[go: up one dir, main page]

JP4699261B2 - Multilayer laminate and flexible copper-clad laminate - Google Patents

Multilayer laminate and flexible copper-clad laminate Download PDF

Info

Publication number
JP4699261B2
JP4699261B2 JP2006098477A JP2006098477A JP4699261B2 JP 4699261 B2 JP4699261 B2 JP 4699261B2 JP 2006098477 A JP2006098477 A JP 2006098477A JP 2006098477 A JP2006098477 A JP 2006098477A JP 4699261 B2 JP4699261 B2 JP 4699261B2
Authority
JP
Japan
Prior art keywords
resin layer
copper foil
thermal expansion
carrier
ultrathin copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006098477A
Other languages
Japanese (ja)
Other versions
JP2006306086A (en
Inventor
誠人 上野
妙子 財部
祐之 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Chemical Co Ltd filed Critical Nippon Steel Chemical Co Ltd
Priority to JP2006098477A priority Critical patent/JP4699261B2/en
Publication of JP2006306086A publication Critical patent/JP2006306086A/en
Application granted granted Critical
Publication of JP4699261B2 publication Critical patent/JP4699261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、耐熱性キャリア付き極薄銅箔のキャリア(支持体)を引き剥がした後のカールの発生が抑制され、かつ、極薄銅箔と樹脂層との接着性に優れた多層積層体及びフレキシブル銅張積層基板に関する。   The present invention is a multi-layer laminate in which curling after the carrier (support) of an ultrathin copper foil with a heat-resistant carrier is peeled off is suppressed and the adhesion between the ultrathin copper foil and the resin layer is excellent. And a flexible copper-clad laminate.

近年、COF市場においては、電子機器の軽薄短小化に伴い、ファインピッチ化に対応可能なフレキシブルプリント基板材料が要求されている。現状の回路形成手法としては銅箔をエッチングし、配線を形成するサブトラクティブ法が主流である。但し、例えば30μmピッチ以下の更なる微細配線加工を行うには、サブトラクティブ工法では、配線形状が台形となりICチップ実装時に実装部面積が減少することから、ファイン化が進むとセミアディティブ工法が用いられる。セミアディティブ工法においては、ポリイミドフィルム等の絶縁フィルム上に電解めっき時の導電層の役割を担う極薄の銅箔層を形成させた材料が必要とされる。この材料としては、ポリイミド等の絶縁フィルム上に真空下においてスパッタリング法及び電解めっき法にて極薄銅層を形成させた材料が提案されている。   In recent years, in the COF market, as electronic devices become lighter, thinner and smaller, flexible printed circuit board materials that can cope with fine pitches are required. The current mainstream circuit forming method is a subtractive method in which a copper foil is etched to form a wiring. However, for example, in order to perform further fine wiring processing with a pitch of 30 μm or less, the subtractive method uses a semi-additive method as the finer structure progresses because the wiring shape becomes trapezoid and the mounting area decreases when the IC chip is mounted. It is done. In the semi-additive method, a material in which an ultrathin copper foil layer that plays a role of a conductive layer at the time of electrolytic plating is formed on an insulating film such as a polyimide film is required. As this material, a material in which an ultrathin copper layer is formed on an insulating film such as polyimide by a sputtering method and an electrolytic plating method under vacuum has been proposed.

一方、近年、キャリア銅箔上に剥離層と極薄銅箔層を有する複合銅箔を用いた材料が提案されている(特許文献1)。この複合銅箔は、ポリイミドワニスを塗布しイミド化するキャスティング法や接着層付きポリイミドフィルムを高温加圧で熱圧着するラミネート法等を適用することが可能であり、このようにして積層体を製造した後は、キャリア銅箔を引き剥がすことにより、3μm以下の銅箔を有した銅箔/ポリイミド積層体(フレキシブル銅張積層基板)を製造することができる。
しかしながら、このような方法によって得た銅張積層基板は、ポリイミドの厚みに対する銅箔の厚みの比率が小さくなることから、キャリア銅箔から剥離した後の製品のカールを制御する為の技術が重要になってくる。
On the other hand, in recent years, a material using a composite copper foil having a peeling layer and an ultrathin copper foil layer on a carrier copper foil has been proposed (Patent Document 1). This composite copper foil can be applied with a casting method in which a polyimide varnish is applied and imidized, or a lamination method in which a polyimide film with an adhesive layer is thermocompression bonded at a high temperature and pressure. Thus, a laminate is manufactured. Then, a copper foil / polyimide laminate (flexible copper-clad laminate) having a copper foil of 3 μm or less can be produced by peeling off the carrier copper foil.
However, since the copper-clad laminate obtained by such a method has a small ratio of the copper foil thickness to the polyimide thickness, a technique for controlling the curl of the product after peeling from the carrier copper foil is important. It becomes.

フレキシブル銅張積層基板にカールが存在すると、微細配線加工の際や実装の段階で不具合が生じる恐れがある為、以下の様な提案がなされている。
例えば、特許文献2や特許文献3等において、フレキシブル銅張積層基板のカールを抑制できる熱膨張係数の範囲と、熱膨張率の異なる樹脂層の厚みの範囲を指定している。しかしながら、これらは、商業的にも多用されている18μm以上の銅箔上に樹脂層をラミネートあるいは直接塗工して形成した材料に関するものであり、特に、これらのカール抑制方法は、樹脂層の熱膨張係数を制御することによって、上記のような厚みを有する銅箔に樹脂層を形成した場合のカールを抑制することに着眼されており、樹脂層自体の反りに起因するカールの発生については検討されていない。すなわち、キャリア付き極薄銅箔は厚み18μm〜35μmの銅箔上に剥離層を介して1μm〜3μmの極薄銅箔が形成されている材料であって、極薄銅箔上に樹脂層を形成した後にキャリアを引き剥がすと、樹脂層に対する銅箔の厚みの割合が極端に小さい材料となるため、積層基板としてのカールは銅箔とポリイミドフィルムの熱膨張係数の不整合に加えて、樹脂層自体によるカールの影響を大きく受けやすくなる。
The presence of curls in the flexible copper-clad laminate may cause problems at the time of fine wiring processing or at the mounting stage, so the following proposals have been made.
For example, in Patent Document 2, Patent Document 3, and the like, the range of the thermal expansion coefficient that can suppress curling of the flexible copper-clad laminated substrate and the range of the thickness of the resin layer having different thermal expansion coefficients are specified. However, these relate to a material formed by laminating or directly coating a resin layer on a copper foil of 18 μm or more which is widely used commercially. By controlling the thermal expansion coefficient, we are focusing on curling when a resin layer is formed on a copper foil having the above thickness. Regarding the occurrence of curling due to warping of the resin layer itself Not considered. That is, an ultrathin copper foil with a carrier is a material in which an ultrathin copper foil of 1 μm to 3 μm is formed on a copper foil having a thickness of 18 μm to 35 μm via a release layer, and a resin layer is formed on the ultrathin copper foil. When the carrier is peeled off after the formation, the ratio of the thickness of the copper foil to the resin layer becomes an extremely small material, so the curl as a laminated substrate is in addition to the mismatch between the thermal expansion coefficients of the copper foil and the polyimide film. It becomes more susceptible to curling by the layer itself.

更には、特許文献4等において提案されている銅箔と樹脂層との接着強度は0.7kN/mであるが、COF用途のような微細配線でかつ高温の実装を必要とする用途に対しては、これよりさらに高い銅箔−樹脂間の接着強度が必要とされる。
特開2003−340963号公報 特開平8−250860号公報 特開2000−188445号公報 特開2004−42579号公報
Furthermore, the adhesive strength between the copper foil and the resin layer proposed in Patent Document 4 is 0.7 kN / m, but for applications that require fine wiring and high-temperature mounting, such as COF applications. Therefore, higher bond strength between the copper foil and the resin is required.
Japanese Patent Laid-Open No. 2003-340963 JP-A-8-250860 JP 2000-188445 A JP 2004-42579 A

本発明は、耐熱性キャリア付き極薄銅箔のキャリア(支持体)を引き剥がした後のカールの発生が抑制されると共に、銅箔と樹脂層との接着強度が高く、微細回路形成工程における作業性に優れたフレキシブル銅張積層基板を得るための多層積層体を提供することを目的とする。   The present invention suppresses the occurrence of curling after the carrier (support) of the ultrathin copper foil with a heat-resistant carrier is peeled off, and has high adhesive strength between the copper foil and the resin layer. It aims at providing the multilayer laminated body for obtaining the flexible copper clad laminated board excellent in workability | operativity.

本発明者等は、かかる観点に鑑みて鋭意研究を重ねた結果、キャリア付き極薄銅箔に塗工して形成する樹脂層を複数のポリイミド樹脂層で構成すると共に、これらポリイミド樹脂層の厚みの関係と熱膨張係数を特定することにより、キャリアを剥離した後のフレキシブル銅張積層基板のカールを抑制でき、尚且つ、銅箔と樹脂層との間の接着性に優れた材料が得られることを見出し、本発明を完成した。   As a result of intensive studies in view of such a viewpoint, the present inventors constituted a resin layer formed by coating a very thin copper foil with a carrier with a plurality of polyimide resin layers, and the thicknesses of these polyimide resin layers. By specifying the relationship and the coefficient of thermal expansion, curling of the flexible copper-clad laminate after peeling the carrier can be suppressed, and a material having excellent adhesion between the copper foil and the resin layer can be obtained. As a result, the present invention has been completed.

すなわち、本発明は、キャリア上に剥離層を介して厚さ0.1〜10μmの極薄銅箔が形成されている耐熱性キャリア付き極薄銅箔の極薄銅箔上に、樹脂溶液を塗工し、乾燥、熱処理して耐熱性キャリア付き極薄銅箔に樹脂層を形成した多層積層体であって、上記樹脂層が互いに熱膨張係数の異なる高熱膨張性樹脂層と低熱膨張性樹脂層で構成された複数のポリイミド樹脂層からなる多層構造であり、少なくとも極薄銅箔に接するポリイミド樹脂層と最外層のポリイミド樹脂層とが高熱膨張性樹脂層であってこれら高熱膨張性樹脂層の間に低熱膨張性樹脂層が存在し、極薄銅箔に接する高熱膨張性樹脂層の厚みtaと最外層の高熱膨張性樹脂層tcの厚みの比率(ta/tc)が0.25〜0.95、樹脂層の総厚みが10〜50μm、かつ、樹脂層の全体の熱膨張係数が15×10-6〜25×10-6(1/K)であることを特徴とする多層積層体である。また、本発明はこの多層積層体からキャリアを剥離して得られる樹脂層上に極薄銅箔を有するフレキシブル銅張積層基板である。 That is, the present invention provides a resin solution on an ultrathin copper foil of an ultrathin copper foil with a heat-resistant carrier in which an ultrathin copper foil having a thickness of 0.1 to 10 μm is formed on a carrier via a release layer. A multilayer laminate in which a resin layer is formed on an ultrathin copper foil with a heat-resistant carrier by coating, drying, and heat treatment, wherein the resin layer has a different coefficient of thermal expansion and a high thermal expansion resin layer and a low thermal expansion resin It is a multilayer structure composed of a plurality of polyimide resin layers composed of layers, and at least the polyimide resin layer in contact with the ultrathin copper foil and the outermost polyimide resin layer are high thermal expansion resin layers, and these high thermal expansion resin layers Between the thickness t a of the high thermal expansion resin layer in contact with the ultrathin copper foil and the thickness (t a / t c ) of the outermost high thermal expansion resin layer t c. 0.25 to 0.95, the total thickness of the resin layer is 10 to 50 μm, and the resin The multilayer laminate is characterized in that the overall thermal expansion coefficient of the layer is 15 × 10 −6 to 25 × 10 −6 (1 / K). Moreover, this invention is a flexible copper clad laminated board which has ultra-thin copper foil on the resin layer obtained by peeling a carrier from this multilayer laminated body.

本発明において、直接塗工により形成される多層積層体とは、キャリア上に剥離層を介して極薄銅箔が形成されている耐熱性キャリア付き極薄銅箔の極薄銅箔上に、ポリイミド樹脂溶液あるいはその前駆体樹脂溶液を直接塗布し、乾燥し、さらには必要に応じて硬化させ、耐熱性キャリア付き極薄銅箔と樹脂層との複合材を形成してなるフレキシブル銅張積層基板用材料である。なお、本発明でいうポリイミド樹脂とは、ポリイミド、ポリアミドイミド、ポリベンズイミダゾール、ポリイミドエステル等の耐熱性樹脂である。   In the present invention, the multilayer laminate formed by direct coating is on an ultrathin copper foil of an ultrathin copper foil with a heat-resistant carrier in which an ultrathin copper foil is formed on a carrier via a release layer, A flexible copper-clad laminate in which a polyimide resin solution or its precursor resin solution is directly applied, dried, and cured as necessary to form a composite material of an ultrathin copper foil with a heat-resistant carrier and a resin layer. This is a substrate material. The polyimide resin referred to in the present invention is a heat resistant resin such as polyimide, polyamideimide, polybenzimidazole, polyimide ester and the like.

本発明で使用される耐熱性キャリア付極薄銅箔は、フィルム状又は箔状のキャリア(支持体)上に剥離層を介して極薄銅箔が形成されているものを使用する。好ましいキャリアを例示すると、銅、ステンレス、アルミニウム若しくはそれらを主成分とする合金箔又は耐熱性樹脂フィルムなどが挙げられる。これらの中でも銅箔又は銅を主として含有する合金箔がハンドリング性に優れかつ安価で好ましい。   As the ultrathin copper foil with a heat-resistant carrier used in the present invention, one having an ultrathin copper foil formed on a film-like or foil-like carrier (support) via a release layer is used. Examples of preferred carriers include copper, stainless steel, aluminum, alloy foils containing them as main components, and heat-resistant resin films. Among these, a copper foil or an alloy foil mainly containing copper is preferable because it has excellent handling properties and is inexpensive.

また、耐熱性キャリア付極薄銅箔は、極薄銅箔上に樹脂溶液が直接塗工されるため、ある程度変形しにくいことが必要であり、そのためには一定の厚みを有していることが必要である。キャリアの厚み範囲は、好ましくは5〜100μmの範囲であり、より好ましくは12〜50μmの範囲である。キャリアの厚みが薄すぎると、フレキシブル銅張積層基板の製造における搬送性が安定せず、また、厚すぎてもキャリアの再利用の適用性が困難であるため、無駄が生じる。また、極薄銅箔の厚みについては、フレキシブル銅張積層基板を製造した後の回路形成の際にファインパターンを形成するためには、0.1〜10μmの範囲が好ましく、0.1〜6μmの範囲がより好ましく、0.1〜3μmの範囲が最も好ましい。極薄銅箔における表面粗度(Rz)の好ましい範囲は、エッチング性の観点から1.0μm以下であり、より好ましくは0.01〜0.1μmの範囲である。この表面粗度に関しては、樹脂溶液を塗工する側の面が上記範囲にあることが好ましいが、両方の面が上記範囲にあることで回路形成後のパターン形状と直線性がより優れたフレキシブル銅張積層基板とすることができる。なお、上記Rzは、表面粗さにおける十点平均粗さ(JIS B 0601-1994)を示す。   In addition, the ultra-thin copper foil with heat-resistant carrier must be hard to deform to some extent because the resin solution is applied directly onto the ultra-thin copper foil, and for that purpose it must have a certain thickness. is required. The thickness range of the carrier is preferably in the range of 5 to 100 μm, more preferably in the range of 12 to 50 μm. If the thickness of the carrier is too thin, the transportability in the production of the flexible copper-clad laminate is not stable, and if it is too thick, the applicability of carrier reuse is difficult, resulting in waste. In addition, the thickness of the ultrathin copper foil is preferably in the range of 0.1 to 10 μm, preferably 0.1 to 6 μm, in order to form a fine pattern during circuit formation after the production of the flexible copper-clad laminate. Is more preferable, and the range of 0.1 to 3 μm is most preferable. A preferable range of the surface roughness (Rz) in the ultrathin copper foil is 1.0 μm or less, more preferably in a range of 0.01 to 0.1 μm from the viewpoint of etching property. Regarding the surface roughness, the surface on which the resin solution is applied is preferably in the above range, but both surfaces are in the above range, so that the pattern shape and linearity after circuit formation are more flexible. A copper-clad laminate can be obtained. The above Rz indicates the ten-point average roughness (JIS B 0601-1994) in the surface roughness.

耐熱性キャリア付極薄銅箔における剥離層は、極薄銅箔とキャリアとの剥離を容易にする目的(又は弱接着性を与える目的)で設けられるため、その厚みは薄い方が望ましく、0.5μm以下であることが好ましく、50〜100nmの範囲にあることがより好ましい。剥離層は支持体の耐熱性キャリア箔と極薄銅箔との剥離を安定して容易にするものであれば特に限定されるものではないが、銅、クロム、ニッケル、コバルトあるいはそれらの元素を含む化合物から選択される少なくとも1種を含有するものが好ましい。また、特許文献1に記載のような有機化合物系材料も使用できる他、弱粘接着剤も必要により使用できる。   The release layer in the ultrathin copper foil with a heat-resistant carrier is provided for the purpose of facilitating the peeling between the ultrathin copper foil and the carrier (or for the purpose of imparting weak adhesion), so that the thickness is preferably thin. 0.5 μm or less is preferable, and a range of 50 to 100 nm is more preferable. The release layer is not particularly limited as long as it stably and easily releases the heat-resistant carrier foil and the ultrathin copper foil of the support, but copper, chromium, nickel, cobalt or their elements What contains at least 1 sort (s) selected from the compound to contain is preferable. Moreover, an organic compound material as described in Patent Document 1 can be used, and a weak adhesive can be used if necessary.

また、本発明では、互いにその熱膨張係数の異なる高熱膨張性樹脂層と低熱膨張性樹脂層で構成された複数のポリイミド樹脂層から樹脂層を形成するものであるが、このうち、極薄銅箔に接する高熱膨張性樹脂層1aの厚みtaと最外層の高熱膨張性樹脂層1cの厚みtcとの比率(ta/tc)が0.25〜0.95を満たす必要がある。この厚み比率(ta/tc)が0.25より低いと、耐熱性キャリア箔付き極薄銅箔のキャリア箔を剥離した後のフレキシブル銅張積層基板が極薄銅箔側へカールし、逆にこの厚み比率(ta/tc)が0.95より高いと、キャリア箔剥離後に樹脂層側へカールし、基板の平坦性が悪化する。また、極薄銅箔と接触するポリイミド樹脂層1aが存在しないと、極薄銅箔−樹脂層間の接着強度が非常に低くなる。また、樹脂層が極薄銅箔から近い順に高熱膨張性樹脂層1a、低熱膨張性樹脂層1b、及び高熱膨張性樹脂層1cが順次積層されてなる3層構造からなる場合、低熱膨張性樹脂層1bの厚みtbを考慮に入れると、全体の線膨張係数を15×10-6〜25×10-6(1/K)の範囲に調節するという観点から、好ましくはこれらの各樹脂層の厚みの比率〔(ta+tc)/tb〕が0.1≦〔(ta+tc)/tb〕≦0.5であるのがよい。 In the present invention, the resin layer is formed from a plurality of polyimide resin layers composed of a high thermal expansion resin layer and a low thermal expansion resin layer having different thermal expansion coefficients from each other. it is necessary to ratio of the thickness t c of the thickness t a and the outermost layer of high thermal expansion resin layer 1c of the high thermal expansion resin layer 1a in contact with the foil (t a / t c) satisfies 0.25 to 0.95 . When this thickness ratio (t a / t c ) is lower than 0.25, the flexible copper-clad laminate after peeling the carrier foil of the ultrathin copper foil with heat-resistant carrier foil curls to the ultrathin copper foil side, Conversely, if the thickness ratio (t a / t c ) is higher than 0.95, the carrier foil is curled to the resin layer side after peeling, and the flatness of the substrate is deteriorated. Moreover, if there is no polyimide resin layer 1a in contact with the ultrathin copper foil, the adhesive strength between the ultrathin copper foil and the resin layer becomes very low. In addition, when the resin layer has a three-layer structure in which the high thermal expansion resin layer 1a, the low thermal expansion resin layer 1b, and the high thermal expansion resin layer 1c are laminated in order from the ultrathin copper foil, the low thermal expansion resin is used. In consideration of the thickness t b of the layer 1b, from the viewpoint of adjusting the overall linear expansion coefficient to a range of 15 × 10 −6 to 25 × 10 −6 (1 / K), these resin layers are preferably used. The thickness ratio [(t a + t c ) / t b ] is preferably 0.1 ≦ [(t a + t c ) / t b ] ≦ 0.5.

更に、上記複数のポリイミド樹脂層からなる樹脂層の総厚みについては10μm〜50μmである必要がある。樹脂層の総厚みが10μmより小さいと電気絶縁性が担保できなくなる恐れがある他、ハンドリング性が低下し製造工程における取り扱いが困難になる可能性がある、反対に50μmより大きいとCOFなどの用途においては屈曲の際に回路配線が破断することがあるため実用的ではなくなる可能性がある。   Furthermore, the total thickness of the resin layer composed of the plurality of polyimide resin layers needs to be 10 μm to 50 μm. If the total thickness of the resin layer is less than 10 μm, electrical insulation may not be secured, and handling may be reduced, making it difficult to handle in the manufacturing process. In this case, circuit wiring may be broken during bending, which may be impractical.

本発明において、高熱膨張性樹脂層及び低熱膨張性樹脂層とは、多層構造を形成する樹脂層の各構成樹脂層が有する線熱膨張係数の単純平均値を基準にしてそれより高い値の線膨張係数を有する樹脂層を高熱膨張性樹脂層といい、また、それより低い線膨張係数を有する樹脂層を低熱膨張性樹脂層という。ここで、高熱膨張性樹脂層の線膨張係数は20×10-6(1/K)以上、好ましくは30×10-6〜100×10-6(1/K)であるのがよく、また、低熱膨張性樹脂層の線膨張係数は20×10-6(1/K)未満、好ましくは(0×10-6〜19×10-6(1/K)であるのがよい。 In the present invention, the high thermal expansion resin layer and the low thermal expansion resin layer are lines having a higher value on the basis of the simple average value of the linear thermal expansion coefficient of each constituent resin layer of the resin layer forming the multilayer structure. A resin layer having an expansion coefficient is referred to as a high thermal expansion resin layer, and a resin layer having a lower linear expansion coefficient is referred to as a low thermal expansion resin layer. Here, the linear thermal expansion coefficient of the high thermal expansion resin layer is 20 × 10 −6 (1 / K) or more, preferably 30 × 10 −6 to 100 × 10 −6 (1 / K). The coefficient of linear expansion of the low thermal expansion resin layer is less than 20 × 10 −6 (1 / K), preferably (0 × 10 −6 to 19 × 10 −6 (1 / K).

また、本発明においては、複数のポリイミド樹脂層からなる樹脂層の全体の熱膨張係数は、15×10-6〜25×10-6(1/K)、好ましくは15×10-6〜23×10-6(1/K)、より好ましくは15×10-6〜20×10-6(1/K)であり、これら高熱膨張性樹脂層と低熱膨張性樹脂層との間にはその熱膨張係数において5×10-6(1/K)以上、好ましくは10×10-6(1/K)以上の差があることが望ましい。 In the present invention, the overall thermal expansion coefficient of the resin layer comprising a plurality of polyimide resin layers is 15 × 10 −6 to 25 × 10 −6 (1 / K), preferably 15 × 10 −6 to 23. × 10 −6 (1 / K), more preferably 15 × 10 −6 to 20 × 10 −6 (1 / K), and there is a gap between the high thermal expansion resin layer and the low thermal expansion resin layer. It is desirable that there is a difference in thermal expansion coefficient of 5 × 10 −6 (1 / K) or more, preferably 10 × 10 −6 (1 / K) or more.

本発明において、高熱膨張性樹脂層の原料となるジアミン成分としては4,4’―ジアミノジフェニルエーテル(DAPE)、1,3-ビス(4-アミノフェノキシ)ベンゼン(1,3−BAB)、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)等が挙げられ、酸無水物成分としては無水ピロメリット酸(PMDA)、3,3',4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3',4,4’-ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3',4,4’-ジフェニルスルホンテトラカルボン酸二無水物(DSDA)等が挙げられる。   In the present invention, 4,4′-diaminodiphenyl ether (DAPE), 1,3-bis (4-aminophenoxy) benzene (1,3-BAB), 2,4′-diaminodiphenyl ether (DAPE), 2'-bis [4- (4-aminophenoxy) phenyl] propane (BAPP) and the like, and as the acid anhydride component, pyromellitic anhydride (PMDA), 3,3 ', 4,4'-biphenyltetra Carboxylic dianhydride (BPDA), 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (BTDA), 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride (DSDA) ) And the like.

また、低熱膨張性樹脂層の原料となるジアミン成分としては4,4'−ジアミノ−2,2’−ジメチルビフェニル(DADMB)、2−メトキシ−4,4'−ジアミノベンズアニリド(MABA)等、酸無水物成分としては無水ピロメリット酸(PMDA)、3,3',4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)等がそれぞれ挙げられる。高熱膨張性樹脂層及び低熱膨張性樹脂層のジアミン成分及び酸無水物成分については、それぞれその1種のみを使用してもよく2種以上を併用して使用することもできる。   Examples of the diamine component used as a raw material for the low thermal expansion resin layer include 4,4′-diamino-2,2′-dimethylbiphenyl (DADMB), 2-methoxy-4,4′-diaminobenzanilide (MABA), and the like. Examples of the acid anhydride component include pyromellitic anhydride (PMDA), 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA), and the like. About the diamine component and acid anhydride component of a high thermal expansion resin layer and a low thermal expansion resin layer, only 1 type may respectively be used and it can also be used in combination of 2 or more types.

本発明の多層積層体の樹脂層のうち、極薄銅箔と接触している高熱膨張性樹脂層は、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン又は4,4'−ジアミノジフェニルエーテルから選ばれる1種以上のジアミン成分と、無水ピロメリット酸、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、及び3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物から選ばれる1種以上の酸無水物成分をそれぞれの主成分として、これらを反応して得られるポリイミド樹脂とし、低熱膨張性樹脂層には、4,4'−ジアミノ−2,2’−ジメチルビフェニル又は2−メトキシ−4,4'−ジアミノベンズアニリドから選ばれる1種以上のジアミン成分と、無水ピロメリット酸又は3,3',4,4'−ビフェニルテトラカルボン酸二無水物から選ばれる1種以上の酸無水物成分をそれぞれの主成分として、これらを反応して得られるポリイミド樹脂とすることが望ましい。尚、主成分とは、最も多い成分のことを意味し、好ましくは50mol%以上含まれる成分である。   Among the resin layers of the multilayer laminate of the present invention, the high thermal expansion resin layer in contact with the ultrathin copper foil is 2,2′-bis [4- (4-aminophenoxy) phenyl] propane or 4,4. One or more diamine components selected from '-diaminodiphenyl ether, pyromellitic anhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, and 3,3 ', 4,4'-benzophenone One or more acid anhydride components selected from tetracarboxylic dianhydrides are used as the main components, and a polyimide resin obtained by reacting them is used as a low thermal expansion resin layer with 4,4′-diamino- One or more diamine components selected from 2,2′-dimethylbiphenyl or 2-methoxy-4,4′-diaminobenzanilide and pyromellitic anhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic acid From dianhydride It is desirable to use one or more selected acid anhydride components as the main components and to obtain a polyimide resin obtained by reacting them. The main component means the most abundant component, preferably a component contained in an amount of 50 mol% or more.

反応の際に用いる溶媒については、N,N-ジメチルアセトアミド(DMAc)、n-メチルピロリジノン、2-ブタノン、ジグライム、キシレン等が挙げられ、これらの1種若しくは2種以上併用して使用することもできる。   Examples of the solvent used in the reaction include N, N-dimethylacetamide (DMAc), n-methylpyrrolidinone, 2-butanone, diglyme, xylene, and the like. Use one or more of these in combination. You can also.

樹脂溶液の極薄銅箔上への塗工は、公知の方法を適用して行うことができ、工業的には、ロールコーター、ダイコーター、バーコーターがよく使用される。塗工厚みは、均一にすることが必要であり、熱処理後の樹脂層の厚みばらつきを±1.5μmの範囲内にすることが望ましい。極薄銅箔上に樹脂溶液が塗工された後は、樹脂溶液の溶媒除去のため乾燥、熱処理される。熱処理は130℃以上の温度で行われる処理であればよく、ここで乾燥が更に進行するだけでもよい。有利には、熱処理によってイミド化等の反応や樹脂の性状改質がなされる。例えば、樹脂溶液にポリイミド前駆体樹脂を用いた場合には、イミド化のために熱処理がなされる。イミド化のために熱処理の温度条件を変化させることにより得られる多層積層体のカールを変化させることもできる。ここで、樹脂層を多層とする場合には、塗工、乾燥を繰り返した後、一括して熱処理することもできる。   Application of the resin solution onto the ultrathin copper foil can be performed by applying a known method, and industrially, roll coaters, die coaters, and bar coaters are often used. The coating thickness needs to be uniform, and it is desirable that the thickness variation of the resin layer after the heat treatment is within a range of ± 1.5 μm. After the resin solution is coated on the ultrathin copper foil, it is dried and heat-treated for removing the solvent of the resin solution. The heat treatment only needs to be performed at a temperature of 130 ° C. or higher, and drying may further proceed here. Advantageously, a reaction such as imidization or property modification of the resin is performed by heat treatment. For example, when a polyimide precursor resin is used for the resin solution, heat treatment is performed for imidization. The curl of the multilayer laminate obtained by changing the temperature condition of the heat treatment for imidization can also be changed. Here, when the resin layer has a multi-layer structure, heat treatment can be performed collectively after repeating coating and drying.

本発明における多層積層体は、上記したように極薄銅箔上にポリイミド樹脂溶液又はその前駆体樹脂溶液を塗布し、乾燥等の処理をすることにより製造することができるが、銅箔を片面に有する片面銅張としてもよく、銅箔を絶縁体の両面に有する両面銅張としてもよい。   The multilayer laminate in the present invention can be produced by applying a polyimide resin solution or a precursor resin solution thereof onto an ultrathin copper foil as described above, and performing a treatment such as drying. It is good also as the single-sided copper clad which it has, and good also as a double-sided copper clad which has copper foil on both surfaces of an insulator.

本発明によって製造された多層積層体は、極薄銅箔と樹脂層との接着強度が0.8kN/m以上であることが好ましく、また、空気中で150℃、168時間の熱処理後における極薄銅箔と樹脂層の接着強度が、熱処理前の初期接着強度の80%以上であることが好ましい。また、樹脂層形成後における極薄銅箔とキャリアとの剥離強度を3〜100N/mとすることでより良好フレキシブル銅張積層基板を製造することができる。   The multilayer laminate produced according to the present invention preferably has an adhesive strength between the ultrathin copper foil and the resin layer of 0.8 kN / m or more, and the ultrathin layer after heat treatment at 150 ° C. for 168 hours in air. The adhesive strength between the thin copper foil and the resin layer is preferably 80% or more of the initial adhesive strength before the heat treatment. Moreover, a more favorable flexible copper clad laminated board can be manufactured by making peeling strength of the ultra-thin copper foil and carrier after resin layer formation into 3-100 N / m.

本発明における多層積層体は、耐熱性キャリア付き極薄銅箔のキャリアを剥離することで樹脂層と極薄銅箔とからなるフレキシブル銅張積層基板を得ることができる。ここで、キャリアを剥離する際には、キャリアから剥離されるフレキシブル銅張積層基板に応力がかかる。従来において、この剥離工程でかかる応力を考慮せずに材料設計、製造されたものであると、剥離の際にかかる応力のためにカールが発生していた。つまり、樹脂層形成後の製品がフラットであっても、キャリアを剥離するとキャリア側とは反対側へのカールが発生する現象が生じる。   The multilayer laminated body in this invention can obtain the flexible copper clad laminated board which consists of a resin layer and an ultra-thin copper foil by peeling the carrier of the ultra-thin copper foil with a heat-resistant carrier. Here, when the carrier is peeled, stress is applied to the flexible copper-clad laminate peeled from the carrier. Conventionally, if the material was designed and manufactured without considering the stress applied in the peeling process, curling occurred due to the stress applied during the peeling. That is, even if the product after the resin layer is formed is flat, when the carrier is peeled off, a phenomenon of curling to the side opposite to the carrier side occurs.

そこで、本発明では、キャリア付き極薄銅箔に塗工して形成する樹脂層を特定のポリイミド樹脂層からなる多層構造にすると共に、これらポリイミド樹脂層の厚みや熱膨張係数を所定の範囲に制御することで、得られた多層積層体には、キャリア側を内側にカールする方向に力を生じさせることができる。そのため、キャリアを剥離することによって、剥離後はフラットな樹脂層と極薄銅箔からなるフレキシブル銅張積層基板を製造することができる。つまり、キャリア剥離の際に最低限発生するカールを打ち消すように、予めそれとは逆側に若干のカールをつけていることで、キャリア剥離後のカールが±3mmの範囲に収まる製品とすることができる。   Therefore, in the present invention, the resin layer formed by coating on the ultra-thin copper foil with a carrier has a multilayer structure composed of specific polyimide resin layers, and the thickness and thermal expansion coefficient of these polyimide resin layers are within a predetermined range. By controlling, it is possible to generate a force in the direction of curling the carrier side inward in the obtained multilayer laminate. Therefore, by peeling off the carrier, a flexible copper-clad laminated substrate composed of a flat resin layer and an ultrathin copper foil can be produced after peeling. In other words, by curling a little curl on the opposite side in advance so as to cancel the curl that occurs at the minimum when the carrier is peeled off, the curl after carrier peeling can be made within a range of ± 3 mm. it can.

キャリア側を内側にカールする力については、剥離工程前の多層積層体を用いて定量化することができる。具体的には、耐熱性キャリア箔付き極薄銅箔に樹脂層を形成した剥離工程前の多層構造体のサンプル(50×50mmの正方形)を準備して測定することが可能である。剥離工程前の多層積層体のカール量Cを−1mm≦C≦−10mmの範囲に制御しておくことが好ましく、−2mm≦C≦−8mmの範囲に制御しておくことがより好ましい。この剥離工程前におけるカール量の制御範囲Cが−1mmよりも大きいと、剥離後のフレキシブル銅張積層基板のカールの抑制が不十分となり、逆に−10mmより小さいと、あらかじめつけたカールが残ってしまう。   The force for curling the carrier side inward can be quantified using the multilayer laminate before the peeling step. Specifically, it is possible to prepare and measure a sample (50 × 50 mm square) of a multilayer structure before the peeling step in which a resin layer is formed on an ultrathin copper foil with a heat-resistant carrier foil. The curl amount C of the multilayer laminate before the peeling step is preferably controlled in the range of −1 mm ≦ C ≦ −10 mm, and more preferably in the range of −2 mm ≦ C ≦ −8 mm. If the control range C of the curl amount before the peeling process is larger than -1 mm, curling of the flexible copper-clad laminate after peeling is insufficient, and conversely, if it is smaller than -10 mm, a pre-curled curl remains. End up.

多層積層体からキャリアを剥離し、極薄銅箔と樹脂層からなるフレキシブル銅張積層基板にする場合、フレキシブル銅張積層基板に対するキャリアの好ましい剥離角度θは、90°以上であり、180°±50°の範囲が好ましい。より好ましくは、キャリアとフレキシブル銅張積層基板との剥離部位において、多層積層体の進行方向に対し、フレキシブル銅張積層基板を±20°の範囲で進行させたときにフレキシブル銅張積層基板とキャリアの進行方向がなす角度である剥離角度θを140°≦θ≦180°の範囲となるように剥離するのがより好ましい。ここで、「剥離部位において、多層積層体の進行方向に対し、フレキシブル銅張積層基板を±20°の範囲で進行させたとき」とは、多層積層体から分離されたフレキシブル銅張積層基板の進行角度を分離前の進行方向を0°としたときに表した値であり、剥離前後でフレキシブル銅張積層基板を直線的に進行させる場合は0°となる。剥離角度を上記のような適切な範囲とすることで、剥離後のカール抑制に有利となる。   When the carrier is peeled from the multilayer laminate to form a flexible copper-clad laminate comprising an ultrathin copper foil and a resin layer, the preferred peeling angle θ of the carrier with respect to the flexible copper-clad laminate is 90 ° or more, and 180 ° ± A range of 50 ° is preferred. More preferably, when the flexible copper-clad laminate is advanced in a range of ± 20 ° with respect to the traveling direction of the multilayer laminate, the flexible copper-clad laminate and the carrier are separated from each other at the separation site between the carrier and the flexible copper-clad laminate. It is more preferable that the peeling angle θ, which is an angle formed by the traveling direction, is peeled so that the range is 140 ° ≦ θ ≦ 180 °. Here, “when the flexible copper-clad laminate is advanced in a range of ± 20 ° with respect to the traveling direction of the multilayer laminate at the peeling site” means that the flexible copper-clad laminate separated from the multilayer laminate is The traveling angle is a value expressed when the traveling direction before separation is 0 °, and is 0 ° when the flexible copper-clad laminate is linearly advanced before and after peeling. By setting the peeling angle within the appropriate range as described above, it is advantageous for curling suppression after peeling.

本発明のフレキシブル銅張積層板は、上記多層積層体から、キャリアを剥離して得られるものであり、極薄銅箔と樹脂層との接着強度や熱処理後における極薄銅箔と樹脂層の接着強度も上記多層積層体と同様の特性を有する。すなわち、極薄銅箔と樹脂層との接着強度は0.8kN/m以上であることが好ましく、また、空気中で150℃、168時間の熱処理後における極薄銅箔と樹脂層の接着強度は、熱処理前の初期接着強度の80%以上であることが好ましい。   The flexible copper-clad laminate of the present invention is obtained by peeling the carrier from the multilayer laminate, and the bonding strength between the ultrathin copper foil and the resin layer or the ultrathin copper foil and the resin layer after heat treatment. Adhesive strength has the same characteristics as the multilayer laminate. That is, the adhesive strength between the ultrathin copper foil and the resin layer is preferably 0.8 kN / m or more, and the adhesive strength between the ultrathin copper foil and the resin layer after heat treatment at 150 ° C. for 168 hours in air. Is preferably 80% or more of the initial adhesive strength before heat treatment.

本発明における多層積層体は、キャリアを剥離することで樹脂層と極薄銅箔とからなるフレキシブル銅張積層基板を得ることができるが、多層積層体を得る際、キャリア付き極薄銅箔に塗工して形成する樹脂層を特定のポリイミド樹脂層からなる多層構造にすると共に、これらポリイミド樹脂層の厚みや熱膨張係数を所定の範囲に制御していることで、キャリアを剥離した後のフレキシブル銅張積層基板はカールの発生を抑制することができる。また、樹脂層と極薄銅箔との間の接着強度も優れるため、微細回路形成工程における作業性に優れて工業的にきわめて有用なものである。特に、厚みが0.1μm〜10μmという極めて薄い銅箔を備えた多層積層体とすることも可能なため、サブトラクティブ工法もセミアディティブ工法にも使用が可能である。   The multilayer laminate in the present invention can obtain a flexible copper-clad laminate composed of a resin layer and an ultrathin copper foil by peeling off the carrier, but when obtaining a multilayer laminate, an ultrathin copper foil with a carrier is obtained. The resin layer formed by coating is made into a multilayer structure composed of specific polyimide resin layers, and the thickness and thermal expansion coefficient of these polyimide resin layers are controlled within a predetermined range, so that the carrier is peeled off. The flexible copper-clad laminate can suppress curling. Moreover, since the adhesive strength between the resin layer and the ultrathin copper foil is also excellent, the workability in the fine circuit forming process is excellent, and it is extremely useful industrially. In particular, since it is possible to make a multilayer laminate having an extremely thin copper foil having a thickness of 0.1 μm to 10 μm, it can be used for both the subtractive method and the semi-additive method.

次に、好ましい実施の形態について図面と共に説明する。
温度計、塩化カルシウム管、攪拌機及び窒素吸込口を取り付けた反応容器に、窒素気流下に所定のジアミン成分と溶媒とを仕込んで攪拌したに溶解した後、この溶液を冷却しながら所定のテトラカルボン酸を加え、所望のポリイミド前駆体溶液(高熱膨張性ポリイミド前駆体溶液及び低熱膨張性ポリイミド前駆体溶液)を得た。
Next, a preferred embodiment will be described with reference to the drawings.
A reaction vessel equipped with a thermometer, a calcium chloride tube, a stirrer, and a nitrogen suction port was charged with a predetermined diamine component and a solvent under a nitrogen stream and dissolved in a stirring vessel. An acid was added to obtain desired polyimide precursor solutions (a high thermal expansion polyimide precursor solution and a low thermal expansion polyimide precursor solution).

次いで、図1に示すように、キャリア銅箔4に剥離層3を介して極薄銅箔2が積層されて所定の厚みを有するキャリア箔付き電解銅箔5の極薄銅箔2の表面に、上記で得られた高熱膨張性ポリイミド前駆体溶液を所定のフィルム厚さになるようにコーティングし、所定の温度で乾燥させて第一の樹脂層(高熱膨張性樹脂層1a)を形成し、さらにこの第一の樹脂層の上に低熱膨張性ポリイミド前駆体溶液を所定のフィルム厚みになるようにコーティングし、所定の温度で乾燥させて第二の樹脂層(低熱膨張性樹脂層1b)を形成し、さらにこの第二の樹脂層の上に高熱膨張性ポリイミド前駆体溶液を所定のフィルム厚みになるようにコーティングし、所定の温度で乾燥させて第三の樹脂層(高熱膨張性樹脂層1c)を形成し、次に全体を所定の温度まで昇温させてイミド化反応を行い、キャリア箔付き電解銅箔5に接する側から高熱膨張性樹脂層1a、低熱膨張性樹脂層1b、及び高熱膨張性樹脂層1cが順次積層された樹脂層1を有して、キャリア剥離後のカールが抑制された多層積層体6を得ることができる。   Next, as shown in FIG. 1, the ultrathin copper foil 2 is laminated on the carrier copper foil 4 via the release layer 3, and the surface of the ultrathin copper foil 2 of the electrolytic copper foil 5 with the carrier foil having a predetermined thickness is formed. The high thermal expansion polyimide precursor solution obtained above is coated to a predetermined film thickness and dried at a predetermined temperature to form a first resin layer (high thermal expansion resin layer 1a), Further, a low thermal expansion polyimide precursor solution is coated on the first resin layer so as to have a predetermined film thickness, and dried at a predetermined temperature to form a second resin layer (low thermal expansion resin layer 1b). Further, a high thermal expansion polyimide precursor solution is coated on the second resin layer so as to have a predetermined film thickness, and dried at a predetermined temperature to form a third resin layer (high thermal expansion resin layer). 1c), and then the whole is Resin layer 1 in which an imidization reaction is performed by raising the temperature and a high thermal expansion resin layer 1a, a low thermal expansion resin layer 1b, and a high thermal expansion resin layer 1c are sequentially laminated from the side in contact with the electrolytic copper foil 5 with a carrier foil Thus, it is possible to obtain a multilayer laminate 6 in which curling after carrier peeling is suppressed.

以下、実施例及び比較例に基づいて、本発明を具体的に説明するが、本発明はこれに限定されない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example and a comparative example, this invention is not limited to this.

[合成例1]
294gのDMAcに、BAPP29.13g(0.071モル)を溶解させた。次に、3.225g(0.011モル)のBPDA及び13.55g(0.062モル)のPMDAを加えた。その後、約3時間攪拌を続けて重合反応を行い、35poise(25℃)のポリイミド前駆体樹脂液aを得た。この得られたポリイミド前駆体樹脂液aを銅箔上に塗工し、130℃で5分間乾燥し、その後、15分かけて360℃まで昇温させイミド化を完了させ、得られたポリイミドフィルムの熱膨張係数を測定したところ55×10-6/Kであった。
[Synthesis Example 1]
In 294 g of DMAc, 29.13 g (0.071 mol) of BAPP was dissolved. Next, 3.225 g (0.011 mol) of BPDA and 13.55 g (0.062 mol) of PMDA were added. Thereafter, stirring was continued for about 3 hours to conduct a polymerization reaction, and a polyimide precursor resin liquid a of 35 poise (25 ° C.) was obtained. The obtained polyimide precursor resin liquid a is coated on a copper foil, dried at 130 ° C. for 5 minutes, and then heated to 360 ° C. over 15 minutes to complete imidization, and the obtained polyimide film The coefficient of thermal expansion was measured and found to be 55 × 10 −6 / K.

[合成例2]
3.076kgのDMAcに、DADMB203.22g(0.957モル)及び1,3−BAB31.10g(0.106モル)を溶解させた。次に、61.96g(0.211モル)のBPDA及び183.73g(0.842モル)のPMDAを加えた。その後、約4時間攪拌を続けて重合反応を行い、250poise(25℃)のポリイミド前駆体樹脂液bを得た。この得られたポリイミド前駆体樹脂液bを用いて合成例1と同様にしてポリイミドフィルムを作成、熱膨張係数を測定したところ15×10-6/Kであった。
[Synthesis Example 2]
In 3.076 kg of DMAc, 203.22 g (0.957 mol) of DADMB and 31.10 g (0.106 mol) of 1,3-BAB were dissolved. Next, 61.96 g (0.211 mol) of BPDA and 183.73 g (0.842 mol) of PMDA were added. Thereafter, stirring was continued for about 4 hours to carry out a polymerization reaction, and a polyimide precursor resin liquid b of 250 poise (25 ° C.) was obtained. Using this obtained polyimide precursor resin liquid b, a polyimide film was prepared in the same manner as in Synthesis Example 1, and the thermal expansion coefficient was measured and found to be 15 × 10 −6 / K.

[実施例1]
耐熱性キャリア箔付き極薄銅箔5(日本電解製 YSNAP−1B:キャリア銅箔4の厚み18μm、極薄銅箔2の厚み1μm、剥離層厚み約100nm)の極薄銅箔2上に、合成例1の樹脂液aを塗工し、130℃で5分間乾燥して樹脂層1aを形成した後、合成例2の樹脂液bを塗工し、130℃で10分間乾燥して樹脂層1bを形成し、さらにこの樹脂層1b上に合成例1の樹脂液aを塗工し、130℃で5分間乾燥して樹脂層1cを形成した。そして、15分かけて360℃まで昇温させることによりイミド化反応を行って、樹脂層1aの厚みtaが1.5μm、樹脂層1bの厚みtbが18.0μm、及び樹脂層1cの厚みtcが5.8μmである樹脂層1を形成し、多層積層体6を得た。上記樹脂層1の総厚みは25.3μmであり、樹脂層1aの厚みtaと樹脂層1cの厚みtcの比率ta/tcは0.26、(ta+tc)/tbは0.41であった。また、樹脂層1の全体の熱膨張係数は18.5×10-6(1/K)であった。
[Example 1]
On the ultrathin copper foil 2 of the ultrathin copper foil 5 with heat-resistant carrier foil (Nippon Electrolytic Co., Ltd. YSNAP-1B: the thickness of the carrier copper foil 4 is 18 μm, the thickness of the ultrathin copper foil 2 is 1 μm, and the release layer thickness is about 100 nm) The resin liquid a of Synthesis Example 1 is applied and dried at 130 ° C. for 5 minutes to form a resin layer 1a. Then, the resin liquid b of Synthesis Example 2 is applied and dried at 130 ° C. for 10 minutes to obtain a resin layer. 1b was formed, and further, the resin liquid a of Synthesis Example 1 was applied onto the resin layer 1b and dried at 130 ° C. for 5 minutes to form a resin layer 1c. Then, by performing the imidation reaction by heating to 360 ° C. over 15 minutes, the thickness t a of the resin layer 1a is 1.5 [mu] m, the resin layer 1b thickness t b is 18.0, and the resin layer 1c A resin layer 1 having a thickness t c of 5.8 μm was formed to obtain a multilayer laminate 6. The total thickness of the resin layer 1 is 25.3 μm, and the ratio t a / t c between the thickness t a of the resin layer 1a and the thickness t c of the resin layer 1c is 0.26, and (t a + t c ) / t b Was 0.41. The overall thermal expansion coefficient of the resin layer 1 was 18.5 × 10 −6 (1 / K).

次に、上記の方法により得られた多層積層体6について、以下の方法によりフィルムカール、キャリア銅箔剥離後のカール、熱膨張係数を測定した。測定結果を表1に示す。剥離後のカールが±3mm以内、ピール強度が0.8kN/m以上、及び耐熱保持率が80%以上であったものは判定を○とし、それ以外のものは判定を×とした。   Next, for the multilayer laminate 6 obtained by the above method, film curl, curl after carrier copper foil peeling and thermal expansion coefficient were measured by the following method. The measurement results are shown in Table 1. The case where the curl after peeling was within ± 3 mm, the peel strength was 0.8 kN / m or more, and the heat resistance retention was 80% or more was evaluated as “good”, and the case other than that was evaluated as “poor”.

[フィルムカールの測定方法]
銅張品の導体部分(耐熱性キャリア箔付き極薄銅箔5)を塩化第二鉄溶液で全面エッチングしてポリイミドフィルムを作製し、50mm×50mmの大きさに切断して100℃で10分間乾燥させ、温度25℃、湿度50%の雰囲気下に24時間静置した後、下側が凸となるように置き、四隅の高さの平均値を測定した。ここでは、最外樹脂層1cが凸となるときを+とし、導体と接していた樹脂層1aが凸となる時を−とした。
[Measurement method of film curl]
The conductor part of copper-clad product (ultra-thin copper foil 5 with heat-resistant carrier foil) is etched entirely with a ferric chloride solution to produce a polyimide film, cut into a size of 50 mm × 50 mm, and cut at 100 ° C. for 10 minutes. After drying and allowing to stand in an atmosphere of a temperature of 25 ° C. and a humidity of 50% for 24 hours, the lower side was placed so as to be convex, and the average value of the heights of the four corners was measured. Here, the time when the outermost resin layer 1c is convex is defined as +, and the time when the resin layer 1a in contact with the conductor is convex is defined as-.

[多層積層体のカール(剥離前のカール)の測定]
耐熱性キャリア箔付き極薄銅箔に樹脂層を設けた50×50mmより大きめの剥離工程前の多層積層体6を準備し、測定に供する多層積層体6が50×50mmの大きさになるように、他の導体部分(50×50mmより外側の部分)を塩化第二鉄溶液でエッチングした後に切断した。そして、100℃で10分間乾燥させ、温度25℃、湿度50%の雰囲気下に24時間静置した後、水平板上に下側が凸となるように置き、四隅の高さの平均値を測定した。樹脂層側が凸となるときを−とし、キャリア側が凸となる時を+とした。
[Measurement of curling (curling before peeling) of multilayer laminate]
Prepare a multilayer laminate 6 having a resin layer on an ultrathin copper foil with a heat-resistant carrier foil, which is larger than 50 × 50 mm before the peeling step, so that the multilayer laminate 6 used for measurement has a size of 50 × 50 mm. Then, the other conductor part (the part outside 50 × 50 mm) was cut after etching with a ferric chloride solution. Then, after drying at 100 ° C. for 10 minutes and leaving it to stand in an atmosphere of temperature 25 ° C. and humidity 50% for 24 hours, it is placed on a horizontal plate so that the lower side is convex, and the average value of the heights of the four corners is measured. did. The case where the resin layer side is convex is −, and the case where the carrier side is convex is +.

[キャリア銅箔剥離後のカールの測定方法]
上記多層積層体6を50mm×50mmの大きさに切断して、100℃で10分間乾燥させ、極薄銅箔2が残るように剥離層3と共にキャリア銅箔4を剥離し、剥離後に得られた極薄銅箔付きのフレキシブル銅張積層基板7(図2)を温度25℃、湿度50%の雰囲気下に24時間静置した後、下側が凸となるように置き、四隅の高さの平均値を測定した。最外樹脂層1cが凸となるときを−とし、導体が凸となる時を+とした。
[Measurement of curl after peeling carrier copper foil]
The multilayer laminate 6 is cut to a size of 50 mm × 50 mm, dried at 100 ° C. for 10 minutes, and the carrier copper foil 4 is peeled off together with the peeling layer 3 so that the ultrathin copper foil 2 remains, and obtained after peeling. After leaving the flexible copper-clad laminate 7 with ultra-thin copper foil (FIG. 2) for 24 hours in an atmosphere at a temperature of 25 ° C. and a humidity of 50%, the lower side is placed so that the bottom is convex. The average value was measured. When the outermost resin layer 1c is convex, it is defined as “−”, and when the conductor is convex, it is defined as “+”.

[熱膨張係数の測定方法]
サーマルメカニカルアナライザー(セイコーインスツルメント社製)を使用して引張モードにおける熱機械分析により実施し、250℃から100℃の範囲において、平均の熱膨張係数を算出して求めた。
[Measurement method of thermal expansion coefficient]
A thermal mechanical analyzer (manufactured by Seiko Instruments Inc.) was used for thermomechanical analysis in a tensile mode, and an average thermal expansion coefficient was calculated and determined in the range of 250 ° C to 100 ° C.

[樹脂接着強度(ピール強度)の測定方法]
キャリア箔を剥離した後のフレキシブル銅張積層基板7について、測定を容易にするために極薄銅箔を含めた銅の総厚みが8μmになるように極薄銅箔上に電解銅めっきを行った。そして、この銅側を幅1mmに直線状にパターニング形成してテスト用フレキシブル回路基板とし、テンシロンテスター(東洋精機製作所社製)を用いて、その樹脂側を両面テープによりステンレス板に固定し、銅を90°方向に50mm/分の速度で剥離して求めた。また、上記で接着強度を測定したものを大気雰囲気の環境の下で150℃、168時間保持する耐熱試験を行い、この耐熱試験後の接着強度と先に求めた接着強度とを比較して保持率を測定した。
[Measurement method of resin adhesive strength (peel strength)]
For the flexible copper-clad laminate 7 after peeling the carrier foil, electrolytic copper plating is performed on the ultrathin copper foil so that the total thickness of the copper including the ultrathin copper foil is 8 μm for easy measurement. It was. Then, this copper side is linearly patterned with a width of 1 mm to form a test flexible circuit board, and using Tensilon tester (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the resin side is fixed to a stainless steel plate with double-sided tape, Was peeled off at a rate of 50 mm / min in the 90 ° direction. In addition, a heat resistance test is performed in which the adhesive strength measured above is held at 150 ° C. for 168 hours in an atmospheric environment, and the adhesive strength after this heat test is compared with the previously determined adhesive strength. The rate was measured.

[実施例2及び比較例1〜5]
樹脂層1bの厚みを18.0μmに固定し、樹脂層1a及び樹脂層1cを形成する際の樹脂液の塗布量を変えることにより、表1に示すような樹脂層1a及び樹脂層1cの樹脂層厚みを変えた銅張品を作成した。また、樹脂層1(絶縁体)全体の線膨張係数は、上記樹脂層1a及び1cの樹脂層厚みの和(ta+tc)と樹脂層1bの厚みtbとの比〔(ta+tc)/tb〕、及びイミド化時における360℃までの昇温時間を変動させることで調整した。昇温時間を長くすることで熱膨張係数を低くし、逆に短くすることで熱膨張係数を高くし調整することが可能である。それ以外は実施例1と同様の方法で多層積層体6を作成し、フィルムカール、キャリア銅箔剥離後のカール、熱膨張係数を上記測定方法で測定した。測定結果を表1に示す。剥離後のカールが±3mm以内で、且つピール強度が1.0kN/m以上で、さらに耐熱保持率が80%以上であったものの判定を○とし、それ以外のものの判定を×とした。
[Example 2 and Comparative Examples 1 to 5]
Resin of the resin layer 1a and the resin layer 1c as shown in Table 1 is obtained by fixing the thickness of the resin layer 1b to 18.0 μm and changing the amount of the resin liquid applied when forming the resin layer 1a and the resin layer 1c. Copper clad products with different layer thicknesses were prepared. The linear expansion coefficient of the entire resin layer 1 (the insulator), the ratio [(t a + t of the sum of the resin layer thickness of the resin layer 1a and 1c (t a + t c) and the thickness t b of the resin layer 1b c ) / t b ] and the temperature rising time up to 360 ° C. during imidization was adjusted. By increasing the temperature raising time, the thermal expansion coefficient can be lowered, and conversely, by shortening it, the thermal expansion coefficient can be increased and adjusted. Otherwise, the multilayer laminate 6 was prepared in the same manner as in Example 1, and the film curl, the curl after the carrier copper foil was peeled off, and the thermal expansion coefficient were measured by the above measuring method. The measurement results are shown in Table 1. The judgment of the case where the curl after peeling was within ± 3 mm, the peel strength was 1.0 kN / m or more, and the heat-resistant retention was 80% or more was evaluated as “good”, and the judgment of other things as “poor”.

Figure 0004699261
Figure 0004699261

評価の結果、実施例1及び2は、共にフィルムカールが僅かであり、また熱膨張係数も銅の熱膨張係数に近い値となっていることから、キャリア箔剥離後のカールを非常に小さい値とすることが可能であった。   As a result of the evaluation, both Examples 1 and 2 have very little film curl, and the thermal expansion coefficient is close to the thermal expansion coefficient of copper. Therefore, the curl after peeling the carrier foil is very small. And was possible.

本発明による耐熱性キャリア箔付き極薄銅箔を利用した多層積層体の断面図である。It is sectional drawing of the multilayer laminated body using the ultra-thin copper foil with a heat resistant carrier foil by this invention. 本発明による耐熱性キャリア箔剥離後のフレキシブル銅張積層基板の断面図である。It is sectional drawing of the flexible copper clad laminated substrate after heat resistant carrier foil peeling by this invention.

符号の説明Explanation of symbols

1 樹脂層
1a 高熱膨張率樹脂層
1b 低熱膨張率樹脂層
1c 高熱膨張率樹脂層
2 極薄銅箔
3 剥離層
4 キャリア銅箔
5 耐熱性キャリア箔付き極薄銅箔
6 多層積層体
7 フレキシブル銅張積層基板
DESCRIPTION OF SYMBOLS 1 Resin layer 1a High thermal expansion coefficient resin layer 1b Low thermal expansion coefficient resin layer 1c High thermal expansion coefficient resin layer 2 Ultrathin copper foil 3 Release layer 4 Carrier copper foil 5 Ultrathin copper foil with heat resistant carrier foil 6 Multilayer laminate 7 Flexible copper Zhang laminated substrate

Claims (6)

キャリア上に剥離層を介して厚さ0.1〜10μmの極薄銅箔が形成されている耐熱性キャリア付き極薄銅箔の極薄銅箔上に、樹脂溶液を塗工し、乾燥、熱処理して耐熱性キャリア付き極薄銅箔に樹脂層を形成した多層積層体であって、上記樹脂層が互いに熱膨張係数の異なる高熱膨張性樹脂層と低熱膨張性樹脂層で構成された複数のポリイミド樹脂層からなる多層構造であり、少なくとも極薄銅箔に接するポリイミド樹脂層と最外層のポリイミド樹脂層とが高熱膨張性樹脂層であってこれら高熱膨張性樹脂層の間に低熱膨張性樹脂層が存在し、極薄銅箔に接する高熱膨張性樹脂層の厚みtaと最外層の高熱膨張性樹脂層tcの厚みの比率(ta/tc)が0.25〜0.95、樹脂層の総厚みが10〜50μm、かつ、樹脂層の全体の熱膨張係数が15×10-6〜25×10-6(1/K)であることを特徴とする多層積層体。 A resin solution is applied onto an ultrathin copper foil of an ultrathin copper foil with a heat-resistant carrier in which an ultrathin copper foil having a thickness of 0.1 to 10 μm is formed on a carrier via a release layer, and then dried. A multilayer laminate in which a resin layer is formed on an ultrathin copper foil with a heat-resistant carrier by heat treatment, and the resin layer is composed of a plurality of high thermal expansion resin layers and low thermal expansion resin layers having different thermal expansion coefficients from each other. It is a multilayer structure composed of polyimide resin layers, and at least the polyimide resin layer in contact with the ultrathin copper foil and the outermost polyimide resin layer are high thermal expansion resin layers, and low thermal expansion between these high thermal expansion resin layers A ratio of the thickness t a of the high thermal expansion resin layer in contact with the ultrathin copper foil to the thickness (t a / t c ) of the outermost high thermal expansion resin layer t c is 0.25-0. 95, the total thickness of the resin layer is 10 to 50 μm, and the overall thermal expansion coefficient of the resin layer Is 15 × 10 −6 to 25 × 10 −6 (1 / K). 極薄銅箔と接触している高熱膨張性樹脂層が、2,2'−ビス[4−(4−アミノフェノキシ)フェニル]プロパン又は4,4'−ジアミノジフェニルエーテルから選ばれる1種以上のジアミン成分と、無水ピロメリット酸、3,3',4,4'−ビフェニルテトラカルボン酸二無水物、及び3,3',4,4'−ベンゾフェノンテトラカルボン酸二無水物から選ばれる1種以上の酸無水物成分をそれぞれの主成分として、これらを反応して得られるポリイミド樹脂であり、低熱膨張性樹脂層が、4,4'−ジアミノ−2,2'−ジメチルビフェニル又は2−メトキシ−4,4'−ジアミノベンズアニリドから選ばれる1種以上のジアミン成分と、無水ピロメリット酸又は3,3',4,4'−ビフェニルテトラカルボン酸二無水物から選ばれる1種以上の酸無水物成分をそれぞれの主成分として、これらを反応して得られるポリイミド樹脂である請求項1に記載の多層積層体。   One or more diamines selected from 2,2′-bis [4- (4-aminophenoxy) phenyl] propane or 4,4′-diaminodiphenyl ether, wherein the high thermal expansion resin layer in contact with the ultrathin copper foil One or more selected from the components and pyromellitic anhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, and 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride The polyimide resin obtained by reacting these acid anhydride components as main components, and the low thermal expansion resin layer is 4,4′-diamino-2,2′-dimethylbiphenyl or 2-methoxy- One or more diamine components selected from 4,4′-diaminobenzanilide and one or more acid anhydrides selected from pyromellitic anhydride or 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride Component As the main component of, respectively, the multilayer laminate according to claim 1 is a polyimide resin obtained by reacting them. 耐熱性キャリア付き極薄銅箔のキャリアが厚さ5〜100μmの金属または樹脂で形成されている請求項1又は2いずれか記載の多層積層体。 The multilayer laminate according to claim 1 or 2, wherein the carrier of the ultrathin copper foil with a heat-resistant carrier is formed of a metal or a resin having a thickness of 5 to 100 µm. 請求項1〜3いずれか記載の多層積層体から、キャリアを剥離して得られた樹脂層上に極薄銅箔を有するフレキシブル銅張積層基板。   The flexible copper clad laminated board which has ultra-thin copper foil on the resin layer obtained by peeling a carrier from the multilayer laminated body in any one of Claims 1-3. 極薄銅箔と樹脂層との接着強度が0.8kN/m以上である請求項4に記載のフレキシブル銅張積層基板。   The flexible copper-clad laminate according to claim 4, wherein the adhesive strength between the ultrathin copper foil and the resin layer is 0.8 kN / m or more. 空気中で150℃、168時間の条件で熱処理した後における極薄銅箔と樹脂層の接着強度が、熱処理前の初期接着強度の80%以上を有する請求項4又は5いずれか記載のフレキシブル銅張積層基板板。   The flexible copper according to claim 4 or 5, wherein the adhesive strength between the ultrathin copper foil and the resin layer after heat treatment in air at 150 ° C for 168 hours has 80% or more of the initial adhesive strength before heat treatment. Zhang laminated substrate board.
JP2006098477A 2005-03-31 2006-03-31 Multilayer laminate and flexible copper-clad laminate Active JP4699261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006098477A JP4699261B2 (en) 2005-03-31 2006-03-31 Multilayer laminate and flexible copper-clad laminate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005104156 2005-03-31
JP2005104156 2005-03-31
JP2006098477A JP4699261B2 (en) 2005-03-31 2006-03-31 Multilayer laminate and flexible copper-clad laminate

Publications (2)

Publication Number Publication Date
JP2006306086A JP2006306086A (en) 2006-11-09
JP4699261B2 true JP4699261B2 (en) 2011-06-08

Family

ID=37473498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006098477A Active JP4699261B2 (en) 2005-03-31 2006-03-31 Multilayer laminate and flexible copper-clad laminate

Country Status (1)

Country Link
JP (1) JP4699261B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4805173B2 (en) * 2007-01-16 2011-11-02 新日鐵化学株式会社 Multilayer laminate and method for producing flexible copper clad laminate
JP5421540B2 (en) * 2007-01-29 2014-02-19 ソマール株式会社 Resin-coated metal foil, method for producing the same, metal-clad laminate using resin-coated metal foil obtained by this method, and method for producing the same
JP5063257B2 (en) * 2007-08-22 2012-10-31 ユニチカ株式会社 Method for producing metal laminated film and metal laminated film
JP5235079B2 (en) * 2008-02-04 2013-07-10 新日鉄住金化学株式会社 Multilayer laminate and method for producing flexible copper clad laminate
JP2009143233A (en) * 2008-12-24 2009-07-02 Nippon Mining & Metals Co Ltd Metal foil with carrier
KR101422262B1 (en) * 2013-02-08 2014-07-24 와이엠티 주식회사 Fabrication method for substrate having copper thin layer and printed circuit board
US9758889B2 (en) 2014-05-08 2017-09-12 Ymt Co., Ltd. Method for producing substrate formed with copper thin layer, method for manufacturing printed circuit board and printed circuit board manufactured thereby
JP6503183B2 (en) * 2014-12-24 2019-04-17 株式会社カネカ Polyimide laminate, electronic device, and method of manufacturing electronic device
CN107263984B (en) * 2016-03-31 2021-01-12 日铁化学材料株式会社 Polyimide resin laminate, method for producing same, and polyimide film with functional layer
CN108012414B (en) * 2018-01-08 2024-07-30 昆山雅森电子材料科技有限公司 High-frequency high-transmission FPC with FRCC and preparation method
JP7405644B2 (en) 2019-03-27 2023-12-26 日鉄ケミカル&マテリアル株式会社 Metal-clad laminates and circuit boards

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245586A (en) * 1988-03-28 1989-09-29 Nippon Steel Chem Co Ltd Flexible printed board
JP2000151046A (en) * 1998-11-05 2000-05-30 Sony Chem Corp Polyimide film and flexible boar
JP2000286514A (en) * 1999-03-29 2000-10-13 Sumitomo Bakelite Co Ltd Adhesive-backed board for flexible printed circuit
JP2003071984A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Polyimide copper-clad laminate and manufacturing method therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01245586A (en) * 1988-03-28 1989-09-29 Nippon Steel Chem Co Ltd Flexible printed board
JP2000151046A (en) * 1998-11-05 2000-05-30 Sony Chem Corp Polyimide film and flexible boar
JP2000286514A (en) * 1999-03-29 2000-10-13 Sumitomo Bakelite Co Ltd Adhesive-backed board for flexible printed circuit
JP2003071984A (en) * 2001-09-04 2003-03-12 Mitsui Chemicals Inc Polyimide copper-clad laminate and manufacturing method therefor

Also Published As

Publication number Publication date
JP2006306086A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP4699261B2 (en) Multilayer laminate and flexible copper-clad laminate
JP5180814B2 (en) Laminated body for flexible wiring board
KR101245791B1 (en) Method for producing flexible copper-clad laminated substrate and multi-layer laminate
CN103171190B (en) Two sides metal-clad and its manufacture method
JP6403460B2 (en) Metal-clad laminate, circuit board and polyimide
JP5095142B2 (en) Flexible printed wiring board substrate and manufacturing method thereof
JP2007245564A (en) Manufacturing method of flexible copper clad laminate substrate
JP2008091463A (en) Manufacturing method for both-side flexible-copper-laminated board and carrier-attached both-side flexible-copper-laminated board
JP2015193117A (en) Metal-clad laminate and circuit board
JP2008087254A (en) Flexible copper-clad laminate and flexible copper clad laminate with carrier
JP4757645B2 (en) Method for producing double-sided metal-clad laminate
KR100728150B1 (en) Bonding Sheet and Single Side Metal Clad Laminate
JP5133724B2 (en) Method for producing polyimide resin laminate and method for producing metal-clad laminate
JP4921420B2 (en) Metal-clad laminate and manufacturing method thereof
JP4805173B2 (en) Multilayer laminate and method for producing flexible copper clad laminate
JP5009756B2 (en) Method for producing polyimide resin layer having adhesive layer and method for producing metal tension plate
JP4762742B2 (en) Method for producing flexible copper-clad laminate
JP6603032B2 (en) Copper-clad laminate and circuit board
JP2007189011A (en) Substrate for flexible printed wiring board and its production process
KR101546393B1 (en) Flexible metal-clad laminate and method of producing the same
JP5063257B2 (en) Method for producing metal laminated film and metal laminated film
JP6776087B2 (en) Manufacturing method of metal-clad laminate and manufacturing method of circuit board
JP4976269B2 (en) Method for producing polyimide resin layer having adhesive layer and method for producing metal-clad laminate
JP2005329641A (en) Substrate for flexible printed circuit board and its production method
JP2009154447A (en) Metal-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302

R150 Certificate of patent or registration of utility model

Ref document number: 4699261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250