ではなく、根鉢強力をより向上させるためには前記した結合剤を多量に使用する必要があり、多量の結合剤の使用は培土の水捌け性の低下、植物の育成能の低下、コストの上昇などを招き易いものであった。
【0004】
また、紡績用途または乾式不織布用途には、通常、繊維長が25mm以上、水分率が1%未満および捲縮数が4〜8個/cmである繊維が用いられ、また湿式不織布用途には、通常、繊維長が3〜20mmおよび水分率が15〜30%の捲縮していない繊維が用いられているが、これらの繊維を培土基材に配合しても、繊維の分散性が不良であったり、固化後の強力が不足するといった問題が生じ易い。
【0005】
さらに、育苗用培土の割れや崩れを防止する目的で、培土基材に熱融着性の芯鞘型繊維を配合し、芯鞘型繊維の鞘部を軟化させて接着・固化した育苗用培土が提案されている(特開平11−113388号公報、特開2000−23561号公報など)。しかしながら、この従来技術による場合にも、移植機で苗を根鉢ごと田畑などに植え付ける際に、根鉢の割れや崩壊を生ずることがあり、根鉢の強力が必ずしも十分ではない。容積が10cm3以下の小さな植物育成用容器に用いる育苗用培土では、充填操作の妨げになる繊維塊などが育苗用培土中に形成されないこと、育苗用培土が均一な組成を保ちながら容器に良好な操作性で充填されること、充填後は容器内で強力の高い根鉢が形成されることが求められているが、この従来技術の育苗用培土は、それらの点について考慮されておらず、十分に満足するものではない。
【0006】
【発明が解決しようとする課題】
本発明の目的は、強力の高い根鉢を形成し、移植機で苗を根鉢ごと田畑などに植え付ける際に根鉢の崩壊が生じず、円滑に植え付けることができ、しかも苗を育成阻害を招くことなく健全に育てることのできる育苗用培土の提供、および該育苗用培土の固化方法の提供にある。
特に、本発明は、容積が10cm3以下の小さな植物育成用容器への機械充填に適していて、充填の妨げになる繊維塊が形成されず、繊維が育苗用培土中に均一に分散されていて、該小さな植物育成用容器に良好な作業性で円滑に機械充填することができ、しかも植物育成用容器に充填した後は、強力の高い根鉢を形成することのできる育苗用培土、および該育苗用培土の固化方法の提供を目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成すべく本発明者らは鋭意検討を重ねてきた。その結果、培土基材に対して、特定の熱融着性繊維、すなわち繊維長が0.5〜2mm、アスペクト比が20〜300、繊維水分率が繊維質量に対し10%以下および捲縮数が6個/cm以下である熱融着性繊維を配合して育苗用培土を調製し、その育苗用培土を加熱処理して育苗用培土に配合した熱融着性繊維を溶融接着させると、強力の高い根鉢が形成されることを見出した。そして、それにより得られる育苗用培土が、移植機などによる植え付けに用いられるセル苗の育成用培土として特に適していて、移植機による植え付け時に根鉢が崩壊せず、植え付け作業を円滑に行えることを見出した。特に、前記した特定の熱融着性繊維を配合してなる育苗用培土は、容積が10cm3以下の小さな植物育成用容器に用いるのに適していて、該小さな植物育成用容器に均一な組成を保ちながら良好な操作性で充填できること、しかも充填後は該植物育成用容器内で強力に優れる根鉢を形成することを見出した。
さらに、本発明者らは、前記の育苗用培土は、苗を健全に育成でき、生育阻害などを生じないことを見出し、それらの知見に基づいて本発明を完成した。
【0008】
すなわち、本発明は、
(1) 培土基材に、繊維長が0.5〜2mm、アスペクト比が20〜300、繊維水分率が繊維質量に対し10%以下および捲縮数が6個/cm以下である熱融着性繊維を配合したことを特徴とする育苗用培土である。
【0009】
そして、本発明は、
(2) 容積が10cm3以下の植物育成用容器に用いるための育苗用培土である前記(1)の育苗用培土;
(3) 熱融着性繊維が、繊維形成性重合体と、該繊維形成性重合体よりも融点または軟化点が20℃以上低い熱可塑性重合体とからなる熱融着性の複合紡糸繊維および/または混合紡糸繊維である前記(1)または(2)の育苗用培土;
(4) 培土基材が、土と共に、ピートモスおよび/またはパーライトを主体とする培土基材である前記(1)〜(3)のいずれかの育苗用培土;
(5) 培土基材と熱融着性繊維の配合割合が、質量比で99:1〜85:15である前記(1)〜(4)のいずれかの育苗用培土;
(6) 育苗用培土中で熱融着性繊維が溶融接着されている前記(1)〜(5)のいずれかの育苗用培土;
(7) 下記の数式(I)により求められる曲げ強度が30mN以上であるという要件、および下記の数式(II)により求められるたわみ量が5以上であるという要件の少なくとも一方を満足する前記(6)の育苗用培土;
【0010】
【数2】
曲げ強度(mN)={(50×B)/(25×A)}×3/2 (I)
たわみ量=C/A (II)
[但し、上記式中、Aは、育苗用培土を目付500g/m2のシート状物とした後に加熱処理して育苗用培土中の熱融着性繊維を溶融接着して得られるシート状物を長さ100mmおよび幅25mmの試験片に裁断し、該試験片の上部全面に53.9kPaの圧力をかけたときの試験片の厚さ(mm)を示し、Bは、前記試験片の両端を距離50mmで隔置した左右の支持台上に載せてその両端を固定した状態で、試験片の中央部に面積2cm2の円形加圧板を載せて10mm/minの速度で下降させ、試験片が破損した際に試験片にかかっていた荷重(最大荷重)(mN)を示し、Cは、前記破損時の試験片のたわみ深さ(mm)を示す。]
(8) 育苗用培土を加熱処理することにより育苗用培土中の熱融着性繊維を溶融接着して密度0.10g/cm3となるように成形してなる成形物を試験片とし、該試験片の中央部に面積2cm2の円形加圧板を載せて10mm/minの速度で下降させ、円形加圧板が5mm下降したときの圧縮応力が10kN以上である前記(6)または(7)の育苗用培土;
である。
【0011】
さらに、本発明は、
(9) 前記(1)〜(5)のいずれかの育苗用培土を植物育成用容器に充填し、灌水した後、加熱処理して培土中の熱融着性繊維を溶融接着させることを特徴とする育苗用培土の固化方法である。
【0012】
【発明の実施の形態】
以下に本発明について詳細に説明する。
本発明の育苗用培土は、培土基材および熱融着性繊維からなる。
熱融着性繊維としては、熱融着性繊維を配合した育苗用培土を加熱処理したときに溶融または軟化して熱融着性繊維同士が接着し、また熱融着性繊維と培土基材中の成分との接着がなされるものであって、上記した特定の繊維長、アスペクト比、繊維水分率および捲縮数を有するものであればいずれでもよい。そのうちでも、熱融着性繊維が、加熱処理後もその繊維形状を保ちながら繊維同士の溶融接着状態、および繊維と培土基材中の成分との溶融接着状態を維持することが、強力の一層高い根鉢を形成できる点から好ましい。そのため、熱融着性繊維としては、加熱処理を施した後でも繊維形態を維持できる融点または軟化点の高い繊維形成性重合体(第1成分)と、該繊維形成性重合体よりも20℃以上低い融点または軟化点を有する熱可塑性重合体(第2成分)とからなる複合紡糸繊維および/または混合紡糸繊維が好ましく用いられ、複合紡糸繊維がより好ましく用いられる。複合紡糸繊維および混合紡糸繊維においては、繊維の表面の少なくとも一部、好ましくは繊維表面の80%以上が低融点または低軟化点の熱可塑性重合体(第2成分)から形成されていることが好ましく、その場合には加熱処理によって繊維の溶融接着(繊維同士の接着および繊維と培土基材中の成分との接着)が良好に行われて、強力の高い根鉢が形成される。
【0013】
前記した複合紡糸繊維および混合紡糸繊維を構成する繊維形成性重合体(第1成分)としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル、ポリアミド、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデンなどの高い融点または軟化点を有する繊維形成性重合体を挙げることができる。
また低融点または低軟化点の熱可塑性重合体(第2成分)としては、第1成分として用いられるポリエステル、ポリアミドよりも融点または軟化点が20℃以上低い熱可塑性重合体、例えば変性ポリエステル(共重合ポリエステルなど)、変性ポリアミド(共重合ポリアミドなど)、ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−プロピレン共重合体などを挙げることができる。
複合紡糸繊維または混合紡糸繊維は、適当な第1成分用重合体の1種または2種以上と、適当な第2成分用重合体の1種または2種以上を組み合わせて形成されていることができる。第2成分用重合体としては、熱融着性繊維の溶融接着を円滑に行うことができることから、その融点または軟化点が130℃以下の熱可塑性重合体が好ましく用いられる。
【0014】
複合紡糸繊維は、周知のように、2種以上の重合体の各々が繊維の長さ方向に途中で途切れることなく連続した状態で互いに接合して1本の繊維(複合繊維)を形成している繊維であり、一般に、その複合形態は繊維の横断面形状から見て、芯鞘型、貼り合わせ型(サイドバイサイド型)またはそれらの混在型などに分けられる。本発明で用いる複合紡糸繊維の複合形態は、それらのいずれであってもよく特に制限されない。そのうちでも、低融点または低軟化点の熱可塑性重合体(第2成分)を鞘成分とし、高融点または高軟化点の繊維形成性重合体(第1成分)を芯成分とする芯鞘型の複合紡糸繊維は、全表面が低融点または低軟化点の第2成分から形成されていて溶融接着性に優れているため、好ましく用いられる。
また、混合紡糸繊維は、互いに均一に混ざり合わない2種以上の重合体を紡糸口金から紡出する以前の段階で混合して紡糸することによって形成される繊維であり、2種以上の重合体の1種または2種以上が繊維の長さ方向に途中で途切れながら互いに接合して1本の繊維を形成している繊維であり、繊維の横断面は一般に海島型の構造を有していることが多く、場合によって貼り合わせ型の構造をとることもある。混合紡糸繊維としては、低融点または低軟化点の熱可塑性重合体(第2成分)が海成分をなし、高融点または高軟化点の繊維形成性重合体が島成分をなしている混合紡糸繊維が溶融接着性に優れているため好ましく用いられる。
【0015】
本発明で用いる熱融着性繊維の断面形状は特に制限されず、例えば、丸型、三角形型、T型、偏平型、多葉型、V字型、中空型などのいずれの断面形状であってもよい。
【0016】
本発明で用いる熱融着性繊維は、その繊維長が0.5〜2mmであることが必要であり、0.5〜1.5mmであることが好ましく、0.8〜1.2mmであることがより好ましい。熱融着性繊維の繊維長が0.5mm未満であると、強力の高い根鉢が形成されない。しかも、繊維長を0.5mm未満にカットする際の作業性が著しく不良になって生産性が低下し、さらにコストが非常に高いものとなる。一方、熱融着性繊維の繊維長が2mmを超えると、培土基材に配合する際に繊維塊を形成し均一に分散しなくなり、繊維塊を含む育苗用培土は、植物育成用容器への機械による充填が困難になる。特に、容積が10cm3以下の小さな植物育成用容器に充填する場合は、熱融着性繊維の繊維長が2mmを超えていて繊維塊が発生していると、小さな植物育成用容器に育苗用培土が機械などにより円滑に充填されなくなり、しかも植物育成用容器中に充填されても育苗用培土中での繊維の分散が不均一であるために、強力の高い根鉢が形成されなくなる。
従来から、短い繊維長にカットしたいわゆるショートカット繊維が抄紙用または湿式不織布用として販売されているが、それら市販されているショートカット繊維の繊維長は通常3mm以上であり、2mm以下というような極端に短い繊維長にはなっていない。その理由は、繊維のカット長さが3mm未満であると、繊維間の絡み合いが減少して紙または不織布の強力が低下すること、3mmよりも短くカットしようとすると繊維のカット操作に手間および時間を要し工業的に採算が採れないこと、3mm未満の繊維長を有する超短繊維に対する要望がないこと、そのため従来の切断機は3mm未満の超短繊維を製造するように設計されていないことなどが挙げられる。
【0017】
さらに、本発明で用いる熱融着性繊維は、アスペクト比が20〜300であることが必要であり、50〜100であることが好ましい。熱融着性繊維のアスペクト比が20未満であると、強力の高い根鉢を形成できなくなり、一方300を超えると培土基材中で繊維塊を生じ、植物育成用容器、特に容積が10cm3以下の小さな植物育成用容器への充填不良、根鉢強力の低下などを生ずる。
なお、本明細書における熱融着性繊維のアスペクト比とは、繊維長を繊維径(繊維の外径)で除した値をいう。
熱融着性繊維の繊度は、分散性および接着性などの点から、0.1〜10dtex、特に1〜5dtex程度が好ましい。
【0018】
本発明で用いる熱融着性繊維は、その水分率が熱融着性繊維の質量に対して10%以下であることが必要であり、7%以下であることが好ましく、3%以下であることがより好ましい。熱融着性繊維の水分率が10%を超えると、培土基材と混合する際に熱融着性繊維が単糸に分繊しなくなって、培土基材中に均一に分散せず、強力の高い根鉢が形成されなくなる。
【0019】
本発明で用いる熱融着性繊維は、捲縮していても又は捲縮していなくてもいずれでもよいが、その捲縮数が6個/cm以下(約15個/インチ以下)、すなわち0〜6個/cmであることが必要である。熱融着性繊維の捲縮数が6個/cmを超えると、培土基材と混合時に繊維塊を生じ、植物育成用容器、特に容積が10cm3以下の小さな植物育成用容器への充填作業が行いにくくなり、しかも培土基材中に熱融着性繊維が均一に分散せず、強力の高い根鉢が形成されなくなる。熱融着性繊維が多少の捲縮を有していると育苗用培土中での熱融着性繊維同士の接触・融着が行われ易くなって育苗用培土の強力が向上するので、熱融着性繊維は、1〜4個/cm程度の捲縮を有していることが好ましい。
【0020】
本発明の育苗用培土に用いる培土基材の種類は特に制限されず、育成する植物の種類などに応じて、従来と同様のものを使用することができる。そのうちでも、本発明では、培土基材として、重粘土、植土、植壌土、壌土などのいわゆる土(天然土);ピートモス、パーク堆肥、亜炭、モミガラ、薫炭、炭粉などの有機質資材;パーライト、バーミキュライト、ロックウール、ゼオライトなどの無機質資材を少なくとも1種を配合するのが好ましい。なかでも、安価で且つ取り扱い性が良好であって、植物育成用容器から取り出し易い点から、土と共に、ピートモスおよびパーライトの少なくとも一方を主体成分とする培土基材が好ましく用いられ、土にピートモスおよびパーライトの両方を配合してなる培土基材がより好ましく用いられる。また、育苗用培土の調製に当たっては、ポリエチレングリコール系湿潤剤などの湿潤剤、無機質肥料、有機質肥料、化学堆肥などの肥料などを更に配合してもかまわない。例えば、バーミキュライトや湿潤剤を配合することにより、水捌け性や保温性を適正に調整でき、肥料は種子および苗の育成に寄与する。
培土基材の好ましい例としては、前記したような天然土に、ピートモスなどの有機資材、パーライトやバーミキュライトなどの無機資材、湿潤剤および肥料を配合した培土基材が挙げられる。一般的には、土100質量部に対して、ピートモスなどの天然資材を10〜800質量部、パーライトやバーミキュライトなどの無機資材を10〜500質量部、湿潤剤を0.1〜1質量部、肥料を0.1〜2質量部の割合で配合するのがよい。
【0021】
本発明の育苗用培土では、培土基材と熱融着性繊維の配合割合が、質量比で99:1〜85:15であることが好ましく、98:2〜90:10であることがより好ましく、97:3〜95:5であることが更に好ましい。育苗用培土の全質量に基づいて、熱融着性繊維の配合割合が1質量%未満であると十分な根鉢強力が得られないため、僅かな衝撃や外力で根鉢の形が崩れ易くなり、一方15質量%を超えると熱融着性繊維と培土基材の混合時に繊維塊を生じて、熱融着性繊維が培土基材中に均一に分散されなくなって、ポット、セル、トレー、苗箱などの植物育成用容器への土詰め作業が円滑に行われにくくなり、しかもコストが高くなる。
【0022】
本発明の育苗用培土は、熱融着性繊維を溶融接着するための加熱処理を施さずに、培土基材と熱融着性繊維を単に混合した状態で流通販売し、購入者(使用者)がそれをセル、ポット、トレー、苗箱などの植物育成用容器に詰めた後に加熱処理を施して熱融着性繊維の溶融接着させて培土の固化を行ってもよい。また、本発明の育苗用培土をセル、ポット、トレー、苗箱などの植物育成用容器に詰めて加熱処理を施して固化した後に、それを流通販売してもよい。また場合によっては、本発明の育苗用培土を比較的大きな箱などに充填して加熱処理した後に、それをセル、ポット、トレー、苗箱などの植物育成用容器に詰め得る適当な大きさに切断して、その形状を保持させながら植物育成用容器に詰めてもよい。しかし、加熱処理を本発明の育苗用培土の販売者が行うかまたは購入者(使用者)が行うかに拘わらず、本発明の育苗用培土をセル、ポット、トレー、苗箱などの植物育成用容器に詰めてから加熱処理することが望ましい。
【0023】
本発明の育苗用培土を詰めるための植物育成用容器としては、従来から用いられているのと同様のセル、ポット、トレー、苗箱などが使用でき、植物育成用容器の種類、形状、構造、サイズなどは各々の状況に応じて適当なものを選択できるが、本発明の育苗用培土は、容積が10cm3以下の小さな植物育成用容器に充填して用いたときに、特にその優れた効果を発揮する。本発明では、育苗用培土中に配合してなる熱融着性繊維の繊維長が0.5〜2mm、アスペクト比が20〜300、繊維水分率が繊維質量に対し10%以下および捲縮数が6個/cm以下であることにより、育苗用培土中に熱融着性繊維が繊維塊を形成することなく均一に分散されており、それによって小さな植物育成用容器であっても育苗用培土を詰まりなどを生ずることなく、植物育成用容器に良好な操作性で機械的などにより充填することができる。しかも、熱融着性繊維が育苗用培土中に均一に分散しているので、充填後に加熱処理を施すことにより、高い強力を有する根鉢が形成される。
容積が10cm3以下の植物育成用容器としては、容積が10cm3以下である植物育成用容器であればいずれも使用できるが、一般的には、容器の上部穴径が10〜40mmで、深さが10〜60mmの、容積1〜10cm3の植物育成用容器が好ましく用いられ、上部穴径が12〜30mmで、深さが15〜50mmの、容積3〜9cm3の植物育成用容器が好ましく用いられる。そのような植物育成用容器は、従来から色々市販されている[例えば、みのる産業株式会社製の「POT448」(商品名)、「POT324」(商品名)など多数市販されている]。本発明の育苗用培土はそのような従来市販の小容積植物育成用容器のいずれに対しても有効に用いることができる。
【0024】
本発明の育苗用培土の使用に当たっては、何ら限定されるものではないが、例えば、本発明の育苗用培土を自動播種機の土入れボックスに入れ、それを例えば特表平5−508994号公報に記載されているようなポット苗箱に充填(土詰め)した後にポット苗箱に灌水してから加熱処理を行う方法、本発明の育苗用培土を、みのる産業株式会社製のポット自動播種機「LSPE−4」の土入れボックスに投入し、それをポット苗箱(みのる産業株式会社製「ポット448苗箱」)に自動的に充填(土詰め)した後にポット苗箱に灌水してから加熱処理を行う方法などを採用することができる。
本発明の育苗用培土に加熱処理を施して、育苗用培土中に配合されている熱融着性繊維を溶融または軟化させることによって、熱融着性繊維同士の接着、および熱融着性繊維と培土基材中の成分との接着が行われて、育苗用培土内に三次元の網目状補強構造が形成されて育苗用培土が固化され、その形状保持性が増し、高い根鉢強力が付与される。
【0025】
育苗用培土の加熱処理は、育苗用培土に灌水せずにそのまま直接行ってもよいが、育苗用培土に灌水した後に加熱処理を行うことが好ましい。育苗用培土に灌水した後に加熱処理を行うと、育苗用培土中に含まれる熱融着性繊維を短時間で均一に溶融接着することができて、全体的に均整のとれた強力を有する固化物(根鉢)が形成される。しかも、加熱処理後の灌水された育苗用培土に植物の種子をそのまま直接播いて育苗することができる。
加熱処理時の灌水の程度は、育苗用培土を構成している培土基材、熱融着性繊維の種類、育苗用培土の組成、育苗用培土自体の水分含量などに応じて調節し得るが、一般的には、飽和の状態(毛管連絡切断点以上の含水状態)になる程度に灌水することが好ましい。
また、加熱処理温度は、熱融着性繊維における熱溶融成分の融点または軟化点に応じて選択することができ、熱融着性繊維における熱融着成分の融点または軟化点からそれよりも10℃高い温度の範囲内で行うことが好ましい。
加熱の方法および装置は特に制限されず、育苗用培土全体を所定の温度に均一に加熱し得る方法および装置であればいずれでもよい。100℃以上の温度で加熱処理する場合は、オートクレーブを用いて行うことが好ましい。
【0026】
本発明の育苗用培土の強力およびたわみ性などの特性は、育苗用培土で育成する苗の種類、苗自体の根の繁茂力、植物育成用容器の大きさ、移植機の形式などに応じて異なり得るが、一般的には、加熱処理して熱融着性繊維を溶融接着して得られる育苗用培土において、上記の数式(I)により求められる曲げ強度が30mN以上であるか、または上記の数式(II)により求められるたわみ量が5以上であるか、或いは前記した30mN以上の曲げ強度と5以上のたわみ量の両方の特性を満足することが好ましく、両方を満足することがより好ましい。特に、加熱処理後の本発明の育苗用培土においては、前記した曲げ強度が50mN以上であることがより好ましく、100mN以上であることが更に好ましい。また、前記したたわみ量が10以上であることがより好ましく、15以上であることが更に好ましい。加熱処理後の育苗用培土の曲げ強度が30mN未満であると、根鉢強力が不足し、移植機などによる植え付け作業時のの取り扱い性が低下したものになり易い。また、加熱処理後の育苗用培土のたわみ量が5未満であると、育苗用培土が硬すぎて、苗の発育不良を生じ易くなる。
【0027】
さらに、本発明の育苗用培土は、育苗用培土を加熱処理することにより育苗用培土中の熱融着性繊維を溶融接着して密度0.10g/cm3となるように成形してなる成形物を試験片とし、該試験片の中央部に面積2cm2の円形加圧板を載せて10mm/minの速度で下降させたときに、円形加圧板が5mm下降したときの圧縮応力が10kN以上になることが好ましく、20kN以上になることがより好ましく、25kN以上になることがさらに好ましい。この圧縮応力が10kN未満であると、根鉢強力の低下による根鉢の崩壊、移植機などによる植え付け作業時の作業性の低下などが生じ易くなる。
【0028】
本発明の育苗用培土への播種は種子が加熱処理時の加熱温度に耐え得るものであれば加熱処理前に行ってもよいが、育苗用培土を加熱処理して育苗用培土中の熱融着性繊維の溶融接着を行った後に種を播くのが好ましい。加熱処理前に種子を播くと、加熱処理時の高温により、種子の変質、死滅などを生じて、発芽しなかったり、発芽しても発育不良などを生ずる場合が多い。育苗用培土に灌水した後に加熱処理する場合は、加熱処理後の灌水状態にある育苗用培土に再度灌水することなく種子をそのまま直接播くことができる。しかし、必要であれば、播種時に更に灌水してもよい。また、本発明の育苗用培土は、種子を播種するだけではなく、挿し木などにも用いることができる。育苗用培土へ挿し木を行い、播種時などと同様に取り扱えばよい。
【0029】
固化前の本発明の育苗用培土、または固化後の本発明の育苗用培土(例えば育苗用セルなど)に播種するのに適する植物としては、切り花用途には、キンギョソウ、ブプレウルム、ユーストマ、ストック、アネモネ、カンパニュラ、ダリア、スカピオサ、デルフィニウム、ラークスパー、ニゲラ、ハナシノブ、ブルーレースフラワー、マトリカリア、シンテッポウユリ、リモニウムシニュアータ、オキシペタルム、クラスペディア、ユウギリソウなどが挙げられる。鉢物、苗物、花壇用途には、アゲラタム、イソトマ、インパチェンス、エキザカム、ガーベラ、ガザニア、カルセオラリア、クリサンセマム、コリウス、サルビア、シザンサス、シネラリア、ゼラニウム、トレニア、パンジー、ビンカ、プリムラ、ペチュニア、ベコニア、マリーゴールド、ラナンキュラス、カーネーションなどが挙げられる。野菜セル苗用途には、セルリー、ビート、ネギ、タマネギ、ニラ、キャベツ、コールラピ、メキャベツ、カリフラワー、ブロッコリー、ハクサイ、ツケナ、ゴマ、フダンソウ、シュンギグ、ミツバ、シソ、ホウレンソウ、レタス、アスパラガス、パセリ、エンダイブ、リーキなどが挙げられる。果菜セル苗用途には、メロン、ピーマン、キュウリ、スイカ、カボチャ、トウガン、キンシウリ、トマト、ナス、オクラ、スイートコーン、インゲン、エンドウ、エダマメ、ソラマメなどが挙げられる。また、固化前の本発明の育苗用培土、または固化後の本発明の育苗用培土(育苗用プラグなど)に挿し木するのに適する植物としては、キク、カーネーション、宿根カスミソウなどの挿し木で繁殖できる植物が挙げられる。培土基材としては、前記したように、土と共にピートモスおよび/またはパーライトを主体とするものが適しているが、切り花用途、花壇用途、野菜セル苗用途、果菜セル苗用途には、土とピートモスを主体する培土基材が特に適しており、また挿し木するのに適応する植物の生育には土およびパーライトを主体とする培土基材が特に適している。
【0030】
【実施例】
以下に実施例などにより本発明を具体的に説明するが、本発明は以下の例により何ら限定されるものではない。以下の例において、根鉢強力の評価、並びに育苗用培土の曲げ強度、たわみ量および圧縮応力の測定は次のようにして行った。
【0031】
(1)根鉢強力:
以下の実施例または比較例において形成した根鉢(播種前の根鉢)を、1mの高さから落下させて、下記に示す4段階の評価基準にしたがって点数評価した。
[評価基準]
1点:根鉢がバラバラに砕けた。
2点:根鉢が5〜8個に割れた。
3点:根鉢が2〜4個に割れた。
4点:根鉢の割れが何ら生じなかった。
【0032】
(2)育苗用培土の曲げ強度およびたわみ量:
(i) 育苗用培土を、基台上に目付が500g/m2になるようにしてシート状(平坦)にならして載せ、それに100cc/m2の割合で水を散布(灌水)した後、基台ごとオートクレーブに入れて、以下の実施例または比較例で採用している温度および時間(115℃で15分間)で加熱処理した。オートクレーブから取り出した後、その加熱処理後のシート状の育苗用培土を、長さ100mmおよび幅25mmの試験片aに裁断し、試験片aの上部全面から53.9kPaの圧力をかけてその時の試験片aの厚さA(mm)を測定した。
(ii) 次いで、上記(i)の試験片aを、図1に示すように、50mmの距離を設けて配置した左右の支持台1a,1bの上に載せ、試験片aの両端a1,a2を端部固定手段2a,2bで固定した後、試験片aの中央部に面積2cm2の円形加圧板3を載せて10mm/minの速度で下降させ、試験片aが破損した際に試験片aにかかっていた荷重(最大荷重)B(mN)を読み取ると共に、その時のたわみ深さC(mm)を読み取って、下記の数式(I)および数式(II)により曲げ強度およびたわみ量をそれぞれ算出した。
【0033】
【数3】
曲げ強度(mN)={(50×B)/(25×A)}×3/2 (I)
たわみ量=C/A (II)
【0034】
(3)育苗用培土の圧縮応力:
育苗用培土を密度0.10g/cm3となるようにバット状の容器に充填し、これを95℃で90分間加熱処理することにより育苗用培土中の熱融着性繊維を溶融接着して平板状の成形物(縦×横×厚さ=300mm×300mm×30mm)をつくり、この成形物を試験片とした用い、試験片の中央部に面積2cm2の円形加圧板を載せて10mm/minの速度で下降させ、円形加圧板が5mm降下した時の圧縮応力を測定した。
【0035】
また、以下の実施例または比較例で用いた熱融着性繊維の内容と略号は次のとおりである。
なお、以下の熱融着性繊維において、所定繊維長の繊維を得るための切断操作は、ギロチンカッター(小野打製作所製)を使用して、トウ繊度1000ktexのトウを用いて、ショット速度150ショット/分の条件下に行った。
○熱融着性繊維▲1▼:
芯成分がポリエチレンテレフタレートおよび鞘成分がイソフタル酸45モル%共重合ポリエチレンテレフタレートよりなる芯鞘型複合繊維[芯成分:鞘成分の質量比=1:1、鞘成分の融点=110℃、芯成分の融点=260℃、単繊維繊度=1.7dtex;繊維長=1mm、アスペクト比=80、水分率=10%、捲縮数=0個/cm(非捲縮)]
○熱融着性繊維▲2▼:
芯成分がポリエチレンテレフタレートおよび鞘成分がイソフタル酸45モル%共重合ポリエチレンテレフタレートよりなる芯鞘型複合繊維[芯成分:鞘成分の質量比=1:1、鞘成分の融点=110℃、芯成分の融点=260℃、単繊維繊度=3.3dtex;繊維長=2mm、アスペクト比=115、水分率=10%、捲縮数=0個/cm(非捲縮)]
○熱融着性繊維▲3▼:
芯成分がポリエチレンテレフタレートおよび鞘成分がイソフタル酸45モル%共重合ポリエチレンテレフタレートよりなる芯鞘型複合繊維[芯成分:鞘成分の質量比=1:1、鞘成分の融点=110℃、芯成分の融点=260℃、単繊維繊度=1.7dtex;繊維長=1mm、アスペクト比=80、水分率=0%、捲縮数=0個/cm(非捲縮)]
○熱融着性繊維▲4▼:
芯成分がポリエチレンテレフタレートおよび鞘成分がイソフタル酸45モル%共重合ポリエチレンテレフタレートよりなる芯鞘型複合繊維[芯成分:鞘成分の質量比=1:1、鞘成分の融点=110℃、芯成分の融点=260℃、単繊維繊度=1.7dtex;繊維長=1mm、アスペクト比=80、水分率=0%、捲縮数=2.8個/cm]
○熱融着性繊維▲5▼(粉末状):
芯成分がポリエチレンテレフタレートおよび鞘成分がイソフタル酸45モル%共重合ポリエチレンテレフタレートよりなる芯鞘型複合繊維(粉末状)[芯成分:鞘成分の質量比=1:1、鞘成分の融点=110℃、芯成分の融点=260℃、単繊維繊度=3.3dtex;繊維長=0.3mm、アスペクト比=17、水分率=10%、捲縮数=0個/cm(非捲縮)]
○熱融着性繊維▲6▼:
芯成分がポリエチレンテレフタレートおよび鞘成分がイソフタル酸45モル%共重合ポリエチレンテレフタレートよりなる芯鞘型複合繊維[芯成分:鞘成分の質量比=1:1、鞘成分の融点=110℃、芯成分の融点=260℃、単繊維繊度=2.2dtex;繊維長=5mm、アスペクト比=340、水分率=15%、捲縮数=0個/cm(非捲縮)]
○熱融着性繊維▲7▼:
芯成分がポリエチレンテレフタレートおよび鞘成分がイソフタル酸45モル%共重合ポリエチレンテレフタレートよりなる芯鞘型複合繊維[芯成分:鞘成分の質量比=1:1、鞘成分の融点=110℃、芯成分の融点=260℃、単繊維繊度=2.2dtex;繊維長=5mm、アスペクト比=340、水分率=0%、捲縮数=7.9個/cm]
【0036】
さらに、以下の実施例および比較例で用いた培土基材の内容は次のとおりである。
培土基材
土(赤玉土)100質量部にピートモス20質量部およびバーミキュライト10質量部を混合して得た混合物100質量部に対して、湿潤剤(ポリエチレングリコール)を0.01質量部および肥料(チッソ旭肥料株式会社製「低度化成肥料アサヒマイクロポーラス」)を0.5質量部の割合で配合して培土基材とした。
【0037】
《実施例1》
(1) 上記の培土基材95質量部と、熱融着性繊維▲1▼5質量部をミキサー容器に入れ、撹拌して育苗用培土を調製した。
(2) 上記(1)で得られた育苗用培土の一部を用いて上記した方法でその加熱処理後のシート状物の曲げ強度およびたわみ量並びに成形物の圧縮応力を測定したところ、下記の表1に示すとおりであった。
(3) 上記(1)で得られた育苗用培土の残りの部分を、みのる産業株式会社製のポット自動播種機「LSPE−4」の土入れボックスに投入し、それをポット苗箱[みのる産業株式会社製「ポット448苗箱」(容積=4.1cm3、上部穴径=16mm、深さ25mm)]に自動的に充填(土詰め)した後に、このポット苗箱に2ml/1ポットの量で灌水し、それをオートクレーブ中で110℃で15分間加熱処理した。これにより得られた根鉢の根鉢強力を上記した方法で評価したところ、下記の表1に示すとおりであった。
(4) 上記(3)で得られた加熱処理後のポット内の育苗用培土に、ブプレウルムの種子を1ポット当たり1個の割合で播いて、温度15〜20℃および湿度50〜70%の条件下に高さが約2〜3cmとなるまで苗を成長させ(約15日間育成)、それを移植機(みのる産業株式会社製「野菜移植機OP−4」)を使用して、根鉢ごとポットから抜き取って畑に移植したところ、移植時の根鉢の崩壊が生じず、取り扱い性に優れていた。
【0038】
《実施例2》
(1) 上記の培土基材90質量部と、熱融着性繊維▲2▼10質量部をミキサー容器に入れ、撹拌して育苗用培土を調製した。
(2) 上記(1)で得られた育苗用培土の一部を用いて上記した方法でその加熱処理後のシート状物の曲げ強度およびたわみ量並びに成形物の圧縮応力を測定したところ、下記の表1に示すとおりであった。
(3) 上記(1)で得られた育苗用培土の残りの部分を、実施例1の(3)と同様にしてポット自動播種機を用いてポット苗箱(みのる産業株式会社製「ポット448苗箱」)に自動的に土詰めした後に、このポット苗箱に2ml/1ポットの量で灌水し、それをオートクレーブ中で110℃で15分間加熱処理した。これにより得られた根鉢の根鉢強力を上記した方法で評価したところ、下記の表1に示すとおりであった。
(4) 上記(3)で得られた加熱処理後のポット内の育苗用培土に、実施例1の(4)と同様にしてブプレウルムの種子を播いて苗の高さが約2〜3cmになるまで育苗し、それを実施例1で使用したのと同じ移植機を使用して、根鉢ごとポットから抜き取って畑に移植したところ、移植時の根鉢の崩壊が生じず、取り扱い性に優れていた。
【0039】
《実施例3》
(1) 上記の培土基材95質量部と、熱融着性繊維▲3▼5質量部をミキサー容器に入れ、撹拌して育苗用培土を調製した。
(2) 上記(1)で得られた育苗用培土の一部を用いて上記した方法でその加熱処理後のシート状物の曲げ強度およびたわみ量並びに成形物の圧縮応力を測定したところ、下記の表1に示すとおりであった。
(3) 上記(1)で得られた育苗用培土の残りの部分を、実施例1の(3)と同様にしてポット自動播種機を用いてポット苗箱(みのる産業株式会社製「ポット448苗箱」)に自動的に土詰めした後に、このポット苗箱に2ml/1ポットの量で灌水し、それをオートクレーブ中で110℃で15分間加熱処理した。これにより得られた根鉢の根鉢強力を上記した方法で評価したところ、下記の表1に示すとおりであった。
(4) 上記(3)で得られた加熱処理後のポット内の育苗用培土に、実施例1の(4)と同様にしてブプレウルムの種子を播いて苗の高さが約2〜3cmになるまで育苗し、それを実施例1で使用したのと同じ移植機を使用して、根鉢ごとポットから抜き取って畑に移植したところ、移植時の根鉢の崩壊が生じず、取り扱い性に優れていた。
【0040】
《実施例4》
(1) 上記の培土基材95質量部と、熱融着性繊維▲4▼5質量部をミキサー容器に入れ、撹拌して育苗用培土を調製した。
(2) 上記(1)で得られた育苗用培土の一部を用いて上記した方法でその加熱処理後のシート状物の曲げ強度およびたわみ量並びに成形物の圧縮応力を測定したところ、下記の表1に示すとおりであった。
(3) 上記(1)で得られた育苗用培土の残りの部分を、実施例1の(3)と同様にしてポット自動播種機を用いてポット苗箱(みのる産業株式会社製「ポット448苗箱」)に自動的に土詰めした後に、このポット苗箱に2ml/1ポットの量で灌水し、それをオートクレーブ中で110℃で15分間加熱処理した。これにより得られた根鉢の根鉢強力を上記した方法で評価したところ、下記の表1に示すとおりであった。
(4) 上記(3)で得られた加熱処理後のポット内の育苗用培土に、実施例1の(4)と同様にしてブプレウルムの種子を播いて苗の高さが約2〜3cmになるまで育苗し、それを実施例1で使用したのと同じ移植機を使用して、根鉢ごとポットから抜き取って畑に移植したところ、移植時の根鉢の崩壊が生じず、取り扱い性に優れていた。
【0041】
《比較例1》
(1) 熱融着性繊維を配合せずに上記の培土基材のみを育苗用培土として用いた。
(2) 上記(1)の育苗用培土の一部を用いて上記した方法でその加熱処理後のシート状物の曲げ強度およびたわみ量並びに成形物の圧縮応力を測定したところ、下記の表2に示すとおりであった。
(3) 上記(1)の育苗用培土の残りの部分を、実施例1の(3)と同様にしてポット自動播種機を用いてポット苗箱(みのる産業株式会社製「ポット448苗箱」)に自動的に土詰めした後に、このポット苗箱に2ml/1ポットの量で灌水し、それをオートクレーブ中で110℃で15分間加熱処理した。これにより得られた根鉢の根鉢強力を上記した方法で評価したところ、下記の表2に示すとおりであった。
(4) 上記(3)で得られた加熱処理後のポット内の育苗用培土に、実施例1の(4)と同様にしてブプレウルムの種子を播いて苗の高さが約2〜3cmになるまで育苗し、それを実施例1で使用したのと同じ移植機を使用して、根鉢ごとポットから抜き取って畑に移植しようとしたところ、根鉢強力が極めて小さく、移植機での植え付けができず、以後の栽培を行わなかった。
【0042】
《比較例2》
(1) 上記の培土基材85質量部と、熱融着性繊維▲5▼15質量部をミキサー容器に入れ、撹拌して育苗用培土を調製した。
(2) 上記(1)で得られた育苗用培土の一部を用いて上記した方法でその加熱処理後のシート状物の曲げ強度およびたわみ量並びに成形物の圧縮応力を測定したところ、下記の表2に示すとおりであった。
(3) 上記(1)で得られた育苗用培土の残りの部分を、実施例1の(3)と同様にしてポット自動播種機を用いてポット苗箱に自動的に土詰めした後に、このポット苗箱(みのる産業株式会社製「ポット448苗箱」)に2ml/1ポットの量で灌水し、それをオートクレーブ中で110℃で15分間加熱処理した。これにより得られた根鉢の根鉢強力を上記した方法で評価したところ、下記の表2に示すとおりであった。
(4) 上記(3)で得られた加熱処理後のポット内の育苗用培土に、実施例1の(4)と同様にしてブプレウルムの種子を播いて苗の高さが約2〜3cmになるまで育苗し、それを実施例1で使用したのと同じ移植機を使用して、根鉢ごとポットから抜き取って畑に移植しようとしたところ、根鉢強力が小さく、移植機での植え付け作業を円滑に行うことができなかったので、以後の栽培を行わなかった。
【0043】
《比較例3》
(1) 上記の培土基材95質量部と、熱融着性繊維▲6▼5質量部をミキサー容器に入れ、撹拌して育苗用培土を調製した。
(2) 上記(1)で得られた育苗用培土の一部を用いて上記した方法でその加熱処理後のシート状物の曲げ強度およびたわみ量並びに成形物の圧縮応力を測定したところ、下記の表2に示すとおりであった。
(3) 上記(1)で得られた育苗用培土の残りの部分を、実施例1の(3)と同様にしてポット自動播種機を用いてポット苗箱(みのる産業株式会社製「ポット448苗箱」)に自動的に土詰めした後に、このポット苗箱に2ml/1ポットの量で灌水し、それをオートクレーブ中で110℃で15分間加熱処理した。これにより得られた根鉢の根鉢強力を上記した方法で評価したところ、下記の表2に示すとおりであった。
(4) 上記(3)で得られた加熱処理後のポット内の育苗用培土に、実施例1の(4)と同様にしてブプレウルムの種子を播いて苗の高さが約2〜3cmになるまで育苗し、それを実施例1で使用したのと同じ移植機を使用して、根鉢ごとポットから抜き取って畑に移植しようとしたところ、根鉢強力が小さく、移植機での植え付け作業を円滑に行うことができなかったので、以後の栽培を行わなかった。
【0044】
《比較例4》
(1) 上記の培土基材95質量部と、熱融着性繊維▲7▼5質量部をミキサー容器に入れ、撹拌して育苗用培土を調製した。その際に、育苗用培土中に10〜20mm径の繊維塊が発生した。
(2) 上記(1)で得られた育苗用培土の一部を用いて上記した方法でその加熱処理後のシート状物の曲げ強度およびたわみ量並びに成形物の圧縮応力を測定したところ、下記の表2に示すとおりであった。
(3) 上記(1)で得られた育苗用培土の残りの部分を、実施例1の(3)と同様にしてポット自動播種機を用いてポット苗箱(みのる産業株式会社製「ポット448苗箱」)に自動的に土詰め(充填)しようとしたところ、大きな繊維塊が存在しているために充填が事実上困難であったため、以後の評価は行わなかった。
【0045】
【表1】

Figure 0004740471
【0046】
【表2】
Figure 0004740471
【0047】
上記の表1および表2の結果から、繊維長が0.5〜2mmの範囲で、アスペクト比が20〜300の範囲で、繊維水分率が繊維質量に対し10%以下で且つ捲縮数が6個/cm以下である熱融着性繊維を配合してなる実施例1〜4の育苗用培土は、培土基材との混合時に繊維塊が発生しないために、該熱融着性繊維を配合してなる育苗用培土は、容積が10cm3以下の小さな植物育成用容器にも良好な操作性で充填できること、しかも加熱処理して熱融着性繊維を溶融接着することによって強力の高い取り扱い性に優れる根鉢が形成され、移植機による植え付けを円滑に行うことができること、そして苗を良好に生育できることがわかる。
一方、熱融着性繊維を含有しない比較例1の育苗用培土、繊維長が0.5mm未満(0.3mm)の熱融着性繊維▲5▼を配合してなる比較例2の育苗用培土、および繊維長が5mmで水分率が15%の熱融着性繊維▲6▼を配合してなる比較例3の育苗用培土は、熱処理を施した育苗用培土の曲げ強度、たわみ量および圧縮応力のいずれもが実施例1〜4の育苗用培土に比べて低く、加熱処理を施した後に強力の高い根鉢が形成されず、移植機による植え付けができず、取り扱い性に劣っていることがわかる。
また、繊維長が5mmで捲縮数が7.9個/cmである熱融着性繊維▲7▼を配合してなる比較例4の育苗用培土は、培土基材への配合時に繊維塊が発生し、植物育成用容器、特に容積が10cm3以下の小さな植物育成用容器へのポット自動播種機を用いての充填が困難である。
【0048】
【発明の効果】
本発明の育苗用培土は、加熱処理によって、育苗用培土中に配合した熱融着性繊維が溶融接着して、繊維同士の接着、繊維と培土基材中の成分との接着がなされて三次元の網状の補強構造を育苗用培土内に形成するために、強力の高い根鉢を形成することができる。その結果、本発明の育苗用培土は、移植機などを用いて根鉢ごと苗を植え付ける際に、根鉢の崩壊を生ずることなく、植え付け作業を円滑に行うことができる。しかも、本発明の育苗用培土は、生育阻害などを生ずることなく、植物の苗を健全に育成させることができる。
特に、本発明の育苗用培土では、培土基材に熱融着性繊維を配合して育苗用培土を調製する際に繊維塊が生じず、熱融着性繊維が育苗用培土中に均一に分散しているために、容積が10cm3以下の小さな植物育成用容器に自動充填装置などを使用して充填するときに、充填不良や充填不能を生じず、小さな植物育成用容器に良好な作業性で円滑に充填することができ、しかも該小さな植物育成用容器内の強力の高い根鉢を形成することができる。。
【図面の簡単な説明】
【図1】本発明の育苗用培土の曲げ強度およびたわみ量の測定方法を示す図である。
【符号の説明】
a シート状の育苗用培土(加熱処理したもの)
1a 支持台
1b 支持台
2a シート状の育苗用培土の端部固定手段
2b シート状の育苗用培土の端部固定手段
3 加圧板
4 加重検出部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a seedling culture soil and a solidification method thereof. More specifically, the present invention relates to a soil for raising seedlings that forms a root pot with high strength and a method for solidifying the soil. The seedling culture soil of the present invention has a volume of 10 cm. Three It is particularly suitable for filling and using the following plant growing containers, and having a high potency root pot that has good filling properties in the small plant growing containers and does not collapse when planting seedlings with a transplanter. Can be formed.
[0002]
[Prior art]
In Japan, labor-saving and mechanization of farm work are being promoted along with the decrease in the farming population and the aging of farming workers. As one of them, a method is widely adopted in which seedlings grown in a small container are extracted from the container together with the root pot with a transplanter and are automatically planted in a field. When this method is used, vegetables, flowers, flowers, etc. after the soil is automatically filled in a small container made of plastic or the like usually called “cell”, “pot” or the like, or a tray provided by connecting the small containers. Seeds of seeds of plants such as fruit trees, trees and so on, or grows seedlings for a specified period of time, or automatically seeds the soil with added seeds into the small containers or trays connected to them, and then grows them for a specified period of time. It is common practice to remove the root pot from a small container and plant it in a field using a transplanter.
The root pots are strong due to the self-adhesive strength of the soil and strong entanglement of the roots of the plant, but the root pot strength is low, the shape of the root pot collapses with a slight impact, and the seedlings by the transplanter Planting was difficult.
[0003]
Therefore, for the purpose of enabling planting with a transplanter, a method for improving the root pot strength of the soil for raising seedlings has been proposed, and as such a conventional technique, vinyl acetate-methyl acrylate co-polymerization has been proposed. A mixture of an ionic water-absorbing resin such as a saponified coal, a sodium polyacrylate cross-linked product, a vinyl alcohol-acrylic acid copolymer and the like (JP-A-58-31919), an agar gel Known are those having a binder such as bentonite and starch added (Japanese Patent Laid-Open No. 5-7427), and those in which cellulose fibers having a length of 2 to 20 mm are added to the soil (Japanese Patent Laid-Open No. 8-130976). . In the case of these conventional techniques, some improvement in root pot strength is recognized, but the effect is not yet sufficient, and in order to further improve root pot strength, it is necessary to use a large amount of the above-mentioned binder. In addition, the use of a large amount of binder tends to cause a decrease in water drainage of the cultivated soil, a decrease in plant growth ability, and an increase in cost.
[0004]
Further, for spinning or dry nonwoven fabric, fibers having a fiber length of 25 mm or more, a moisture content of less than 1% and a crimp number of 4 to 8 pieces / cm are used, and for wet nonwoven fabric applications, Usually, uncrimped fibers with a fiber length of 3 to 20 mm and a moisture content of 15 to 30% are used. However, even if these fibers are blended in the soil base material, the dispersibility of the fibers is poor. Or problems such as insufficient strength after solidification.
[0005]
In addition, for the purpose of preventing cracking and collapsing of the seedling culture soil, the seedling culture soil is made by blending a heat-sealable core-sheath fiber into the soil base material and softening the sheath of the core-sheath fiber to bond and solidify it. Have been proposed (JP-A-11-113388, JP-A-2000-23561, etc.). However, even in this conventional technique, when planting seedlings together with root pots in a field or the like with a transplanter, the root pots may break or collapse, and the strength of the root pots is not always sufficient. Volume is 10cm Three In the seedling culture soil used for the following small plant growth containers, fiber masses that hinder filling operations are not formed in the seedling culture soil, and the container has good operability while maintaining a uniform composition. After filling, it is required that a strong root pot is formed in the container, but this conventional technique for raising seedlings is not fully considered and is sufficiently satisfied. Not what you want.
[0006]
[Problems to be solved by the invention]
The purpose of the present invention is to form a strong root pot, and when the seedling is planted together with the root pot in a field or the like with a transplanter, the root pot does not collapse, and can be planted smoothly, and the seedling is inhibited from growing. The present invention provides a seedling culture soil that can be nurtured healthy without incurring and a method for solidifying the seedling culture soil.
In particular, the present invention has a volume of 10 cm. Three Suitable for machine filling into the following small plant growing containers, no fiber lump that prevents filling is formed, fibers are evenly dispersed in the seedling growing soil, good for the small plant growing container Providing a soil for raising seedlings that can be machine-filled smoothly with good workability and that can form a strong root pot after filling into a plant-growing container, and a method for solidifying the soil for raising seedlings Objective.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have conducted intensive studies. As a result, the specific heat-fusible fiber, that is, the fiber length is 0.5 to 2 mm, the aspect ratio is 20 to 300, the fiber moisture content is 10% or less with respect to the fiber mass, and the number of crimps. Is prepared by mixing heat-fusible fibers that are 6 pieces / cm or less, and preparing the seedling culture soil, heat-treating the seedling culture soil and melting and bonding the heat-fusible fibers mixed in the seedling culture soil, It was found that a strong root pot was formed. And the seedling culture soil obtained thereby is particularly suitable as a cell seedling growth soil used for planting with a transplanter, etc., and the root pot does not collapse when planted with a transplanter, and the planting work can be done smoothly I found. In particular, the soil for raising seedlings composed of the specific heat-fusible fibers described above has a volume of 10 cm. Three It is suitable for use in the following small plant growing containers, and can be filled with good operability while maintaining a uniform composition in the small plant growing container, and after filling it is excellent in the plant growing container. Found to form root pots.
Furthermore, the present inventors have found that the above seedling culture soil can grow seedlings safely and do not cause growth inhibition, and the present invention has been completed based on these findings.
[0008]
That is, the present invention
(1) Thermal fusion with fiber length of 0.5 to 2 mm, aspect ratio of 20 to 300, fiber moisture content of 10% or less, and number of crimps of 6 pieces / cm or less It is a soil for raising seedlings, characterized by blending sexual fibers.
[0009]
And this invention,
(2) Volume is 10cm Three The seedling culture soil according to (1) above, which is a seedling culture soil for use in the following plant growth container;
(3) a heat-fusible composite spun fiber, wherein the heat-fusible fiber comprises a fiber-forming polymer and a thermoplastic polymer having a melting point or softening point lower than that of the fiber-forming polymer by 20 ° C. or more; (1) or (2) seedling growth soil, which is a mixed spun fiber;
(4) The soil for raising seedlings according to any one of the above (1) to (3), wherein the soil base material is a soil base material mainly composed of peat moss and / or pearlite together with soil;
(5) The culture medium for raising seedlings according to any one of (1) to (4) above, wherein the mixing ratio of the culture medium base material and the heat-fusible fiber is 99: 1 to 85:15 by mass ratio;
(6) The culture medium for raising seedlings according to any one of (1) to (5) above, wherein the heat-fusible fibers are melt-bonded in the seedling culture medium;
(7) Satisfying at least one of the requirement that the bending strength obtained by the following mathematical formula (I) is 30 mN or more and the requirement that the deflection amount obtained by the following mathematical formula (II) is 5 or more (6 ) For raising seedlings;
[0010]
[Expression 2]
Bending strength (mN) = {(50 × B) / (25 × A)} × 3/2 (I)
Deflection = C / A (II)
[However, in the above formula, A is 500 g / m per unit weight of the soil for raising seedlings. 2 The sheet-like material obtained by heat-treating and then heat-bonding the heat-fusible fibers in the seedling-grown soil after cutting into a test piece having a length of 100 mm and a width of 25 mm is obtained. Indicates the thickness (mm) of the test piece when a pressure of 53.9 kPa is applied to the entire surface, and B indicates that the both ends of the test piece are placed on left and right support bases separated by a distance of 50 mm and fixed at both ends. 2cm in the center of the test piece 2 The load (maximum load) (mN) applied to the test piece when the test piece is broken is shown, and C is the test piece at the time of the breakage. Deflection depth (mm) is shown. ]
(8) The heat-sealable fiber in the seedling culture soil is melt-bonded by heat-treating the seedling culture soil, and the density is 0.10 g / cm. Three A molded product formed so as to become a test piece, with an area of 2 cm in the center of the test piece 2 (6) or (7) above-mentioned culture medium for raising seedlings, wherein the compressive stress is 10 kN or more when the circular pressure plate is placed and lowered at a speed of 10 mm / min.
It is.
[0011]
Furthermore, the present invention provides
(9) Of (1) to (5) above Any A seedling culture soil solidification method comprising filling a seedling culture soil in a plant growth container, irrigating, and then heat-treating and thermally bonding the heat-fusible fibers in the culture soil.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The seedling culture soil of the present invention comprises a culture base material and heat-fusible fibers.
As the heat-fusible fiber, when the seedling culture soil containing the heat-fusible fiber is heat-treated, it is melted or softened to bond the heat-fusible fibers to each other. Any material may be used as long as it adheres to the components therein and has the above-described specific fiber length, aspect ratio, fiber moisture content, and number of crimps. Among them, the heat-fusible fiber maintains the shape of the fiber even after the heat treatment, and maintains the melt-bonded state between the fibers and the melt-bonded state between the fiber and the components in the culture base material. This is preferable because a high root pot can be formed. Therefore, as the heat-fusible fiber, a fiber-forming polymer (first component) having a high melting point or softening point that can maintain the fiber form even after the heat treatment, and 20 ° C. than the fiber-forming polymer. A composite spun fiber and / or a mixed spun fiber composed of a thermoplastic polymer (second component) having a low melting point or softening point is preferably used, and a composite spun fiber is more preferably used. In the composite spun fiber and the mixed spun fiber, at least a part of the fiber surface, preferably 80% or more of the fiber surface is formed of a thermoplastic polymer (second component) having a low melting point or a low softening point. Preferably, in this case, melt-bonding of the fibers (adhesion between the fibers and adhesion between the fibers and the components in the soil base material) is performed well by heat treatment, and a strong root pot is formed.
[0013]
Examples of the fiber-forming polymer (first component) constituting the composite spun fiber and the mixed spun fiber include, for example, polyesters such as polyethylene terephthalate and polybutylene terephthalate, polyamide, polypropylene, polyvinyl chloride, and polyvinylidene chloride. Mention may be made of fiber-forming polymers having a high melting point or softening point.
The thermoplastic polymer (second component) having a low melting point or a low softening point is a thermoplastic polymer having a melting point or softening point of 20 ° C. or more lower than that of the polyester or polyamide used as the first component, such as a modified polyester (co-polymer). Polymerized polyester, etc.), modified polyamide (copolymerized polyamide, etc.), polyethylene, ethylene-vinyl acetate copolymer, ethylene-propylene copolymer, and the like.
The composite spun fiber or mixed spun fiber may be formed by combining one or more suitable first component polymers and one or more suitable second component polymers. it can. As the polymer for the second component, a thermoplastic polymer having a melting point or a softening point of 130 ° C. or lower is preferably used because the melt-bonding of the heat-fusible fiber can be performed smoothly.
[0014]
As is well known, a composite spun fiber is formed by joining two or more kinds of polymers in a continuous state without interruption in the length direction of the fiber to form one fiber (composite fiber). In general, the composite form is divided into a core-sheath type, a bonded type (side-by-side type), or a mixed type thereof, as seen from the cross-sectional shape of the fiber. The composite form of the composite spun fiber used in the present invention may be any of them and is not particularly limited. Among them, a core-sheath type having a low melting point or low softening point thermoplastic polymer (second component) as a sheath component and a high melting point or high softening point fiber-forming polymer (first component) as a core component. The composite spun fiber is preferably used because the entire surface is formed from the second component having a low melting point or a low softening point and is excellent in melt adhesion.
The mixed spun fiber is a fiber formed by mixing and spinning two or more kinds of polymers that do not mix uniformly with each other before spinning from the spinneret, and the two or more kinds of polymers. 1 type or 2 types or more are fibers that are joined together to form one fiber while being interrupted in the length direction of the fiber, and the cross section of the fiber generally has a sea-island structure. In many cases, it may have a bonded structure. As the mixed spun fiber, a mixed spun fiber in which a thermoplastic polymer (second component) having a low melting point or a low softening point constitutes a sea component and a fiber-forming polymer having a high melting point or a high softening point constitutes an island component. Is preferably used because of its excellent melt adhesion.
[0015]
The cross-sectional shape of the heat-fusible fiber used in the present invention is not particularly limited, and may be any cross-sectional shape such as a round shape, a triangular shape, a T shape, a flat shape, a multileaf shape, a V shape, and a hollow shape. May be.
[0016]
The heat-fusible fiber used in the present invention needs to have a fiber length of 0.5 to 2 mm, preferably 0.5 to 1.5 mm, and 0.8 to 1.2 mm. It is more preferable. When the fiber length of the heat-fusible fiber is less than 0.5 mm, a strong root pot is not formed. In addition, the workability when cutting the fiber length to less than 0.5 mm is remarkably poor, the productivity is lowered, and the cost is very high. On the other hand, if the fiber length of the heat-fusible fiber exceeds 2 mm, the fiber lump will not form and disperse uniformly when blended into the soil base material, and the seedling culture soil containing the fiber lump will be transferred to the plant growing container. Filling by machine becomes difficult. In particular, the volume is 10cm Three When filling the following small plant growing containers, if the fiber length of the heat-fusible fiber exceeds 2 mm and fiber clumps are generated, the seedling growing soil is smoothly transferred to the small plant growing container by a machine. In addition, even when filled in the plant growing container, the fiber dispersion in the seedling growing soil is not uniform, so that a strong root pot is not formed.
Conventionally, so-called shortcut fibers cut into short fiber lengths have been sold for papermaking or wet nonwoven fabrics, but the fiber lengths of the commercially available shortcut fibers are usually 3 mm or more, and extremely low such as 2 mm or less. It is not a short fiber length. The reason is that if the fiber cut length is less than 3 mm, the entanglement between the fibers decreases and the strength of the paper or non-woven fabric decreases, and if it is attempted to cut shorter than 3 mm, it takes time and effort to cut the fiber. Is not industrially profitable, there is no need for ultrashort fibers having a fiber length of less than 3 mm, and so conventional cutting machines are not designed to produce ultrashort fibers of less than 3 mm Etc.
[0017]
Furthermore, the heat-fusible fiber used in the present invention is required to have an aspect ratio of 20 to 300, and preferably 50 to 100. If the aspect ratio of the heat-fusible fiber is less than 20, a strong root pot cannot be formed. On the other hand, if it exceeds 300, a fiber lump is formed in the cultivated soil base material, and the container for growing plants, especially the volume is 10 cm. Three This causes poor filling of the following small plant growing containers, reduced root pot strength, and the like.
The aspect ratio of the heat-fusible fiber in this specification refers to a value obtained by dividing the fiber length by the fiber diameter (fiber outer diameter).
The fineness of the heat-fusible fiber is preferably about 0.1 to 10 dtex, particularly about 1 to 5 dtex from the viewpoints of dispersibility and adhesiveness.
[0018]
The heat-fusible fiber used in the present invention needs to have a moisture content of 10% or less with respect to the mass of the heat-fusible fiber, preferably 7% or less, and preferably 3% or less. It is more preferable. If the moisture content of the heat-fusible fiber exceeds 10%, the heat-fusible fiber will not be split into single yarns when mixed with the soil base material, and will not be evenly dispersed in the soil base material. High root pots are no longer formed.
[0019]
The heat-fusible fiber used in the present invention may be either crimped or not crimped, but the number of crimps is 6 pieces / cm or less (about 15 pieces / inch or less), that is, It is necessary to be 0-6 pieces / cm. When the number of crimps of the heat-fusible fiber exceeds 6 pieces / cm, a fiber lump is formed when mixed with the cultivating base material, and the container for plant growth, particularly the volume is 10 cm. Three Filling into the following small plant growing containers becomes difficult, and furthermore, the heat-fusible fibers are not uniformly dispersed in the cultivating base material, and a strong root pot is not formed. If the heat-fusible fibers have some crimps, the heat-fusible fibers in the nursery soil will be more easily contacted and fused, and the strength of the nursery soil will be improved. It is preferable that the fusible fiber has about 1 to 4 crimps / cm.
[0020]
The kind of the cultivation base material used for the cultivation medium for seedling raising of this invention is not restrict | limited in particular, According to the kind etc. of the plant to grow, the same thing as before can be used. Among them, in the present invention, so-called soil (natural soil) such as heavy clay, afforestation, afforestation soil, loam soil; organic materials such as peat moss, park compost, lignite, rice bran, firewood, charcoal powder; It is preferable to blend at least one inorganic material such as pearlite, vermiculite, rock wool, or zeolite. Among them, since it is inexpensive and easy to handle and can be easily taken out from the container for plant growth, a cultivated soil base material containing at least one of peat moss and pearlite as a main component is preferably used together with soil. A soil base material containing both pearlite is more preferably used. In preparation of the seedling culture soil, a wetting agent such as a polyethylene glycol-based wetting agent, an inorganic fertilizer, an organic fertilizer, a fertilizer such as chemical compost, and the like may be further blended. For example, by adding vermiculite or a wetting agent, water drainage and heat retention can be adjusted appropriately, and the fertilizer contributes to seed and seedling growth.
Preferable examples of the soil base material include a soil base material in which organic materials such as peat moss, inorganic materials such as perlite and vermiculite, a wetting agent and a fertilizer are blended with the natural soil as described above. Generally, with respect to 100 parts by mass of soil, 10 to 800 parts by mass of a natural material such as peat moss, 10 to 500 parts by mass of an inorganic material such as pearlite or vermiculite, 0.1 to 1 part by mass of a wetting agent, It is good to mix | blend a fertilizer in the ratio of 0.1-2 mass parts.
[0021]
In the soil for seedling raising of this invention, it is preferable that the mixture ratio of a soil base material and a heat-fusible fiber is 99: 1-85: 15 by mass ratio, and it is more preferable that it is 98: 2-90: 10. Preferably, it is more preferably 97: 3 to 95: 5. Based on the total mass of the soil for raising seedlings, if the blending ratio of the heat-fusible fiber is less than 1% by mass, sufficient root pot strength cannot be obtained, so the shape of the root pot tends to collapse with a slight impact or external force. On the other hand, if the amount exceeds 15% by mass, a fiber lump is formed when the heat-fusible fiber and the culture base material are mixed, and the heat-fusible fiber is not uniformly dispersed in the culture base material. In addition, it is difficult to smoothly stuff the soil into a plant growing container such as a seedling box, and the cost increases.
[0022]
The seedling culture soil of the present invention is distributed and sold in a state where the culture base material and the heat-fusible fiber are simply mixed without being subjected to heat treatment for melt-bonding the heat-fusible fiber. ) May be packed in a plant-growing container such as a cell, pot, tray or seedling box, and then heat-treated to melt and bond the heat-fusible fibers to solidify the soil. In addition, after the seedling culture soil of the present invention is packed in a plant growth container such as a cell, pot, tray or seedling box and heat-treated to be solidified, it may be distributed and sold. Also, in some cases, after filling the seedling culture soil of the present invention into a relatively large box and heat-treating it to an appropriate size that can be packed into a plant growing container such as a cell, pot, tray or seedling box. You may cut | disconnect and pack the container for plant cultivation, keeping the shape. However, regardless of whether the heat treatment is carried out by the seller of the seedling culture medium of the present invention or by the purchaser (user), the seedling culture medium of the present invention is grown in plants such as cells, pots, trays and seedling boxes. It is desirable to heat-treat after filling the container.
[0023]
As a plant growth container for stuffing the seedling culture soil of the present invention, the same cells, pots, trays, seedling boxes, etc. that have been conventionally used can be used, and the type, shape, and structure of the plant growth container The appropriate size can be selected according to each situation, but the soil for raising seedlings of the present invention has a volume of 10 cm. Three When it is used by filling the following small plant growing containers, it exhibits particularly excellent effects. In the present invention, the fiber length of the heat-fusible fiber blended in the seedling culture soil is 0.5 to 2 mm, the aspect ratio is 20 to 300, the fiber moisture content is 10% or less with respect to the fiber mass, and the number of crimps. Is 6 pieces / cm or less, the heat-fusible fiber is uniformly dispersed in the seedling culture medium without forming a fiber lump, so that even if it is a small plant growth container, the seedling culture medium Without causing clogging or the like, the container for plant cultivation can be filled mechanically or the like with good operability. In addition, since the heat-fusible fibers are uniformly dispersed in the seedling culture soil, a root pot having high strength is formed by performing a heat treatment after filling.
Volume is 10cm Three The following plant growth containers have a volume of 10 cm Three Any of the following plant growth containers can be used, but generally, the container has an upper hole diameter of 10 to 40 mm and a depth of 10 to 60 mm, and a volume of 1 to 10 cm. Three The plant growth container is preferably used, the upper hole diameter is 12 to 30 mm, the depth is 15 to 50 mm, and the volume is 3 to 9 cm. Three The plant growing container is preferably used. A variety of such plant-growing containers have been commercially available in the past [for example, "POT448" (trade name) and "POT324" (trade name) manufactured by Minoru Sangyo Co., Ltd. are commercially available). The seedling culture soil of the present invention can be effectively used for any of such conventionally commercially available small-volume plant growing containers.
[0024]
The use of the seedling culture soil of the present invention is not limited at all, but, for example, the seedling culture soil of the present invention is placed in a soiling box of an automatic sowing machine, for example, Japanese Patent Publication No. 5-508994. A method for performing heat treatment after filling (seeding) a pot seedling box as described in the above and then irrigating the pot seedling box, the seedling culture medium of the present invention, and a pot automatic seeding machine manufactured by Minoru Sangyo Co., Ltd. After putting it into the earthen box of “LSPE-4” and filling it into a pot seedling box (“pot 448 seedling box” manufactured by Minoru Sangyo Co., Ltd.) automatically, irrigating the pot seedling box A method of performing heat treatment or the like can be employed.
By heat-treating the seedling culture medium of the present invention and melting or softening the heat-fusible fiber blended in the seedling-culture medium, the adhesiveness between the heat-fusible fibers and the heat-sealable fiber And the ingredients in the culture medium are bonded to each other, and a three-dimensional mesh reinforcement structure is formed in the seedling culture medium, so that the seedling culture medium is solidified, its shape retention is increased, and high root pot strength is achieved. Is granted.
[0025]
The heat treatment of the seedling culture soil may be performed directly without irrigating the seedling culture soil, but it is preferable to perform the heat treatment after irrigating the seedling culture soil. When heat treatment is performed after irrigating the seedling culture soil, the heat-fusible fibers contained in the seedling culture soil can be melted and bonded uniformly in a short time, and solidified with a well-balanced strength overall. A thing (root pot) is formed. Moreover, seedlings of plants can be directly sown as they are on the irrigated seedling culture soil after the heat treatment.
The degree of irrigation at the time of heat treatment can be adjusted according to the soil base material constituting the seedling culture soil, the type of heat-fusible fiber, the composition of the seedling culture soil, the moisture content of the seedling culture soil itself, etc. In general, it is preferable to irrigate to such an extent that it becomes saturated (water-containing state above the capillary communication cut point).
Further, the heat treatment temperature can be selected according to the melting point or softening point of the heat-melting component in the heat-fusible fiber, and is 10 lower than that from the melting point or softening point of the heat-fusible component in the heat-fusible fiber. It is preferable to carry out within a high temperature range.
The heating method and apparatus are not particularly limited, and any method and apparatus can be used as long as the whole seedling culture soil can be uniformly heated to a predetermined temperature. When heat-processing at the temperature of 100 degreeC or more, it is preferable to carry out using an autoclave.
[0026]
Characteristics such as strength and flexibility of the seedling culture medium according to the present invention depend on the type of seedlings to be grown in the seedling culture medium, the prosperity of the roots of the seedlings themselves, the size of the plant growing container, the type of the transplanter, etc. Generally, in the soil for raising seedlings obtained by heat-treating and heat-bonding the heat-fusible fiber, the bending strength obtained by the above formula (I) is 30 mN or more, It is preferable that the amount of deflection determined by the mathematical formula (II) is 5 or more, or satisfy both the above-described characteristics of the bending strength of 30 mN or more and the amount of deflection of 5 or more, and more preferably satisfy both. . In particular, in the seedling culture soil of the present invention after the heat treatment, the bending strength is more preferably 50 mN or more, and further preferably 100 mN or more. Further, the amount of deflection described above is more preferably 10 or more, and further preferably 15 or more. If the bending strength of the seedling culture soil after the heat treatment is less than 30 mN, the root pot strength is insufficient, and the handleability at the time of planting by a transplanter or the like tends to be reduced. In addition, if the amount of deflection of the seedling culture medium after the heat treatment is less than 5, the seedling culture medium is too hard, and the growth of the seedling is likely to occur.
[0027]
Furthermore, the seedling culture soil according to the present invention has a density of 0.10 g / cm by melting and bonding the heat-fusible fibers in the seedling culture soil by heat-treating the seedling culture soil. Three A molded product formed so as to become a test piece, with an area of 2 cm in the center of the test piece 2 When the circular pressure plate is lowered at a speed of 10 mm / min, the compressive stress when the circular pressure plate is lowered by 5 mm is preferably 10 kN or more, more preferably 20 kN or more, more preferably 25 kN or more. More preferably. When this compressive stress is less than 10 kN, the root pot collapses due to a decrease in root pot strength, and the workability during planting operations using a transplanter or the like is likely to occur.
[0028]
Sowing of the seedling culture soil of the present invention may be performed before the heat treatment so long as the seed can withstand the heating temperature at the time of the heat treatment. It is preferred to seed the seeds after the adhesive fibers have been melt bonded. When seeds are sown before the heat treatment, the seeds are often altered or killed due to the high temperature during the heat treatment, so that they do not germinate or often fail to grow even after germination. When heat treatment is performed after irrigating the seedling culture soil, seeds can be directly sown without irrigating the seedling culture soil in the irrigated state after the heat treatment. However, if necessary, further irrigation may be performed at the time of sowing. In addition, the seedling culture soil of the present invention can be used not only for sowing seeds but also for cuttings. Cutting can be performed on seedling culture soil and handled in the same manner as at the time of sowing.
[0029]
As a plant suitable for seeding the seedling culture medium of the present invention before solidification, or the seedling culture medium of the present invention after solidification (for example, a seedling cell), for use as a cut flower, Snapdragon, Bupreulum, Eustoma, Stock, Anemone, Campanula, Dahlia, Scapiosa, Delphinium, Larkspur, Nigella, Hanashinobu, Blue Lace Flower, Matricaria, Sintepo Lily, Limonium sinuata, Oxypetalum, Classpedia, Egium. For potted plants, seedlings, flower beds, ageratum, isotoma, impatiens, exacam, gerbera, gazania, calceolaria, chrysanthemum, coleus, salvia, sizansus, cineraria, geranium, torenia, pansy, vinca, primula, petunia, beconia, marigold , Ranunculus and carnation. For vegetable cell seedling use, celery, beet, leek, onion, leek, cabbage, kohlrapi, me cabbage, cauliflower, broccoli, Chinese cabbage, tsukena, sesame, chard, shingig, honeybee, perilla, spinach, lettuce, asparagus, parsley, Endive, Leek and so on. Examples of use for fruit vegetable cell seedlings include melon, bell pepper, cucumber, watermelon, pumpkin, tougan, cinnamon, tomato, eggplant, okra, sweet corn, green beans, peas, green beans, and broad beans. Moreover, as a plant suitable for cutting into the seedling culture medium of the present invention before solidification, or the seedling culture medium of the present invention after solidification (such as a seedling plug), it can be propagated by cuttings such as chrysanthemum, carnation or perennial gypsophila. Plant. As described above, as the culturing base material, those mainly composed of peat moss and / or pearlite are suitable as well as soil. However, soil and peat moss are suitable for cut flower use, flower bed use, vegetable cell seedling use, and fruit vegetable cell seedling use. A soil base material mainly composed of soil and pearlite is particularly suitable for growing plants suitable for cutting.
[0030]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited to the following examples. In the following examples, the evaluation of root pot strength and the measurement of bending strength, deflection amount and compressive stress of the seedling culture soil were performed as follows.
[0031]
(1) Strong root pot:
The root pots formed in the following examples or comparative examples (root pots before sowing) were dropped from a height of 1 m and scored according to the following four-stage evaluation criteria.
[Evaluation criteria]
1 point: The root pot broke apart.
2 points: The root pot was broken into 5 to 8 pieces.
3 points: The root pot was broken into 2 to 4 pieces.
4 points: No cracking of root pots occurred.
[0032]
(2) Bending strength and deflection amount of seedling culture medium:
(I) The soil weight for raising seedlings is 500 g / m on the base. 2 So that it becomes a sheet (flat) and put on it, 100cc / m 2 After spraying (irrigating) water at the rate of, the entire base was placed in an autoclave and heat-treated at the temperature and time (115 ° C. for 15 minutes) employed in the following examples or comparative examples. After taking out from the autoclave, the heat-treated sheet-shaped seedling culture soil was cut into a test piece a having a length of 100 mm and a width of 25 mm, and a pressure of 53.9 kPa was applied from the entire upper surface of the test piece a to that time. The thickness A (mm) of the test piece a was measured.
(Ii) Next, as shown in FIG. 1, the test piece a of (i) is placed on the left and right support bases 1a and 1b arranged at a distance of 50 mm, and both ends a of the test piece a 1 , A 2 Is fixed by the end fixing means 2a, 2b, and then the area of 2 cm in the center of the test piece a 2 The circular pressure plate 3 is placed and lowered at a speed of 10 mm / min. When the test piece a is damaged, the load (maximum load) B (mN) applied to the test piece a is read and the deflection depth at that time is read. C (mm) was read, and bending strength and deflection amount were calculated by the following formulas (I) and (II), respectively.
[0033]
[Equation 3]
Bending strength (mN) = {(50 × B) / (25 × A)} × 3/2 (I)
Deflection = C / A (II)
[0034]
(3) Compressive stress of seedling growth soil:
Density for seedling raising 0.10g / cm Three Filled into a vat-shaped container so that the heat-fusible fiber in the seedling-growing soil was melt-bonded by heat treatment at 95 ° C. for 90 minutes to form a plate-like molded product (length × width × thickness) = 300 mm x 300 mm x 30 mm), and using this molded product as a test piece, an area of 2 cm in the center of the test piece 2 The circular pressure plate was placed and lowered at a speed of 10 mm / min, and the compressive stress when the circular pressure plate dropped by 5 mm was measured.
[0035]
The contents and abbreviations of the heat-fusible fibers used in the following examples or comparative examples are as follows.
In the following heat-fusible fiber, a cutting operation for obtaining a fiber having a predetermined fiber length is performed by using a guillotine cutter (manufactured by Ono Uchi Seisakusho) and using a tow having a tow fineness of 1000 ktex and a shot speed of 150 shots. Per minute.
○ Heat-fusible fiber (1):
Core-sheath type composite fiber in which the core component is polyethylene terephthalate and the sheath component is 45 mol% copolymerized polyethylene terephthalate of isophthalic acid [core component: mass ratio of sheath component = 1: 1, melting point of sheath component = 110 ° C., core component Melting point = 260 ° C., single fiber fineness = 1.7 dtex; fiber length = 1 mm, aspect ratio = 80, moisture content = 10%, crimp number = 0 pieces / cm (non-crimp)]
○ Fusable fiber ▲ 2 ▼:
Core-sheath type composite fiber in which the core component is polyethylene terephthalate and the sheath component is 45 mol% copolymerized polyethylene terephthalate of isophthalic acid [core component: mass ratio of sheath component = 1: 1, melting point of sheath component = 110 ° C., core component Melting point = 260 ° C., single fiber fineness = 3.3 dtex; fiber length = 2 mm, aspect ratio = 115, moisture content = 10%, crimp number = 0 pieces / cm (non-crimp)]
○ Heat-fusible fiber (3):
Core-sheath type composite fiber in which the core component is polyethylene terephthalate and the sheath component is 45 mol% copolymerized polyethylene terephthalate of isophthalic acid [core component: mass ratio of sheath component = 1: 1, melting point of sheath component = 110 ° C., core component Melting point = 260 ° C., single fiber fineness = 1.7 dtex; fiber length = 1 mm, aspect ratio = 80, moisture content = 0%, crimp number = 0 pieces / cm (non-crimp)]
○ Fusable fiber (4):
Core-sheath type composite fiber in which the core component is polyethylene terephthalate and the sheath component is 45 mol% copolymerized polyethylene terephthalate of isophthalic acid [core component: mass ratio of sheath component = 1: 1, melting point of sheath component = 110 ° C., core component Melting point = 260 ° C., single fiber fineness = 1.7 dtex; fiber length = 1 mm, aspect ratio = 80, moisture content = 0%, crimp number = 2.8 pieces / cm]
○ Fusable fiber (5) (powder):
Core-sheath type composite fiber (powder) comprising a core component of polyethylene terephthalate and a sheath component of 45 mol% copolymerized polyethylene terephthalate of isophthalic acid [core component: mass ratio of sheath component = 1: 1, melting point of sheath component = 110 ° C. Melting point of core component = 260 ° C., single fiber fineness = 3.3 dtex; fiber length = 0.3 mm, aspect ratio = 17, moisture content = 10%, number of crimps = 0 pieces / cm (non-crimped)]
○ Heat-fusible fiber (6):
Core-sheath type composite fiber in which the core component is polyethylene terephthalate and the sheath component is 45 mol% copolymerized polyethylene terephthalate of isophthalic acid [core component: mass ratio of sheath component = 1: 1, melting point of sheath component = 110 ° C., core component Melting point = 260 ° C., single fiber fineness = 2.2 dtex; fiber length = 5 mm, aspect ratio = 340, moisture content = 15%, crimp number = 0 pieces / cm (non-crimp)]
○ Heat-fusible fiber (7):
Core-sheath type composite fiber in which the core component is polyethylene terephthalate and the sheath component is 45 mol% copolymerized polyethylene terephthalate of isophthalic acid [core component: mass ratio of sheath component = 1: 1, melting point of sheath component = 110 ° C., core component Melting point = 260 ° C., single fiber fineness = 2.2 dtex; fiber length = 5 mm, aspect ratio = 340, moisture content = 0%, crimp number = 7.9 pieces / cm]
[0036]
Furthermore, the contents of the soil base material used in the following examples and comparative examples are as follows.
Growing substrate :
To 100 parts by mass of a mixture obtained by mixing 20 parts by mass of peat moss and 10 parts by mass of vermiculite with 100 parts by mass of soil (red bean clay), 0.01 parts by mass of wetting agent (polyethylene glycol) and fertilizer (Chiso Asahi Fertilizer) "Low-grade chemical fertilizer Asahi microporous" manufactured by Co., Ltd.) was blended at a ratio of 0.5 parts by mass, and used as a soil culture substrate.
[0037]
Example 1
(1) 95 parts by mass of the above-mentioned cultivating base material and 5 parts by mass of the heat-fusible fiber {circle around (1)} were placed in a mixer container and stirred to prepare a seedling cultivating soil.
(2) When the bending strength and deflection amount of the sheet-like material after the heat treatment and the compression stress of the molded product were measured by the above-described method using a part of the seedling culture soil obtained in (1) above, As shown in Table 1.
(3) The remaining portion of the seedling culture soil obtained in (1) above is put into a potting box of a pot automatic seeder “LSPE-4” manufactured by Minoru Sangyo Co., Ltd. Sangyo Co., Ltd. “pot 448 seedling box” (volume = 4.1 cm) Three , Upper hole diameter = 16 mm, depth 25 mm)], and then the pot seedling box was irrigated in an amount of 2 ml / 1 pot and heated in an autoclave at 110 ° C. for 15 minutes. Processed. The root pot strength of the root pot thus obtained was evaluated by the method described above, and as shown in Table 1 below.
(4) Bupreulm seeds are sown at a rate of one per pot in the seedling culture medium in the pot after heat treatment obtained in (3) above, and the temperature is 15 to 20 ° C. and the humidity is 50 to 70%. Seedlings are grown to a height of about 2 to 3 cm under conditions (growing for about 15 days), and using a transplanter ("vegetable transplanter OP-4" manufactured by Minoru Sangyo Co., Ltd.) When they were taken out from the pot and transplanted to the field, the root pots did not collapse at the time of transplanting, and the handling was excellent.
[0038]
Example 2
(1) 90 parts by mass of the above-mentioned soil base material and 10 parts by mass of heat-fusible fiber (2) were placed in a mixer container and stirred to prepare a seedling culture soil.
(2) When the bending strength and deflection amount of the sheet-like material after the heat treatment and the compression stress of the molded product were measured by the above-described method using a part of the seedling culture soil obtained in (1) above, As shown in Table 1.
(3) In the same manner as in (3) of Example 1, the remaining part of the seedling culture soil obtained in (1) above was used to prepare a pot seedling box (Minuru Sangyo Co., Ltd. “Pot 448”). The seedling box was automatically filled with soil, and then the pot seedling box was irrigated in an amount of 2 ml / 1 pot, and it was heat-treated in an autoclave at 110 ° C. for 15 minutes. The root pot strength of the root pot thus obtained was evaluated by the method described above, and as shown in Table 1 below.
(4) Bupreulm seeds are sown in the same manner as in (4) of Example 1 to the seedling culture medium in the pot after heat treatment obtained in (3) above, so that the seedling height is about 2 to 3 cm. After raising the seedlings, using the same transplanting machine as used in Example 1, the root pots were extracted from the pots and transplanted to the field. It was excellent.
[0039]
Example 3
(1) 95 parts by mass of the above-mentioned soil base material and 5 parts by mass of heat-fusible fiber (3) were placed in a mixer container and stirred to prepare a seedling culture soil.
(2) When the bending strength and deflection amount of the sheet-like material after the heat treatment and the compression stress of the molded product were measured by the above-described method using a part of the seedling culture soil obtained in (1) above, As shown in Table 1.
(3) In the same manner as in (3) of Example 1, the remaining part of the seedling culture soil obtained in (1) above was used to prepare a pot seedling box (Minuru Sangyo Co., Ltd. “Pot 448”). The seedling box was automatically filled with soil, and then the pot seedling box was irrigated in an amount of 2 ml / 1 pot, and it was heat-treated in an autoclave at 110 ° C. for 15 minutes. The root pot strength of the root pot thus obtained was evaluated by the method described above, and as shown in Table 1 below.
(4) Bupreulm seeds are sown in the same manner as in (4) of Example 1 to the seedling culture medium in the pot after heat treatment obtained in (3) above, so that the seedling height is about 2 to 3 cm. After raising the seedlings, using the same transplanting machine as used in Example 1, the root pots were extracted from the pots and transplanted to the field. It was excellent.
[0040]
Example 4
(1) 95 parts by mass of the above-mentioned soil base material and 5 parts by mass of heat-fusible fiber (4) were placed in a mixer container and stirred to prepare a seedling culture soil.
(2) When the bending strength and deflection amount of the sheet-like material after the heat treatment and the compression stress of the molded product were measured by the above-described method using a part of the seedling culture soil obtained in (1) above, As shown in Table 1.
(3) In the same manner as in (3) of Example 1, the remaining part of the seedling culture soil obtained in (1) above was used to prepare a pot seedling box (Minuru Sangyo Co., Ltd. “Pot 448”). The seedling box was automatically filled with soil, and then the pot seedling box was irrigated in an amount of 2 ml / 1 pot, and it was heat-treated in an autoclave at 110 ° C. for 15 minutes. The root pot strength of the root pot thus obtained was evaluated by the method described above, and as shown in Table 1 below.
(4) Bupreulm seeds are sown in the same manner as in (4) of Example 1 to the seedling culture medium in the pot after heat treatment obtained in (3) above, so that the seedling height is about 2 to 3 cm. After raising the seedlings, using the same transplanting machine as used in Example 1, the root pots were extracted from the pots and transplanted to the field. It was excellent.
[0041]
<< Comparative Example 1 >>
(1) Only the above-mentioned cultivating base material was used as the cultivating soil for raising seedlings without blending heat-fusible fibers.
(2) When the bending strength and deflection amount of the sheet-like material after the heat treatment and the compressive stress of the molded product were measured by the method described above using a part of the seedling culture soil of (1) above, the following Table 2 was obtained. It was as shown in.
(3) The remaining part of the seedling culture soil of (1) above is a pot seedling box ("Pot 448 seedling box" manufactured by Minoru Sangyo Co., Ltd.) using a pot automatic seeding machine in the same manner as (3) of Example 1. The pot seedling box was irrigated with an amount of 2 ml / 1 pot and heat-treated at 110 ° C. for 15 minutes in an autoclave. The root pot strength of the root pot thus obtained was evaluated by the method described above, and as shown in Table 2 below.
(4) Bupreulm seeds are sown in the same manner as in (4) of Example 1 to the seedling culture medium in the pot after heat treatment obtained in (3) above, so that the seedling height is about 2 to 3 cm. The seedlings were raised until they were used, and the same transplanting machine used in Example 1 was used to extract the root pots from the pots and transplant them to the field. I was unable to cultivate.
[0042]
<< Comparative Example 2 >>
(1) 85 parts by mass of the above-mentioned soil base material and 15 parts by mass of heat-fusible fiber (5) were placed in a mixer container and stirred to prepare a seedling culture soil.
(2) When the bending strength and deflection amount of the sheet-like material after the heat treatment and the compression stress of the molded product were measured by the above-described method using a part of the seedling culture soil obtained in (1) above, Table 2 shows the results.
(3) After the remaining part of the seedling culture soil obtained in (1) above was automatically sown in a pot seedling box using a pot automatic seeder in the same manner as in (3) of Example 1, This pot seedling box (“Pot 448 seedling box” manufactured by Minoru Sangyo Co., Ltd.) was irrigated in an amount of 2 ml / 1 pot, and was heat-treated in an autoclave at 110 ° C. for 15 minutes. The root pot strength of the root pot thus obtained was evaluated by the method described above, and as shown in Table 2 below.
(4) Bupreulm seeds are sown in the same manner as in (4) of Example 1 to the seedling culture medium in the pot after heat treatment obtained in (3) above, so that the seedling height is about 2 to 3 cm. After raising the seedlings, using the same transplanter used in Example 1 to extract the root pot from the pot and transplant it to the field, the root pot strength was small and planting work with the transplanter Since it was not able to be performed smoothly, subsequent cultivation was not performed.
[0043]
<< Comparative Example 3 >>
(1) 95 parts by mass of the above-mentioned soil base material and 5 parts by mass of heat-fusible fiber {circle around (6)} were placed in a mixer container and stirred to prepare a seedling culture soil.
(2) When the bending strength and deflection amount of the sheet-like material after the heat treatment and the compression stress of the molded product were measured by the above-described method using a part of the seedling culture soil obtained in (1) above, Table 2 shows the results.
(3) In the same manner as in (3) of Example 1, the remaining part of the seedling culture soil obtained in (1) above was used to prepare a pot seedling box (Minuru Sangyo Co., Ltd. “Pot 448”). The seedling box was automatically filled with soil, and then the pot seedling box was irrigated in an amount of 2 ml / 1 pot, and it was heat-treated in an autoclave at 110 ° C. for 15 minutes. The root pot strength of the root pot thus obtained was evaluated by the method described above, and as shown in Table 2 below.
(4) Bupreulm seeds are sown in the same manner as in (4) of Example 1 to the seedling culture medium in the pot after heat treatment obtained in (3) above, so that the seedling height is about 2 to 3 cm. After raising the seedlings, using the same transplanter used in Example 1 to extract the root pot from the pot and transplant it to the field, the root pot strength was small and planting work with the transplanter Since it was not able to be performed smoothly, subsequent cultivation was not performed.
[0044]
<< Comparative Example 4 >>
(1) 95 parts by mass of the above-mentioned cultivating base material and 5 parts by mass of heat-fusible fiber (7) were placed in a mixer container and stirred to prepare a seedling cultivating soil. At that time, a fiber mass having a diameter of 10 to 20 mm was generated in the soil for raising seedlings.
(2) When the bending strength and deflection amount of the sheet-like material after the heat treatment and the compression stress of the molded product were measured by the above-described method using a part of the seedling culture soil obtained in (1) above, Table 2 shows the results.
(3) In the same manner as in (3) of Example 1, the remaining part of the seedling culture soil obtained in (1) above was used to prepare a pot seedling box (Minuru Sangyo Co., Ltd. “Pot 448”). An attempt was made to automatically fill (seed) the seedling box)), and since there was a large fiber mass, filling was practically difficult, so no further evaluation was performed.
[0045]
[Table 1]
Figure 0004740471
[0046]
[Table 2]
Figure 0004740471
[0047]
From the results of Table 1 and Table 2, the fiber length is in the range of 0.5 to 2 mm, the aspect ratio is in the range of 20 to 300, the fiber moisture content is 10% or less with respect to the fiber mass, and the number of crimps is The seedling culture soils of Examples 1 to 4 formed by blending heat-fusible fibers of 6 pieces / cm or less do not generate a fiber lump when mixed with the culture soil base material. The seedling culture soil is 10cm in volume. Three The following small plant-growing containers can be filled with good operability, and a root pot with excellent high handling properties is formed by heat-treating and fusing the heat-fusible fibers, and planting with a transplanter It can be seen that it can be carried out smoothly and that seedlings can be grown well.
On the other hand, for growing seedlings of Comparative Example 2 which contains the soil for growing seedlings of Comparative Example 1 containing no heat-fusible fiber and heat-fusible fibers (5) having a fiber length of less than 0.5 mm (0.3 mm). The soil for raising seedlings of Comparative Example 3 containing the soil and heat-fusible fiber (6) having a fiber length of 5 mm and a moisture content of 15% is composed of the bending strength, the amount of deflection and the amount of the seedling growing soil subjected to heat treatment. All of the compressive stress is low compared to the soil for raising seedlings of Examples 1 to 4, a strong root pot is not formed after heat treatment, cannot be planted by a transplanter, and is inferior in handleability. I understand that.
In addition, the seedling culture medium of Comparative Example 4 in which the heat-fusible fiber (7) having a fiber length of 5 mm and the number of crimps of 7.9 pieces / cm is blended, Occurs and the container for growing plants, especially the volume is 10 cm Three It is difficult to fill the following small plant growing containers using a pot automatic seeder.
[0048]
【The invention's effect】
In the seedling culture medium of the present invention, the heat-fusible fibers blended in the seedling culture medium are melt-bonded by heat treatment, and the fibers are bonded to each other, and the fibers and the components in the culture base material are bonded. In order to form the original net-like reinforcing structure in the seedling culture soil, a strong root pot can be formed. As a result, the seedling culture soil of the present invention can smoothly perform planting work without causing collapse of the root pot when the seedling is planted together with the root pot using a transplanter or the like. Moreover, the seedling culture soil of the present invention can grow plant seedlings in a healthy manner without causing growth inhibition.
In particular, in the seedling culture soil of the present invention, no fiber lump is produced when preparing a seedling culture soil by blending a heat-sealable fiber with a soil base material, and the heat-sealable fiber is uniformly distributed in the seedling culture soil. Due to dispersion, the volume is 10cm Three When filling the following small plant growing containers using an automatic filling device, etc., there is no filling failure or inability to fill, and the small plant growing containers can be filled smoothly with good workability. A strong root pot in the small plant growing container can be formed. .
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a method for measuring bending strength and deflection amount of a seedling culture soil of the present invention.
[Explanation of symbols]
a Sheet-shaped seedling-growing soil (heat-treated)
1a Support stand
1b Support stand
2a Edge fixing means for sheet-shaped seedling growth soil
2b Edge fixing means for sheet-shaped seedling growth medium
3 Pressure plate
4 Weight detector

Claims (9)

培土基材に、繊維長が0.5〜2mm、アスペクト比が20〜300、繊維水分率が繊維質量に対し10%以下および捲縮数が6個/cm以下である熱融着性繊維を配合したことを特徴とする育苗用培土。A heat-fusible fiber having a fiber length of 0.5 to 2 mm, an aspect ratio of 20 to 300, a fiber moisture content of 10% or less and a number of crimps of 6 pieces / cm or less is applied to the culture substrate. Seedling culture soil characterized by blending. 容積が10cm3以下の植物育成用容器に用いるための育苗用培土である請求項1に記載の育苗用培土。The seedling culture soil according to claim 1, which is a seedling culture soil for use in a plant growth container having a volume of 10 cm 3 or less. 熱融着性繊維が、繊維形成性重合体と、該繊維形成性重合体よりも融点または軟化点が20℃以上低い熱可塑性重合体とからなる熱融着性の複合紡糸繊維および/または混合紡糸繊維である請求項1または2に記載の育苗用培土。The heat-fusible fiber comprises a fiber-forming polymer and a heat-fusible composite spun fiber and / or a mixture comprising a fiber-forming polymer and a thermoplastic polymer having a melting point or softening point lower by 20 ° C. or more than the fiber-forming polymer. The seedling culture soil according to claim 1 or 2, which is a spun fiber. 培土基材が、土と共に、ピートモスおよび/またはパーライトを主体とする培土基材である請求項1〜3のいずれか1項に記載の育苗用培土。The culture medium for raising seedlings according to any one of claims 1 to 3, wherein the culture base material is a culture base material mainly composed of peat moss and / or pearlite together with soil. 培土基材と熱融着性繊維の配合割合が、質量比で99:1〜85:15である請求項1〜4のいずれか1項に記載の育苗用培土。The culture medium for seedling raising according to any one of claims 1 to 4, wherein a mixing ratio of the culture base material and the heat-fusible fiber is 99: 1 to 85:15 by mass ratio. 育苗用培土中で熱融着性繊維が溶融接着されている請求項1〜5のいずれか1項に記載の育苗用培土。The seedling culture medium according to any one of claims 1 to 5, wherein the heat-fusible fiber is melt-bonded in the seedling culture medium. 下記の数式(I)により求められる曲げ強度が30mN以上であるという要件、および下記の数式(II)により求められるたわみ量が5以上であるという要件の少なくとも一方を満足する請求項6に記載の育苗用培土。
【数1】
曲げ強度(mN)={(50×B)/(25×A)}×3/2 (I)
たわみ量=C/A (II)
[但し、上記式中、Aは、育苗用培土を目付500g/m2のシート状物とした後に加熱処理して育苗用培土中の熱融着性繊維を溶融接着して得られるシート状物を長さ100mmおよび幅25mmの試験片に裁断し、該試験片の上部全面に53.9kPaの圧力をかけたときの試験片の厚さ(mm)を示し、Bは、前記試験片の両端を距離50mmで隔置した左右の支持台上に載せてその両端を固定した状態で、試験片の中央部に面積2cm2の円形加圧板を載せて10mm/minの速度で下降させ、試験片が破損した際に試験片にかかっていた荷重(最大荷重)(mN)を示し、Cは、前記破損時の試験片のたわみ深さ(mm)を示す。]
The bending strength calculated | required by following numerical formula (I) is satisfying at least one of the requirements that the bending strength calculated | required by following numerical formula (II) is 5 or more satisfy | filling the requirement that bending strength calculated | required by 30 or more. Raising soil for seedlings.
[Expression 1]
Bending strength (mN) = {(50 × B) / (25 × A)} × 3/2 (I)
Deflection = C / A (II)
[However, in the above formula, A is a sheet-like material obtained by forming a seedling culture soil into a sheet-like material having a basis weight of 500 g / m 2 and then heat-treating the heat-fusible fiber in the seedling culture soil. Is cut into a test piece having a length of 100 mm and a width of 25 mm, and the thickness (mm) of the test piece when a pressure of 53.9 kPa is applied to the entire upper surface of the test piece is shown in FIG. Is placed on left and right support bases separated by a distance of 50 mm, and both ends thereof are fixed, a circular pressure plate having an area of 2 cm 2 is placed on the center of the test piece and lowered at a speed of 10 mm / min. Indicates the load (maximum load) (mN) applied to the test piece when the breakage occurred, and C represents the deflection depth (mm) of the test piece at the time of breakage. ]
育苗用培土を加熱処理することにより育苗用培土中の熱融着性繊維を溶融接着して密度0.10g/cm3となるように成形してなる成形物を試験片とし、該試験片の中央部に面積2cm2の円形加圧板を載せて10mm/minの速度で下降させ、円形加圧板が5mm下降したときの圧縮応力が10kN以上である請求項6または7に記載の育苗用培土。A molded product formed by heat-treating the seedling culture medium to melt-bond the heat-fusible fibers in the seedling culture medium to a density of 0.10 g / cm 3 is used as a test piece. The culture medium for raising seedlings according to claim 6 or 7, wherein a compressive stress is 10 kN or more when a circular pressure plate having an area of 2 cm 2 is placed at the center and lowered at a speed of 10 mm / min, and the circular pressure plate is lowered by 5 mm. 請求項1〜5のいずれか1項に記載の育苗用培土を植物育成用容器に充填し、灌水した後、加熱処理して培土中の熱融着性繊維を溶融接着させることを特徴とする育苗用培土の固化方法。Filling the seedling-growing soil according to any one of claims 1 to 5 in a plant-growing container, irrigating, and then heat-treating to thermally bond the heat-fusible fibers in the soil. Solidification method of seedling culture soil.
JP2001136807A 2000-06-07 2001-05-08 Seedling culture soil Expired - Lifetime JP4740471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001136807A JP4740471B2 (en) 2000-06-07 2001-05-08 Seedling culture soil

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-170540 2000-06-07
JP2000170540 2000-06-07
JP2000170540 2000-06-07
JP2001136807A JP4740471B2 (en) 2000-06-07 2001-05-08 Seedling culture soil

Publications (2)

Publication Number Publication Date
JP2002058339A JP2002058339A (en) 2002-02-26
JP4740471B2 true JP4740471B2 (en) 2011-08-03

Family

ID=26593482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001136807A Expired - Lifetime JP4740471B2 (en) 2000-06-07 2001-05-08 Seedling culture soil

Country Status (1)

Country Link
JP (1) JP4740471B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3326250A1 (en) * 1983-07-21 1985-01-31 Lang Apparatebau GmbH, 8227 Siegsdorf BELLOW PUMP
JPS60106444A (en) * 1983-11-15 1985-06-11 住友電気工業株式会社 Method for removing deposits in pipes
US4857583A (en) * 1987-07-02 1989-08-15 Union Carbide Corporation Process for the preparation of organopolysiloxane surfactants
JPS6487634A (en) * 1987-09-28 1989-03-31 Idemitsu Petrochemical Co Production of polymerizable phosphazene compound
JPH0367526A (en) * 1989-08-04 1991-03-22 Toray Ind Inc Medium for plant culture and production thereof
JP3572683B2 (en) * 1994-11-07 2004-10-06 株式会社テイエス植物研究所 Seedling cultivation
JPH101856A (en) * 1996-03-12 1998-01-06 Chisso Corp Heat seal type nonwoven fabric
JPH09308370A (en) * 1996-05-23 1997-12-02 Chisso Corp Greening of artificial ground lawn
JPH11103661A (en) * 1997-10-08 1999-04-20 Yamamoto Mfg Co Ltd Culture soil for raising seedling
JPH11113390A (en) * 1997-10-14 1999-04-27 Yamamoto Mfg Co Ltd Culture soil for raising seedling

Also Published As

Publication number Publication date
JP2002058339A (en) 2002-02-26

Similar Documents

Publication Publication Date Title
US20090019765A1 (en) Plant growth medium
US6397520B1 (en) Method of supporting plant growth using polymer fibers as a soil substitute
EP0139748B1 (en) Root control bag
US6070358A (en) Seed germination system
WO2004098270A1 (en) Improved hydroponic growth medium
JP3847212B2 (en) Seedling culture soil
EP1457107B1 (en) Plant growing media
JP4740471B2 (en) Seedling culture soil
JP2011130748A (en) Raising seedling culture soil
JP3425431B2 (en) Soil for raising seedlings
JP3481439B2 (en) Soil covering material
JP3777308B2 (en) Nursery materials and seedling methods
JP2003268633A (en) Heat fusible fiber
JP3572683B2 (en) Seedling cultivation
JP4326163B2 (en) Heat-fusible fiber
US20060150494A1 (en) Plant growing media
JP2005295946A (en) Biodegradable plant growth substrate and solidification method thereof
JP2001346438A (en) Soil for raising seedlings
JP7577887B1 (en) Particle-containing material for seedling growing soil
GB2321000A (en) Seed-containing growth medium
JP3602015B2 (en) Flower vegetation sheet
JP2004065150A (en) Plant growing substrate and cultivation floor obtained therefrom
JP2967203B2 (en) Packaging culturer
JP2001346437A (en) Soil for raising seedlings
CA2489111C (en) Plant growing media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4740471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term