[go: up one dir, main page]

JP4725230B2 - Method for producing sintered ore - Google Patents

Method for producing sintered ore Download PDF

Info

Publication number
JP4725230B2
JP4725230B2 JP2005221047A JP2005221047A JP4725230B2 JP 4725230 B2 JP4725230 B2 JP 4725230B2 JP 2005221047 A JP2005221047 A JP 2005221047A JP 2005221047 A JP2005221047 A JP 2005221047A JP 4725230 B2 JP4725230 B2 JP 4725230B2
Authority
JP
Japan
Prior art keywords
ore
mass
iron ore
iron
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005221047A
Other languages
Japanese (ja)
Other versions
JP2007031818A (en
Inventor
秀明 佐藤
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005221047A priority Critical patent/JP4725230B2/en
Publication of JP2007031818A publication Critical patent/JP2007031818A/en
Application granted granted Critical
Publication of JP4725230B2 publication Critical patent/JP4725230B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、高炉製銑法等の主原料として用いられる焼結鉱の製造方法に関するものである。   The present invention relates to a method for producing a sintered ore used as a main raw material for a blast furnace ironmaking method or the like.

高炉の主原料である焼結鉱は、一般に以下のようにして製造される。まず、原料鉱石(粉鉄鉱石)に、石灰粉等のCaO含有副原料、珪石や蛇紋岩等のSiO含有副原料及びコークス粉等の炭材を配合し、これに適量の水を加えて混合・造粒する。この造粒された配合原料(焼結原料)を、ドワイトロイド式焼結機のパレット上に所定の厚さに充填し、この充填ベッド表層部の炭材に着火後、下方に向けて空気を吸引しながら充填ベッド内部の炭材を燃焼させ、その燃焼熱により配合原料を焼結させて焼結ケーキとする。そして、この焼結ケーキを粉砕・整粒することにより、粒径が数mm以上の成品焼結鉱が得られる。 Sinter ore, which is the main raw material of a blast furnace, is generally manufactured as follows. First, a raw material ore (pulverized iron ore) is blended with CaO-containing auxiliary materials such as lime powder, SiO 2- containing auxiliary materials such as silica and serpentine, and carbon materials such as coke powder, and an appropriate amount of water is added thereto. Mix and granulate. This granulated compounded raw material (sintered raw material) is filled onto a pallet of a Dwytroid type sintering machine to a predetermined thickness, and after igniting the carbonaceous material on the surface of the packed bed, air is directed downward. The carbonaceous material inside the packed bed is burned while being sucked, and the blended raw material is sintered by the combustion heat to obtain a sintered cake. Then, by pulverizing and sizing the sintered cake, a product sintered ore having a particle size of several mm or more can be obtained.

安定した高炉操業を行うためには、高品質の焼結鉱が求められる。一般に、焼結鉱の品質は冷間強度、還元粉化指数(RDI)、被還元性(RI)などが指標とされるが、これらが指標となる成品焼結鉱の品質は、高炉操業における炉内荷下がり状態の安定性、炉内通気性や通液性、鉱石の還元効率、高温性状等に対して大きな影響を及ぼす。このため焼結鉱の製造プロセスでは厳しい品質管理が行なわれている。また、焼結鉱の製造コストを低減させるために焼結鉱の成品歩留まりの向上が求められ、さらに焼結鉱製造ラインの効率化と生産性の向上が求められる。   In order to perform stable blast furnace operation, high-quality sintered ore is required. In general, the quality of sintered ore is indicated by cold strength, reduced powder index (RDI), reducibility (RI), etc., but the quality of the product sinter ore, which uses these as indicators, It has a great influence on the stability of the lowered state in the furnace, air permeability and liquid permeability in the furnace, ore reduction efficiency, high temperature properties, and the like. For this reason, strict quality control is performed in the manufacturing process of sintered ore. Moreover, in order to reduce the manufacturing cost of a sintered ore, the improvement of the product yield of a sintered ore is calculated | required, and also the efficiency improvement and productivity improvement of a sintered ore production line are calculated | required.

わが国は国内に鉄鉱石資源を持たないため、焼結鉱用原料である鉄鉱石は100%海外からの輸入に頼っている。近年、鉄鉱石の輸入は、豪州系鉱石が約65%を占め、南米系鉱石が約20〜25%、インド系鉱石が約10〜15%程度である。
ここで、P(燐,以下同様)含有量が比較的少ない鉄鉱石は、その構成鉱物から表1に例示するようにヘマタイト鉱石、マグネタイト鉱石、リモナイト鉱石、マラマンバ鉱石に大別される。これらのうちのヘマタイト鉱石、リモナイト鉱石、マラマンバ鉱石の組織拡大写真を図3に示す。
Since Japan does not have iron ore resources in the country, iron ore, which is a raw material for sintered ore, is 100% dependent on imports from overseas. In recent years, iron ore imports account for about 65% of Australian ores, about 20-25% of South American ores, and about 10-15% of Indian ores.
Here, iron ores having a relatively small P (phosphorus, hereinafter the same) content are roughly classified into hematite ore, magnetite ore, limonite ore, and maramamba ore as shown in Table 1 from the constituent minerals. Among these, a structure enlarged photograph of hematite ore, limonite ore and maramamba ore is shown in FIG.

南米系鉱石は、脈石成分が少なくFe品位の高いヘマタイト鉱石が主体で、一部マグネタイト鉱石もあり、従来から良質の焼結鉱用原料として用いられている。しかし、産地が遠距離であるために輸送費が高いという問題がある。
インド系鉱石は、SiO等の脈石分は南米系鉱石に比べ高いものの、良質なヘマタイト鉱石や結晶水を4〜5mass%程度含むヘマタイト鉱石が代表的鉱石であり、重要な鉄鉱石資源の一つではある。しかし、南米、豪州に比べて、埋蔵量が少なく且つ採鉱及び港への輸送・積み出しのためのインフラの整備が遅れていること、さらに、モンスーンの影響で出荷時期に制約があること、などの問題があり、その輸入比率は伸び悩んでいる。
South American ores are mainly hematite ores with low gangue components and high Fe grade, and some magnetite ores have been used as high-quality raw materials for sintered ore. However, there is a problem that the transportation cost is high because the production area is a long distance.
Although Indian ores have high gangue content such as SiO 2 compared to South American ores, high-quality hematite ores and hematite ores containing about 4 to 5 mass% of crystal water are representative ores. There is one. However, compared to South America and Australia, the amount of reserves is small, infrastructure development for mining and transportation / shipping to the port is delayed, and there are restrictions on the shipping time due to the influence of monsoon, etc. There are problems, and the import ratio is sluggish.

一方、豪州系鉱石は鉱山会社の積極的な投資もあり、1980年代から生産量が大幅に伸びており、鉄鉱石供給のメインソースとなっている。しかしながら、従来、わが国製鉄業において好適に利用されてきた良質なヘマタイト鉱石は、開発後30年を経て急速に枯渇の方向に向かいつつあり、また、1990年代中頃から開発が行われてきたリモナイト鉱石も生産量的には頭打ちとなっている。これに対して、近年新規に開発される鉱山は、マラマンバ鉱石を主体とする鉱石を産出するものが多い。   Australian ore, on the other hand, has been actively invested by mining companies, and its production volume has grown significantly since the 1980s, making it the main source of iron ore supply. However, the high-quality hematite ore that has been used favorably in Japan's steel industry has been rapidly depleting 30 years after its development, and the limonite ore that has been developed since the mid-1990s. However, production has reached a peak. On the other hand, many newly developed mines in recent years produce ores mainly composed of maramamba ore.

ここで、マラマンバ鉱石とは、豪州のマラマンバ鉱床から産出される鉄鉱石の総称であって、一般にはゲーサイト(Fe・HO)とマータイト(マグネタイト構造を有するFe)を主要鉱物とし、且つへマタイト鉱石に較べて結晶水含有率が高い鉱石である。銘柄名では、ウェストアンジェラス鉱、MAC鉱などが代表的な鉄鉱石である。また、リモナイト鉱石の代表例としては、ピソライト鉱石がある。このピソライト鉱石は、一般には、魚卵状のへマタイト(Fe)の隙間をゲーサイト(Fe・HO)が埋めた内部構造を有し、且つマラマンバ鉱石よりもさらに結晶水含有率が高い鉱石である。銘柄名では、ローブリバー鉱、ヤンディクージナ鉱などが代表的な鉄鉱石である。 Here, the Mara Mamba ore is a general term for iron ores produced from the Mara Mamba deposit in Australia, and is generally a goethite (Fe 2 O 3 .H 2 O) and martite (Fe 2 O 3 having a magnetite structure). Is an ore with a high crystal water content compared to hematite ore. By brand name, West Angelus ore and MAC ore are typical iron ores. A typical example of limonite ore is pisolite ore. This pisolite ore generally has an internal structure in which the gap between fish egg-like hematite (Fe 2 O 3 ) is filled with goethite (Fe 2 O 3 .H 2 O), and is further more than maramanba ore. It is an ore with a high crystal water content. In the brand name, lobe river ore and yandi coujina ore are typical iron ores.

また、上述した各種の鉄鉱石のようにP含有量が0.10mass%未満(通常、0.06mass%以下)の鉄鉱石に対して、一般にPを0.10mass%以上含有するような鉄鉱石は高燐鉱石と呼ばれる。このようなP含有量の高い鉄鉱石を高炉原料として使用することは、製造される溶銑のP濃度を高め、製鋼工程での脱燐処理の負荷を増大させることになるため、従来ではほとんど使用されていなかった。しかし、上述したように良質な鉄鉱石の供給量が減少しつつあることから、この高燐鉱石についても、焼結原料として相当量配合することが検討されつつある。   In addition, iron ores generally containing 0.10 mass% or more of P with respect to iron ores having a P content of less than 0.10 mass% (usually 0.06 mass% or less) like the various iron ores described above. Is called high phosphate ore. The use of such iron ore with a high P content as a blast furnace raw material increases the P concentration of the hot metal produced and increases the load of dephosphorization treatment in the steelmaking process. Was not. However, since the supply amount of high-quality iron ore is decreasing as described above, it is being studied to add a considerable amount of this high phosphate ore as a sintering raw material.

従来から用いられてきたヘマタイト鉱石は焼結性も良く、CaO源副原料を加えて塩基度(CaO/SiO)が1.7以上になるよう原料配合を調整した焼結鉱は品質、生産性、歩留りともに良好である。
これに対して、豪州系鉱石のうちリモナイト鉱石は、通常、結晶水を9〜11mass%程度含有し、微粉部分は少なく粒度は粗いが、図3の組織写真にも見られるように、鉱物組織中に粗大気孔が多い。このためリモナイト鉱石を焼成すると鉱石中の結晶水が抜けてさらに多孔質化し、亀裂が派生するため、衝撃を加えると粉化しやすい。また、結晶水の抜けた比較的粗い気孔内に、焼結過程においてCaO源副原料と鉄鉱石とが反応して生成したCaO系融液が浸入すると、急激に同化して過剰な溶融を引き起こす。そのため、リモナイト鉱石を多量に配合した場合には、焼結鉱の強度が低下するだけでなく、焼結ベッド内に過剰融液を発生させて岩板状に成長する部位が生じ、この過溶融部分と他の部分とで通気に著しいムラが生じて、過溶融した岩板状の部分の下方には未焼成部分が残されるため、歩留りの著しい低下が起こる。
Conventionally used hematite ore has good sinterability. Sintered ore is adjusted in quality and production so that the basicity (CaO / SiO 2 ) is adjusted to 1.7 or more by adding CaO source auxiliary material. Both sex and yield are good.
On the other hand, limonite ore among Australian ores usually contains about 9 to 11 mass% of crystal water, and there are few fine parts and the particle size is coarse, but as shown in the structure photograph of FIG. There are many rough air holes inside. For this reason, when the limonite ore is baked, the crystal water in the ore is released to make it more porous and cracks are derived. In addition, when a CaO-based melt formed by the reaction of the CaO source auxiliary material and iron ore in the sintering process intrudes into the relatively coarse pores from which crystal water has been removed, it rapidly assimilates and causes excessive melting. . Therefore, when a large amount of limonite ore is blended, not only does the strength of the sintered ore decrease, but a portion that grows in the form of a rock plate by generating excess melt in the sintering bed is generated, and this overmelting occurs. A significant unevenness occurs in ventilation between the part and the other part, and an unfired part is left below the overmelted rock-like part, resulting in a significant reduction in yield.

一方、豪州系鉱石として新規に開発され、今後使用量の大幅な増大が見込まれるマラマンバ鉱石は、一般に結晶水含有量は4〜6mass%程度であり、リモナイト鉱石に比べると粗大気孔は少なく結晶水も少ないため、焼成時の過剰な溶融は緩和される。しかし、微細な気孔が組織全体にあるため、融液を吸収しやすく、吸収された融液が周辺部から鉱石を同化させ、融液中のFe濃度が上がると急激に粘度が上昇し、内部に気孔を残したまま焼成が完了する。このため隣接する鉱石には融液が充分行き渡らなくなり、また、マラマンバ鉱石部分は細かい気孔を残したまま焼結鉱となるため、強度が低下して歩留りも低下する。さらに、マラマンバ鉱石は粒度が細かいために、大量に使用した場合には、焼結の原料処理工程において原料造粒後の粒子径が大きくならず、焼結機パレット上に装入されたベッドの通気性が悪化することになり、生産性が低下する。   On the other hand, maramamba ore, which is newly developed as an Australian ore and is expected to increase in use in the future, generally has a crystal water content of about 4 to 6 mass%, and it has less rough atmospheric pores than limonite ore. Therefore, excessive melting during firing is alleviated. However, since fine pores exist in the entire structure, it is easy to absorb the melt, and the absorbed melt assimilates the ore from the periphery, and when the Fe concentration in the melt increases, the viscosity rapidly increases and the internal Firing is completed with the pores left behind. For this reason, the melt does not sufficiently spread to adjacent ores, and the maramamba ore portion becomes a sintered ore with fine pores remaining, so that the strength is lowered and the yield is also lowered. Furthermore, because Mara Mamba ore has a fine particle size, when used in large quantities, the particle size after raw material granulation does not increase in the raw material processing step of sintering, and the bed of the bed charged on the sintering machine pallet does not increase. Air permeability will deteriorate and productivity will fall.

以上のように、良質なヘマタイト鉱石やマグネタイト鉱石が枯渇する傾向にある一方で、リモナイト鉱石やマラマンバ鉱石の大量使用には、得られる焼結鉱の品質や生産性が低下するという大きな問題がある。このため、高品質の焼結鉱(例えば、JIS
M 8712による回転強度:66%以上)を高い生産率(例えば、1.5t/h/m以上)で低コストに製造することは、困難になりつつあるのが現状である。
また、高燐鉱石については、これを相当量使用した場合には溶銑中のP濃度が上昇して脱燐処理の負荷が増大するという問題が考えられるが、従来では焼結原料としての使用実績があまりないことから、焼結原料中に相当量を配合した場合の焼結鉱の品質や生産性、成品歩留りに及ぼす影響についての検討は殆どなされていない。そこで、本発明者らが高燐鉱石の配合が焼結鉱の品質等に及ぼす影響について調査・検討したところ、高燐鉱石の配合量が増加すると焼結鉱の生産率が低下する傾向があることが判明した。
As described above, while high-quality hematite ore and magnetite ore tend to be depleted, large-scale use of limonite ore and maramamba ore has a major problem that the quality and productivity of the resulting sintered ore are reduced. . For this reason, high-quality sintered ore (for example, JIS
Currently, it is becoming difficult to manufacture a high production rate (for example, 1.5 t / h / m 2 or more) at a low cost with a rotational strength of M 8712: 66% or more.
In addition, with respect to high phosphate ore, when a considerable amount of this is used, there is a problem that the P concentration in the hot metal is increased and the load of dephosphorization treatment is increased. Therefore, there has been little research on the influence on the quality, productivity and product yield of sintered ore when a considerable amount is mixed in the sintering raw material. Therefore, when the present inventors investigated and examined the influence of the high phosphate ore blending on the quality of the sintered ore, etc., the production rate of the sintered ore tends to decrease as the blending amount of the high phosphate ore increases. It has been found.

したがって、本発明の目的は、上述のような原料鉄鉱石の供給事情の下で、高品質な焼結鉱を高い生産率と歩留まりで低コストに製造することができる、焼結鉱の製造方法を提供することにある。   Therefore, an object of the present invention is to produce a sintered ore that can produce a high-quality sintered ore at a high production rate and yield at a low cost under the above-mentioned supply situation of raw iron ore. Is to provide.

本発明者等は、焼結原料中に上述した複数種の鉄鉱石を同時に配合することを前提に、上記課題を解決するための最適な配合条件について検討を行った。その結果、ヘマタイト鉱石・マグネタイト鉱石と、リモナイト鉱石と、マラマンバ鉱石と、高燐鉱石とを、それらの性状が焼結過程に及ぼす影響および相互作用を考慮した配合比率で配合することにより、高品質な焼結鉱を高い生産性と歩留まりで低コストに製造できることを見出した。   The inventors of the present invention have studied the optimum blending conditions for solving the above problems on the premise that the above-described plural types of iron ores are blended simultaneously in the sintering raw material. As a result, hematite ore, magnetite ore, limonite ore, maramamba ore, and high phosphorus ore are blended at a blending ratio that takes into consideration the influence and interaction of their properties on the sintering process, resulting in high quality. It has been found that it is possible to produce a large sintered ore with high productivity and yield at a low cost.

本発明は、以上のような知見に基づきなされたもので、その要旨は以下のとおりである。
[1] 配合される原料鉱石が、結晶水含有量が9.0mass%以上の鉄鉱石Aと、P含有量が0.10mass%以上で且つAl含有量が2.0mass%以上の鉄鉱石Bと、結晶水含有量が4.0mass%以上9.0mass%未満の鉄鉱石Cと、結晶水含有量が4.0mass%未満の鉄鉱石D(但し、前記鉄鉱石A、鉄鉱石C及び鉄鉱石Dは、P含有量が0.10mass%以上で且つAl含有量が2.0mass%以上であるものを除く)とで構成される焼結原料であって、
原料鉱石中での前記鉄鉱石Dの割合が20〜50mass%であり、且つ前記鉄鉱石A、鉄鉱石B及び鉄鉱石Cの配合割合(但し、鉄鉱石A+B+C=100mass%としたときの配合割合)を、図1に示す、点a(鉄鉱石A:60mass%,鉄鉱石B:0mass%,鉄鉱石C:40mass%,)、点b(鉄鉱石A:60mass%,鉄鉱石B:30mass%,鉄鉱石C:10mass%)、点c(鉄鉱石A:20mass%,鉄鉱石B:30mass%,鉄鉱石C:50mass%)及び点d(鉄鉱石A:50mass%,鉄鉱石B:0mass%,鉄鉱石C:50mass%)で囲まれる範囲内(但し、鉄鉱石B>0mass%)とした焼結原料から焼結鉱を製造することを特徴とする焼結鉱の製造方法。
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
[1] The raw ore to be blended has an iron ore A having a crystallization water content of 9.0 mass% or more, a P content of 0.10 mass% or more, and an Al 2 O 3 content of 2.0 mass% or more. Iron ore B, iron ore C having a crystal water content of 4.0 mass% or more and less than 9.0 mass%, and iron ore D having a crystal water content of less than 4.0 mass% (provided that iron ore A, iron ore C and iron ore D are sintered raw materials composed of a P content of 0.10 mass% or more and an Al 2 O 3 content of 2.0 mass% or more).
The ratio of the iron ore D in the raw material ore is 20 to 50 mass%, and the mixing ratio of the iron ore A, iron ore B and iron ore C (however, the mixing ratio when iron ore A + B + C = 100 mass%) ), Point a (iron ore A: 60 mass%, iron ore B: 0 mass%, iron ore C: 40 mass%), point b (iron ore A: 60 mass%, iron ore B: 30 mass%) , Iron ore C: 10 mass%), point c (iron ore A: 20 mass%, iron ore B: 30 mass%, iron ore C: 50 mass%) and point d (iron ore A: 50 mass%, iron ore B: 0 mass%) , Iron ore C: 50 mass%), a sintered ore production method characterized by producing sintered ore from a sintering raw material within a range surrounded by iron ore B> 0 mass%.

[2] 上記[1]の製造方法において、前記鉄鉱石A、鉄鉱石B及び鉄鉱石Cの配合割合(但し、鉄鉱石A+B+C=100mass%としたときの配合割合)を、図2に示す、点e(鉄鉱石A:60mass%,鉄鉱石B:10mass%,鉄鉱石C:30mass%)、点f(鉄鉱石A:60mass%,鉄鉱石B:20mass%,鉄鉱石C:20mass%)、点g(鉄鉱石A:50mass%,鉄鉱石B:30mass%,鉄鉱石C:20mass%)、点c(鉄鉱石A:20mass%,鉄鉱石B:30mass%,鉄鉱石C:50mass%)及び点h(鉄鉱石A:40mass%,鉄鉱石B:10mass%,鉄鉱石C:50mass%)で囲まれる範囲内とした焼結原料から焼結鉱を製造することを特徴とする焼結鉱の製造方法。
[3] 上記[1]又は[2]の製造方法において、焼結原料中での原料鉱石の配合量が60mass%以上であることを特徴とする焼結鉱の製造方法。
[2] In the production method of [1], the mixing ratio of the iron ore A, iron ore B, and iron ore C (however, the mixing ratio when iron ore A + B + C = 100 mass%) is shown in FIG. Point e (Iron Ore A: 60 mass%, Iron Ore B: 10 mass%, Iron Ore C: 30 mass%), Point f (Iron Ore A: 60 mass%, Iron Ore B: 20 mass%, Iron Ore C: 20 mass%), Point g (iron ore A: 50 mass%, iron ore B: 30 mass%, iron ore C: 20 mass%), point c (iron ore A: 20 mass%, iron ore B: 30 mass%, iron ore C: 50 mass%) and A sintered ore produced from a sintered raw material within a range surrounded by a point h (iron ore A: 40 mass%, iron ore B: 10 mass%, iron ore C: 50 mass%) Production method.
[3] The method for producing sintered ore according to [1] or [2], wherein the amount of raw ore in the sintered raw material is 60 mass% or more.

本発明によれば、高結晶水鉱石や微粉割合の多い鉱石などを使用することによる問題を解消し、高品質な焼結鉱を高い生産率と歩留まりで低コストに製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the problem by using a high crystal water ore, ore with many fine powder ratios, etc. can be eliminated, and a high quality sintered ore can be manufactured with a high production rate and a yield at low cost.

高品質の焼結鉱を高生産率で製造するには、焼結原料に配合する原料鉱石の結晶水含有量と粒度が重要な要素となるが、リモナイト鉱石、へマタイト鉱石・マグネタイト鉱石、マラマンバ鉱石は、以下のように結晶水含有量により区別することができる。
(1)
結晶水含有量が9.0mass%以上である鉄鉱石A=リモナイト鉱石
(2)
結晶水含有量が4.0mass%以上9.0mass%未満である鉄鉱石C=マラマンバ鉱石
(3)
結晶水含有量が4.0mass%未満である鉄鉱石D=へマタイト鉱石・マグネタイト鉱石
また、これらの鉄鉱石の通常の粒度は、重量平均径でリモナイト鉱石が3.0mm以上、へマタイト鉱石・マグネタイト鉱石が2.2mm以上、マラマンバ鉱石が1.8mm程度である。
In order to produce a high-quality sintered ore at a high production rate, the crystal water content and particle size of the raw ore to be mixed with the sintering raw material are important factors, but limonite ore, hematite ore / magnetite ore, maramanba The ore can be distinguished by the crystal water content as follows.
(1)
Iron ore with crystallization water content of 9.0 mass% or more A = limonite ore
(2)
Iron ore with crystal water content of 4.0 mass% or more and less than 9.0 mass% C = Malamanba ore
(3)
Iron ore with crystal water content of less than 4.0 mass% D = hematite ore or magnetite ore The usual particle size of these iron ores is the weight average diameter of limonite ore of 3.0 mm or more, hematite ore, Magnetite ore is about 2.2 mm or more, and Maramamba ore is about 1.8 mm.

一方、高燐鉱石はP含有量が他の鉱石よりも突出して高く、一般に他の鉱石のP含有量は0.06mass%以下であるのに対して、0.10mass%以上のPを含有する。また、高燐鉱石はAl含有量が2.0mass%以上と比較的高く、結晶水含有量もリモナイト鉱石よりは低いものの、ヘマタイト鉱石の2倍以上ある。また、高燐鉱石の粒度構成については、粒径0.25mm以下の微粉の割合はマラマンバ鉱石に並みに高く、重量平均径も2.0mm以下であってマラマンバ鉱石並みに細粒であることが特徴である。以上のような、いわゆる高燐鉱石の特徴からして、高燐鉱石はP含有量とAl含有量とにより他の鉱石(先に挙げた鉄鉱石A,C,D)から区別することができ、このため本発明では、P含有量:0.10mass%以上で且つAl含有量:2.0mass%以上の鉱石を「高燐鉱石」と定義し、これを鉄鉱石Bとする。
高燐鉱石、リモナイト鉱石、ヘマタイト鉱石、マラマンバ鉱石について、それらの代表的な化学組成とLOI(結晶水含有量と高い相関がある加熱後質量減少割合)を表2に、同じく代表的な粒度構成(粒度分布、算術平均径)を表3に示す。
On the other hand, high phosphorus ore has a P content that is prominently higher than that of other ores. Generally, the P content of other ores is 0.06 mass% or less, while P content is 0.10 mass% or more. . In addition, the high phosphate ore has a relatively high Al 2 O 3 content of 2.0 mass% or more, and the crystal water content is lower than that of limonite ore, but is twice or more that of hematite ore. In addition, regarding the particle size composition of the high phosphate ore, the proportion of fine powder having a particle size of 0.25 mm or less is as high as that of Maramanba ore, and the weight average diameter is 2.0 mm or less and is as fine as Maramanba ore. It is a feature. From the characteristics of the so-called high phosphate ore as described above, the high phosphate ore is distinguished from other ores (the iron ores A, C, and D mentioned above) by the P content and the Al 2 O 3 content. Therefore, in the present invention, an ore having a P content of 0.10 mass% or more and an Al 2 O 3 content of 2.0 mass% or more is defined as “high phosphorus ore”, and this is defined as iron ore B. And
Table 2 shows the typical chemical composition and LOI (mass loss ratio after heating highly correlated with crystal water content) for high phosphate ore, limonite ore, hematite ore, and maramamba ore. Table 3 shows (particle size distribution, arithmetic mean diameter).

本発明の焼結鉱の製造方法では、焼結原料中の原料鉱石を上記鉄鉱石A,B,C,Dの4種類で構成するとともに、それらの配合割合を以下のようにする。
まず、原料鉱石中での前記鉄鉱石D(へマタイト鉱石又は/及びマグネタイト鉱石)の割合を20〜50mass%とする。さきに述べたように、鉄鉱石Dは枯渇傾向にあるため産出量が年々減少しつつあり、また、コスト面からも多量使用は不利であるが、Fe品位が高い良質な鉄鉱石であるため焼結鉱の品質・生産性確保の面からは不可欠である。
In the method for producing sintered ore according to the present invention, the raw material ore in the sintered raw material is composed of the four types of iron ores A, B, C, and D, and the blending ratio thereof is as follows.
First, the ratio of the iron ore D (hematite ore and / or magnetite ore) in the raw material ore is set to 20 to 50 mass%. As mentioned earlier, iron ore D tends to be depleted and its output is decreasing year by year. Also, it is disadvantageous to use a large amount in terms of cost, but it is a high quality iron ore with high Fe grade. It is indispensable from the aspect of ensuring quality and productivity of sintered ore.

ここで、主要生産地からの鉄鉱石の供給比率(わが国への供給比率)は、豪州系鉱石:約65%、南米系鉱石:約20〜25%、インド系鉱石が約10〜15%程度である。また、南米系鉱石とインド系鉱石はほぼ全量が鉄鉱石Dであり、一方、豪州系鉱石では、鉄鉱石Dの割合は約25%程度である。よって、主要生産地から供給される全鉄鉱石中の鉄鉱石Dの割合は、豪州系鉱石(約65%×0.25)+南米系鉱石(約20〜25%)+インド系鉱石(約10〜15%)=約46〜56%、すなわち大略50%程度となる。   Here, the supply ratio of iron ore from major production areas (supply ratio to Japan) is about 65% for Australian ore, about 20-25% for South American ore, and about 10-15% for Indian ore. It is. Further, almost all of South American ores and Indian ores are iron ore D, while in Australian ores, the ratio of iron ore D is about 25%. Therefore, the ratio of iron ore D in all iron ores supplied from the main production areas is: Australian ore (about 65% x 0.25) + South American ore (about 20-25%) + Indian ore (about 10-15%) = about 46-56%, that is, about 50%.

したがって、全原料鉱石の50mass%を超えて鉄鉱石Dを配合することは、焼結鉱の製造コストを増大させることになり、本発明の目的に反する。すなわち、他鉱石に較べて良質であるが故に枯渇傾向にある高価な鉄鉱石Dの配合比率を高めることは、それ自体製造コストの上昇を招くとともに、現状の産地からの鉄鉱石の供給事情からして、全原料鉱石の50mass%を超えて鉄鉱石Dの使用割合を高めるには、生産に余力がある南米系鉱石(産地別では最も高価な鉄鉱石D)を増やすしかなく、このためコストは大幅に増加する。   Therefore, mix | blending the iron ore D exceeding 50 mass% of all the raw material ores will increase the manufacturing cost of a sintered ore and is contrary to the objective of this invention. In other words, increasing the blending ratio of expensive iron ore D, which is high in quality compared to other ores, and depleting, itself causes an increase in manufacturing cost and also from the supply situation of iron ore from the current production area. In order to increase the use ratio of iron ore D exceeding 50 mass% of the total raw ore, the only way to increase the production of South American ore (the most expensive iron ore D by production area) is the cost. Will increase significantly.

一方、鉄鉱石Dが少なすぎると、焼結鉱の品質・生産性確保が難しくなる。すなわち、従来より焼結原料として好適に用いられてきた、結晶水が少なく緻密な焼結組織が得られる鉄鉱石Dの配合割合が20mass%未満となると、焼成により結晶水が抜けることで焼結組織が多孔質になりやすい鉄鉱石A,B,Cの配合割合が80mass%を超えることになるため、焼結鉱の強度の維持(したがって、これに伴う生産率と歩留まりの維持)が難しくなる。   On the other hand, when there is too little iron ore D, it becomes difficult to ensure the quality and productivity of the sintered ore. That is, when the blending ratio of iron ore D, which has been suitably used as a raw material for sintering and has a small amount of water of crystallization to obtain a dense sintered structure, is less than 20 mass%, the water of crystallization is removed by firing. Since the blending ratio of iron ores A, B, and C, which tend to become porous, exceeds 80 mass%, it becomes difficult to maintain the strength of the sintered ore (and thus maintain the production rate and yield). .

さらに、鉄鉱石A,B,Cの配合割合(鉄鉱石A+B+C中での各鉄鉱石の割合)については、図1に示す、点a(鉄鉱石A:60mass%,鉄鉱石B:0mass%,鉄鉱石C:40mass%,)、点b(鉄鉱石A:60mass%,鉄鉱石B:30mass%,鉄鉱石C:10mass%)、点c(鉄鉱石A:20mass%,鉄鉱石B:30mass%,鉄鉱石C:50mass%)及び点d(鉄鉱石A:50mass%,鉄鉱石B:0mass%,鉄鉱石C:50mass%)で囲まれる範囲内(但し、鉄鉱石B>0mass%)とする。   Furthermore, about the compounding ratio (ratio of each iron ore in iron ore A + B + C) of iron ore A, B, and C, the point a (iron ore A: 60 mass%, iron ore B: 0 mass%, shown in FIG. 1) Iron ore C: 40 mass%), point b (iron ore A: 60 mass%, iron ore B: 30 mass%, iron ore C: 10 mass%), point c (iron ore A: 20 mass%, iron ore B: 30 mass%) , Iron ore C: 50 mass%) and point d (iron ore A: 50 mass%, iron ore B: 0 mass%, iron ore C: 50 mass%) (provided that iron ore B> 0 mass%) .

図1の限界線イは、鉄鉱石A(リモナイト鉱石)の配合限界量を規定するものであり、この限界線イ(鉄鉱石A+B+C中の60mass%)を超えて鉄鉱石Aを配合すると焼結鉱の品質・生産性が低下する。
すなわち、鉄鉱石Aは、安価であるため多量使用することがコスト面からは有利であるが、高結晶水鉱石であるため品質・生産性の面からは不利となる。鉄鉱石Aはゲーサイト(Fe・HO)を多量に含み、300〜500℃で結晶水が脱水し、亀裂や気孔ができることにより多孔質となる。そして、焼成過程で1200℃前後の温度でCaO−Fe系融液が発生すると、この融液はマクロな気孔や亀裂中に侵入し、空隙を閉塞するため焼結ベッドの通気性が悪化し、生産性が低下する。一方、気孔や亀裂への融液の侵入速度は遅いため、焼結鉱としては多量の気孔を含む組織となり、強度・歩留まりも低下する。
The limit line A in FIG. 1 defines the blending limit amount of iron ore A (limonite ore). When iron ore A is blended beyond this limit line i (60 mass% in iron ore A + B + C), sintering is performed. The quality and productivity of the ore is reduced.
That is, since iron ore A is inexpensive, it is advantageous in terms of cost to use a large amount of iron ore A, but it is disadvantageous in terms of quality and productivity because it is a high crystal water ore. Iron ore A contains a large amount of goethite (Fe 2 O 3 .H 2 O) and becomes porous when crystal water is dehydrated at 300 to 500 ° C. to form cracks and pores. When a CaO—Fe 2 O 3 melt is generated at a temperature of about 1200 ° C. during the firing process, the melt enters macro pores and cracks and closes the voids, so that the air permeability of the sintered bed is increased. It deteriorates and productivity decreases. On the other hand, since the penetration rate of the melt into the pores and cracks is slow, the sintered ore has a structure containing a large amount of pores, and the strength and yield are also reduced.

鉄鉱石Aによる上記現象を抑えるためには、鉄鉱石Aが焼結ベッド上で分散装入されることが必要である。そのためには、原料充填層中で鉄鉱石A主体の擬似粒子の周りに、他の鉄鉱石(鉄鉱石B,C,Dの1種以上)等が主体の擬似粒子を配位させる必要があり、鉄鉱石A主体の擬似粒子がその他鉄鉱石等主体の擬似粒子で適度に囲まれた状態とするには、鉄鉱石A主体の擬似粒子が1に対して、少なくともその他鉄鉱石等主体の擬似粒子が1以上必要であると考えられる。ここで、原料鉱石中での鉄鉱石Dの割合は20〜50mass%であるので、鉄鉱石A+B+C中での鉄鉱石Aの割合が60mass%以下であれば、上記擬似粒子の比率がほぼ満足されることになる。また、鉄鉱石A主体の擬似粒子が1に対して、その他鉄鉱石等主体の擬似粒子が1.5以上あればより好ましいと考えられるが、鉄鉱石A+B+C中での鉄鉱石Aの割合が50mass%以下であれば、そのような擬似粒子の比率がほぼ満足されることになり、したがって、鉄鉱石A+B+C中での鉄鉱石Aの割合は50mass%以下であることがより好ましい(図1の限界線イ′)。   In order to suppress the above phenomenon due to the iron ore A, it is necessary that the iron ore A is charged in a dispersed manner on the sintering bed. For this purpose, it is necessary to coordinate pseudo particles mainly composed of other iron ores (one or more of iron ores B, C, and D) around the pseudo particles mainly composed of iron ore A in the raw material packed bed. In order to obtain a state in which the pseudo particles mainly composed of iron ore A are appropriately surrounded by pseudo particles mainly composed of iron ore and the like, the pseudo particles mainly composed of iron ore A are set to 1, and at least the pseudo particles mainly composed of iron ore and the like are simulated. One or more particles are considered necessary. Here, since the ratio of the iron ore D in the raw material ore is 20 to 50 mass%, if the ratio of the iron ore A in the iron ore A + B + C is 60 mass% or less, the ratio of the pseudo particles is almost satisfied. Will be. In addition, it is considered that it is more preferable if the number of pseudo-particles mainly composed of iron ore A is 1.5 or more, but the ratio of iron ore A in iron ore A + B + C is 50 mass. % Or less, the ratio of such pseudo particles is almost satisfied, and therefore the ratio of iron ore A in iron ore A + B + C is more preferably 50 mass% or less (limit of FIG. 1). Line A ').

また、鉄鉱石A主体の擬似粒子が1に対して、少なくともその他鉄鉱石等主体の擬似粒子が3〜4程度であることがさらに好ましいと考えられ、また、焼結原料中の原料鉱石の割合は60〜80mass%程度が好ましい。したがって、鉄鉱石A+B+C中での鉄鉱石Aの割合が60mass%以下、好ましくは50mass%以下であれば、焼結原料中での鉄鉱石Aの割合は約30mass%前後以下となり、上記擬似粒子の比率が満足されることになる。   Further, it is considered that it is more preferable that the number of pseudo particles mainly composed of iron ore is about 3 to 4 with respect to the number of pseudo particles mainly composed of iron ore A, and the ratio of the raw material ore in the sintered raw material Is preferably about 60 to 80 mass%. Therefore, if the ratio of iron ore A in iron ore A + B + C is 60 mass% or less, preferably 50 mass% or less, the ratio of iron ore A in the sintered raw material is about 30 mass% or less, The ratio will be satisfied.

図1の限界線ロは、鉄鉱石B(高燐鉱石)の配合限界量を規定するもので、限界線ロ(鉄鉱石A+B+C中の30mass%)を超えて鉄鉱石Bを配合すると、溶銑中のP濃度が過剰となるため脱燐処理の負荷が増大し(→製鋼コストの上昇)、また、後述する鉄鉱石Cとともに粒度に起因した問題が顕在化する。
鉄鉱石Bはヘマタイト鉱床帯から産出される鉱石であるが、P含有量は他の鉱石の2〜3倍程度もあり、また、結晶水含有量と粒度は鉄鉱石C(マラマンバ鉱石)に近く、微粉鉱石の割合が多い。したがって、このような鉄鉱石Bを多量に使用すると溶銑中のP濃度が上昇し、製鋼工程での脱燐処理コストの大幅増につながる。また、同じく微粉の割合が多い鉄鉱石Cとともに配合するので、鉄鉱石Bを多量に使用すると微粉分に起因した問題、すなわち、鉄鉱石Cに関して後述するような生産性の低下が顕在化する。以上の点から、鉄鉱石Bの配合限界量は30mass%となる。
The limit line B in FIG. 1 defines the mixing limit amount of iron ore B (high phosphate ore). When iron ore B is mixed beyond the limit line B (30 mass% in iron ore A + B + C), Since the P concentration in the steel becomes excessive, the load of dephosphorization treatment increases (→ increase in steelmaking cost), and the problem caused by the particle size becomes obvious together with iron ore C described later.
Iron ore B is an ore produced from the hematite ore belt, but the P content is about 2 to 3 times that of other ores, and the crystal water content and particle size are close to those of iron ore C (maramanba ore). A large proportion of fine ore. Therefore, when such iron ore B is used in a large amount, the P concentration in the hot metal increases, leading to a significant increase in the dephosphorization cost in the steel making process. Moreover, since it mix | blends with the iron ore C where the ratio of fine powder is also large, when iron ore B is used in large quantities, the problem resulting from a fine powder part, ie, the fall of productivity as mentioned later regarding iron ore C, becomes obvious. From the above points, the blending limit amount of iron ore B is 30 mass%.

図1の限界線ハは、鉄鉱石C(マラマンバ鉱石)の配合限界量を規定するもので、限界線ハ(鉄鉱石A+B+C中の50mass%)を超えて鉄鉱石Cを配合すると、上記鉄鉱石Bとともに、鉄鉱石Cの粒度に起因した問題が顕在化する。
鉄鉱石Cは安価であるためコスト面で多量使用は有利であるが、鉄鉱石Bと同じく微粉の割合が多い。通常の焼結操業においては、粒径0.25mm以下の微粉鉱石が焼結ベッドの通気性を阻害することが知られており、このような粒径0.25mm以下の微粉鉱石の悪影響を取り除くために、生石灰や消石灰をバインダーに用いて焼結原料の造粒を行うことにより、焼結機に装入される原料粒子の大きさを重量平均径が3〜6mmになるようにしている。一般に、焼結原料の造粒では、原料鉱石中の粒径0.25mm以下の微粉鉱石の含有量に合わせバインダーの添加量を調整するが、図4に示すように、バインダーの効果はその添加量が少ない領域では添加量に比例するが、ある程度以上に添加量が増えると(約2.5mass%以上)、その効果も飽和してくる。したがって、微粉鉱石量が多い鉄鉱石Cの配合割合にも限界があり、鉄鉱石C同様に微粉鉱石の割合が多い鉄鉱石Bを配合することも加味して、以下に述べるように、限界線ハが規定する50mass%程度が限界となる。
The limit line C in FIG. 1 defines the blending limit amount of iron ore C (maramanba ore). When iron ore C is blended exceeding the limit line c (50 mass% in iron ore A + B + C), Along with B, problems due to the particle size of iron ore C become obvious.
Since iron ore C is inexpensive, its use in large quantities is advantageous in terms of cost, but as with iron ore B, the proportion of fine powder is large. In ordinary sintering operations, it is known that fine ore with a particle size of 0.25 mm or less inhibits the air permeability of the sintered bed, and removes such adverse effects of fine ore with a particle size of 0.25 mm or less. Therefore, by granulating the sintered raw material using quick lime or slaked lime as a binder, the size of the raw material particles charged in the sintering machine is set to 3 to 6 mm in weight average diameter. Generally, in granulation of sintered raw materials, the amount of binder added is adjusted in accordance with the content of fine ore with a particle size of 0.25 mm or less in the raw ore. As shown in FIG. In the region where the amount is small, it is proportional to the amount added, but when the amount added is increased to a certain degree (about 2.5 mass% or more), the effect becomes saturated. Therefore, there is a limit to the blending ratio of iron ore C with a large amount of fine ore, and in consideration of blending iron ore B with a large proportion of fine ore like iron ore C, as described below, The limit is about 50 mass% defined by C.

一般に、粒径0.25mm以下の微粉鉱石の割合は、鉄鉱石Cで約40mass%程度、鉄鉱石Aで約5〜12mass%程度、鉄鉱石Dで20〜30mass%程度、鉄鉱石Bで約30mass%程度であるが、図5に示すように、原料鉱石中の粒径0.25mm以下の細粒鉱石の割合が約35mass%を超えると焼結に悪影響を与え、生産率が低下するようになる。そして、上述したように鉄鉱石Bの割合が30mass%以下であるから、鉄鉱石Cの割合が50mass%以下であれば、粒径0.25mm以下の微粉鉱石の割合は約35mass%以下となり、生産性に与える影響は小さい。
以上の結果から、本発明では原料鉱石中の鉄鉱石A,B,Cの配合割合を、図1の限界線イ−ロ−ハで区画された範囲内(但し、鉄鉱石B>0mass%)、すなわち、点a,点b,点c及び点dで囲まれる範囲内(但し、鉄鉱石B>0mass%)と規定する。
In general, the proportion of fine ore having a particle size of 0.25 mm or less is about 40 mass% for iron ore C, about 5 to 12 mass% for iron ore A, about 20 to 30 mass% for iron ore D, and about 20 to 30 mass% for iron ore B. Although it is about 30 mass%, as shown in FIG. 5, when the proportion of fine-grained ore having a particle size of 0.25 mm or less in the raw ore exceeds about 35 mass%, it adversely affects the sintering, and the production rate seems to decrease. become. And since the ratio of the iron ore B is 30 mass% or less as mentioned above, if the ratio of the iron ore C is 50 mass% or less, the ratio of the fine ore with a particle size of 0.25 mm or less becomes about 35 mass% or less, The impact on productivity is small.
From the above results, in the present invention, the mixing ratio of the iron ores A, B, and C in the raw ore is within the range defined by the limit line loha in FIG. 1 (however, iron ore B> 0 mass%). That is, it is defined as within a range surrounded by point a, point b, point c and point d (however, iron ore B> 0 mass%).

さらに、本発明のより好ましい製造方法では、原料鉱石中での上記鉄鉱石A,B,Cの配合割合(鉄鉱石A+B+C中での各鉄鉱石の割合)を、図2に示す、点e(鉄鉱石A:60mass%,鉄鉱石B:10mass%,鉄鉱石C:30mass%)、点f(鉄鉱石A:60mass%,鉄鉱石B:20mass%,鉄鉱石C:20mass%)、点g(鉄鉱石A:50mass%,鉄鉱石B:30mass%,鉄鉱石C:20mass%)、点c(鉄鉱石A:20mass%,鉄鉱石B:30mass%,鉄鉱石C:50mass%)及び点h(鉄鉱石A:40mass%,鉄鉱石B:10mass%,鉄鉱石C:50mass%)で囲まれる範囲内とする。   Furthermore, in the more preferable production method of the present invention, the blending ratio of the iron ores A, B, and C in the raw ore (the ratio of each iron ore in the iron ore A + B + C) is shown in FIG. Iron Ore A: 60 mass%, Iron Ore B: 10 mass%, Iron Ore C: 30 mass%), Point f (Iron Ore A: 60 mass%, Iron Ore B: 20 mass%, Iron Ore C: 20 mass%), Point g ( Iron Ore A: 50 mass%, Iron Ore B: 30 mass%, Iron Ore C: 20 mass%), Point c (Iron Ore A: 20 mass%, Iron Ore B: 30 mass%, Iron Ore C: 50 mass%) and Point h ( Iron ore A: 40 mass%, iron ore B: 10 mass%, iron ore C: 50 mass%).

ここで、図2の限界線イ,ロ,ハが規定される理由は先に述べたとおりである。さらに、限界線ニは鉄鉱石C(マラマンバ鉱石)の配合量の下限を規定するものであり、また、限界線ホは鉄鉱石B(高燐鉱石)の配合量の下限を規定するものである。鉄鉱石C,Bをこれら限界線ニ及び限界線ホをそれぞれ下回らないように配合することにより、安価ではあるが微粉鉱石量が多いために上述した問題を生じやすい鉄鉱石C、さらには安価ではあるがP含有量が高く且つ微粉鉱石量が多いために上述した問題を生じやすい鉄鉱石Bを、それぞれ積極的に配合しつつ、高品質な焼結鉱をより低コストに高い生産率で製造することができる。
したがって、本発明では原料鉱石中の鉄鉱石A,B,Cの配合割合を、図2の限界線イ−ニ−ロ−ハ−ホで区画された範囲内、すなわち、上述した点e,点f,点g,点c及び点hで囲まれる範囲内とすることが好ましい。
Here, the reason why the limit lines A, B, and C in FIG. 2 are defined is as described above. Further, the limit line D prescribes the lower limit of the amount of iron ore C (Malamanba ore), and the limit line H prescribes the lower limit of the amount of iron ore B (high phosphorus ore). . By blending iron ores C and B so as not to fall below these limit line D and limit line E respectively, iron ore C, which is cheap but has a large amount of fine ore, is likely to cause the above-mentioned problems. Produces high-quality sintered ore at a lower cost and higher production rate while actively blending iron ore B that is prone to the above-mentioned problems due to its high P content and high amount of fine ore. can do.
Therefore, in the present invention, the mixing ratio of the iron ores A, B, and C in the raw ore is within the range defined by the limit line knee-lo-haho in FIG. It is preferable to be within a range surrounded by f, point g, point c, and point h.

本発明の焼結鉱の製造方法において、上述した鉄鉱石A,B,C,Dの配合割合の規制による効果を十分に確保するには、焼結原料中での原料鉱石の配合量(鉄鉱石A+B+C+D)が60mass%以上であることが好ましい。この原料鉱石の配合量は現行の焼結操業における一般な範囲であるが、原料鉱石(鉄鉱石A+B+C+D)の配合量が60mass%未満であると、他の原料による焼結性等への影響が顕在化してくるので、本発明の効果が得にくくなる。   In the method for producing sintered ore of the present invention, in order to sufficiently secure the effect of the above-described regulation of the mixing ratio of iron ores A, B, C and D, the amount of raw ore in the sintered raw material (iron ore) Stone A + B + C + D) is preferably 60 mass% or more. The blending amount of this raw material ore is a general range in the current sintering operation, but if the blending amount of the raw material ore (iron ore A + B + C + D) is less than 60 mass%, the influence on the sinterability by other raw materials will be affected. Since it becomes apparent, it is difficult to obtain the effect of the present invention.

本発明において、焼結原料中に配合される原料鉱石は鉄鉱石A,B,C,Dの4種類であり、この原料鉱石に成分調整用副原料(例えば、CaO含有副原料、SiO含有副原料など)、造粒助剤(例えば、生石灰など)、製鉄所内回収粉(主にダスト類などの鉄源)、炭材(コークス粉、無煙炭など)、焼結鉱篩下粉などを配合して焼結原料とし、この焼結原料に適量の水を加えて混合・造粒する。この造粒された配合原料(焼結原料)を、ドワイトロイド式焼結機のパレット上に所定の厚さに充填し、この充填ベッド表層部の炭材に着火後、下方に向けて空気を吸引しながら充填ベッド内部の炭材を燃焼させ、その燃焼熱により配合原料を焼結させて焼結ケーキとする。そして、この焼結ケーキを粉砕・整粒することにより、粒径が数mm以上の成品焼結鉱が得られる。 In the present invention, the raw material ores to be blended in the sintered raw material are four types of iron ores A, B, C, and D. The raw material ore contains component adjusting auxiliary materials (for example, CaO-containing auxiliary material, SiO 2 -containing). Auxiliary raw materials, etc.), granulation aids (for example, quick lime, etc.), steel mill recovered powder (mainly iron sources such as dust), carbonaceous materials (coke powder, anthracite, etc.), sintered ore sieving powder, etc. Then, a sintering raw material is used, and an appropriate amount of water is added to the sintering raw material and mixed and granulated. This granulated compounded raw material (sintered raw material) is filled onto a pallet of a Dwytroid type sintering machine to a predetermined thickness, and after igniting the carbonaceous material on the surface of the packed bed, air is directed downward. The carbonaceous material inside the packed bed is burned while being sucked, and the blended raw material is sintered by the combustion heat to obtain a sintered cake. Then, by pulverizing and sizing the sintered cake, a product sintered ore having a particle size of several mm or more can be obtained.

焼結原料(配合原料)として、原料鉱石(粉鉱石)とその他の原料を表4及び表5に示す割合(表4及び表5の「配合原料」の割合中、粉コークスのみ外数)で総量が50kg程度となるように配合し、この原料をドラムミキサーで3分間、水分含有率が7%となるように調湿しながら混合した後、さらに、3分間同じドラムミキサーで造粒して擬似粒子とした。この造粒物を直径300mmの鍋試験装置に層厚が400mmになるように装入し、バーナーで着火した後、10kPaの負圧一定で焼成し、焼結鉱を製造した。
この試験では、成品焼結鉱のSiOが4.7±0.3mass%、塩基度1.9〜2.0となるよう鉄鉱石A〜Dの銘柄の選択と配合量の調整を行った。なお、生石灰としては、活性度300〜310ml、粒度1.0mm以下のものを用いた。
As raw materials for sintering (mixed raw materials), raw materials ore (pulverized ore) and other raw materials in the ratios shown in Tables 4 and 5 (outside the ratio of “mixed raw materials” in Tables 4 and 5 only the number of powdered coke) Blended so that the total amount is about 50 kg, mixed this raw material for 3 minutes with a drum mixer while adjusting the moisture content to 7%, and then granulated with the same drum mixer for 3 minutes. Pseudo particles were used. The granulated product was charged into a pan test apparatus having a diameter of 300 mm so that the layer thickness was 400 mm, ignited with a burner, and then fired at a constant negative pressure of 10 kPa to produce a sintered ore.
In this test, selection of brands of iron ore A to D and adjustment of the blending amount were performed so that SiO 2 of the sintered product ore was 4.7 ± 0.3 mass% and the basicity was 1.9 to 2.0. . In addition, as quicklime, the activity 300-310 ml and the particle size of 1.0 mm or less were used.

成品焼結鉱の生産率、タンブラー強度(JIS
M 8712による回転強度)及び2mの高さから1回落下後の成品歩留り(+10mm%)を表6及び表7に示す。また、図6のグラフ中には、各実施例の鉱石配合をプロットした。
上記実施例は、全鉄鉱石中でのヘマタイト鉱石配合率を略20mass%一定としたものであるが、ヘマタイト鉱石配合率を30mass%、40mass%、50mass%と増加させた場合には、図6にプロットした各点で、生産性、品質の向上が認められた。但し、鉄鉱石の配合単価は大幅に上昇した。
Product sinter production rate, tumbler strength (JIS
Table 6 and Table 7 show the product yield (+10 mm%) after dropping once from a height of 2 m) and the rotational strength according to M 8712). Moreover, in the graph of FIG. 6, the ore mixing | blending of each Example was plotted.
Although the said Example made the hematite ore compounding rate in all iron ores constant about 20 mass%, when increasing the hematite ore compounding rate with 30 mass%, 40 mass%, and 50 mass%, FIG. Improvements in productivity and quality were observed at each point plotted in. However, the unit price of iron ore increased significantly.

本発明の規定する鉄鉱石A,B,Cの配合割合の範囲を示す図面Drawing which shows the range of the compounding ratio of iron ore A, B, C prescribed | regulated by this invention 本発明の規定する鉄鉱石A,B,Cの配合割合のより限定された範囲を示す図面Drawing which shows the more limited range of the compounding ratio of iron ore A, B, C prescribed | regulated by this invention へマタイト鉱石、リモナイト鉱石、マラマンバ鉱石の各組織の顕微鏡拡大写真Photomicrographs of hematite ore, limonite ore and maramamba ore 焼結原料中の生石灰添加量と焼結鉱の生産率との関係を示すグラフA graph showing the relationship between the amount of quicklime added to the sintering raw material and the production rate of sintered ore 焼結原料に配合された原料鉱石中の粒径0.25mm以下の細粒鉱石の割合と焼結鉱の生産率との関係を示すグラフThe graph which shows the relationship between the ratio of the fine ore with a particle size of 0.25 mm or less in the raw material ore mix | blended with the sintering raw material, and the production rate of a sintered ore 各実施例における鉄鉱石A,B,Cの配合割合を示す図面Drawing which shows the mixture ratio of iron ore A, B, C in each Example

Claims (3)

配合される原料鉱石が、結晶水含有量が9.0mass%以上の鉄鉱石Aと、P(燐)含有量が0.10mass%以上で且つAl含有量が2.0mass%以上の鉄鉱石Bと、結晶水含有量が4.0mass%以上9.0mass%未満の鉄鉱石Cと、結晶水含有量が4.0mass%未満の鉄鉱石D(但し、前記鉄鉱石A、鉄鉱石C及び鉄鉱石Dは、P(燐)含有量が0.10mass%以上で且つAl含有量が2.0mass%以上であるものを除く)とで構成される焼結原料であって、
原料鉱石中での前記鉄鉱石Dの割合が20〜50mass%であり、且つ前記鉄鉱石A、鉄鉱石B及び鉄鉱石Cの配合割合(但し、鉄鉱石A+B+C=100mass%としたときの配合割合)を、図1に示す、点a(鉄鉱石A:60mass%,鉄鉱石B:0mass%,鉄鉱石C:40mass%,)、点b(鉄鉱石A:60mass%,鉄鉱石B:30mass%,鉄鉱石C:10mass%)、点c(鉄鉱石A:20mass%,鉄鉱石B:30mass%,鉄鉱石C:50mass%)及び点d(鉄鉱石A:50mass%,鉄鉱石B:0mass%,鉄鉱石C:50mass%)で囲まれる範囲内(但し、鉄鉱石B>0mass%)とした焼結原料から焼結鉱を製造することを特徴とする焼結鉱の製造方法。
The raw material ore to be blended is an iron ore A having a crystallization water content of 9.0 mass% or more, a P (phosphorus) content of 0.10 mass% or more, and an Al 2 O 3 content of 2.0 mass% or more. Iron ore B, iron ore C having a crystal water content of 4.0 mass% or more and less than 9.0 mass%, and iron ore D having a crystal water content of less than 4.0 mass% (provided that iron ore A, iron ore C and iron ore D are sintered raw materials composed of a P (phosphorus) content of 0.10 mass% or more and an Al 2 O 3 content of 2.0 mass% or more). ,
The ratio of the iron ore D in the raw material ore is 20 to 50 mass%, and the mixing ratio of the iron ore A, iron ore B and iron ore C (however, the mixing ratio when iron ore A + B + C = 100 mass%) ), Point a (iron ore A: 60 mass%, iron ore B: 0 mass%, iron ore C: 40 mass%), point b (iron ore A: 60 mass%, iron ore B: 30 mass%) , Iron ore C: 10 mass%), point c (iron ore A: 20 mass%, iron ore B: 30 mass%, iron ore C: 50 mass%) and point d (iron ore A: 50 mass%, iron ore B: 0 mass%) , Iron ore C: 50 mass%), a sintered ore production method characterized by producing sintered ore from a sintering raw material within a range surrounded by iron ore B> 0 mass%.
前記鉄鉱石A、鉄鉱石B及び鉄鉱石Cの配合割合(但し、鉄鉱石A+B+C=100mass%としたときの配合割合)を、図2に示す、点e(鉄鉱石A:60mass%,鉄鉱石B:10mass%,鉄鉱石C:30mass%)、点f(鉄鉱石A:60mass%,鉄鉱石B:20mass%,鉄鉱石C:20mass%)、点g(鉄鉱石A:50mass%,鉄鉱石B:30mass%,鉄鉱石C:20mass%)、点c(鉄鉱石A:20mass%,鉄鉱石B:30mass%,鉄鉱石C:50mass%)及び点h(鉄鉱石A:40mass%,鉄鉱石B:10mass%,鉄鉱石C:50mass%)で囲まれる範囲内とした焼結原料から焼結鉱を製造することを特徴とする請求項1に記載の焼結鉱の製造方法。   Point e (iron ore A: 60 mass%, iron ore) shown in FIG. 2 is the blending ratio of iron ore A, iron ore B, and iron ore C (provided that iron ore A + B + C = 100 mass%). B: 10 mass%, iron ore C: 30 mass%), point f (iron ore A: 60 mass%, iron ore B: 20 mass%, iron ore C: 20 mass%), point g (iron ore A: 50 mass%, iron ore) B: 30 mass%, iron ore C: 20 mass%), point c (iron ore A: 20 mass%, iron ore B: 30 mass%, iron ore C: 50 mass%) and point h (iron ore A: 40 mass%, iron ore) B: 10 mass%, iron ore C: 50 mass%) The sintered ore is manufactured from the sintering raw material made into the range enclosed, and the manufacturing method of the sintered ore of Claim 1 characterized by the above-mentioned. 焼結原料中での原料鉱石の配合量が60mass%以上であることを特徴とする請求項1又は2に記載の焼結鉱の製造方法。   The method for producing a sintered ore according to claim 1 or 2, wherein the amount of raw ore in the sintered raw material is 60 mass% or more.
JP2005221047A 2005-07-29 2005-07-29 Method for producing sintered ore Active JP4725230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221047A JP4725230B2 (en) 2005-07-29 2005-07-29 Method for producing sintered ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221047A JP4725230B2 (en) 2005-07-29 2005-07-29 Method for producing sintered ore

Publications (2)

Publication Number Publication Date
JP2007031818A JP2007031818A (en) 2007-02-08
JP4725230B2 true JP4725230B2 (en) 2011-07-13

Family

ID=37791421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221047A Active JP4725230B2 (en) 2005-07-29 2005-07-29 Method for producing sintered ore

Country Status (1)

Country Link
JP (1) JP4725230B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565481B2 (en) * 2013-02-04 2014-08-06 新日鐵住金株式会社 Evaluation method of compound iron ore for sintering
JP7260786B2 (en) * 2019-09-03 2023-04-19 日本製鉄株式会社 Method for blending raw materials for sintering and method for producing sintered ore
JP7460041B1 (en) 2023-01-26 2024-04-02 Jfeスチール株式会社 Sinter manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4887611B2 (en) * 2003-10-09 2012-02-29 Jfeスチール株式会社 Method for producing sintered ore and granulated particles

Also Published As

Publication number Publication date
JP2007031818A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP5699567B2 (en) Method for producing sintered ore
JP2014214334A (en) Method for manufacturing sintered ore
JP4935133B2 (en) Ferro-coke and method for producing sintered ore
JP6020832B2 (en) Sintering raw material manufacturing method
JP4725230B2 (en) Method for producing sintered ore
CN107641709A (en) A kind of sintering method for reducing burnup
CN108796212A (en) A kind of method of the compound fine iron breeze production sinter of self-fluxing nature
JP5004421B2 (en) Method for producing sintered ore
JP2002129246A (en) Sinter production method
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP4982986B2 (en) Method for producing sintered ore
JP2000178660A (en) PRODUCTION OF HIGH QUALITY LOW SiO2 SINTERED ORE
JP7135770B2 (en) Method for producing sintered ore
JP4392302B2 (en) Method for producing sintered ore
JP4767388B2 (en) Method for producing sintered ore with excellent high-temperature properties
JP6004191B2 (en) Sintering raw material manufacturing method
JP2004225147A (en) Method for manufacturing sintered ore for blast furnace
JP4661077B2 (en) Method for producing sintered ore
JP2009114485A (en) Method for manufacturing sintered ore
JP2009167466A (en) Method for producing sintered ore
JP4501656B2 (en) Method for producing sintered ore
JP2008088533A (en) Method for manufacturing sintered ore
KR100383271B1 (en) Sintered ore manufacturing method with improved recovery
JP4415690B2 (en) Method for producing sintered ore
JP2021025112A (en) Method for manufacturing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110328

R150 Certificate of patent or registration of utility model

Ref document number: 4725230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250