JP4729750B2 - Optical glass and optical element - Google Patents
Optical glass and optical element Download PDFInfo
- Publication number
- JP4729750B2 JP4729750B2 JP2001570569A JP2001570569A JP4729750B2 JP 4729750 B2 JP4729750 B2 JP 4729750B2 JP 2001570569 A JP2001570569 A JP 2001570569A JP 2001570569 A JP2001570569 A JP 2001570569A JP 4729750 B2 JP4729750 B2 JP 4729750B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- glass
- optical
- zno
- bao
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000005304 optical glass Substances 0.000 title claims description 37
- 230000003287 optical effect Effects 0.000 title claims description 21
- 239000011521 glass Substances 0.000 claims description 93
- 239000006185 dispersion Substances 0.000 claims description 27
- 230000002547 anomalous effect Effects 0.000 claims description 23
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 20
- 229910018068 Li 2 O Inorganic materials 0.000 claims description 19
- 229910052731 fluorine Inorganic materials 0.000 claims description 9
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 8
- 239000011737 fluorine Substances 0.000 claims description 8
- 238000000691 measurement method Methods 0.000 claims description 2
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims 2
- 230000000052 comparative effect Effects 0.000 description 14
- 239000000126 substance Substances 0.000 description 13
- 230000000694 effects Effects 0.000 description 10
- 239000000203 mixture Substances 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 229910005793 GeO 2 Inorganic materials 0.000 description 4
- 238000004031 devitrification Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- 230000004075 alteration Effects 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000007496 glass forming Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000005308 flint glass Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000006060 molten glass Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
Description
技術分野
この発明は、PbOを含有せず、屈折率(nd)が1.60〜1.78、アッベ数(νd)が29〜45の範囲の光学定数を有し、かつ、大きな負の異常分散性を有する光学ガラス及びこの光学ガラスから得られる光学素子に関するものである。
背景技術
光学レンズ系において、二色光についての色収差は、大きな異常分散性を有しない正常な光学ガラスであって、異なるアッベ数を有する二種の正常な光学ガラスを組み合わせて使用することにより取り除くことができる。しかし、他の色光については、なお、二次スペクトルとして示される色収差が残存する。そのため、これらの二次スペクトルの補正、特に可視光の青色領域から紫外域における補正がレンズ設計上望まれている。上記二次スペクトルは、大きな正の異常分散性を示す光学ガラスと、大きな負の異常分散性を示す光学ガラスとを組み合わせることにより、かなり減少させることができる。
従来、上記範囲の光学定数を有し、かつ、負の異常分散性を有する光学ガラスとして、特公昭45−2311号公報に開示されているSiO2−Al2O3−PbO−B2O3系のガラスや、特開昭48−74516号公報に開示されているSiO2−Al2O3−PbO−B2O3−Sb2O3系のガラスが知られている。しかし、これらのガラスは、多量のPbOを含有しているため、密度が高く重量が増し使用上不利であるという問題点がある。また、これらのガラスを製造、加工および廃棄する際の環境対策に要するコストが高いという問題点もある。さらに、これらのガラスは、化学的耐久性が十分でない。
一方、PbOを含有しないガラスとして、特公昭51−34407号公報には、ガラス形成材として、SiO2、B2O3およびGeO2を含有し、かつ、Li2O、ZnO、ZrO2およびTa2O5を含有する組成系のガラスが開示されている。しかし、このガラスは、所望の屈折率および負の異常分散性を得るための成分として、原料が非常に高価なGeO2およびTa2O5を多量に含有しているため経済的に不利である。また、ガラスの溶融性にも難があり、均質なガラスを得難い。
また、特公昭58−46459号公報には、屈折率(nd)が1.61〜1.80、アッベ数(分散値)(νd)が28〜43の範囲の光学定数を有するSiO2−Nb2O5−R2O−RO系のガラスが開示されている。しかし、同号公報は、ガラスの異常分散性について何も示唆していない。
さらに、特開平10−130033号公報および特開平10−265238号公報には、SiO2−B2O3−ZrO2−Nb2O5系のガラスが開示されている。しかし、これらのガラスは、いずれも、比較的多量のB2O3成分を必須成分として含有しているため、大きな負の異常分散性を有するもののガラス構造が弱くなり化学的耐久性が十分でないという欠点がある。
本発明の目的は、上記従来技術に見られる諸欠点を解消し、PbOのような環境対策にコストを要する成分を含有せず、原料コストが高いGeO2を必須成分として含有しないガラスであり、屈折率(nd)が1.60〜1.78、アッベ数(νd)が29〜45の範囲の光学定数を有し、大きな負の異常分散性を有し、かつ、化学的耐久性および均質性に優れた光学ガラスを提供することにある。 また、本発明の他の目的は、この光学ガラスから得られる光学素子を提供することである。
発明の開示
上記の問題点を解決するため、本発明者等は、鋭意試験研究を重ねた結果、特定組成範囲のSiO2−ZrO2−Nb2O5−Ta2O5−R2O(Rは、Li、NaおよびKから選ばれる1種または2種以上)系ガラスにおいて、前記目的を達成し得ることを見出し、本発明をなすに至った。
すなわち、前記目的を達成するため、本発明の第1の側面によれば、本発明の光学ガラスは、酸化物基準の質量%で、
SiO2 30〜55%、
ZrO2 0.5〜10%、
Nb2O5 20〜50%、
Ta2O5 1〜15%、
Li2O 0〜25%、
Na2O 0〜25%、
K2O 0〜25%、
ただし、Li2O+Na2O+K2O 12〜25%、
MgO 0〜 5%未満、
CaO 0〜 5%未満、
BaO 0〜 5%未満、
ZnO 0〜 5%未満、
ただし、MgO+CaO+BaO+ZnO 0〜 5%未満、
Sb2O3 0〜1%
の範囲の各成分を含有し、SrO、弗素及びB2O3を含有しない。
本発明の光学ガラスは、酸化物基準の質量%で、
SiO2 30〜55%、
ZrO2 0.5〜10%、
Nb2O5 20〜50%、
Ta2O5 1〜15%、
ただし、Nb2O5+Ta2O5が55%以下、
Li2O 0.5〜15%、
Na2O 0〜15%、
K2O 0〜15%、
ただし、Li2O+Na2O+K2O 12〜25%、
MgO 0〜 5%未満、
CaO 0〜 5%未満、
BaO 0〜 5%未満、
ZnO 0〜 5%未満、
ただし、MgO+CaO+BaO+ZnO 0〜 5%未満、
Sb2O3 0〜1%
の範囲の各成分を含有し、SrO、弗素及びB2O3を含有しないものでもよい。
また、本発明の光学ガラスは、酸化物基準の質量%で、
SiO2 30〜47%未満、
ZrO2 0.5〜10%、
Nb2O5 20〜50%、
Ta2O5 1〜15%、
ただし、Nb2O5+Ta2O5が55%以下、
Li2O 0.5〜15%、
Na2O 0〜15%、
K2O 0〜15%、
ただし、Li2O+Na2O+K2O 12〜25%、
MgO 0〜4%、
CaO 0〜4%、
BaO 0〜4%、
ZnO 0〜4%、
ただし、MgO+CaO+BaO+ZnO 0〜4%、
Sb2O3 0〜1%
の範囲の各成分を含有し、SrO、弗素及びB2O3を含有しないものでもよい。
本発明の光学ガラスは、屈折率(nd)が1.60〜1.78、アッベ数(νd)が29〜45の範囲の光学定数を有し、異常分散性を示すΔθg,Fの値が−0.0009以下であってもよい。
ここで、異常分散性を示すΔθg,Fの値は、以下の方法により算出したものである。まず、下記の式(数1)により部分分散比(θg,F)を求める。そして、正常な光学ガラスのうち、下記表1に示す部分分散比(θg,F)およびアッベ数(νd)を有する2硝種のガラス、NSL7およびPBM2(共に株式会社オハラ硝種名)を基準として選ぶ。図1に示すように、縦軸に部分分散比(θg,F)をとり、横軸にアッベ数(νd)をとって、図1中に○で示したこれら2硝種の座標(θg,F、νd)を直線Lで結ぶ。そして、比較するガラスの座標(θg,F、νd)と直線Lとの縦座標の差(Δθg,F)をそのガラスの部分分散比の偏り、すなわち、異常分散性を示す値としたものである。
ここで、ng、nF、nCはそれぞれスペクトル線のg線(光源Hg、波長435.835nm)、F線(光源H、波長486.13nm)、C線(光源H、波長656.27nm)に対するガラスの屈折率である。
以上のようにして算出したΔθg,Fの値がマイナスの場合、換言すれば、図1において、あるガラスの座標が直線Lより下方に位置している場合、そのガラスは負の異常分散性を有している。また、Δθg,Fの値がプラスの場合、すなわち、図1において、あるガラスの座標が直線Lより上方に位置している場合、そのガラスは正の異常分散性を有している。正、負いずれの場合も、Δθg,Fの絶対値が大きいほどそのガラスは大きな異常分散性を有している。
また、本発明の光学ガラスは、日本光学硝子工業会規格「光学ガラスのけい光度の測定方法」(JOGIS03−1975)に基づき測定するガラスのけい光度が級1であってもよい。
本発明の第2の側面によれば、本発明の光学素子は、酸化物基準の質量%で、
SiO2 30〜55%、
ZrO2 0.5〜10%、
Nb2O5 20〜50%、
Ta2O5 1〜15%、
Li2O 0〜25%、
Na2O 0〜25%、
K2O 0〜25%、
ただし、Li2O+Na2O+K2O 12〜25%、
MgO 0〜 5%未満、
CaO 0〜 5%未満、
BaO 0〜 5%未満、
ZnO 0〜 5%未満、
ただし、MgO+CaO+BaO+ZnO 0〜 5%未満、
Sb2O3 0〜 1%
の範囲の各成分を含有し、SrO、弗素及びB2O3を含有しない光学ガラスを用いて得られる。
図面の簡単な説明
図1は、本発明に係る各実施例のガラス、比較例のガラス及び基準のガラスのθg,F(部分分散比)対νd(アッベ数)を示す図である。
発明を実施するための最良の形態
前記のとおり、各成分の組成範囲を限定した理由は、次のとおりである。
SiO2成分は、ガラス形成酸化物であるとともに、ガラスの失透に対する安定性および化学的耐久性を向上させる成分であり、失透に対する安定性および化学的耐久性を維持するためには、30%以上必要であるが、その量が55%を超えるとガラスの粘性が高くなり溶融性が悪くなる。
また、特に溶融性が良く均質性が優れたガラスを得るためにはSiO2成分の量を30以上〜47%未満の範囲とすることがより好ましい。
ZrO2成分は、本発明において、ガラスに含有させることによって、ガラスの屈折率を高め、かつ、負の異常分散性を大きくする効果があることを見出した重要な成分であるが、その量が0.5%未満ではそれらの効果が得られず、また10%を超えるとガラスが失透しやすくなり、安定なガラスを得難くなる。
Nb2O5成分は、所望の光学定数を維持するために欠くことができない成分であり、かつ、紫外線励起により生じるガラスのけい光(蛍光)の強さを低める効果を有する成分である。しかし、Nb2O5成分の量が20%未満では所望の光学定数を維持することが困難となり、また、50%を超えると光線透過性が悪化するとともに、ガラスが失透しやすくなる。
Ta2O5成分は、ガラスに含有させることによって、所望範囲の光学定数を維持しつつ、負の異常分散性を大きくし、かつ、光線透過性および化学的耐久性を向上させる効果があるが、その量が15%を超えると、溶融ガラス中に未溶融物を生じ、均質なガラスを得難くなる。
また、上記効果を十分に得るためには、Ta2O5成分を1%以上含有させるべきである。
また、Nb2O5およびTa2O5成分は、ともに原料コストが高い成分であるため、両成分による上記効果を十分に得つつ、かつ、ガラスの製造コストを低く抑えるためには、両成分の合計量を55%以下とすることがより好ましい。
Li2O、Na2OおよびK2Oの各成分は、いずれも、ガラスの溶融を促進する効果があり、これらの成分を添加することにより、ガラス化範囲を拡大させることができる。さらに、これらの成分には、ガラスに負の異常分散性を与える効果があるが、これらの成分の1種または2種以上の合計量が12%未満であると、上記各効果が十分に得られなくなる。また、これらの成分の1種または2種以上の合計量が25%を超えると、ガラスの化学的耐久性が劣化するとともに、ガラスが失透しやすくなる。特に化学的耐久性が優れたガラスを得るためには、これらの各成分の量を、それぞれ、15%までとすることがより好ましい。また、これらの成分のうちLi2O成分は、特に負の異常分散性を大きくする効果が大きいため、0.5%以上添加することがより好ましい。
BaO、CaO、MgOおよびZnOの各成分は、光学定数の調整、ガラスの溶融性、耐失透性および化学的耐久性の向上のため任意に添加し得るが、これらの成分の一種または二種以上の合計量が5%以上であると、かえってガラスが失透しやすくなるうえ、化学的耐久性も劣化する。特に化学的耐久性および耐失透性が優れたガラスを得るためには、これらの成分の一種または二種以上の合計量を4%までとすることが、より好ましい。Sb2O3成分は、ガラスを清澄、均質化するための脱泡剤として任意に添加しうるが、その量は1%までで十分である。
実施例
次に、本発明にかかる光学ガラスの好適な実施例(No.1〜No.26)の組成ならびに従来公知のSiO2−Nb2O5−R2O−RO系のガラスの比較例(No.A、No.B)の組成およびSiO2−Al2O3−PbO−B2O3系のガラスの比較例(No.C、No.D)の組成を表2〜表9に示す。また、これらのガラスの光学定数(nd、νd)、部分分散比(θg,F)、異常分散性(Δθg,F)、耐酸性のクラス(SR)、反射損失を含む分光透過率80%を示す光線の波長(T80;単位nm)およびけい光度も表2〜表9に示す。また、図1(θg,F対νdを示す図)に、上記実施例(No.1〜No.26)のガラスが示すθg,Fおよびνdの座標を●印、上記比較例(No.A、No.B)のガラスが示すθg,Fおよびνdの座標を■印、上記比較例(No.C、No.D)のガラスが示すθg,Fおよびνdの座標を▲印で示した。なお、異常分散性を示すΔθg,Fの値は、前述の方法により算出したものである。 また、耐酸性を示すクラス(SR)は、国際標準化機構ISO8424:1996(E)の測定方法に準拠し、測定して得た結果を示したものである。ここで、SRは、所定の酸処理液中におけるガラス試料が0.1μmの侵食を受けるのに要した時間(h)によって等級付けしたものである。SRが1、2、3および4の場合は、pH0.3の硝酸溶液を用いて、それぞれ、ガラス試料の侵食に、100を超えるh、100h〜10h、10h未満から1hまで、および1h未満から0.1hまでを要したことを示す。また、SRが5、51、52および53の場合は、pH4.6の酢酸緩衝液を用いて、それぞれ、ガラス試料の侵食に、10を超えるh、10h〜1h、1h未満から0.1hまで、および0.1h未満を要したことを示す。したがって、SRのクラスの値が小さいほどガラスの耐酸性が高く、化学的耐久性が優れていることを示す。
また、T80は、対面研磨した厚さ10mmのガラス試料について測定した結果を示したものである。
また、けい光度(蛍光度)の測定は、日本光学硝子工業会規格「光学ガラスのけい光度の測定方法」(JOGIS03−1975)に基づいて行なった。標準試料として、日本光学硝子工業会指定のフリントガラスを用い、実施例および比較例のガラス試料および上記標準試料に、主波長が365nmの紫外線を照射して生じたけい光の強さを測定した。けい光度は、けい光の強さの測定値から、標準試料に対する各ガラス試料のけい光の強さの比を求め、比が1.5以上の場合を級3、0.7以上から1.5未満の範囲にある場合を級2、0.7未満の場合を級1として示したものである。
表2〜表9に示されるとおり、本発明の実施例のガラス(No.1〜No.26)は、いずれも所望範囲内の屈折率(nd)およびアッベ数(νd)を有している。また、本発明の実施例のガラス(No.1〜No.26)は、比較例No.Aおよび比較例No.Bのガラスと比べ絶対値が大きい負のΔθg,Fの値を示し、大きな負の異常分散性を有している。一方、比較例No.Cおよび比較例No.Dのガラスは、大きな負の異常分散性を有しているが、本発明の実施例のガラス(No.1〜No.26)は、いずれも、耐酸性のクラス(SR)が1であり、比較例No.Cおよび比較例No.Dのガラスと比べ、耐酸性が格段に優れ、化学的耐久性が優れていることが分かる。さらに、比較例(No.A〜No.D)のガラスのけい光度が級3であるのに対し、本発明の実施例のガラス(No.1〜No.26)は、いずれも、けい光度が級1であり、紫外線励起により生じるけい光の強度が非常に小さいことがわかる。
また、反射損失を含む分光透過率80%を示す光線の波長(T80)は、377〜338nmの範囲にあり、紫外域における光線透過性に優れていることが分かる。
また、実施例No.1のガラスは、屈伏点(At)が549℃、転移点(Tg)が497℃であり、実施例No.19のガラスは、屈伏点(At)が562℃、転移点(Tg)が506℃であって、ともに低温軟化性を有しており、低温でプレス成形できる。従って、これらのガラスをプレス成形する時に、ガラスの金型への焼き付きや、金型成形面の酸化による損耗が生じにくい。そのため、実施例No.1及びNo.19のガラスは、精密プレス成形、すなわち、ガラスを高精度な成形面をもつ金型でプレス成形し、成形後、ガラスに研削や研磨を施すことなく、直接、レンズ等の光学素子を得ることができるプレス成形に使用するガラスとして好適である。
なお、本発明にかかる上記実施例(No.1〜No.26)のガラスは、酸化物、炭酸塩および硝酸塩等の通常の光学ガラス用原料を所定の割合となるように秤量し、混合した後、白金坩堝等に投入し、ガラス組成による溶融性に応じて、1100〜1350℃の温度で2〜4時間、溶融、脱泡し、攪拌均質化した後、降温してから金型等に鋳込み徐冷することにより、均質性の優れたガラスを容易に得ることができる。
また、本発明の光学素子は、精密プレス成形等の公知の方法によって、これらの光学ガラスを用いて製造できる。
産業上の利用可能性
以上述べたとおり、本発明の光学ガラスは、特定組成範囲のSiO2−ZrO2−Nb2O5−Ta2O5−R2O(Rは、Li、NaおよびKから選ばれる1種または2種以上)系のガラスであるから、屈折率(nd)が1.60〜1.78、アッベ数(νd)が29〜45の範囲の光学定数および大きな負の異常分散性を有し、優れた化学的耐久性および均質性を有しており、各種光学機器のレンズ等として用いるのに好適である。また、本発明の光学ガラスは、GeO2等の原料が非常に高価な成分を含有せず、かつ、環境対策にコストを要するPbOを含有していないため経済的に有利である。さらに、本発明の光学ガラスは、紫外域における光線透過性に優れ、かつ、紫外線励起によるけい光度が小さく、低けい光性を有しているため、蛍光測定用溶液セル、固体撮像素子のカバーガラス、蛍光顕微鏡の対物レンズ等の低けい光性が要求されるガラス部材として用いるのにも適している。また、低温軟化性を有しているため、プレス成形したガラスを研削または研磨をすることなく、そのままレンズ等の光学素子として使用することができる精密プレス成形用のガラスとしても適している。
【図面の簡単な説明】
図1は、本発明に係る各実施例のガラス、比較例のガラス及び基準のガラスのθg,F(部分分散比)対νd(アッベ数)を示す図である。TECHNICAL FIELD This invention does not contain PbO, has a refractive index (nd) of 1.60 to 1.78, an Abbe number (νd) of 29 to 45, and a large negative anomaly. The present invention relates to an optical glass having dispersibility and an optical element obtained from the optical glass.
Background Art In an optical lens system, chromatic aberration with respect to dichroic light is a normal optical glass that does not have large anomalous dispersion, and is removed by using a combination of two normal optical glasses having different Abbe numbers. Can do. However, for other color lights, the chromatic aberration shown as the secondary spectrum still remains. Therefore, correction of these secondary spectra, particularly correction from the blue region to the ultraviolet region of visible light, is desired in terms of lens design. The secondary spectrum can be considerably reduced by combining an optical glass exhibiting a large positive anomalous dispersion and an optical glass exhibiting a large negative anomalous dispersion.
Conventionally, as an optical glass having an optical constant in the above range and having negative anomalous dispersion, SiO 2 —Al 2 O 3 —PbO—B 2 O 3 disclosed in Japanese Patent Publication No. 45-2311 is disclosed. A glass based on SiO 2 and an SiO 2 —Al 2 O 3 —PbO—B 2 O 3 —Sb 2 O 3 based glass disclosed in JP-A-48-74516 are known. However, since these glasses contain a large amount of PbO, there is a problem that the density is high and the weight is increased, which is disadvantageous in use. In addition, there is a problem that the cost required for environmental measures when manufacturing, processing and discarding these glasses is high. Furthermore, these glasses are not sufficiently chemically durable.
On the other hand, as a glass containing no PbO, Japanese Patent Publication No. 51-34407 discloses SiO 2 , B 2 O 3 and GeO 2 as glass forming materials, and Li 2 O, ZnO, ZrO 2 and Ta. A composition glass containing 2 O 5 is disclosed. However, this glass is economically disadvantageous because the raw material contains a large amount of very expensive GeO 2 and Ta 2 O 5 as components for obtaining a desired refractive index and negative anomalous dispersion. . Moreover, the meltability of the glass is also difficult, and it is difficult to obtain a homogeneous glass.
Japanese Patent Publication No. 58-46459 discloses SiO 2 —Nb having an optical constant in the range of refractive index (nd) of 1.61 to 1.80 and Abbe number (dispersion value) (νd) of 28 to 43. A 2 O 5 —R 2 O—RO-based glass is disclosed. However, this publication does not suggest anything about anomalous dispersion of glass.
Further, JP-A-10-130033 and JP-A No. 10-265238, glass SiO 2 -B 2 O 3 -ZrO 2 -Nb 2 O 5 system is disclosed. However, since these glasses all contain a relatively large amount of B 2 O 3 as an essential component, they have a large negative anomalous dispersibility, but the glass structure becomes weak and the chemical durability is not sufficient. There is a drawback.
The purpose of the present invention is a glass that eliminates the disadvantages found in the above prior art, does not contain components that require cost for environmental measures such as PbO, and does not contain GeO 2 as an essential component, which has a high raw material cost, Refractive index (nd) has an optical constant in the range of 1.60 to 1.78, Abbe number (νd) in the range of 29 to 45, large negative anomalous dispersion, chemical durability and homogeneity The object is to provide an optical glass having excellent properties. Another object of the present invention is to provide an optical element obtained from the optical glass.
To solve the disclosure above problems of the present invention, the present inventors as a result of extensive research, SiO 2 -ZrO specific composition range 2 -Nb 2 O 5 -Ta 2 O 5 -R 2 O ( R is one or more selected from Li, Na and K) glass, and has found that the object can be achieved, and has led to the present invention.
That is, in order to achieve the above object, according to the first aspect of the present invention, the optical glass of the present invention has a mass% based on an oxide,
ZrO 2 0.5-10%,
Nb 2 O 5 20-50%,
Ta 2 O 5 1-15%,
Li 2 O 0-25%,
Na 2 O 0-25%,
K 2 O 0-25%,
However, Li 2 O + Na 2 O + K 2 O 12~25%,
MgO 0 to less than 5%,
CaO 0 to less than 5%,
BaO 0 to less than 5%,
ZnO 0 to less than 5%,
However, MgO + CaO + BaO + ZnO 0 to less than 5%,
Sb 2 O 3 0 to 1%
In the range, each component is contained, and SrO, fluorine and B 2 O 3 are not contained.
The optical glass of the present invention is in mass% based on oxide,
ZrO 2 0.5-10%,
Nb 2 O 5 20-50%,
Ta 2 O 5 1-15%,
However, Nb 2 O 5 + Ta 2 O 5 is 55% or less,
Li 2 O 0.5~15%,
Na 2 O 0-15%,
K 2 O 0-15%,
However, Li 2 O + Na 2 O + K 2 O 12~25%,
MgO 0 to less than 5%,
CaO 0 to less than 5%,
BaO 0 to less than 5%,
ZnO 0 to less than 5%,
However, MgO + CaO + BaO + ZnO 0 to less than 5%,
Sb 2 O 3 0 to 1%
These components may be contained without containing SrO, fluorine and B 2 O 3 .
Further, the optical glass of the present invention is in mass% based on oxide,
SiO 2 30 to less than 47%,
ZrO 2 0.5-10%,
Nb 2 O 5 20-50%,
Ta 2 O 5 1-15%,
However, Nb 2 O 5 + Ta 2 O 5 is 55% or less,
Li 2 O 0.5~15%,
Na 2 O 0-15%,
K 2 O 0-15%,
However, Li 2 O + Na 2 O + K 2 O 12~25%,
MgO 0-4%,
CaO 0-4%,
BaO 0-4%,
ZnO 0-4%,
However, MgO + CaO + BaO + ZnO 0-4%,
Sb 2 O 3 0 to 1%
These components may be contained without containing SrO, fluorine and B 2 O 3 .
The optical glass of the present invention has optical constants in the range of refractive index (nd) of 1.60 to 1.78 and Abbe number (νd) of 29 to 45, and the values of Δθg and F indicating anomalous dispersion are It may be −0.0009 or less.
Here, the value of Δθg, F indicating anomalous dispersion is calculated by the following method. First, the partial dispersion ratio (θg, F) is obtained by the following equation (Equation 1). Of the normal optical glasses, two glass types having the partial dispersion ratio (θg, F) and Abbe number (νd) shown in Table 1 below, NSL7 and PBM2 (both OHARA Glass Co., Ltd.) are selected as references. . As shown in FIG. 1, the vertical axis indicates the partial dispersion ratio (θg, F), the horizontal axis indicates the Abbe number (νd), and the coordinates (θg, F) of these two glass types indicated by ○ in FIG. , Νd) are connected by a straight line L. Then, the difference (Δθg, F) in the ordinate between the coordinates (θg, F, νd) of the glass to be compared and the straight line L is set as a value indicating the partial dispersion ratio of the glass, that is, a value indicating anomalous dispersion. is there.
Here, n g, n F, n C each g-ray spectral line (light source Hg, wavelength 435.835 nm), F line (light source H, wavelength 486.13 nm), C line (light source H, wavelength 656.27nm ) Is the refractive index of the glass.
When the value of Δθg, F calculated as described above is negative, in other words, in FIG. 1, when the coordinates of a certain glass are located below the straight line L, the glass exhibits negative anomalous dispersion. Have. When the values of Δθg and F are positive, that is, when the coordinates of a certain glass are located above the straight line L in FIG. 1, the glass has positive anomalous dispersion. In both positive and negative cases, the larger the absolute value of Δθg, F, the greater the anomalous dispersion of the glass.
In addition, the optical glass of the present invention is, Kei luminosity of glass to be measured on the basis of the Japan Optical Glass Industry Association standard "method of measuring the Kei intensity of optical glass" (JOGIS03- 1975) may be of Class 1.
According to the second aspect of the present invention, the optical element of the present invention is in mass% based on oxide,
SiO 2 30~55%,
ZrO 2 0.5-10%,
Nb 2 O 5 20-50%,
Ta 2 O 5 1-15%,
Li 2 O 0-25%,
Na 2 O 0-25%,
K 2 O 0-25%,
However, Li 2 O + Na 2 O + K 2 O 12~25%,
MgO 0 to less than 5%,
CaO 0 to less than 5%,
BaO 0 to less than 5%,
ZnO 0 to less than 5%,
However, MgO + CaO + BaO + ZnO 0 to less than 5%,
Sb 2 O 3 0 to 1%
It is obtained by using an optical glass containing each component in the range of SrO, fluorine and B 2 O 3 .
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing θg, F (partial dispersion ratio) vs. νd (Abbe number) of the glass of each example according to the present invention, the glass of a comparative example, and the reference glass.
BEST MODE FOR CARRYING OUT THE INVENTION As described above, the reasons for limiting the composition range of each component are as follows.
The SiO 2 component is a glass-forming oxide and is a component that improves the stability and chemical durability against devitrification of the glass. In order to maintain the stability and chemical durability against devitrification, 30 % Or more is necessary, but if the amount exceeds 55%, the viscosity of the glass increases and the meltability deteriorates.
In order to obtain a glass having particularly good meltability and excellent homogeneity, it is more preferable that the amount of the SiO 2 component is in the range of 30 to less than 47%.
In the present invention, the ZrO 2 component is an important component that has been found to have an effect of increasing the refractive index of the glass and increasing the negative anomalous dispersibility by being contained in the glass. If it is less than 0.5%, those effects cannot be obtained, and if it exceeds 10%, the glass tends to devitrify and it is difficult to obtain a stable glass.
The Nb 2 O 5 component is an indispensable component for maintaining a desired optical constant, and is a component having an effect of reducing the intensity of fluorescence (fluorescence) of glass generated by ultraviolet excitation. However, if the amount of the Nb 2 O 5 component is less than 20%, it is difficult to maintain a desired optical constant, and if it exceeds 50%, the light transmittance deteriorates and the glass tends to devitrify.
When Ta 2 O 5 component is contained in glass, it has the effect of increasing negative anomalous dispersibility and improving light transmittance and chemical durability while maintaining the optical constant in a desired range. If the amount exceeds 15%, an unmelted product is produced in the molten glass, and it becomes difficult to obtain a homogeneous glass.
Further, in order to sufficiently obtain the above effect, the Ta 2 O 5 component should be contained at 1% or more.
In addition, since both Nb 2 O 5 and Ta 2 O 5 components are components having high raw material costs, both components can be used in order to sufficiently obtain the above-described effects of both components and to keep the manufacturing cost of glass low. More preferably, the total amount of is 55% or less.
Each component of Li 2 O, Na 2 O and K 2 O has an effect of promoting melting of the glass, and the vitrification range can be expanded by adding these components. Furthermore, these components have an effect of imparting negative anomalous dispersion to the glass. However, when the total amount of one or more of these components is less than 12%, the above effects can be sufficiently obtained. It becomes impossible. If the total amount of one or more of these components exceeds 25%, the chemical durability of the glass deteriorates and the glass tends to devitrify. In particular, in order to obtain a glass having excellent chemical durability, the amount of each of these components is more preferably up to 15%. Of these components, the Li 2 O component is more preferably added in an amount of 0.5% or more because it has a particularly large effect of increasing negative anomalous dispersion.
Each component of BaO, CaO, MgO and ZnO can be optionally added to adjust the optical constant, improve the meltability, devitrification resistance and chemical durability of the glass. One or two of these components can be added. If the total amount is 5% or more, the glass tends to be devitrified, and the chemical durability is deteriorated. In particular, in order to obtain a glass excellent in chemical durability and devitrification resistance, it is more preferable to set the total amount of one or more of these components to 4%. The Sb 2 O 3 component can be optionally added as a defoaming agent for clarifying and homogenizing the glass, but up to 1% is sufficient.
Examples Next, compositions of preferred examples (No. 1 to No. 26) of the optical glass according to the present invention and comparative examples of conventionally known SiO 2 —Nb 2 O 5 —R 2 O—RO-based glasses. (No. a, No.B) Comparative example glass composition and SiO 2 -Al 2 O 3 -PbO- B 2 O 3 system (No. C, No. D) the composition of Table 2 to Table 9 Show. Also, the optical constants (nd, νd), partial dispersion ratio (θg, F), anomalous dispersion (Δθg, F), acid resistance class (SR), and spectral transmittance 80% including reflection loss of these glasses are obtained. Tables 2 to 9 also show the wavelength of light (T 80 ; unit nm) and fluorescence. Further, in FIG. 1 (a diagram showing θg, F vs. νd), the coordinates of θg, F and νd shown by the glass of the above examples (No. 1 to No. 26) are marked with ●, and the comparative example (No. A The coordinates of θg, F and νd indicated by the glass of No. B) are indicated by ▪, and the coordinates of θg, F and νd indicated by the glass of the comparative example (No. C, No. D) are indicated by ▲. The value of Δθg, F indicating anomalous dispersion is calculated by the method described above. The class (SR) indicating acid resistance indicates the results obtained by measurement in accordance with the measurement method of International Standardization Organization ISO 8424: 1996 (E). Here, SR is graded according to the time (h) required for a glass sample in a predetermined acid treatment solution to undergo erosion of 0.1 μm. When SR is 1, 2, 3 and 4, the nitric acid solution with pH 0.3 is used to attack the glass sample for more than 100 h, 100 h to 10 h, less than 10 h to 1 h, and less than 1 h, respectively. It shows that it took up to 0.1h. Moreover, when SR is 5, 51, 52 and 53, the pH 4.6 is used for the erosion of the glass sample, respectively, for erosion of the glass sample from more than 10 h, from 10 h to 1 h, from less than 1 h to 0.1 h. , And less than 0.1 h. Therefore, the smaller the SR class value, the higher the acid resistance of the glass and the better the chemical durability.
Further, T 80 is a diagram showing the results of measurement for the glass sample having a thickness of 10mm which faces polished.
In addition, measurement of silicon luminous intensity (fluorescence) was carried out on the basis of the Japan Optical Glass Industry Association standard "method of measuring the Kei intensity of optical glass" (JOGIS03- 1975). The flint glass designated by the Japan Optical Glass Industry Association was used as the standard sample, and the intensity of the fluorescence produced by irradiating the glass samples of Examples and Comparative Examples and the standard sample with ultraviolet rays having a main wavelength of 365 nm was measured. . For the fluorescence intensity, the ratio of the fluorescence intensity of each glass sample to the standard sample is obtained from the measured value of the fluorescence intensity. A case of less than 5 is shown as class 2, and a case of less than 0.7 is shown as class 1.
As shown in Tables 2 to 9, the glasses (No. 1 to No. 26) of the examples of the present invention all have a refractive index (nd) and an Abbe number (νd) within a desired range. . Moreover, the glass (No.1-No.26) of the Example of this invention is comparative example No.1. A and Comparative Example No. It has a negative Δθg, F value that is larger than that of B glass and has a large negative anomalous dispersion. On the other hand, Comparative Example No. C and Comparative Example No. Although the glass of D has a large negative anomalous dispersibility, all of the glasses (No. 1 to No. 26) of the examples of the present invention have an acid resistance class (SR) of 1. Comparative Example No. C and Comparative Example No. It can be seen that the acid resistance is remarkably excellent and the chemical durability is excellent as compared with the glass of D. Furthermore, while the fluorescence of the glass of the comparative examples (No. A to No. D) is class 3, the glasses of the examples of the present invention (No. 1 to No. 26) are all fluorescent. Is class 1, and it can be seen that the intensity of fluorescence generated by ultraviolet excitation is very small.
The wavelength of the light beam which indicates an 80% spectral transmittance including reflection loss (T 80) is in the range of 377~338Nm, it can be seen that excellent light transmittance in the ultraviolet region.
In addition, Example No. The glass of No. 1 has a yield point (At) of 549 ° C. and a transition point (Tg) of 497 ° C. No. 19 has a yield point (At) of 562 ° C. and a transition point (Tg) of 506 ° C., both of which have low-temperature softening properties and can be press-molded at a low temperature. Therefore, when these glasses are press-molded, the glass is not easily burned into the mold or worn out due to oxidation of the mold surface. Therefore, Example No. 1 and no. Glass No. 19 is precision press-molded, that is, the glass is press-molded with a mold having a high-precision molding surface, and after molding, an optical element such as a lens can be obtained directly without grinding or polishing the glass. It is suitable as a glass used for press molding.
In addition, the glass of the said Example (No.1-No.26) concerning this invention measured and mixed the raw materials for optical glasses, such as an oxide, carbonate, and nitrate, so that it might become a predetermined | prescribed ratio. After that, it is put into a platinum crucible, etc., melted and degassed at a temperature of 1100 to 1350 ° C. for 2 to 4 hours according to the meltability of the glass composition, homogenized with stirring, and then cooled to a mold or the like. By casting and cooling slowly, glass with excellent homogeneity can be easily obtained.
The optical element of the present invention can be produced using these optical glasses by a known method such as precision press molding.
As described above INDUSTRIAL APPLICABILITY The optical glass of the present invention, SiO 2 -ZrO 2 -Nb 2 O 5 -Ta 2 O 5 -R 2 O (R a specific composition range, Li, Na and K 1 type or two or more types of glass selected from the group consisting of optical constants having a refractive index (nd) of 1.60 to 1.78 and an Abbe number (νd) of 29 to 45 and a large negative anomaly. It has dispersibility, has excellent chemical durability and homogeneity, and is suitable for use as a lens of various optical instruments. In addition, the optical glass of the present invention is economically advantageous because the raw material such as GeO 2 does not contain a very expensive component and does not contain PbO that is costly for environmental measures. Furthermore, the optical glass of the present invention is excellent in light transmittance in the ultraviolet region, has low fluorescence due to ultraviolet excitation, and has low fluorescence. It is also suitable for use as a glass member requiring low fluorescence such as glass and an objective lens of a fluorescence microscope. Further, since it has a low temperature softening property, it is also suitable as a glass for precision press molding that can be used as an optical element such as a lens as it is without grinding or polishing the press molded glass.
[Brief description of the drawings]
FIG. 1 is a diagram showing θg, F (partial dispersion ratio) versus νd (Abbe number) of the glass of each example according to the present invention, the glass of the comparative example, and the reference glass.
Claims (7)
SiO2 30〜55%、
ZrO2 0.5〜10%、
Nb2O5 20〜50%、
Ta2O5 1〜15%、
Li2O 0〜25%、
Na2O 0〜25%、
K2O 0〜25%、
ただし、Li2O+Na2O+K2O 12〜25%、
MgO 0〜 5%未満、
CaO 0〜 5%未満、
BaO 0〜 5%未満、
ZnO 0〜 5%未満、
ただし、MgO+CaO+BaO+ZnO 0〜 5%未満、
Sb2O3 0〜 1%
の範囲の各成分を含有し、SrO、弗素及びB2O3を含有しないことを特徴とする光学ガラス。% By mass based on oxide,
SiO 2 30~55%,
ZrO 2 0.5-10%,
Nb 2 O 5 20-50%,
Ta 2 O 5 1-15%,
Li 2 O 0-25%,
Na 2 O 0-25%,
K 2 O 0-25%,
However, Li 2 O + Na 2 O + K 2 O 12~25%,
MgO 0 to less than 5%,
CaO 0 to less than 5%,
BaO 0 to less than 5%,
ZnO 0 to less than 5%,
However, MgO + CaO + BaO + ZnO 0 to less than 5%,
Sb 2 O 3 0 to 1%
An optical glass characterized in that it contains each component in the range, and does not contain SrO, fluorine and B 2 O 3 .
SiO2 30〜55%、
ZrO2 0.5〜10%、
Nb2O5 20〜50%、
Ta2O5 1〜15%、
ただし、Nb2O5+Ta2O5が55%以下、
Li2O 0.5〜15%、
Na2O 0〜15%、
K2O 0〜15%、
ただし、Li2O+Na2O+K2O 12〜25%、
MgO 0〜 5%未満、
CaO 0〜 5%未満、
BaO 0〜 5%未満、
ZnO 0〜 5%未満、
ただし、MgO+CaO+BaO+ZnO 0〜 5%未満、
Sb2O3 0〜1%
の範囲の各成分を含有し、SrO、弗素及びB2O3を含有しないことを特徴とする請求の範囲第1項記載の光学ガラス。% By mass based on oxide,
SiO 2 30~55%,
ZrO 2 0.5-10%,
Nb 2 O 5 20-50%,
Ta 2 O 5 1-15%,
However, Nb 2 O 5 + Ta 2 O 5 is 55% or less,
Li 2 O 0.5~15%,
Na 2 O 0-15%,
K 2 O 0-15%,
However, Li 2 O + Na 2 O + K 2 O 12~25%,
MgO 0 to less than 5%,
CaO 0 to less than 5%,
BaO 0 to less than 5%,
ZnO 0 to less than 5%,
However, MgO + CaO + BaO + ZnO 0 to less than 5%,
Sb 2 O 3 0 to 1%
2. The optical glass according to claim 1, which contains each component in the above range and does not contain SrO, fluorine and B 2 O 3 .
SiO2 30〜47%未満、
ZrO2 0.5〜10%、
Nb2O5 20〜50%、
Ta2O5 1〜15%、
ただし、Nb2O5+Ta2O5が55%以下、
Li2O 0.5〜15%、
Na2O 0〜15%、
K2O 0〜15%、
ただし、Li2O+Na2O+K2O 12〜25%、
MgO 0〜4%、
CaO 0〜4%、
BaO 0〜4%、
ZnO 0〜4%、
ただし、MgO+CaO+BaO+ZnO 0〜4%、
Sb2O3 0〜1%
の範囲の各成分を含有し、SrO、弗素及びB2O3を含有しないことを特徴とする請求の範囲第1項記載の光学ガラス。% By mass based on oxide,
SiO 2 30 to less than 47%,
ZrO 2 0.5-10%,
Nb 2 O 5 20-50%,
Ta 2 O 5 1-15%,
However, Nb 2 O 5 + Ta 2 O 5 is 55% or less,
Li 2 O 0.5~15%,
Na 2 O 0-15%,
K 2 O 0-15%,
However, Li 2 O + Na 2 O + K 2 O 12~25%,
MgO 0-4%,
CaO 0-4%,
BaO 0-4%,
ZnO 0-4%,
However, MgO + CaO + BaO + ZnO 0-4%,
Sb 2 O 3 0 to 1%
2. The optical glass according to claim 1, which contains each component in the above range and does not contain SrO, fluorine and B 2 O 3 .
SiO2 30〜55%、
ZrO2 0.5〜10%、
Nb2O5 20〜50%、
Ta2O5 1〜15%、
Li2O 0〜25%、
Na2O 0〜25%、
K2O 0〜25%、
ただし、Li2O+Na2O+K2O 12〜25%、
MgO 0〜 5%未満、
CaO 0〜 5%未満、
BaO 0〜 5%未満、
ZnO 0〜 5%未満、
ただし、MgO+CaO+BaO+ZnO 0〜 5%未満、
Sb2O3 0〜 1%
の範囲の各成分を含有し、SrO、弗素及びB2O3を含有しない光学ガラスを用いて得られることを特徴とする光学素子。% By mass based on oxide,
SiO 2 30~55%,
ZrO 2 0.5-10%,
Nb 2 O 5 20-50%,
Ta 2 O 5 1-15%,
Li 2 O 0-25%,
Na 2 O 0-25%,
K 2 O 0-25%,
However, Li 2 O + Na 2 O + K 2 O 12~25%,
MgO 0 to less than 5%,
CaO 0 to less than 5%,
BaO 0 to less than 5%,
ZnO 0 to less than 5%,
However, MgO + CaO + BaO + ZnO 0 to less than 5%,
Sb 2 O 3 0 to 1%
An optical element characterized by being obtained using an optical glass containing each component in the range described above and containing no SrO, fluorine and B 2 O 3 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001570569A JP4729750B2 (en) | 2000-03-29 | 2001-03-28 | Optical glass and optical element |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000092273 | 2000-03-29 | ||
JP2000092273 | 2000-03-29 | ||
JP2000246490 | 2000-08-15 | ||
JP2000246490 | 2000-08-15 | ||
JP2001570569A JP4729750B2 (en) | 2000-03-29 | 2001-03-28 | Optical glass and optical element |
PCT/JP2001/002552 WO2001072650A1 (en) | 2000-03-29 | 2001-03-28 | Optical glass and optical element |
Publications (1)
Publication Number | Publication Date |
---|---|
JP4729750B2 true JP4729750B2 (en) | 2011-07-20 |
Family
ID=26588774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001570569A Expired - Lifetime JP4729750B2 (en) | 2000-03-29 | 2001-03-28 | Optical glass and optical element |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4729750B2 (en) |
AU (1) | AU2001244581A1 (en) |
WO (1) | WO2001072650A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022062637A1 (en) * | 2020-09-28 | 2022-03-31 | 成都光明光电股份有限公司 | Optical glass |
WO2022062638A1 (en) * | 2020-09-28 | 2022-03-31 | 成都光明光电股份有限公司 | Optical glass, optical element, and optical device |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007025601B4 (en) * | 2007-05-31 | 2009-04-30 | Schott Ag | Barium heavy-duty optical glasses, their use and method of making an optical element |
JP5545917B2 (en) | 2008-01-31 | 2014-07-09 | 株式会社オハラ | Optical glass |
JP2009286673A (en) * | 2008-05-30 | 2009-12-10 | Ohara Inc | Optical glass, preform and optical element |
JP6086941B2 (en) * | 2008-09-30 | 2017-03-01 | 株式会社オハラ | Optical glass and method for suppressing deterioration of spectral transmittance |
JP5721534B2 (en) * | 2010-06-23 | 2015-05-20 | 株式会社オハラ | Optical glass, preform and optical element |
JP5706231B2 (en) * | 2010-06-23 | 2015-04-22 | 株式会社オハラ | Optical glass, preform and optical element |
JP5783977B2 (en) * | 2012-08-30 | 2015-09-24 | 株式会社オハラ | Optical glass, preform and optical element |
JP6325189B2 (en) * | 2012-10-22 | 2018-05-16 | 株式会社オハラ | Optical glass |
JP6932423B2 (en) | 2015-11-06 | 2021-09-08 | 株式会社オハラ | Optical glass, preforms and optics |
JP7064282B2 (en) | 2015-11-11 | 2022-05-10 | 株式会社オハラ | Optical glass, preforms and optical elements |
JP7064283B2 (en) | 2015-11-11 | 2022-05-10 | 株式会社オハラ | Optical glass, preforms and optical elements |
JP6804264B2 (en) * | 2015-11-11 | 2020-12-23 | 株式会社オハラ | Optical glass, preforms and optics |
US10370289B2 (en) | 2015-11-11 | 2019-08-06 | Ohara Inc. | Optical glass, preform, and optical element |
DE102015119942B4 (en) | 2015-11-18 | 2019-06-19 | Schott Ag | Optical glass with negative anomalous partial dispersion / short flint special glasses |
EP3381871A4 (en) * | 2015-11-24 | 2019-07-10 | AGC Inc. | OPTICAL GLASS |
JP7089844B2 (en) * | 2015-12-07 | 2022-06-23 | 株式会社オハラ | Optical glass, preforms and optical elements |
CN118221347A (en) | 2015-12-07 | 2024-06-21 | 株式会社小原 | Optical glass, prefabricated member and optical element |
JP6937540B2 (en) * | 2015-12-25 | 2021-09-22 | 株式会社オハラ | Optical glass, preforms and optics |
TWI743073B (en) | 2015-12-25 | 2021-10-21 | 日商小原股份有限公司 | Optical glass, preform and optical element |
JP7133901B2 (en) * | 2016-02-29 | 2022-09-09 | 株式会社オハラ | Optical glass, preforms and optical elements |
JP6808428B2 (en) * | 2016-09-30 | 2021-01-06 | キヤノン株式会社 | Optical system and optical equipment with it |
JP7086726B2 (en) * | 2017-12-26 | 2022-06-20 | Hoya株式会社 | Optical glass and optical elements |
JP7272757B2 (en) * | 2018-05-31 | 2023-05-12 | Hoya株式会社 | Optical glasses and optical elements |
JP6840660B2 (en) * | 2017-12-21 | 2021-03-10 | Hoya株式会社 | Optical glass and optical elements |
JP7320110B2 (en) * | 2017-12-26 | 2023-08-02 | Hoya株式会社 | Optical glasses and optical elements |
US11667561B2 (en) * | 2018-11-26 | 2023-06-06 | Corning Incorporated | Glass material with a high index of refraction |
JP7339781B2 (en) * | 2019-06-14 | 2023-09-06 | Hoya株式会社 | Optical glasses and optical elements |
US11787729B2 (en) | 2020-05-18 | 2023-10-17 | Corning Incorporated | Glass compositions with high refractive indexes and low densities |
CN113292242B (en) * | 2021-06-24 | 2022-04-12 | 成都光明光电股份有限公司 | Special dispersion optical glass |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6212635A (en) * | 1985-07-09 | 1987-01-21 | Hoya Corp | Glass composition suitable of producing glass material having refractive index gradient |
JPH05262534A (en) * | 1992-03-17 | 1993-10-12 | Ohara Inc | High-dispersion optical glass |
JPH0848538A (en) * | 1994-08-05 | 1996-02-20 | Ohara Inc | Optical glass |
JPH0859288A (en) * | 1994-03-11 | 1996-03-05 | Deutsche Spezialglas Ag | Optically reversible color changing glass with high refractive index |
JPH10265238A (en) * | 1997-03-25 | 1998-10-06 | Ohara Inc | Optical glass having negative anomalous dispensability |
-
2001
- 2001-03-28 AU AU2001244581A patent/AU2001244581A1/en not_active Abandoned
- 2001-03-28 WO PCT/JP2001/002552 patent/WO2001072650A1/en active Application Filing
- 2001-03-28 JP JP2001570569A patent/JP4729750B2/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6212635A (en) * | 1985-07-09 | 1987-01-21 | Hoya Corp | Glass composition suitable of producing glass material having refractive index gradient |
JPH05262534A (en) * | 1992-03-17 | 1993-10-12 | Ohara Inc | High-dispersion optical glass |
JPH0859288A (en) * | 1994-03-11 | 1996-03-05 | Deutsche Spezialglas Ag | Optically reversible color changing glass with high refractive index |
JPH0848538A (en) * | 1994-08-05 | 1996-02-20 | Ohara Inc | Optical glass |
JPH10265238A (en) * | 1997-03-25 | 1998-10-06 | Ohara Inc | Optical glass having negative anomalous dispensability |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022062637A1 (en) * | 2020-09-28 | 2022-03-31 | 成都光明光电股份有限公司 | Optical glass |
WO2022062638A1 (en) * | 2020-09-28 | 2022-03-31 | 成都光明光电股份有限公司 | Optical glass, optical element, and optical device |
Also Published As
Publication number | Publication date |
---|---|
AU2001244581A1 (en) | 2001-10-08 |
WO2001072650A1 (en) | 2001-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4729750B2 (en) | Optical glass and optical element | |
EP1382582B1 (en) | An optical glass | |
JP4358899B2 (en) | Optical glass | |
JP2565813B2 (en) | Optical glass | |
CN113045199B (en) | Ultraviolet-transmitting glass | |
JPWO2007094373A1 (en) | Glass composition | |
JP2006327926A (en) | Optical glass | |
JP6812147B2 (en) | Optical glass, optics blank, and optics | |
TWI850469B (en) | Optical glass and optical components | |
JP7488878B2 (en) | Optical Glass and Optical Elements | |
JP2004292301A (en) | Optical glass | |
CN120025069A (en) | Optical glass, optical element blank, and optical element | |
JP7383375B2 (en) | Optical glass and optical elements | |
JP2024019356A (en) | Optical glass and optical elements | |
JP2024043490A (en) | Optical glass and optical element | |
JPH06135738A (en) | Optical glass | |
JP6812148B2 (en) | Optical glass, optics blank, and optics | |
JP7517805B2 (en) | Optical glass, preforms and optical elements | |
TW202114956A (en) | Optical glass and optical element | |
TWI884446B (en) | Optical glass and optical components | |
JP7320110B2 (en) | Optical glasses and optical elements | |
TWI884342B (en) | Optical glass and optical components | |
JP3152679B2 (en) | Optical glass | |
JP7555747B2 (en) | Optical Glass and Optical Elements | |
JP7682005B2 (en) | Optical glass, preforms and optical elements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070928 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110308 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110331 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4729750 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |