[go: up one dir, main page]

JP4737001B2 - エジェクタ式冷凍サイクル - Google Patents

エジェクタ式冷凍サイクル Download PDF

Info

Publication number
JP4737001B2
JP4737001B2 JP2006214404A JP2006214404A JP4737001B2 JP 4737001 B2 JP4737001 B2 JP 4737001B2 JP 2006214404 A JP2006214404 A JP 2006214404A JP 2006214404 A JP2006214404 A JP 2006214404A JP 4737001 B2 JP4737001 B2 JP 4737001B2
Authority
JP
Japan
Prior art keywords
refrigerant
liquid
gas
ejector
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006214404A
Other languages
English (en)
Other versions
JP2007212121A (ja
Inventor
真 池上
裕嗣 武内
悦久 山田
春幸 西嶋
秀也 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006214404A priority Critical patent/JP4737001B2/ja
Priority to DE102007001878.0A priority patent/DE102007001878B4/de
Priority to US11/653,474 priority patent/US7690218B2/en
Publication of JP2007212121A publication Critical patent/JP2007212121A/ja
Priority to US12/658,485 priority patent/US8429931B2/en
Application granted granted Critical
Publication of JP4737001B2 publication Critical patent/JP4737001B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2507Flow-diverting valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

本発明は、エジェクタを有するエジェクタ式冷凍サイクルに関する。
従来、放熱器の下流側かつエジェクタのノズル部上流側の分岐部で冷媒の流れを分岐して、分岐された一方の冷媒をノズル部側へ流入させ、他方の冷媒をエジェクタの冷媒吸引口側へ流入させるエジェクタ式冷凍サイクルが特許文献1に開示されている。
この特許文献1のエジェクタ式冷凍サイクルでは、エジェクタ流入冷媒が流出するエジェクタのディフューザ部下流側に第1蒸発器を配置し、さらに、分岐部とエジェクタの冷媒吸引口の間に、冷媒を減圧させる減圧手段である絞り機構および冷媒を蒸発させて冷媒吸引口上流側に流出する第2蒸発器を配置して、双方の蒸発器において冷媒が吸熱作用を発揮できるようにしている。
また、エジェクタのディフューザ部の昇圧作用によって、第1蒸発器における冷媒蒸発圧力(冷媒蒸発温度)を第2蒸発器における冷媒蒸発圧力(冷媒蒸発温度)よりも上昇させて、それぞれの蒸発器において異なる温度帯で冷媒が蒸発できるようにしている。さらに、第1蒸発器の下流側を圧縮機吸入側に接続して、圧縮機吸入冷媒圧力を上昇させることで、圧縮機駆動動力を低減させてサイクル効率(COP)の向上を図っている。
特開2005−308380号公報
ところで、本出願人は、さらなるサイクル効率の向上を図るために、先に特願2006−36532号(以下、先願例という。)にて、特許文献1のエジェクタ式冷凍サイクルに対して、放熱器下流側の高温高圧冷媒と圧縮機吸入側の低温低圧冷媒との間で熱交換を行う内部熱交換器を追加したサイクルを提案している。
この先願例のサイクルでは、内部熱交換器での冷媒相互間の熱交換によって、第1、22蒸発器に流入する冷媒のエンタルピを減少させて、第1、2蒸発器の冷媒入口・出口間における冷媒のエンタルピ差(冷凍能力)を増大し、特許文献1のサイクルよりもサイクル効率を向上させている。
しかしながら、実際に先願例のエジェクタ式冷凍サイクルを作動させると、第2蒸発器上流側の絞り機構において冷媒が充分に減圧されず、第2蒸発器における冷媒蒸発圧力が第1蒸発器における冷媒蒸発圧力に対して充分に低下しない状態で作動してしまう場合がある。このような状態でサイクルが作動すると、第2蒸発器が充分な冷凍能力を発揮できない。
そこで、本発明者らは、その原因について調査したところ、内部熱交換器において放熱して過冷却状態となった冷媒が絞り機構に流入することが原因であると判明した。絞り機構に流入する冷媒が過冷却状態(液相状態)になっていると、冷媒の密度が上昇して、絞り機構を通過する冷媒の質量流量が増加してしまうからである。つまり、絞り機構を通過する冷媒の質量流量の増加は、冷媒が絞り機構を通過する際の通路抵抗が低下すること示すので、絞り機構における冷媒の減圧量が低下してしまうのである。
さらに、本発明者らは、減圧手段において冷媒を適切に減圧させるために、アシュレイ・リサーチ(ASHRAE Research)著、「2002 ASHRAE HANDBOOK REFRIGERATION SI Edition」、米国、American Society of Heating,Refrigerating and Air−Conditioning Engineers,Inc発行、2002年6月、p45.23〜45.30に記載された報告および実験式に基づいて、減圧手段をなす絞り機構の形状と絞り機構を通過する冷媒流量との関係を計算した。
図24は上記の関係の計算結果を示すグラフである。この計算では絞り機構としてキャピラリチューブを採用しており、横軸はキャピラリチューブの形状を表す指標であるl/d(キャピラリチューブの内径dに対するキャピラリチューブの長さlの比)を示し、縦軸はキャピラリチューブの入口側冷媒圧力を所定の値にした場合の冷媒流量(質量流量)を示している。
さらに、図24にはキャピラリチューブに流入する冷媒が過冷却状態である場合と気液二相状態である場合の計算結果がプロットされている。なお、気液二相状態の冷媒の乾き度は0.03〜0.25として計算している。この乾き度は、一般的なエジェクタ式冷凍サイクルにおける放熱器下流側冷媒の乾き度に相当する。
図24によれば、キャピラリチューブに流入する冷媒が過冷却状態になっていると、気液二相状態になっている場合に対して冷媒流量が増加する。さらに、l/dの値を大きくしても冷媒流量が一定の値よりも減少しない。つまり、キャピラリチューブの形状を変更しても、一定の値よりも減圧量を増加させることができない。
従って、図24より、キャピラリチューブに流入する冷媒が気液二相状態になっていれば、過冷却状態になっている場合よりも、キャピラリチューブにおいて減圧量を効果的に増加できることが判った。しかし、絞り機構に気液二相状態の冷媒を流入させると、過冷却状態の冷媒を流入させる場合に対して、蒸発器に流入する冷媒のエンタルピが増加しやすくなるので、先願例に対してサイクル効率の低下を招きやすい点で問題となる。
本発明は上記点に鑑み、サイクル効率の低下を招くことなく、冷媒を蒸発させてエジェクタの冷媒吸引口上流側に流出する蒸発器の上流側に配置される減圧手段において冷媒を適切に減圧させることを目的とする。
上記目的を達成するため、本発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、放熱器(12)下流側冷媒の流れを分岐する分岐部(A)と、分岐部(A)にて分岐された一方の冷媒を減圧膨張させるノズル部(16a)から噴射する高速度の冷媒流により冷媒を冷媒吸引口(16b)から吸引するエジェクタ(16)と、分岐部(A)にて分岐された他方の冷媒を減圧膨張させる減圧手段(19a)と、減圧手段(19a)下流側冷媒を蒸発させて冷媒吸引口(16b)上流側に流出する蒸発器(21)と、減圧手段(19a)における減圧膨張過程の冷媒を放熱させる冷媒放熱手段(19)とを備え、減圧手段(19a)には、蒸発器(21)にて予め定めた冷凍能力を発揮できるように決定された所定乾き度以下の気液二相冷媒あるいは飽和液相冷媒を流入させるようになっているエジェクタ式冷凍サイクルを第1の特徴とする。
これによれば、減圧手段(19a)に放熱器(12)下流側の気液二相状態の冷媒あるいは飽和液相状態の冷媒を流入させることができる。このため、減圧手段(19a)に過冷却状態の冷媒を流入させるよりも冷媒の減圧量を増加させることができる。
さらに、冷媒放熱手段(19)が、減圧手段(19a)における減圧膨張過程の冷媒を放熱させるので、例えば、図2のモリエル線図のD点→J点に示すように、冷媒の圧力を減圧させると同時に冷媒のエンタルピを減少させることができる。
その結果、蒸発器(21)の冷媒入口・出口間における冷媒のエンタルピ差(冷凍能力)を増大させることができるので、サイクル効率の低下を招くことなく、冷媒を適切に減圧させることができる。
なお、減圧手段(19a)に流入させる冷媒は、上述の図24に示すように、気液二相状態の冷媒の乾き度が極めて小さい値(例えば、乾き度0.03)であっても、減圧手段(19a)における減圧量を充分に増加することができる。
一方、蒸発器(21)が冷凍能力を発揮するためには、蒸発器(21)に液相冷媒が供給される必要がある。従って、減圧手段(19a)に流入させる気液二相状態の冷媒の乾き度は、蒸発器(21)が適切な冷凍能力を発揮できる程度の乾き度以下であることが望ましい。
また、上記第1の特徴のエジェクタ式冷凍サイクルにおいて、冷媒放熱手段は、減圧手段(19a)通過冷媒と圧縮機(11)吸入側冷媒とを熱交換させる内部熱交換器(19)であってもよい。
これによれば、内部熱交換器(19)において、減圧手段(19a)通過冷媒と圧縮機(11)吸入冷媒とを熱交換させることができるので、容易に、減圧手段(19a)における減圧膨張過程の冷媒を放熱させる冷媒放熱手段を構成できる。さらに、減圧手段(19a)を内部熱交換器(19)の冷媒通路として、減圧手段(19a)と冷媒放熱手段である内部熱交換器(19)を一体に構成できるので、サイクルの小型化を図ることもできる。
また、上述の第1の特徴のエジェクタ式冷凍サイクルにおいて、具体的に、減圧手段はキャピラリチューブ(19a)で構成されていてもよい。ところで、キャピラリチューブ(19a)は、冷媒通路面積を絞る効果と冷媒通路内摩擦力によって、冷媒を減圧するものなので、所定の冷媒通路長さを有する長細形状になっている。
従って、減圧手段としてキャピラリチューブ(19a)を採用することで、キャピラリチューブ(19a)通過冷媒と圧縮機(11)吸入側冷媒とを熱交換させる際の熱交換面積を確保しやすくなり、より効率的にキャピラリチューブ(19a)通過冷媒を放熱させることができる。
さらに、キャピラリチューブ(19a)を通過させる過程で、冷媒を徐々に減圧させながら放熱させるので、キャピラリチューブ(19a)の入口側冷媒密度と出口側冷媒密度との密度差の増加を抑制して、冷媒を等密度的に減圧させることができる。
これにより、冷媒が減圧過程で密度低下することを抑制できるので、キャピラリチューブ(19a)通過冷媒流量が低下してしまうことを回避できる。その結果、より一層、冷媒を適切に減圧させることができる。
また、上述の第1の特徴のエジェクタ式冷凍サイクルにおいて、放熱器(12)下流側冷媒の気液を分岐する気液分離器(30)を備え、分岐部(A)において、気液分離器(30)で分離された液相冷媒が分岐されるようになっていてもよい。
ここで、気液分離器(30)で分離された液相冷媒は、図10のモリエル線図のD’’点に示すような、飽和液線上の冷媒になっている。従って、減圧手段(19a)に流入した直後の僅かな圧力低下によって気液二相状態になる。
従って、減圧手段(19a)に気液分離器(30)で分離された飽和液線上の冷媒を流入させれば、実質的に減圧手段(19a)に気液二相状態の冷媒を流入させることになる。その結果、減圧手段(19a)において冷媒を、より一層、適切に減圧させることができる。
さらに、冷凍負荷の変動等によってサイクルの運転状態が変動して、放熱器(12)下流側の冷媒の乾き度が変化しても、減圧手段(19a)には確実に飽和液線上の冷媒を流入させることができる。その結果、サイクルの運転状態の影響を受けることなく、常に、減圧手段(19a)において冷媒を適切に減圧させることができる。
また、本発明では、冷媒を圧縮して吐出する圧縮機(11)と、圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、放熱器(12)下流側冷媒の流れを分岐する分岐部(A)と、分岐部(A)にて分岐された一方の冷媒を減圧膨張させるノズル部(16a)から噴射する高速度の冷媒流により冷媒を冷媒吸引口(16b)から吸引するエジェクタ(16)と、分岐部(A)にて分岐された他方の冷媒を減圧膨張させる第1減圧手段(19a、33a)と、第1減圧手段(19a、33a)下流側冷媒を蒸発させて冷媒吸引口(16b)上流側に流出する蒸発器(21)と、第1減圧手段(19a、33a)における減圧膨張過程の冷媒を放熱させる冷媒放熱手段(19、33)と、放熱器(12)下流側かつ分岐部(A)上流側に配置されて、分岐部(A)へ流入する冷媒を減圧膨張させる第2減圧手段(32)とを備え、第1減圧手段(19a、33a)には、蒸発器(21)にて予め定めた冷凍能力を発揮できるように決定された所定乾き度以下の気液二相冷媒あるいは飽和液相冷媒を流入させるようになっているエジェクタ式冷凍サイクルを第の特徴とする。
これによれば、分岐部(A)上流側冷媒を減圧膨張させる第2減圧手段(15)を備えているので、分岐部(A)の流入する冷媒の状態を安定化させることができる。従って、分岐部(A)に流入する冷媒を気液二相状態に安定化させることで、第1の特徴のエジェクタ式冷凍サイクルと同様に、第1減圧手段(19a、33a)における冷媒の減圧量を増加させることができる。
さらに、第1減圧手段(19a、33a)における減圧膨張過程の冷媒を放熱させる冷媒放熱手段(19、33)を備えているので、第1の特徴のエジェクタ式冷凍サイクルと同様に、冷媒の圧力を減圧させると同時に冷媒のエンタルピを減少させることができる。従って、第1減圧手段(19a、33a)において冷媒を適切に減圧させることができる。
また、上記第の特徴のエジェクタ式冷凍サイクルにおいて、冷媒放熱手段は、第1減圧手段(19a)通過冷媒と圧縮機(11)吸入側冷媒とを熱交換させる内部熱交換器(19)であってもよい。さらに、冷媒放熱手段は、第1減圧手段(33a)通過冷媒と蒸発器(21)出口側冷媒とを熱交換させる内部熱交換器(33)であってもよい。これによれば、第1減圧手段(19a、33a)における減圧膨張過程の冷媒を放熱させる冷媒放熱手段を容易に構成できる。
また、上述の第の特徴のエジェクタ式冷凍サイクルにおいて、具体的に、第1減圧手段はキャピラリチューブ(19a、33a)で構成されていてもよい。キャピラリチューブ(19a、33a)を採用することで、上述の如く、キャピラリチューブ(19a、33a)通過冷媒流量の低下を回避して、より一層、冷媒を適切に減圧させることができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
(第1実施形態)
図1〜2により、本発明の第1実施形態について説明する。図1は本発明のエジェクタ式冷凍サイクルを車両用冷凍装置に適用した例の全体構成図であり、本実施形態の車両用冷凍装置は庫内温度を例えば、−20℃付近の極低温に冷却するものである。
まず、エジェクタ式冷凍サイクル10において、圧縮機11は冷媒を吸入し圧縮して吐出するもので、プーリおよびベルトを介して車両走行用エンジン(図示せず)から駆動力が伝達されて回転駆動される。また、本実施形態では、圧縮機11として外部からの制御信号によって吐出容量を連続的に可変制御できる周知の斜板式の可変容量型圧縮機を採用している。
ここで、吐出容量とは冷媒の吸入圧縮を行う作動空間の幾何学的な容積であり、具体的には、ピストンストロークの上死点と下死点との間のシリンダ容積である。そして、この吐出容量を変更することによって圧縮機11の吐出能力が調整されることになる。吐出容量の変更は、圧縮機1内部に構成された斜板室(図示せず)の圧力Pcを制御して、斜板の傾斜角度を可変してピストンのストロークを変化させることによって行う。
そして、斜板室の圧力Pcは、後述する空調制御装置23の出力信号によって駆動される電磁式容量制御弁11aによって、吐出冷媒圧力Pdと吸入冷媒圧力Psとを斜板室に導入させる割合を変化させることで制御している。これにより、圧縮機11は吐出容量を略0%〜100%の範囲で連続的に変化させることができる。
また、圧縮機11は吐出容量を略0%〜100%の範囲で連続的に変化させることができるので、吐出容量を略0%付近に減少することによって、圧縮機11を実質的に作動停止状態にすることができる。従って、本実施形態では、圧縮機11の回転軸をプーリおよびベルトを介して車両エンジンに常時連結するクラッチレスの構成となっている。
もちろん、可変容量型圧縮機であっても電磁クラッチを介して車両エンジンから動力を伝達できるようにしてもよい。また、圧縮機11として固定容量型圧縮機を採用する場合は、電磁クラッチにより圧縮機を断続的に作動させるオンオフ制御を行って、オンオフ作動の比率を制御する稼働率制御によって冷媒吐出能力を制御してもよい。また、電動モータによって回転駆動する電動圧縮機を採用し、インバータの周波数制御等によって電動モータの回転数制御を行って冷媒吐出能力を制御してもよい。
圧縮機11の冷媒流れ下流側には放熱器12が接続されている。放熱器12は圧縮機11から吐出された高圧冷媒と送風ファン12aによって送風された外気(車室外空気)との間で熱交換を行って高圧冷媒を冷却して放熱させる熱交換器である。送風ファン12aはモータ12bによって駆動される電動ファンである。また、モータ12bは後述する空調制御装置23から出力される制御電圧によって回転駆動される。
なお、本実施形態のエジェクタ式冷凍サイクルでは、高圧冷媒が超臨界圧力以上に上昇しない亜臨界サイクルを構成しており、放熱器12は冷媒を凝縮させる凝縮器としての機能を果たす。なお、放熱器12で冷却された冷媒は、通常運転時には気液二相状態になる。もちろん、冬季の外気温が低温になっている場合などには、冷媒が過冷却状態になることもある。
放熱器12下流側には冷媒の流れを分岐する分岐部Aが配置されている。そして、この分岐部Aにおいて分岐された一方の冷媒は、分岐部Aと後述するエジェクタ16のノズル部16a上流側とを接続するノズル部側配管13へ流入し、他方の冷媒は、分岐部Aとエジェクタ16の冷媒吸引口16b側とを接続する吸引口側配管14へ流入する。
分岐部Aにおいて分岐された一方の冷媒が流入するノズル部側配管13には、可変絞り機構15が配置されており、この可変絞り機構15は、分岐部Aからノズル部側配管13に流入する冷媒流量Gnozと吸引口側配管14に流入する冷媒流量Geとの流量比η(η=Ge/Gnoz)を決定する機能を果たすものである。
具体的には、本実施形態では、可変絞り機構15として、周知の温度式膨張弁を採用し、後述する第2蒸発器21出口側冷媒の過熱度に応じて弁体部(図示せず)の開度を変化させて、可変絞り機構15を通過する冷媒流量を調整している。そして、第2蒸発器21出口側冷媒の過熱度が所定の値に近づけるように、流量比ηを適切な値にしている。なお、温度式膨張弁を構成する感温筒、均圧管などの構成部品は図示の都合上省略している。
もちろん、可変絞り機構15として電気式の絞り機構を採用し、第2蒸発器21出口側冷媒の温度および圧力を検出して、これらの検出値に基づいて第2蒸発器21出口側冷媒の過熱度を算出して、この過熱度が所定の値になるように冷媒流量を調整してもよい。また、放熱器12流出冷媒の温度および圧力を検出して、これらの検出値に基づいて放熱器12流出冷媒の温度および圧力が所定の値になるように冷媒流量を調整してもよい。
エジェクタ16はノズル部側配管13を介して流入する冷媒の通路面積を小さく絞って、冷媒を等エントロピ的に減圧膨張させるノズル部16aと、ノズル部16aの冷媒噴射口と連通するように配置され、後述する第2蒸発器21からの気相冷媒を吸引する冷媒吸引口16bを有している。
さらに、ノズル部16aおよび冷媒吸引口16bの下流側に配置されてノズル部16aからの高速度の冷媒流と冷媒吸引口16bからの吸引冷媒とを混合する混合部16c、および、混合部16cの下流側に配置されて冷媒流れを減速して冷媒圧力を上昇させる昇圧部をなすディフューザ部16dを有している。
このディフューザ部16dは冷媒の通路面積を徐々に大きくする形状に形成されており、冷媒流れを減速して冷媒圧力を上昇させる作用、つまり、冷媒の速度エネルギを圧力エネルギに変換する機能を有する。また、エジェクタ16のディフューザ部16dの冷媒流れ下流側には第1蒸発器17が接続される。
第1蒸発器17はエジェクタ16のノズル部16aで減圧された低圧冷媒と送風ファン17aによって送風された庫内空気との間で熱交換を行って、低圧冷媒に吸熱させることで庫内空気を冷却する熱交換器である。送風ファン17aはモータ17bによって駆動される電動ファンである。また、モータ17bは後述する空調制御装置23から出力される制御電圧によって回転駆動される。
この第1蒸発器17の冷媒流れ下流側にはアキュムレータ18が接続されている。このアキュムレータ18はタンク状の形状をしており、第1蒸発器17下流側の気液混合状態の冷媒を密度差によって気相冷媒と液相冷媒とに分離する気液分離器である。従って、アキュムレータ18のタンク形状内部の鉛直方向上側に気相冷媒が溜まり、鉛直方向下側に液相冷媒が溜まる。
さらに、アキュムレータ18のタンク形状上方部には気相冷媒出口が設けられ、この気相冷媒出口は内部熱交換器19に接続され、内部熱交換器19の冷媒出口側は圧縮機11吸入側に接続される。
次に、分岐部Aにおいて分岐された他方の冷媒が流入する吸引口側配管14には内部熱交換器19、第2固定絞り20および第2蒸発器21が配置されている。
内部熱交換器19は、分岐部A下流側冷媒と圧縮機11吸入側冷媒とを熱交換させて、吸引口側配管14を通過する冷媒を放熱させて冷却し、後述する第2蒸発器21における冷媒入口・出口間の冷媒のエンタルピ差を増大させてサイクルの冷凍能力を増大させるものである。
さらに、この内部熱交換器19の分岐部A下流側冷媒が通過する冷媒通路は、分岐部A下流側冷媒を減圧膨張させる絞り機構である第1固定絞り19aで構成されている。従って、本実施形態では、この第1固定絞り19aが、分岐部A下流側冷媒を減圧膨張させる減圧手段であり、内部熱交換器19が、冷媒放熱手段である。
具体的には、この第1固定絞り19aはキャピラリチューブで構成されており、さらに、内部熱交換器19は、第1固定絞り19aと圧縮機11吸入側の冷媒配管をろう付け接合して構成されている。もちろん、溶接、圧接、はんだ付け等の手段で接合してもよい。従って、本実施形態では、減圧手段である第1固定絞り19aと冷媒放熱手段である内部熱交換器が一体に構成されることなり、サイクルの小型化効果を発揮している。
キャピラリチューブは、冷媒通路面積を絞る効果と冷媒通路内摩擦力によって、冷媒を減圧するものなので、所定の冷媒通路長さを有する長細形状になっている。従って、第1固定絞り19aとしてキャピラリチューブを採用すれば、圧縮機11吸入側の冷媒配管をろう付け接合した際の熱交換面積を確保しやすくなる。その結果、第1固定絞り19a通過冷媒を放熱させやすくなる。
もちろん、内部熱交換器19を、二重配管によって構成して、内側配管をキャピラリチューブとして外側配管を圧縮機11吸入側冷媒配管としてもよい。
第2固定絞り20は、第1固定絞り19aにおいて減圧膨張された冷媒を、さらに減圧膨張させる減圧手段である。本実施形態では、具体的に、第2固定絞り20もキャピラリチューブで構成しているが、もちろん、オリフィスで構成してもよい。なお、本実施形態では、この第2固定絞り20は第1固定絞り19aの補助的な減圧手段として用いられるので廃止してもよい。
第2蒸発器21は、冷媒を蒸発させて吸熱作用を発揮させる吸熱器であり、本実施形態では、第1蒸発器17と第2蒸発器21を一体構造に組み付けている。具体的には、第1蒸発器17と第2蒸発器21の構成部品をアルミニウムで構成してろう付けにより一体構造に接合している。
そのため、上述の送風ファン17aより送風された空気は、矢印B方向に流れ、まず、第1蒸発器17で冷却され、次に第2蒸発器21で冷却されるようになっている。すなわち、第1蒸発器17と第2蒸発器21にて同一の冷却対象空間を冷却するようになっている。
空調制御装置23は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。空調制御装置23は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って上記各種機器11a、12b、17b等の作動を制御する。
また、空調制御装置23には、各種センサ群からの検出信号、および操作パネル(図示せず)からの各種操作信号が入力される。センサ群として具体的には、外気温(車室外温度)を検出する外気センサ等が設けられる。また、操作パネルには冷凍装置を作動させる作動スイッチ、冷却対象空間の冷却温度を設定する温度設定スイッチ等が設けられる。
次に、上述構成において本実施形態の作動を説明する。なお、このサイクルにおける冷媒の状態を図2のモリエル線図に示す。
まず、車両走行用エンジンが作動すると、圧縮機11に車両走行用エンジンから回転駆動力が伝達される。さらに、操作パネルから空調制御装置23に作動スイッチの作動信号が入力されると、空調制御装置23から電磁式容量制御弁11aに予め記憶された制御プログラムに基づいて出力信号が出力される。
この出力信号によって、圧縮機11の吐出容量が決定され、圧縮機11がアキュムレータ18内の気相冷媒を、内部熱交換器19を介して吸入し、圧縮して吐出する。この時の冷媒の状態は図2のC点である。圧縮機11から吐出された高温高圧の気相冷媒は放熱器12に流入して、外気により冷却されて気液二相状態(図2のD点)になる。なお、図2のD点の冷媒は第2蒸発器21が充分な冷凍能力を発揮できる程度の乾き度の気液二相状態になっている。
さらに、放熱器12から流出した気液二相状態の冷媒は、分岐部Aで分流されて一方の冷媒はノズル部側配管13へ流入して、他方の冷媒は吸引口側配管14aへ流入する。ここで、分岐部Aからノズル部側配管13に流入する冷媒流量Gnozと吸引口側配管14に流入する冷媒流量Geは、前述の如く、流量比ηが適切な値になるように可変絞り機構15によって調整されている。
次に、分岐部Aからノズル部側配管13へ流入した状態の冷媒は、エジェクタ16のノズル部16aへ流入する。ノズル部16aに流入した冷媒はノズル部16aで減圧され膨張する(図2のD点→E点)。この減圧膨張時に冷媒の圧力エネルギが速度エネルギに変換されるので、冷媒はノズル部16aの冷媒噴射口から高速度となって噴出する。
そして、冷媒噴射口からの高速度の冷媒流の冷媒吸引作用により、冷媒吸引口16bから第2蒸発器21通過後の冷媒を吸引する。ノズル部16aから噴出した冷媒と冷媒吸引口16bから吸引された冷媒は、ノズル部16a下流側の混合部16cで混合してディフューザ部16dに流入する。このディフューザ部16dでは通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換されるため、冷媒の圧力が上昇する(図2のE点→F点→G点)。
そして、エジェクタ16のディフューザ部16dから流出した冷媒は第1蒸発器17に流入する。第1蒸発器17では、低圧冷媒が送風ファン17aの送風空気から吸熱して蒸発する(図2のG点→H点)。そして、第1蒸発器17通過後の冷媒はアキュムレータ18へ流入して気相冷媒と液相冷媒とに分離される。
アキュムレータ18から流出した低圧気相冷媒は、内部熱交換器19へ流入し、分岐部Aから吸引口側配管14へ流入した高圧冷媒と熱交換を行う(図2のH点→I点)。そして、内部熱交換器19から流出した気相冷媒は、圧縮機11に吸入され再び圧縮される。
一方、分岐部Aから吸引口側配管14へ流入した気液二相状態の冷媒は、内部熱交換器19へ流入する。そして、内部熱交換器19に流入した冷媒は、内部熱交換器19の第1固定絞り19aを通過する際に、減圧膨張されると同時に圧縮機11吸入側冷媒と熱交換することで放熱する(図2のD点→J点)。ここで、第1固定絞り19aには、気液二相状態の冷媒が流入するので、第1固定絞り19aにおいて冷媒を適切に減圧することができる。
さらに、内部熱交換器19から流出した冷媒は、第2固定絞り20を通過する際に減圧されて、第2蒸発器21に流入する(図2のJ点→K点)。第2蒸発器21では、流入した低圧冷媒が、第1蒸発器17で冷却された送風ファン17aの送風空気から、さらに吸熱して蒸発する(図2のK点→L点)。
そして、第2蒸発器21で蒸発した冷媒は、吸引口側配管14を介して、エジェクタ16の冷媒吸引口16bより吸引されて、混合部16cでノズル部16aを通過した液相冷媒と混合し(図2のL点→F点)、第1蒸発器17に流入していく。
以上の如く、本実施形態では、放熱器12下流側の気液二相状態の冷媒を内部熱交換器19の冷媒通路に構成された第1固定絞り19aに流入させているので、第1固定絞り19aにおいて冷媒を適切に減圧させることができる。その結果、第1蒸発器17と第2蒸発器21との冷媒蒸発温度を確実に異なる温度帯にするとともに、第2蒸発器21に充分な冷凍能力を発揮させることができる。
さらに、第1固定絞り19aにおいて、分岐部A下流側冷媒を減圧膨張させると同時に放熱させるので、図2のモリエル線図のD点→J点に示すように、冷媒の圧力を減圧させると同時に冷媒のエンタルピを減少させることができ、第2蒸発器21の冷媒入口・出口間における冷媒のエンタルピ差(冷凍能力)を増大させることができる。その結果、サイクル効率向上を図ることもできる。
(第2実施形態)
第1実施形態では、分岐部A下流側冷媒の通過する冷媒通路が第1固定絞り19aで構成された内部熱交換器19を採用した例を説明したが、本実施形態では、図3に示すように内部熱交換器19を廃止して、内部熱交換器24を採用している。内部熱交換器24は、冷媒通路が絞り機構で構成されておらず、分岐部A下流側冷媒と圧縮機11吸入側冷媒とを熱交換させる機能のみを有する。
また、吸引口側配管14の内部熱交換器24下流側かつ第2固定絞り20上流側には、冷媒を減圧膨張させて気液二相状態にする減圧手段である第1固定絞り25が配置されている。具体的に、この第1固定絞り25はオリフィスで構成されている。
従って、本実施形態では、第2固定絞り20が分岐部Aにて分岐された冷媒を減圧膨張させる減圧手段、すなわち、本発明の第2の特徴のエジェクタ式冷凍サイクルにおける第1減圧手段である。また、第1固定絞り25が第1減圧手段上流側に配置されて、分岐部A下流側冷媒を減圧膨張させて気液二相状態にする減圧手段、すなわち、本発明の第2の特徴のエジェクタ式冷凍サイクルにおける第2減圧手段である。
なお、本実施形態では、第2減圧手段をオリフィスで構成しているが、もちろんキャピラリチューブで構成してもよい。その他の構成は第1実施形態と同様である。
次に、本実施形態の作動を説明する。なお、このサイクルにおける冷媒の状態を図4のモリエル線図に示す。図4では、冷媒の状態が図2に示す冷媒の状態と同じ場合には同一の符号を用いて表している。
まず、第1実施形態と同様に圧縮機11が作動して冷媒が圧縮されて、放熱器12にて冷却される(図4のC点→D点)。なお、本実施形態では、図4のD点に示すように、放熱器12で冷却された冷媒は気液二相状態になる。
さらに、放熱器12から流出した気液二相状態の冷媒は、第1実施形態と同様に分岐部Aで分流されて、一方の冷媒はノズル部側配管13へ流入して、エジェクタ16のノズル部16a→混合部16c→ディフューザ部16d→第1蒸発器17→アキュムレータ18の順に流れる(図4のD点→E点→F点→G点→H点)。
アキュムレータ18から流出した低圧気相冷媒は、内部熱交換器24へ流入し、分岐部Aから吸引口側配管14へ流入した高圧冷媒と熱交換を行う(図4のH点→I点)。そして、内部熱交換器24から流出した気相冷媒は、圧縮機11に吸入され再び圧縮される
一方、分岐部Aから吸引口側配管14へ流入した冷媒は、内部熱交換器24へ流入して、圧縮機11吸入側冷媒と熱交換することで放熱して過冷却状態になる(図4のD点→M点)。さらに、内部熱交換器24から流出した過冷却状態の冷媒は、第1固定絞り25で減圧されて気液二相状態となる(図4のM点→N点)。
そして、この気液二相状態の冷媒は、第2固定絞り20へ流入して減圧膨張されて第2蒸発器21に流入する(図4のN点→K点)。ここで、第2固定絞り20には、第1固定絞り25下流側の気液二相状態の冷媒が流入するので、第2固定絞り20において冷媒を適切に減圧することができる。
さらに、第2蒸発器21に流入した冷媒は、第1実施形態と同様に、第1蒸発器17で冷却された送風ファン17aの送風空気から吸熱して蒸発し、エジェクタ16の冷媒吸引口16bより吸引されて、混合部16cにおいてノズル部16aを通過した液相冷媒と混合される(図4のK点→L点→F点)。
以上の如く、本実施形態では、第1固定絞り25下流側の気液二相状態の冷媒を固定絞り20に流入させているので、固定絞り20において冷媒を適切に減圧させることができる。その結果、第1蒸発器17と第2蒸発器21との冷媒蒸発温度を確実に異なる温度帯にするとともに、第2蒸発器21に充分な冷凍能力を発揮させることができる。
さらに、図4のD点→M点に示すように、内部熱交換器24において冷媒のエンタルピを減少させることができ、第2蒸発器21の冷媒入口・出口間における冷媒のエンタルピ差(冷凍能力)を増大させることができる。その結果、サイクル効率向上を図ることもできる。
さらに、第1固定絞り25において過冷却状態の冷媒が気液二相状態になるので、放熱器12出口冷媒が過冷却状態であっても、上述の効果を得ることができる。また、本実施形態のサイクルにおいて内部熱交換器24を廃止して、分岐部Aから吸引口側配管14に流入する冷媒を直接第1固定絞り25に流入させてもよい。
(第3実施形態)
第1実施形態では、分岐部A下流側冷媒の通過する冷媒通路が第1固定絞り19aで構成された内部熱交換器19を採用した例を説明したが、本実施形態では、図5に示すように内部熱交換器19および第2固定絞り20を廃止して、内部熱交換器26を採用している。
内部熱交換器26の分岐部A下流側冷媒の通過する冷媒通路には、キャピラリチューブで構成された第1固定絞り26aと、第1固定絞り26aの上流側に配置されてオリフィスで構成される第2固定絞り26bが配置されている。
第1固定絞り26aは、第1実施形態の第1固定絞り19aと同様に、圧縮機11吸入側の冷媒配管にろう付け接合されており、分岐部A下流側冷媒を減圧膨張させると同時に放熱させるように構成されている。
また、第2固定絞り26bは圧縮機11吸入側の冷媒配管にはろう付けされておらず、分岐部A下流側冷媒を減圧膨張させて気液二相状態にする機能のみを有する。この第2固定絞り器26bは、内部熱交換器26と一体に構成しても、別体に構成してもよい。
従って、本実施形態では、第1固定絞り26aが分岐部Aにて分岐された冷媒を減圧膨張させる減圧手段、すなわち、本発明の第2の特徴のエジェクタ式冷凍サイクルにおける第1減圧手段である。また、第2固定絞り26bが第1減圧手段上流側に配置されて、分岐部A下流側冷媒を減圧膨張させて気液二相状態にする減圧手段、すなわち、本発明の第2の特徴のエジェクタ式冷凍サイクルにおける第2減圧手段である。その他の構成は第1実施形態と同様である。
次に、本実施形態の作動を説明する。なお、このサイクルにおける冷媒の状態を図6のモリエル線図に示す。図6では、冷媒の状態が図2に示す冷媒の状態と同じ場合には同一の符号を用いて表している。
まず、本実施形態のサイクルが作動すると、第1実施形態と同様に、圧縮機11吐出冷媒が放熱器12にて冷却される。さらに、放熱器12から流出した気液二相状態の冷媒は、分岐部Aで分流されて、一方の冷媒はノズル部側配管13へ流入して、エジェクタ16のノズル部16a→混合部16c→ディフューザ部16d→第1蒸発器17→アキュムレータ18の順に流れる(図6のC点→D点→E点→F点→G点→H点)。
アキュムレータ18から流出した低圧気相冷媒は、内部熱交換器26へ流入し、分岐部Aから吸引口側配管14へ流入した高圧冷媒と熱交換を行う(図6のH点→I点)。そして、内部熱交換器26から流出した気相冷媒は、圧縮機11に吸入され再び圧縮される
一方、分岐部Aから吸引口側配管14へ流入した冷媒は、内部熱交換器26へ流入して、圧縮機11吸入側冷媒と熱交換することで放熱して過冷却状態になる(図6のD点→O点)。さらに、この過冷却状態の冷媒は、第2固定絞り26bにおいて減圧されて気液二相状態となる(図6のO点→P点)。
そして、この気液二相状態の冷媒は、第1固定絞り26aへ流入して減圧膨張されると同時に圧縮機11吸入側冷媒と熱交換して放熱する(図6のP点→K’点→K点)。ここで、第1固定絞り26aには、第2固定絞り26b下流側の気液二相状態の冷媒が流入するので、第1固定絞り26aにおいて冷媒を適切に減圧することができる。
なお、図6のK’点→K点において、第1固定絞り26a通過冷媒が等エンタルピ膨張する理由は、第1固定絞り26a通過冷媒はK’点に到達すると、圧縮機11吸入側の冷媒と同程度の温度まで冷却されて、熱の授受がなくなってしまうからである。
さらに、第2蒸発器21に流入した冷媒は、第1実施形態と同様に、第1蒸発器17で冷却された送風ファン17aの送風空気から吸熱して蒸発し、エジェクタ16の冷媒吸引口16bより吸引されて、混合部16cにおいてノズル部16aを通過した液相冷媒と混合される(図6のK点→L点→F点)。
以上の如く、本実施形態では、第2固定絞り26b下流側の気液二相状態の冷媒を第1固定絞り26aに流入させているので、第1固定絞り26aにおいて冷媒を適切に減圧させることができる。その結果、第1蒸発器17と第2蒸発器21との冷媒蒸発温度を確実に異なる温度帯にするとともに、第2蒸発器21に充分な冷凍能力を発揮させることができる。
さらに、図6のD点→O点→P点→K点に示すように、内部熱交換器26において冷媒のエンタルピを減少させることができ、第2蒸発器21の冷媒入口・出口間における冷媒のエンタルピ差(冷凍能力)を増大させることができる。その結果、サイクル効率向上を図ることもできる。
また、第2実施形態と同様に、第2固定絞り26bにおいて過冷却状態の冷媒が気液二相状態になるので、放熱器12出口冷媒が過冷却状態であっても、上述の効果を得ることができる。
(第4実施形態)
本実施形態では、図7に示すように、第1実施形態に対して、第2固定絞り20を廃止して、分岐部A下流側かつ内部熱交換器19上流側に第2固定絞り27を配置している。第2固定絞り27は、冷媒を減圧膨張させて気液二相状態にする減圧手段で、具体的にはオリフィスで構成されている。
従って、本実施形態では、内部熱交換器19の第1固定絞り19a(キャピラリチューブ)が分岐部Aにて分岐された減圧膨張させる減圧手段、すなわち、本発明の第2の特徴のエジェクタ式冷凍サイクルにおける第1減圧手段である。また、第2固定絞り27が第1減圧手段上流側に配置されて、分岐部A下流側冷媒を減圧膨張させて気液二相状態にする減圧手段、すなわち、本発明の第2の特徴のエジェクタ式冷凍サイクルにおける第2減圧手段である。その他の構成は第1実施形態と同様である。
次に、本実施形態の作動を説明する。なお、このサイクルにおける冷媒の状態を図8のモリエル線図に示す。図8では、冷媒の状態が図2に示す冷媒の状態と同じ場合には同一の符号を用いて表している。
まず、第1実施形態と同様に圧縮機11が作動して冷媒が圧縮されて、放熱器12にて冷却される(図8のC点→D’点)。なお、本実施形態では、図8のD’点に示すように、放熱器12で冷却された冷媒は過冷却状態になる。放熱器12から流出した気液二相状態の冷媒は、分岐部Aで分流されて、一方の冷媒はノズル部側配管13へ流入して、エジェクタ16のノズル部16a→混合部16c→ディフューザ部16d→第1蒸発器17→アキュムレータ18の順に流れる(図8のC点→D’→E点→F点→G点→H点)。
アキュムレータ18から流出した低圧気相冷媒は、内部熱交換器26へ流入し、分岐部Aから吸引口側配管14へ流入した高圧冷媒と熱交換を行う(図8のH点→I点)。そして、内部熱交換器26から流出した気相冷媒は、圧縮機11に吸入され再び圧縮される
一方、分岐部Aから吸引口側配管14へ流入した冷媒は、第2固定絞り27へ流入して、減圧されて気液二相状態となる(図8のD’点→Q点)。さらに、気液二相状態となった冷媒は、内部熱交換器19の第1固定絞り19aへ流入して減圧膨張されると同時に圧縮機11吸入側冷媒と熱交換して放熱する(図8のQ点→K’点→K点)。
ここで、第1固定絞り19aには、第2固定絞り27下流側の気液二相状態の冷媒が流入するので、第1固定絞り19aにおいて冷媒を適切に減圧することができる。なお、図8のK’点→K点においても、第3実施形態と同様の理由で、第1固定絞り19a通過冷媒が等エンタルピ膨張する。
さらに、第2蒸発器21に流入した冷媒は、第1実施形態と同様に、第1蒸発器17で冷却された送風ファン17aの送風空気から吸熱して蒸発し、エジェクタ16の冷媒吸引口16bより吸引されて、混合部16cにおいてノズル部16aを通過した液相冷媒と混合される(図8のK点→L点→F点)。
以上の如く、本実施形態では、第2固定絞り27下流側の気液二相状態の冷媒を第1固定絞り19aに流入させているので、第1固定絞り19aにおいて冷媒を適切に減圧させることができる。その結果、第1蒸発器17と第2蒸発器21との冷媒蒸発温度を確実に異なる温度帯にするとともに、第2蒸発器21に充分な冷凍能力を発揮させることができる。
さらに、図8のQ点→K点に示すように、内部熱交換器19において冷媒のエンタルピを減少させることができ、第2蒸発器21の冷媒入口・出口間における冷媒のエンタルピ差(冷凍能力)を増大させることができる。その結果、サイクル効率向上を図ることもできる。
なお、本実施形態では、放熱器12出口冷媒が気液二相状態であっても、第1固定絞り19aには気液二相状態の冷媒を流入させることができるので、第1固定絞り19aにおいて冷媒を適切に減圧させることができる。
(第5実施形態)
本実施形態では、図9に示すように、第1実施形態のサイクルに対して、放熱器12下流側に気相冷媒と液相冷媒とを分離する気液分離器30を追加している。気液分離器30は、タンク状の形状をしており、気相冷媒と液相冷媒の密度差によって気液を分離するものである。従って、気液分離器30の鉛直方向下側に液相冷媒が溜まる。
さらに、本実施形態では、ノズル部側配管13および吸引口側配管14は、気液分離器30の液相冷媒貯留部に接続されて液相冷媒が流入するようになっている。従って、本実施形態では、分岐部Aが気液分離器30の液相冷媒貯留部に構成される。その他の構成は第1実施形態と同様である。
次に、本実施形態のサイクルの作動およびサイクルにおける冷媒の状態を図10のモリエル線図により説明する。なお、図10では、冷媒の状態が図2に示す冷媒の状態と同じ場合には同一の符号を用いて表している。
まず、本実施形態のサイクルが作動すると、圧縮機11吐出冷媒が放熱器12にて冷却され、気液分離器30において気相冷媒と液相冷媒に分離される。従って、気液分離器30における液相冷媒は図10のD’’点に示すように、飽和液線上の冷媒となる。
分岐部Aで分流されて、ノズル部側配管13へ流入した液相冷媒は、エジェクタ16のノズル部16a→混合部16c→ディフューザ部16d→第1蒸発器17→アキュムレータ18→内部熱交換器19の順に流れる(図10のC点→D’’点→E点→F点→G点→H点→I点)。さらに、内部熱交換器26から流出した気相冷媒は、圧縮機11に吸入され再び圧縮される
一方、分岐部Aから吸引口側配管14へ流入した液相冷媒は、内部熱交換器19の第1絞り手段19aへ流入して減圧膨張されると同時に圧縮機11吸入側冷媒と熱交換して放熱する(図10のD’’点→J点)。
ここで、気液分離器30で分離された液相冷媒は、飽和液線上の冷媒になっているので、第1固定絞り19aに流入した直後の僅かな圧力低下によって気液二相状態になる。従って、実質的に第1固定絞り19aに気液二相状態の冷媒を流入させることになる。その結果、第1固定絞り19aにおいて冷媒を充分に減圧することができる。
さらに、内部熱交換器19流出冷媒は、第1実施形態と同様に、第2固定絞り→第2蒸発器21→エジェクタ16の混合部の順に流れる(図10のJ点→K点→L点→F点)。
以上の如く、本実施形態においても、第1固定絞り19aにおいて冷媒を適切に減圧させることができるとともに、第2蒸発器21流入冷媒のエンタルピを減少させることができるので、第1実施形態と同様の効果を得ることができる。
さらに、冷凍負荷の変動等によってサイクルの運転状態が変動して、放熱器12下流側の冷媒の乾き度が変化しても、第1固定絞り19aには確実に飽和液線上の冷媒が流入する。その結果、サイクルの運転状態の影響を受けることなく、常に、第1固定絞り19aにおいて冷媒を適切に減圧させることができる。
(第6実施形態)
本実施形態では、図11に示すように、第2実施形態のサイクルに、第5実施形態と同様の気液分離器30を追加し、気液分離器30の液相冷媒貯留部に分岐部Aを構成している。その他の構成は第2実施形態と同様である。また、図12は、本実施形態のサイクルにおける冷媒の状態を示すモリエル線図である。図12では、冷媒の状態が図4に示す冷媒の状態と同じ場合には同一の符号を用いて表している。
本実施形態のサイクルが作動すると、分岐部Aの冷媒は飽和液線上の冷媒となる(図12のD’’点)。ここで、第2実施形態では、放熱器12出口冷媒が過冷却状態であっても、気液二相状態であっても、第1減圧手段である第2固定絞り20において冷媒を適切に減圧させることができる。
従って、分岐部Aで分岐される冷媒が飽和液線上の冷媒になっていても、第1減圧手段である第2固定絞り20において、冷媒を適切に減圧させることができるので、本実施形態でも第2実施形態と同様の効果を得ることができる。
さらに、第5実施形態と同様に、冷凍負荷の変動等によってサイクルの運転状態が変動して、放熱器12下流側の冷媒の乾き度が変化しても、第2減圧手段である第1固定絞り25には確実に飽和液線上の冷媒が流入する。その結果、サイクルの運転状態の影響を受けることなく、常に第1減圧手段である第2固定絞り20において冷媒を適切に減圧させることができる。
(第7実施形態)
本実施形態では、図13に示すように、第3実施形態のサイクルに、第5実施形態と同様の気液分離器30を追加し、気液分離器30の液相冷媒貯留部に分岐部Aを構成している。その他の構成は第3実施形態と同様である。また、図14は、本実施形態のサイクルにおける冷媒の状態を示すモリエル線図である。図14では、冷媒の状態が図6に示す冷媒の状態と同じ場合には同一の符号を用いて表している。
本実施形態のサイクルが作動すると、分岐部Aの冷媒は飽和液線上の冷媒となる(図14のD’’点)。ここで、第3実施形態では、放熱器12出口冷媒が過冷却状態であっても、気液二相状態であっても、第1減圧手段である第1固定絞り26aにおいて冷媒を適切に減圧させることができる。従って、分岐部Aで分岐される冷媒が飽和液線上の冷媒になっていても、第3実施形態と同様の効果を得ることができる。
さらに、第5実施形態と同様に、サイクルの運転状態の影響を受けることなく、常に第1減圧手段である第1固定絞り26aにおいて冷媒を適切に減圧させることができる。
(第8実施形態)
本実施形態では、図15に示すように、第4実施形態のサイクルに、第5実施形態と同様の気液分離器30を追加し、気液分離器30の液相冷媒貯留部に分岐部Aを構成している。その他の構成は第4実施形態と同様である。また、図16は、本実施形態のサイクルにおける冷媒の状態を示すモリエル線図である。図16では、冷媒の状態が図8に示す冷媒の状態と同じ場合には同一の符号を用いて表している。
本実施形態のサイクルが作動すると、分岐部Aの冷媒は飽和液線上の冷媒となる(図14のD’’点)。ここで、第4実施形態では、放熱器12出口冷媒が過冷却状態であっても、気液二相状態であっても、第1減圧手段である第1固定絞り26aにおいて冷媒を適切に減圧させることができる。従って、分岐部Aで分岐される冷媒が飽和液線上の冷媒になっていても、第4実施形態と同様の効果を得ることができる。
さらに、第5実施形態と同様に、サイクルの運転状態の影響を受けることなく、常に第1減圧手段である固定絞り19aにおいて冷媒を適切に減圧させることができる。
(第9実施形態)
本実施形態では、図17に示すように、第2実施形態のサイクルにおいて第2減圧手段を構成する第1固定絞り25を廃止して、第2減圧手段として可変絞り機構31を採用している。この可変絞り機構31は、放熱器12下流側冷媒の過冷却度が増加すると、冷媒通路面積を縮小するように構成されている。
具体的には、可変絞り機構31は、機械式の可変絞り機構を採用しており、可変絞り機構31出口冷媒の温度および圧力に応じて弁体部(図示せず)の開度を調整し、それにより、可変絞り機構31を通過する冷媒流量を調整して可変絞り機構31出口冷媒を確実に予め定めた状態の気液二相状態に調整するものである。
より具体的には、温度式膨張弁の弁体には圧力応動手段をなすダイヤフラム機構31aが結合され、ダイヤフラム機構31aは感温筒31bの封入ガス媒体の圧力(可変絞り機構31出口冷媒の温度に応じた圧力)と、均圧管31cにより導入される可変絞り機構31出口冷媒圧量とに応じて弁体を変位させて、弁体の開度を調整している。その他の構成は第2実施形態と同様である。
従って、本実施形態のサイクル作動させた際の冷媒の状態は、図4に示す第2実施形態のモリエル線図と同様になる。さらに、本実施形態では、第2減圧手段を構成する可変絞り機構31において、確実に第1減圧手段である第2固定絞り20に流入する冷媒を気液二相状態にすることができるので、第2実施形態と同様の効果を確実に得ることができる。
(第10実施形態)
本実施形態では、図18に示すように、第3実施形態のサイクルに対して第2減圧手段を構成する第2絞り26bを廃止して、第2減圧手段として第9実施形態と同様の可変絞り機構31を採用している。
従って、本実施形態のサイクル作動させた際の冷媒の状態は、図6に示す第3実施形態のモリエル線図と同様になる。さらに、本実施形態では、第2減圧手段を構成する可変絞り機構31において、確実に第1減圧手段である第1固定絞り26aに流入する冷媒を気液二相状態にすることができるので、第3実施形態と同様の効果を確実に得ることができる。
(第11実施形態)
本実施形態では、図19に示すように、第4実施形態のサイクルに対して第2減圧手段を構成する第2固定絞り27を廃止して、第2減圧手段として第9実施形態と同様の可変絞り機構31を採用している。
従って、本実施形態のサイクル作動させた際の冷媒の状態は、図8に示す第4実施形態のモリエル線図と同様になる。さらに、本実施形態では、第2減圧手段を構成する可変絞り機構31において、確実に第1減圧手段である第1固定絞り26aに流入する冷媒を気液二相状態にすることができるので、第4実施形態と同様の効果を確実に得ることができる。
(第12実施形態)
本実施形態では、図20に示すように、第1実施形態のサイクルに対して、圧縮機11吐出側に、冷媒中の潤滑オイルを分離するオイルセパレータ11bを設けている。このオイルセパレータ11bは、冷媒中に溶け込んでいる圧縮機11潤滑用のオイルを分離して、減圧機構11cを介して圧縮機12の冷媒吸入側にオイルを戻すために配置されているものである。
さらに、本実施形態では、放熱器12の下流側に気液分離器30を配置している。この気液分離器30の基本的構成は、第5〜8実施形態で採用した気液分離器と同様である。但し、本実施形態の気液分離器30の液相冷媒貯留部には、第1内部熱交換器24のみが接続されている。従って、本実施形態の気液分離器30の液相冷媒貯留部には分岐部Aは構成されない。
第1内部熱交換器24は、第2実施形態の内部熱交換器24と同様の構成であり、気液分離器30下流側の液相冷媒と圧縮機11吸入側冷媒(より具体的には、第1蒸発器17出口側から圧縮機11吸入口へ至る冷媒流路を通過する冷媒)とを熱交換させる機能のみを有する。さらに、第1内部熱交換器24の高圧側の液相冷媒出口は、可変絞り機構32に接続されている。
可変絞り機構32は、過冷却状態の液相冷媒を気液二相状態になるまで減圧膨張させるもので、機械式、電気式の膨張弁を採用できる。可変絞り機構32の下流側には、冷媒の流れを分岐する分岐部Aが配置されている。
そして、分岐部から分岐した冷媒流れは、第1実施形態と同様に、ノズル部側配管13および吸引口側配管14へ流入するようになっている。吸引口側配管14のうち分岐部Aの下流側であって、第2蒸発器21の上流側には、第1実施形態と同様の構成の第2内部熱交換器19が配置されている。
従って、本実施形態では、第2内部熱交換器19の固定絞り19a(具体的には、キャピラリチューブ)が、分岐部Aにて分岐された冷媒を減圧膨張させる減圧手段、すわなち、本発明の第3の特徴のエジェクタ式冷凍サイクルにおける第1減圧手段を構成する。
また、可変絞り機構32が、放熱器12下流側かつ分岐部A上流側に配置されて、分岐部Aへ流入する冷媒を減圧膨張させる減圧手段、すわなち、本発明の第3の特徴のエジェクタ式冷凍サイクルにおける第2減圧手段を構成する。
さらに、第2内部熱交換器19が、第1減圧手段である固定絞り19aにおける減圧膨張過程の冷媒を放熱させる冷媒放熱手段、すなわち、本発明の第3の特徴のエジェクタ式冷凍サイクルにおける冷媒放熱手段を構成する。
また、本実施形態では、圧縮機11吸入側冷媒(第1蒸発器17出口側から圧縮機11吸入口へ至る冷媒流路を通過する冷媒)は、図20に示すように、第1蒸発器17を流出した後、第1内部熱交換器24にて気液分離器30下流側液相冷媒と熱交換し、第2内部熱交換器19にて分岐部A下流側冷媒と熱交換し、さらに、アキュムレータ18へ流入して気液分離されて、圧縮機11に吸入される冷媒流路構成になっている。
もちろん、圧縮機11吸入側冷媒の冷媒流路は、上記の順の構成に限定されるものではなく、任意の順に構成してもよい。例えば、圧縮機11吸入側冷媒が第1蒸発器17を流出した後、第2内部熱交換器19にて分岐部A下流側冷媒と熱交換した後に、第1内部熱交換器24にて気液分離器30下流側液相冷媒と熱交換し、さらに、アキュムレータ18へ流入する構成になっていてもよい。その他の構成は第1実施形態と同様である。
次に、本実施形態のサイクルの作動およびサイクルにおける冷媒の状態を図21のモリエル線図により説明する。なお、図21では、冷媒の状態が上述の実施形態に示す冷媒の状態と同じ場合には同一の符号を用いて表している。
まず、本実施形態のサイクルが作動すると、圧縮機11吐出冷媒(図21のC点)が放熱器12にて冷却され、気液分離器30において気相冷媒と液相冷媒に分離される。従って、気液分離器30における液相冷媒は図21のD’’点に示すように、飽和液線上の冷媒となる。
気液分離器30から流出した液相冷媒は、第1内部熱交換器24へ流入して、圧縮機11吸入側冷媒と熱交換することで放熱して過冷却状態になる(図21のD’’点→O点)。さらに、第1内部熱交換器24から流出した過冷却状態の液相冷媒は、可変絞り機構32で減圧されて気液二相状態となる(図21のO点→Q点)。
可変絞り機構32で減圧された気液二相冷媒は分岐部Aで分流されて、一方の冷媒はノズル部側配管13へ流入して、エジェクタ16のノズル部16a→混合部16c→ディフューザ部16d→第1蒸発器17の順に流れる(図21のQ点→E点→F点→G点→H点)。
第1蒸発器17から流出した冷媒は、まず、第1内部熱交換器24へ流入し、気液分離器30から流出した液相冷媒と熱交換を行う(図21のH点→I点)。次に、第2内部熱交換器19へ流入し、分岐部Aから吸引口側配管14へ流入した高圧冷媒と熱交換を行うってアキュムレータ18へ流入する(図21のI点→R点)。そして、アキュムレータ18から気相冷媒が圧縮機11に吸入され再び圧縮される。
一方、分岐部Aから吸引口側配管14へ流入した気液二相状態の冷媒は、第2内部熱交換器19へ流入する。そして、第2内部熱交換器19に流入した冷媒は、第2内部熱交換器19の固定絞り19aを通過する際に、減圧膨張されると同時に圧縮機11吸入側冷媒と熱交換することで放熱する(図21のQ点→S’点→S点)。
ここで、固定絞り19aには、気液二相状態の冷媒が流入するので、固定絞り19aにおいて冷媒を適切に減圧することができる。なお、図21のS’点→S点においても、第3実施形態と同様の理由で、固定絞り19a通過冷媒が等エンタルピ膨張する。
さらに、第2蒸発器21に流入した冷媒は、第1実施形態と同様に、第1蒸発器17で冷却された送風ファン17aの送風空気から吸熱して蒸発し、エジェクタ16の冷媒吸引口16bより吸引されて、混合部16cにおいてノズル部16aを通過した冷媒と混合される(図21のS点→L点→F点)。
以上の如く、本実施形態では、可変絞り機構32は下流側の気液二相状態の冷媒を固定絞り19aに流入させているので、固定絞り19aにおいて冷媒を適切に減圧させることができる。第1蒸発器17と第2蒸発器21との冷媒蒸発温度を確実に異なる温度帯にするとともに、第2蒸発器21に充分な冷凍能力を発揮させることができる。
さらに、固定絞り19aにおいて、分岐部A下流側冷媒を減圧膨張させると同時に放熱させるので、図21のモリエル線図のQ点→S点に示すように、冷媒の圧力を減圧させると同時に冷媒のエンタルピを減少させることができ、第2蒸発器21の冷媒入口・出口間における冷媒のエンタルピ差(冷凍能力)を増大させることができる。その結果、サイクル効率向上を図ることもできる。
さらに、分岐部A上流側冷媒を減圧膨張させる第2減圧手段を構成する可変絞り機構32を備えているので、分岐部Aの流入する冷媒の状態を安定化させやすい。従って、本実施形態の如く、分岐部Aに流入する冷媒を気液二相状態に安定化させることで、サイクルの運転状態の影響を受けることなく、固定絞り19aにおいて冷媒を適切に減圧させることができる。
(第13実施形態)
第12実施形態では、分岐部A下流側冷媒と圧縮機11吸入側冷媒とを熱交換させる第2内部熱交換器19を採用しているが、本実施形態では、図22に示すように、分岐部A下流側冷媒と第2蒸発器21下流側冷媒とを熱交換させる第2内部熱交換器33を採用している。
第2内部熱交換器33の基本的構成は、第12実施形態の第2内部熱交換器19と同様である。従って、第2内部熱交換器33の分岐A下流側冷媒通路は固定絞り33a(具体的には、キャピラリチューブ)になっており、この固定絞り33aが、本発明の第3の特徴のエジェクタ式冷凍サイクルにおける第1減圧手段を構成し、第2内部熱交換器33が、本発明の第3の特徴のエジェクタ式冷凍サイクルにおける冷媒放熱手段を構成する。
さらに、第2内部熱交換器33は、分岐部A下流側冷媒と第2蒸発器21下流側冷媒とを熱交換させるようになっているので、本実施形態では、図22に示すように、第1蒸発器17を流出した冷媒は、第1内部熱交換器24にて気液分離器30下流側液相冷媒と熱交換した後、アキュムレータ18へ流入して気液分離されて、圧縮機11に吸入される冷媒流路構成になっている。その他の構成は第12実施形態と同様である。
次に、本実施形態のサイクルの作動およびサイクルにおける冷媒の状態を図23のモリエル線図により説明する。なお、図23では、冷媒の状態が上述の実施形態に示す冷媒の状態と同じ場合には同一の符号を用いて表している。
まず、本実施形態のサイクルが作動すると、第12実施形態と同様に、圧縮機11吐出冷媒が放熱器12にて冷却され、気液分離器30→第1内部熱交換器24→可変絞り機構32の順に流れて気液二相状態となる(図23のC点→D’’点→O点→Q点)。
可変絞り機構32で減圧された気液二相冷媒は分岐部Aで分流されて、一方の冷媒はノズル部側配管13へ流入して、エジェクタ16のノズル部16a→混合部16c→ディフューザ部16d→第1蒸発器17の順に流れる(図21のQ点→E点→F点→G点→H点)。
第1蒸発器17から流出した冷媒は、第1内部熱交換器24へ流入し、気液分離器30から流出した液相冷媒と熱交換を行って、アキュムレータ18へ流入する(図21のH点→I点)。そして、アキュムレータ18から気相冷媒が圧縮機11に吸入され再び圧縮される。
一方、分岐部Aから吸引口側配管14へ流入した気液二相状態の冷媒は、第2内部熱交換器33へ流入する。そして、第2内部熱交換器33に流入した冷媒は、第2内部熱交換器33の固定絞り33aを通過する際に、減圧膨張されると同時に第2蒸発器21下流側冷媒と熱交換することで放熱する(図23のQ点→T’点→T点)。この際、第2蒸発器21下流側冷媒はエンタルピを増加させる(図23のL点→L’点)。
ここで、固定絞り33aには、気液二相状態の冷媒が流入するので、固定絞り33aにおいて冷媒を適切に減圧することができる。なお、図23のT’点→T点においても、第3実施形態と同様の理由で、固定絞り33a通過冷媒が等エンタルピ膨張する。
さらに、第2蒸発器21に流入した冷媒は、第12実施形態と同様に、エジェクタ16の冷媒吸引口16bとより吸引されて、混合部16cにてノズル部16a通過冷媒と混合される液相冷媒と混合される(図21のT点→L’点→F点)。
以上の如く、本実施形態では、可変絞り機構32は下流側の気液二相状態の冷媒を固定絞り33aに流入させ、さらに、固定絞り33aにおいて、分岐部A下流側冷媒を減圧膨張させると同時に放熱させるので、第12実施形態と全く同様の効果を得ることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、以下のように種々変形可能である。
(1)上述の第2、6、9実施形態を除く各実施形態では、固定絞りとしてキャピラリチューブ19a、26a、33aを採用し、このキャピラリチューブ19a…33aと圧縮機11吸入側冷媒配管とをろう付け接合することで、減圧膨張過程の冷媒を放熱させる冷媒放熱手段を構成しているが、キャピラリチューブ19a…33aと冷媒配管との接合は、具体的に以下のように行ってもよい。
例えば、キャピラリチューブ19a…33aを圧縮機11吸入側冷媒配管の外周面上に冷媒配管の軸方向に沿って直線的に配置し、キャピラリチューブ19a…33aと冷媒配管とを熱伝導性に優れた金属接合材によって一体接合すればよい。この金属接合剤としては、はんだやろう材を適用することができる。さらに、キャピラリチューブ19a…33aを冷媒配管の外周面上で螺旋状に巻き付けるように配置してもよい。
また、キャピラリチューブ19a…33aの全域を冷媒配管に接合する必要はなく、キャピラリチューブ19a…33aの一部を冷媒配管に接合するようにしてもよい。つまり、キャピラリチューブ19a…33aのうち冷媒配管に接合されていない領域では冷媒の減圧膨張のみを行い、冷媒配管に接合されている領域では減圧膨張過程の冷媒を放熱させるようにしてもよい。
さらに、上述の実施形態の全体構成図に示すように、キャピラリチューブ19a…33aを通過する冷媒の流れ方向と圧縮機11吸入側冷媒配管を通過する流れ方向が逆方向となる対交流型の熱交換構造とすることで、熱交換効率を向上できる。
(2)上述の第2、6、9実施形態を除く各実施形態では、冷媒放熱手段として内部熱交換器19、26、33を採用しているが、冷媒放熱手段はこれに限定されない。
例えば、内部熱交換器19…33の固定絞り(キャピラリチューブ)19a…33aに向けて冷却用空気を送風する送風ファンを設けて、固定絞り19a…33a通過冷媒と送風ファンの送風空気と熱交換させることで、固定絞り19a…33a通過冷媒を放熱させてもよい。
(3)上述の第6〜8実施形態では、気液分離器30を設けているが、さらに、第6〜8実施形態のサイクルに第9〜11実施形態のように、第2減圧手段として可変絞り機構31を採用してもよい。
これによれば、第2減圧手段である可変絞り機構31に飽和液線上の冷媒を流入させるので、第2減圧手段において冷媒を気液二相状態に減圧させる際の制御性が向上し、より一層、確実に第1減圧手段に気液二相状態の冷媒を流入させやすくなる。
(4)上述の第9〜11実施形態では、第2減圧手段である可変絞り機構31と機械式の可変絞り機構を採用して、可変絞り機構31出口冷媒の温度および圧力を検出して弁開度を調整しているが、放熱器12出口冷媒の温度および圧力を検出して弁開度を調整してもよい。また、可変絞り機構31として電気式の可変絞り機構を採用してもよい。
(5)上述の第12、13実施形態では、圧縮機11吐出側に、冷媒中の潤滑オイルを分離するオイルセパレータ11bを設けた例を説明したが、もちろん、第1〜11実施形態のサイクルにオイルセパレータ11bおよび減圧機構11cを適用してもよい。
(6)上述の実施形態ではエジェクタ16のノズル部16a上流側に可変絞り機構15を配置して、分岐部Aからノズル部側配管13に流入する冷媒流量Gnozと吸引口側配管14に流入する冷媒流量Geとの流量比η(η=Ge/Gnoz)を調整しているが、可変絞り機構15を廃止して、電気的、機械的にノズル部16aの冷媒通路面積を変更できる可変流量式エジェクタを用いてもよい。
この場合は、例えば、第1実施形態の構成で、第2蒸発器21出口冷媒の過熱度を検出して、この過冷却度が所定の範囲になるようにノズル部16aの冷媒通路面積開度を制御すればよい。
(7)上述の実施形態では、第1蒸発器17と第2蒸発器21の冷却対象空間が同一である例を示したが、第1蒸発器17の冷却対象空間と第2蒸発器21の冷却対象空間が相違していてもよい。例えば、第1蒸発器17を車室内空調用に用い、第2蒸発器を車室内冷蔵庫用に用いてもよい。また、本発明を、第1蒸発器17が廃止されて第2蒸発器21のみで冷却作用を発揮するサイクルに適用してもよい。
(8)上記の実施形態では、第1蒸発器17および第2蒸発器21を、冷却対象空間を冷却する室内側熱交換器として構成し、放熱器12を大気側へ放熱する室外熱交換器として構成しているが、逆に、第1蒸発器17および第2蒸発器21を大気等の熱源から吸熱する室外側熱交換器として構成し、放熱器12を空気あるいは水等の被加熱流体を加熱する室内側熱交換器として構成するヒートポンプサイクルに本発明を適用してもよい。
第1実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第1実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 第2実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第2実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 第3実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第3実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 第4実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第4実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 第5実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第5実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 第6実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第6実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 第7実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第7実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 第8実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第8実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 第9実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第10実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第11実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第12実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第12実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 第13実施形態のエジェクタ式冷凍サイクルを示すサイクル構成図である。 第13実施形態のエジェクタ式冷凍サイクルのモリエル線図である。 絞り機構の形状と絞り機構を通過する冷媒流量との関係を説明する説明図である。
符号の説明
11…圧縮機、12…放熱器、16…エジェクタ、16a…ノズル部、
16b…冷媒吸引口、21…第2蒸発器、19、26、33…内部熱交換器、
19a、25、26a、33a…第1固定絞り、20、26b、27…第2固定絞り、
30…気液分離器、31…可変絞り機構。

Claims (8)

  1. 冷媒を圧縮して吐出する圧縮機(11)と、
    前記圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)下流側冷媒の流れを分岐する分岐部(A)と、
    前記分岐部(A)にて分岐された一方の冷媒を減圧膨張させるノズル部(16a)から噴射する高速度の冷媒流により冷媒を冷媒吸引口(16b)から吸引するエジェクタ(16)と、
    前記分岐部(A)にて分岐された他方の冷媒を減圧膨張させる減圧手段(19a)と、
    前記減圧手段(19a)下流側冷媒を蒸発させて前記冷媒吸引口(16b)上流側に流出する蒸発器(21)と、
    前記減圧手段(19a)における減圧膨張過程の冷媒を放熱させる冷媒放熱手段(19)とを備え
    前記減圧手段(19a)には、前記蒸発器(21)にて予め定めた冷凍能力を発揮できるように決定された所定乾き度以下の気液二相冷媒あるいは飽和液相冷媒を流入させるようになっていることを特徴とするエジェクタ式冷凍サイクル。
  2. 前記冷媒放熱手段は、前記減圧手段(19a)通過冷媒と前記圧縮機(11)吸入側冷媒とを熱交換させる内部熱交換器(19)であることを特徴とする請求項1に記載のエジェクタ式冷凍サイクル。
  3. 前記減圧手段は、キャピラリチューブ(19a)で構成されていることを特徴とする請求項2に記載のエジェクタ式冷凍サイクル。
  4. 前記放熱器(12)下流側冷媒の気液を分岐する気液分離器(30)を備え、
    前記分岐部(A)において、前記気液分離器(30)で分離された液相冷媒が分岐されるようになっていることを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタ式冷凍サイクル。
  5. 冷媒を圧縮して吐出する圧縮機(11)と、
    前記圧縮機(11)から吐出された高温高圧冷媒を放熱させる放熱器(12)と、
    前記放熱器(12)下流側冷媒の流れを分岐する分岐部(A)と、
    前記分岐部(A)にて分岐された一方の冷媒を減圧膨張させるノズル部(16a)から噴射する高速度の冷媒流により冷媒を冷媒吸引口(16b)から吸引するエジェクタ(16)と、
    前記分岐部(A)にて分岐された他方の冷媒を減圧膨張させる第1減圧手段(19a、33a)と、
    前記第1減圧手段(19a、33a)下流側冷媒を蒸発させて前記冷媒吸引口(16b)上流側に流出する蒸発器(21)と、
    前記第1減圧手段(19a、33a)における減圧膨張過程の冷媒を放熱させる冷媒放熱手段(19、33)と、
    前記放熱器(12)下流側かつ前記分岐部(A)上流側に配置されて、前記分岐部(A)へ流入する冷媒を減圧膨張させる第2減圧手段(32)とを備え、
    前記第1減圧手段(19a、33a)には、前記蒸発器(21)にて予め定めた冷凍能力を発揮できるように決定された所定乾き度以下の気液二相冷媒あるいは飽和液相冷媒を流入させるようになっていることを特徴とするエジェクタ式冷凍サイクル。
  6. 前記冷媒放熱手段は、前記第1減圧手段(19a)通過冷媒と前記圧縮機(11)吸入側冷媒とを熱交換させる内部熱交換器(19)であることを特徴とする請求項に記載のエジェクタ式冷凍サイクル。
  7. 前記冷媒放熱手段は、前記第1減圧手段(33a)通過冷媒と前記蒸発器(21)出口側冷媒とを熱交換させる内部熱交換器(33)であることを特徴とする請求項に記載のエジェクタ式冷凍サイクル。
  8. 前記第1減圧手段は、キャピラリチューブ(19a、33a)で構成されていることを特徴とする請求項ないしのいずれか1つに記載のエジェクタ式冷凍サイクル。
JP2006214404A 2006-01-13 2006-08-07 エジェクタ式冷凍サイクル Expired - Fee Related JP4737001B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006214404A JP4737001B2 (ja) 2006-01-13 2006-08-07 エジェクタ式冷凍サイクル
DE102007001878.0A DE102007001878B4 (de) 2006-01-13 2007-01-12 Ejektorpumpen-Kühlkreisvorrichtung
US11/653,474 US7690218B2 (en) 2006-01-13 2007-01-12 Ejector refrigerant cycle device
US12/658,485 US8429931B2 (en) 2006-01-13 2010-02-09 Ejector refrigerant cycle device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006005847 2006-01-13
JP2006005847 2006-01-13
JP2006214404A JP4737001B2 (ja) 2006-01-13 2006-08-07 エジェクタ式冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2007212121A JP2007212121A (ja) 2007-08-23
JP4737001B2 true JP4737001B2 (ja) 2011-07-27

Family

ID=38261850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006214404A Expired - Fee Related JP4737001B2 (ja) 2006-01-13 2006-08-07 エジェクタ式冷凍サイクル

Country Status (3)

Country Link
US (2) US7690218B2 (ja)
JP (1) JP4737001B2 (ja)
DE (1) DE102007001878B4 (ja)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4737001B2 (ja) * 2006-01-13 2011-07-27 株式会社デンソー エジェクタ式冷凍サイクル
NO327832B1 (no) * 2007-06-29 2009-10-05 Sinvent As Dampkompresjons-kjolesystem med lukket krets samt fremgangsmate for drift av systemet.
JP4597180B2 (ja) * 2007-11-06 2010-12-15 本田技研工業株式会社 車両用空調システム
JP4832458B2 (ja) * 2008-03-13 2011-12-07 株式会社デンソー 蒸気圧縮式冷凍サイクル
JP2009222255A (ja) * 2008-03-13 2009-10-01 Denso Corp 蒸気圧縮式冷凍サイクル
JP5018756B2 (ja) * 2008-04-18 2012-09-05 株式会社デンソー エジェクタ式冷凍サイクル
CN101952670B (zh) 2008-04-18 2013-04-17 株式会社电装 喷射器式制冷循环装置
JP5003665B2 (ja) * 2008-04-18 2012-08-15 株式会社デンソー エジェクタ式冷凍サイクル
WO2009128271A1 (ja) * 2008-04-18 2009-10-22 株式会社デンソー エジェクタ式冷凍サイクル装置
JP5018724B2 (ja) * 2008-04-18 2012-09-05 株式会社デンソー エジェクタ式冷凍サイクル
JP4992819B2 (ja) * 2008-05-12 2012-08-08 株式会社デンソー エジェクタ式冷凍サイクル
JP2010038456A (ja) * 2008-08-05 2010-02-18 Denso Corp 蒸気圧縮式冷凍サイクル
JP5195364B2 (ja) * 2008-12-03 2013-05-08 株式会社デンソー エジェクタ式冷凍サイクル
JP5359231B2 (ja) * 2008-12-03 2013-12-04 株式会社デンソー エジェクタ式冷凍サイクル
JP5270523B2 (ja) * 2009-12-04 2013-08-21 シャープ株式会社 冷凍冷蔵庫
US9857101B2 (en) * 2010-07-23 2018-01-02 Carrier Corporation Refrigeration ejector cycle having control for supercritical to subcritical transition prior to the ejector
US9752801B2 (en) * 2010-07-23 2017-09-05 Carrier Corporation Ejector cycle
JP5625610B2 (ja) * 2010-08-18 2014-11-19 株式会社デンソー エジェクタ式冷凍サイクル本発明は、エジェクタを備えるエジェクタ式冷凍サイクルに関する。
JP5533483B2 (ja) * 2010-09-16 2014-06-25 株式会社デンソー 圧縮機のトルク推定装置
CN102042721B (zh) * 2010-12-10 2012-07-04 西安交通大学 一种喷射器增效型蒸气压缩式热泵循环系统
JP5413393B2 (ja) 2011-03-28 2014-02-12 株式会社デンソー 冷媒分配器および冷凍サイクル
DE102011006626A1 (de) * 2011-04-01 2012-10-04 Behr Gmbh & Co. Kg Vorrichtung und Verfahren zur Energieverbrauchsreduzierung eines Kompressors in einem Kältekreislauf durch Abwärme- oder Solarwärmenutzung
EP2942585B1 (en) * 2012-12-27 2021-03-17 Mitsubishi Electric Corporation Refrigeration cycle device
JP6277869B2 (ja) 2014-05-30 2018-02-14 株式会社デンソー エジェクタ式冷凍サイクル
WO2016134731A2 (en) * 2015-02-25 2016-09-01 Hossain Khaled Mohammed The ideal liquid compression refrigeration cycle
WO2017083349A1 (en) 2015-11-09 2017-05-18 Bechtel Hydrocarbon Technology Solutions, Inc. Systems and methods for multi-stage refrigeration
CN108224833A (zh) 2016-12-21 2018-06-29 开利公司 喷射器制冷系统及其控制方法
JP2018178781A (ja) * 2017-04-05 2018-11-15 株式会社デンソー エジェクタ及びこれを用いた燃料電池システム並びに冷凍サイクルシステム
US10648701B2 (en) 2018-02-06 2020-05-12 Thermo Fisher Scientific (Asheville) Llc Refrigeration systems and methods using water-cooled condenser and additional water cooling
CN111520932B8 (zh) 2019-02-02 2023-07-04 开利公司 热回收增强制冷系统
CN111520928B (zh) 2019-02-02 2023-10-24 开利公司 增强热驱动的喷射器循环
WO2023110217A1 (de) 2021-12-14 2023-06-22 Mercedes-Benz Group AG Kältekreislauf für ein kraftfahrzeug sowie verfahren zum betreiben eines kältekreislaufs
EP4490454A1 (en) 2022-03-08 2025-01-15 Bechtel Energy Technologies & Solutions, Inc. Systems and methods for regenerative ejector-based cooling cycles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005265223A (ja) * 2004-03-16 2005-09-29 Denso Corp 冷凍サイクル装置および冷凍サイクル
JP2005308384A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2007078349A (ja) * 2004-02-18 2007-03-29 Denso Corp エジェクタサイクル

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB660771A (en) * 1949-02-03 1951-11-14 Svenska Turbinfab Ab Improvements in refrigerating machinery
JPS51126550A (en) * 1975-04-28 1976-11-04 Iwaya Reitouki Seisakusho:Kk Cooling device
JPS54162260A (en) * 1978-06-12 1979-12-22 Toshiba Corp Refrrigerator
DE2834075A1 (de) * 1978-08-03 1980-02-28 Audi Nsu Auto Union Ag Kompressions-waermepumpe
JPS57179544A (en) * 1981-04-24 1982-11-05 Nippon Denso Co Refrigerating cycle
JPH0124677Y2 (ja) * 1986-04-19 1989-07-26
JPH035674A (ja) 1989-06-01 1991-01-11 Hitachi Ltd 冷媒回路
JP2818965B2 (ja) * 1990-04-05 1998-10-30 株式会社日立製作所 冷凍装置
DE4036854C1 (ja) 1990-11-19 1992-05-21 Thermal-Werke, Waerme-, Kaelte-, Klimatechnik Gmbh, 6832 Hockenheim, De
JP3257109B2 (ja) * 1993-01-19 2002-02-18 株式会社デンソー 車両用冷凍サイクル制御装置
JP4277397B2 (ja) * 1999-12-02 2009-06-10 三菱電機株式会社 冷凍装置
EP1134517B1 (en) * 2000-03-15 2017-07-26 Denso Corporation Ejector cycle system with critical refrigerant pressure
JP4032875B2 (ja) * 2001-10-04 2008-01-16 株式会社デンソー エジェクタサイクル
US6698221B1 (en) * 2003-01-03 2004-03-02 Kyung Kon You Refrigerating system
US6918266B2 (en) * 2003-04-21 2005-07-19 Denso Corporation Ejector for vapor-compression refrigerant cycle
CN1291196C (zh) * 2004-02-18 2006-12-20 株式会社电装 具有多蒸发器的喷射循环
JP3931899B2 (ja) * 2004-02-18 2007-06-20 株式会社デンソー エジェクタサイクル
US7254961B2 (en) * 2004-02-18 2007-08-14 Denso Corporation Vapor compression cycle having ejector
JP2006017444A (ja) * 2004-06-01 2006-01-19 Denso Corp エジェクタサイクルおよびその制御方法
JP4352327B2 (ja) 2004-07-20 2009-10-28 株式会社デンソー エジェクタサイクル
JP2006266660A (ja) * 2004-11-19 2006-10-05 Tgk Co Ltd 膨張装置
JP4600208B2 (ja) * 2005-01-20 2010-12-15 株式会社デンソー エジェクタを用いたサイクル
JP4626531B2 (ja) * 2005-04-01 2011-02-09 株式会社デンソー エジェクタ式冷凍サイクル
JP4259531B2 (ja) 2005-04-05 2009-04-30 株式会社デンソー エジェクタ式冷凍サイクル用ユニット
DE102006062834B4 (de) * 2005-06-30 2016-07-14 Denso Corporation Ejektorkreislaufsystem
US7367202B2 (en) * 2005-08-17 2008-05-06 Denso Corporation Refrigerant cycle device with ejector
KR100712483B1 (ko) * 2005-09-16 2007-04-30 삼성전자주식회사 냉장고 및 그 운전제어방법
JP4737001B2 (ja) * 2006-01-13 2011-07-27 株式会社デンソー エジェクタ式冷凍サイクル

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005308384A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2007078349A (ja) * 2004-02-18 2007-03-29 Denso Corp エジェクタサイクル
JP2005265223A (ja) * 2004-03-16 2005-09-29 Denso Corp 冷凍サイクル装置および冷凍サイクル

Also Published As

Publication number Publication date
DE102007001878B4 (de) 2017-02-02
US20070163293A1 (en) 2007-07-19
US7690218B2 (en) 2010-04-06
US20100139315A1 (en) 2010-06-10
US8429931B2 (en) 2013-04-30
DE102007001878A1 (de) 2007-08-16
JP2007212121A (ja) 2007-08-23

Similar Documents

Publication Publication Date Title
JP4737001B2 (ja) エジェクタ式冷凍サイクル
JP4779928B2 (ja) エジェクタ式冷凍サイクル
JP4622960B2 (ja) エジェクタ式冷凍サイクル
JP4600200B2 (ja) エジェクタ式冷凍サイクル
JP4626531B2 (ja) エジェクタ式冷凍サイクル
JP2007218497A (ja) エジェクタ式冷凍サイクルおよび冷媒流量制御装置
JP6384374B2 (ja) エジェクタ式冷凍サイクル
WO2015029394A1 (ja) エジェクタ式冷凍サイクルおよびエジェクタ
JP4661449B2 (ja) エジェクタ式冷凍サイクル
JP2007163016A (ja) エジェクタ式冷凍サイクルおよびエジェクタ式冷凍サイクルの制御方法
JP4915250B2 (ja) エジェクタ式冷凍サイクル
JP4952830B2 (ja) エジェクタ式冷凍サイクル
JP4715797B2 (ja) エジェクタ式冷凍サイクル
WO2019017168A1 (ja) エジェクタ式冷凍サイクル
JP4725449B2 (ja) エジェクタ式冷凍サイクル
WO2017217142A1 (ja) 冷凍サイクル装置
JP4888050B2 (ja) 冷凍サイクル装置
JP5021326B2 (ja) エジェクタ式冷凍サイクル
JP6327088B2 (ja) エジェクタ式冷凍サイクル
JP6547698B2 (ja) エジェクタ式冷凍サイクル
JP6511873B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP5991271B2 (ja) エジェクタ式冷凍サイクル
JP4259605B2 (ja) エジェクタ式冷凍サイクル
JP2008075926A (ja) エジェクタ式冷凍サイクル
JP2007162962A (ja) エジェクタ式冷凍サイクルおよびエジェクタ式冷凍サイクルの分岐構造

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R151 Written notification of patent or utility model registration

Ref document number: 4737001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees