JP4692915B2 - Front glass substrate for plasma display devices. - Google Patents
Front glass substrate for plasma display devices. Download PDFInfo
- Publication number
- JP4692915B2 JP4692915B2 JP2002155808A JP2002155808A JP4692915B2 JP 4692915 B2 JP4692915 B2 JP 4692915B2 JP 2002155808 A JP2002155808 A JP 2002155808A JP 2002155808 A JP2002155808 A JP 2002155808A JP 4692915 B2 JP4692915 B2 JP 4692915B2
- Authority
- JP
- Japan
- Prior art keywords
- glass substrate
- glass
- plasma display
- display device
- modulus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/11—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
- C03C3/093—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/095—Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133302—Rigid substrates, e.g. inorganic substrates
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Glass Compositions (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、各種フラットパネルディスプレイ装置に用いられるガラス基板に関し、特にプラズマディスプレイ装置の前面ガラス基板として好適なガラス基板に関するものである。
【0002】
【従来の技術】
一般にプラズマディスプレイ装置を製造する場合、まず前面ガラス基板と背面ガラス基板を準備し、これらのガラス基板上に金属ペーストや絶縁ペーストを塗布・焼成することによって、金属膜、ITO膜、ネサ膜等からなる透明電極、誘電体層、隔壁、蛍光体等を形成する。次いで前面ガラス基板と背面ガラス基板を約100μmの間隔を保つように対向させてから、その周囲に低融点ガラスフリットを塗布・焼成することによってシールし、さらに内部に希ガスを封入し、気密封止する方法が採られる。尚、上記の金属ペースト、絶縁ペースト及び低融点ガラスフリットの焼成は、600℃近い温度で行われる。
【0003】
従来より、この種のガラス基板としては、建築窓や自動車窓として広く用いられているソーダ石灰ガラス(熱膨張係数:約84×10-7/℃)が使用されてきた。
【0004】
ところが、ソーダ石灰ガラスは、歪点が約500℃と低いため、600℃付近の高温で熱処理すると、熱変形や熱収縮により、その寸法が著しく変化するため、前面ガラス基板と背面ガラス基板を対向させる際、電極の位置合わせを精度良く行うことが困難となる。この問題は、特に大型高精細のプラズマディスプレイ装置を作製する際に顕著である。
【0005】
またソーダ石灰ガラスは、150℃での体積電気抵抗率(logρ)が8.4Ω・cmと低く、ガラス中のアルカリ成分の移動度が大きいため、このアルカリ成分がITO膜やネサ膜等の薄膜電極と反応し、電極材料の電気抵抗値を変化させるという問題も有している。
【0006】
これらの事情から、現在では、ガラス基板の熱変形や熱収縮が少なく、高い体積電気抵抗率を有する高歪点ガラス基板が、プラズマディスプレイ装置のガラス基板として使用されるようになってきている。
【0007】
【発明が解決しようとする課題】
プラズマディスプレイ装置の発光原理は、次の通りである。プラズマディスプレイ装置を起動させると、電極間に放電が起こり、希ガスから紫外線が放出され、この紫外線が背面ガラス基板上に形成された蛍光体に当たることにより、赤色、緑色、青色が発光する。
【0008】
このような原理で発光するプラズマディスプレイ装置は、ブラウン管では達成することのできない大画面化、薄型化が可能であり、画像表示のちらつきも少ないという長所がある。
【0009】
しかしながらプラズマディスプレイ装置は、自己発光型表示装置であるため、バックライトと呼ばれる発光体を備えた液晶ディスプレイ装置に比べて、画像表示の輝度が低く、画面が暗いという短所がある。そのためプラズマディスプレイ装置の開発にあっては、画像表示の輝度を向上させることが重要課題の一つとなっている。
【0010】
またプラズマディスプレイ装置に用いられるソーダ石灰ガラス基板や高歪点ガラス基板は、一般にフロート法で板状(厚み:約2.8mm)に成形されるが、これらのガラス基板は若干の着色を帯びている。そのためガラス基板が、可視光の波長を吸収することになり、これがプラズマディスプレイ装置の画像表示の輝度を向上する上で大きな障害となっている。
【0011】
プラズマディスプレイ装置に用いられるガラス基板の厚みを小さくすれば、その画像表示の輝度を向上させることができるが、ガラス基板は薄肉化するほど、その自重でたわみやすくなる。特に、高歪点ガラス基板は、ソーダ石灰ガラス基板に比べて、たわみが大きく、しかもクラックが発生しやすいため、これを薄肉化すると、次のような問題が発生しやすくなる。
【0012】
プラズマディスプレイ装置のガラスメーカーやパネルメーカーの製造工程において、ガラス基板は、一時保管用のカセットに幾度も出し入れされる。このカセットは、その内周部に複数段の棚が形成された形態を有しており、ガラス基板は、その対向する2辺、或いは3辺のみがカセットの棚上に載置するようにして水平方向に保持される。ところが特に大型(例えば50インチ以上)のガラス基板の場合はたわみ量が大きくなるため、ガラス基板をカセットに入れる際に、ガラス基板の一部がカセットや他のガラス基板に接触してクラックや破損が生じたり、カセットの棚からガラス基板を取り出す際に、大きく揺動して不安定になりやすく、ハンドリング性が悪くなる。またガラス基板を治具を用いて搬送する工程においても、搬送中の振動によってガラス基板が揺動し、搬送装置に接触して破損することがある。
【0013】
本発明は、上記事情に鑑みなされたものであり、特にプラズマディスプレイ装置の前面ガラス基板として用いた時、従来の前面ガラス基板に比べて厚みが小さいため、表示画像の輝度向上を図ることができ、また薄肉でありながら、たわみが小さいため、製造工程での破損が少ないフラットパネルディスプレイ装置用ガラス基板を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明者等は、プラズマディスプレイ装置に用いられる高歪点ガラス基板について考察を繰り返した結果、前面ガラス基板の厚みを2.5mm以下にすると、プラズマディスプレイ装置の輝度向上について一定の効果が見られること、この時、ガラス基板の比ヤング率を28.0GPa/(g・cm-3)以上にすることで、ガラス基板の薄肉化に伴うたわみ量の増大を抑えることができ、実際の製造工程において、ガラス基板のたわみに起因する破損が起こらないことを見いだし、本発明を提案するに至った。
【0015】
すなわち本発明のプラズマディスプレイ装置用前面ガラス基板は、質量%で、SiO2 55〜74%、Al2O3 1〜14%、MgO 9.6〜15%、CaO 0〜10%、SrO 1.5〜15%、BaO 0〜5%、MgO+CaO+SrO+BaO 16.2〜25%、Na2O 0〜8%、K2O 2〜18%、Na2O+K2O 6〜20%、ZrO2 0〜7%の組成を有し、歪点が570℃以上、30〜380℃における平均線熱膨張係数が65〜90×10−7/℃、比ヤング率が28.1GP/(g・cm−3)以上のガラスからなり、厚みが1.0〜2.5mmであり、400〜700nmにおける分光透過率が86%以上であることを特徴とする。
【0017】
【発明の実施の形態】
すなわち本発明のプラズマディスプレイ装置用前面ガラス基板は、歪点が570℃以上のガラスからなるため、プラズマディスプレイパネルの製造工程で熱処理しても、熱変形や熱収縮が小さく、問題となるような寸法変化が発生し難い。より耐熱性を向上させるためには、歪点を580℃、より好ましくは、600℃以上とすることが望ましい。
【0018】
また本発明のガラス基板は、30〜380℃における平均線熱膨張係数が、65〜90×10-7/℃のガラスからなり、プラズマディスプレイ装置の周辺部材である低融点ガラスフリットや誘電体材料等の熱膨張係数と整合しているため、プラズマディスプレイ装置を製造する際に変形等の不具合が発生し難い。平均線熱膨張係数の好ましい範囲は、70〜88×10-7/℃である。
【0019】
さらに本発明のガラス基板は、厚みが1.0〜2.5mmであるため、従来のプラズマディスプレイ装置用ガラス基板(厚み:2.8mm)に比べて、分光透過率が高く、これをプラズマディスプレイ装置の前面ガラス基板として使用すると、画像表示の輝度を向上させることができる。
【0020】
また一般にガラス基板を薄肉化すると、たわみ量が増大するが、本発明のガラス基板は、比ヤング率(ヤング率/密度)が28.0GPa/(g・cm-3)以上のガラスからなるため、たわみが小さく、その厚みを2.5mm以下にしても、プラズマディスプレイ装置の製造工程において、ガラス基板のたわみに起因する破損を抑えることが可能となる。
【0021】
尚、ガラス基板のたわみ量を一定の値に抑えるためには、その厚みが小さくなるほど、比ヤング率が大きくなるように設計する必要がある。しかしながら、この種の高歪点ガラスは、組成上の制約から、比ヤング率を32.0GPa/(g・cm-3)以上にすることは極めて困難である。よってガラス基板の比ヤング率を高くすることによって、ガラス基板のたわみを抑えることには自ずと限界がある。つまりガラス基板の厚みが極端に小さくなると、たわみ量が大きくなり、破損しやすくなる。ガラス基板のたわみに起因する破損を防止するためには、その厚みは1.0mm以上にする必要がある。ガラス基板の厚みは、好ましくは1.1〜2.1mm、より好ましくは1.1〜1.8mmである。また比ヤング率は、好ましくは28.5GPa/(g・cm-3)以上、さらに好ましくは29.0GPa/(g・cm-3)以上である。
【0022】
また本発明のプラズマディスプレイ装置用前面ガラス基板は、質量%で、SiO2 55〜74%、Al2O3 1〜14%、MgO 9.6〜15%、CaO 0〜10%、SrO 1.5〜15%、BaO 0〜5%、MgO+CaO+SrO+BaO 16.2〜25%、Na2O 0〜8%、K2O 2〜18%、Na2O+K2O 6〜20%、ZrO2 0〜7%の組成を有するものであり、各ガラス成分の割合を限定した理由は以下のとおりである。
【0023】
SiO2は、ガラスのネットワークフォーマーであるが、55%より少ないと、ガラスの歪点が低下し、熱変形や熱収縮が大きくなる。一方、74%より多いと、ガラスの溶融性が低下する。SiO2の含有量は、好ましくは56〜70%、より好ましくは56〜69%である。
【0024】
Al2O3は、ガラスの歪点を高める成分であるが、1%より少ないと、歪点を高める効果に乏しくなり、14%より多いと、ガラスの高温粘度が高くなり、失透傾向が増大し、成形が困難となる。Al2O3の含有量は、好ましくは1〜12%、より好ましくは1〜11%である。
【0025】
MgO、CaO、SrO、BaOは、いずれもガラスの高温粘度を低下させてガラスの成形性や溶融性を高めると共に、ガラスの歪点とヤング率を高める成分である。しかしながらMgOが15%より多くなったり、CaOが10%より多くなると、ガラスが失透したり、ガラスが割れやすくなる。またSrOが15%より多くなったり、BaOが7%より多くなると、ガラスの密度が高くなり、比ヤング率を28.0GPa/(g・cm-3)以上にすることが困難となる。MgOの含有量は、好ましくは2〜13%、より好ましくは3〜12%である。CaOの含有量は、好ましくは、0〜9%、より好ましくは0〜8%である。SrOの含有量は、好ましくは0〜14%、より好ましくは0〜13%である。BaOの含有量は、好ましくは0〜5%、より好ましくは0〜3%である。
【0026】
またMgO、CaO、SrO、BaOの合量が7%より少ないと、ガラスの溶融性が低下し、25%より多いと、ガラスの密度が高くなり、比ヤング率を28.0GPa/(g・cm-3)以上にすることが困難となる。MgO、CaO、SrO、BaOの合量は、好ましくは8〜23%、より好ましくは8〜21%である。
【0027】
Na2Oは、ガラスの線熱膨張係数を制御すると共に、溶融性を向上する成分であるが、8%より多いと、ガラスの歪点が低下する。Na2Oの含有量は、好ましくは0〜6%、より好ましくは0〜4である。
【0028】
K2Oも、Na2Oと同様、ガラスの線熱膨張係数を制御すると共に、溶融性を向上する成分であるが、2%より少ないと、ガラスの溶融性が損なわれる。一方、18%より多いと、ガラスの歪点が低下する。K2Oの含有量は、好ましくは4〜15%、より好ましくは5〜15%である。
【0029】
またNa2O、K2Oの合量が6%より少ないと、ガラスの溶融性が低下し、20%より多いと、線熱膨張係数が大きくなりすぎる。Na2O、K2Oの合量は、好ましくは7〜18%、より好ましくは9〜18%である。
【0030】
ZrO2は、ガラスの歪点を高める成分であるが、7%より多くなると、失透傾向が増大すると共にガラスが割れやすくなる。ZrO2の含有量は好ましくは0〜6%、より好ましくは0〜5%である。
【0031】
また本発明のガラス基板は、上記成分以外にも、特性を損なわない範囲で、種々の成分を含有させることができる。例えば紫外線によるガラスの着色を防止する目的でTiO2を5%まで含有できる。またガラスの液相温度を下げ、成形性を向上させる目的でY2O3、La2O3、Nb2O3を各々3%まで、割れやすさを改善する目的でB2O3、P2O5を各々4%まで含有できる。さらにAs2O3、Sb2O3、SO3、Cl、SnO2等の清澄剤を合量で2%まで含有したり、Fe2O3、CoO、NiO、Cr2O3、CeO2等の着色剤を各々1%まで含有できる。
【0032】
また本発明のガラス基板は、厚みが2.5mm以下であるため、400〜700nmにおける分光透過率を86%以上とすることができ、組成を厳密に規制することによって87%以上、さらには88%以上とすることも可能である。このような分光透過率を有するガラス基板をプラズマディスプレイ装置の前面基板として用いると、画像表示の輝度を向上させることが可能となる。尚、このガラス基板は、ガラス中に不純物として混入する鉄酸化物の量が多くなるほど着色し、分光透過率が低下するため、Fe2O3換算で0.5質量%以下(好ましくは0.2質量%以下)に規制することが望ましい。
【0033】
さらに本発明のガラス基板は、ロールアウト法、オーバーフローダウンドロー法、スロットダウンドロー法等で板状に成形することが可能であるが、フロート法で成形すると、大面積で、平滑性に優れたガラス基板を得やすいため最も好ましい。
【0034】
【実施例】
以下、本発明を実施例に基づいて詳細に説明する。
【0035】
表1は、本発明の実施例(試料No.1、2、5)、参考例(試料No.3、4)及び比較例(試料No.6)を示すものである。尚、試料Na.6は、プラズマディスプレイ装置に用いられる高歪点ガラス基板の市販品である。
【0036】
【表1】
【0037】
表1の各ガラス試料は、次のようにして作製した。
【0038】
まず表中のガラス組成となるように調合した原料を白金ルツボに投入し、1450〜1600℃で4時間溶融した。次いでこの溶融ガラスを金型に流し出し、板状に成形し、徐冷した後、その両面を表に示す厚みとなるように研磨した。その後、それらのガラス板を200mm角の大きさに切断加工した。尚、表中のR’Oは、MgO、CaO、SrO、BaOといったアルカリ土類金属酸化物を示し、またR2Oは、Na2O、K2Oといったアルカリ金属酸化物を示している。
【0039】
こうして得られた各ガラス試料について、線熱膨張係数、歪点、密度、比ヤング率を測定し、それらの値を表1に示した。
【0040】
表から明らかなように、実施例である試料No.1、2、5は、線熱膨張係数が72〜80×10−7/℃であるため、プラズマディスプレイ装置の周辺部材との整合がとれており、また歪点が610℃以上であるため、熱変形や熱収縮が小さい。さらに比ヤング率が28.1GPa/(g・cm−3)以上であるため、ガラス基板のたわみを抑える効果が大きい。またこれらのガラス基板は、厚みが2.1mm以下であるため、可視光の吸収が少なく、これらの400〜700nmにおける分光透過率を分光光度計を用いて1nm間隔で測定したところ、全ての波長で87%以上であり、特に試料No.1、2は、90%以上であった。
【0041】
これに対し、比較例である試料No.6は、比ヤング率が低いため、ガラス基板のたわみを抑える効果に乏しく、ガラス基板の薄肉化を図ると、たわみ量が大きくなり、製造工程で破損しやすくなると判断される。またこのガラス基板は、厚みが2.8mmであり、その400〜700nmにおける分光透過率を測定したところ、700nmの透過率は約85%であった。
【0042】
尚、表中の線熱膨張係数は、ディラトメーターで30〜380℃における平均線熱膨張係数を測定したものであり、歪点は、ASTM C336−71に準じて測定した。また密度は、周知のアルキメデス法で測定し、比ヤング率は、ヤング率を共振法によって測定し、ヤング率と密度の値から求めた。
【0043】
【発明の効果】
以上のように本発明のプラズマディスプレイ装置用前面ガラス基板は、厚みが1.0〜2.5mmでありながら、たわみが小さいため、これをプラズマディスプレイ装置の前面ガラス基板として使用すると、輝度の向上を図ることができ、しかも製造工程における破損を低減することが可能である。[0001]
[Industrial application fields]
The present invention relates to a glass substrate used for various flat panel display devices, and more particularly to a glass substrate suitable as a front glass substrate of a plasma display device.
[0002]
[Prior art]
In general, when manufacturing a plasma display device, first, a front glass substrate and a back glass substrate are prepared, and a metal paste or an insulating paste is applied and fired on these glass substrates, so that a metal film, an ITO film, a nesa film, etc. A transparent electrode, a dielectric layer, a partition wall, a phosphor and the like are formed. Next, the front glass substrate and the rear glass substrate are opposed to each other so as to keep a distance of about 100 μm, and then sealed by applying and baking a low melting point glass frit around the periphery, and further, a rare gas is sealed inside and sealed in an airtight manner. The method of stopping is taken. The above-described metal paste, insulating paste and low melting point glass frit are fired at a temperature close to 600 ° C.
[0003]
Conventionally, as this type of glass substrate, soda lime glass (thermal expansion coefficient: about 84 × 10 −7 / ° C.) widely used as an architectural window or an automobile window has been used.
[0004]
However, since soda lime glass has a low strain point of about 500 ° C., when heat treatment is performed at a high temperature around 600 ° C., the dimensions of the soda lime glass change remarkably due to thermal deformation and thermal shrinkage. When doing so, it becomes difficult to accurately align the electrodes. This problem is particularly noticeable when a large, high-definition plasma display device is manufactured.
[0005]
Soda lime glass has a low volume electrical resistivity (log ρ) at 150 ° C. of 8.4 Ω · cm, and the mobility of alkali components in the glass is large, so this alkali component is a thin film such as an ITO film or a nesa film. It also has a problem of reacting with the electrode and changing the electric resistance value of the electrode material.
[0006]
Under these circumstances, at present, a glass substrate of a plasma display device is being used as a glass substrate of a plasma display device.
[0007]
[Problems to be solved by the invention]
The light emission principle of the plasma display device is as follows. When the plasma display device is activated, discharge occurs between the electrodes, ultraviolet rays are emitted from the rare gas, and the ultraviolet rays hit the phosphor formed on the rear glass substrate, thereby emitting red, green, and blue light.
[0008]
A plasma display device that emits light based on such a principle has the advantages of being able to have a large screen and a thickness that cannot be achieved by a cathode ray tube, and that there is little flicker in image display.
[0009]
However, since the plasma display device is a self-luminous display device, it has the disadvantages that the brightness of image display is low and the screen is dark compared to a liquid crystal display device having a light emitter called a backlight. Therefore, in the development of plasma display devices, improving the brightness of image display has become one of the important issues.
[0010]
Further, soda-lime glass substrates and high strain point glass substrates used in plasma display devices are generally formed into a plate shape (thickness: about 2.8 mm) by the float process, but these glass substrates are slightly colored. Yes. For this reason, the glass substrate absorbs the wavelength of visible light, which is a great obstacle to improving the brightness of image display of the plasma display device.
[0011]
If the thickness of the glass substrate used in the plasma display device is reduced, the brightness of the image display can be improved. However, the thinner the glass substrate is, the easier it is to bend due to its own weight. In particular, since a high strain point glass substrate has a larger deflection than a soda-lime glass substrate and is liable to generate cracks, the following problems are likely to occur when the thickness is reduced.
[0012]
In the manufacturing process of a glass manufacturer or a panel manufacturer of a plasma display device, a glass substrate is repeatedly put in and out of a cassette for temporary storage. This cassette has a form in which a plurality of shelves are formed on the inner periphery thereof, and the glass substrate is placed on the cassette shelf so that only two or three sides facing each other are placed on the cassette shelf. Holds horizontally. However, in the case of a large glass substrate (for example, 50 inches or more), the amount of deflection becomes large. Therefore, when a glass substrate is put into a cassette, a part of the glass substrate comes into contact with the cassette or another glass substrate and is cracked or damaged. When the glass substrate is taken out from the shelf of the cassette, it is likely to swing greatly and become unstable, resulting in poor handling. Also, in the process of transporting the glass substrate using a jig, the glass substrate may swing due to vibration during transport and may be damaged by contacting the transport device.
[0013]
The present invention has been made in view of the above circumstances, and particularly when used as a front glass substrate of a plasma display device, since the thickness is smaller than that of a conventional front glass substrate, the brightness of a display image can be improved. Another object of the present invention is to provide a glass substrate for a flat panel display device, which is thin but has a small deflection and therefore is less damaged in the manufacturing process.
[0014]
[Means for Solving the Problems]
As a result of repeated consideration of the high strain point glass substrate used in the plasma display device, the present inventors have found that when the thickness of the front glass substrate is 2.5 mm or less, a certain effect can be seen in improving the brightness of the plasma display device. In this case, by increasing the specific Young's modulus of the glass substrate to 28.0 GPa / (g · cm −3 ) or more, it is possible to suppress an increase in the amount of deflection caused by the thinning of the glass substrate, and the actual manufacturing process. The inventors have found that no damage caused by the deflection of the glass substrate occurs and proposed the present invention.
[0015]
That front glass substrate of a plasma display device The present invention, in mass%, SiO 2 55~74%, Al 2 O 3 1~14%, MgO 9.6 ~15%, CaO 0~10%, SrO 1. 5~15%, BaO 0~5%, MgO + CaO + SrO + BaO 16.2 ~25%, Na 2 O 0~8%, K 2 O 2~18%, Na 2 O + K 2 O 6~20%, ZrO 2 0~7 % Composition, strain point of 570 ° C. or higher, average linear thermal expansion coefficient at 30 to 380 ° C. of 65 to 90 × 10 −7 / ° C., specific Young's modulus of 28.1 GP / (g · cm −3 ) It is made of the above glass, has a thickness of 1.0 to 2.5 mm, and has a spectral transmittance of 86% or more at 400 to 700 nm.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
That is, since the front glass substrate for a plasma display device of the present invention is made of glass having a strain point of 570 ° C. or more, even if heat treatment is performed in the manufacturing process of the plasma display panel, thermal deformation and thermal shrinkage are small, causing problems. Dimensional change hardly occurs. In order to further improve the heat resistance, the strain point is preferably 580 ° C., more preferably 600 ° C. or more.
[0018]
The glass substrate of the present invention is made of glass having an average linear thermal expansion coefficient at 30 to 380 ° C. of 65 to 90 × 10 −7 / ° C., and is a low melting glass frit or dielectric material that is a peripheral member of the plasma display device. Therefore, when the plasma display device is manufactured, defects such as deformation are unlikely to occur. A preferable range of the average linear thermal expansion coefficient is 70 to 88 × 10 −7 / ° C.
[0019]
Furthermore, since the glass substrate of the present invention has a thickness of 1.0 to 2.5 mm, it has a higher spectral transmittance than a conventional glass substrate for plasma display devices (thickness: 2.8 mm). When used as a front glass substrate of the apparatus, the brightness of image display can be improved.
[0020]
In general, when the glass substrate is thinned, the amount of deflection increases, but the glass substrate of the present invention is made of glass having a specific Young's modulus (Young's modulus / density) of 28.0 GPa / (g · cm −3 ) or more. Even if the deflection is small and the thickness thereof is 2.5 mm or less, it is possible to suppress breakage due to the deflection of the glass substrate in the manufacturing process of the plasma display device.
[0021]
In order to suppress the deflection amount of the glass substrate to a constant value, it is necessary to design so that the specific Young's modulus increases as the thickness decreases. However, this type of high strain point glass is extremely difficult to have a specific Young's modulus of 32.0 GPa / (g · cm −3 ) or more due to compositional restrictions. Therefore, there is a limit to suppressing the deflection of the glass substrate by increasing the specific Young's modulus of the glass substrate. That is, when the thickness of the glass substrate becomes extremely small, the amount of deflection becomes large and the glass substrate is easily damaged. In order to prevent breakage due to the deflection of the glass substrate, the thickness needs to be 1.0 mm or more. The thickness of the glass substrate is preferably 1.1 to 2.1 mm, more preferably 1.1 to 1.8 mm. The specific Young's modulus is preferably 28.5 GPa / (g · cm −3 ) or more, more preferably 29.0 GPa / (g · cm −3 ) or more.
[0022]
The front glass substrate of a plasma display device The present invention, in mass%, SiO 2 55~74%, Al 2 O 3 1~14%, MgO 9.6 ~15%, CaO 0~10%, SrO 1. 5~15%, BaO 0~5%, MgO + CaO + SrO + BaO 16.2 ~25%, Na 2 O 0~8%, K 2 O 2~18%, Na 2 O + K 2 O 6~20%, ZrO 2 0~7 The reason why the ratio of each glass component is limited is as follows.
[0023]
SiO 2 is a glass network former, but if it is less than 55%, the strain point of the glass is lowered, and thermal deformation and thermal shrinkage are increased. On the other hand, when it exceeds 74%, the meltability of the glass decreases. The content of SiO 2 is preferably 56 to 70%, more preferably 56 to 69%.
[0024]
Al 2 O 3 is a component that increases the strain point of the glass. However, if it is less than 1%, the effect of increasing the strain point is poor. If it is more than 14%, the high-temperature viscosity of the glass increases and the tendency to devitrification is high. Increases and makes molding difficult. The content of Al 2 O 3 is preferably 1 to 12%, more preferably 1 to 11%.
[0025]
MgO, CaO, SrO, and BaO are components that lower the high-temperature viscosity of the glass to increase the moldability and meltability of the glass, and increase the strain point and Young's modulus of the glass. However, if MgO exceeds 15% or CaO exceeds 10%, the glass is devitrified or the glass is easily broken. On the other hand, when SrO exceeds 15% or BaO exceeds 7%, the density of the glass becomes high, and it becomes difficult to make the specific Young's modulus 28.0 GPa / (g · cm −3 ) or more. The content of MgO is preferably 2 to 13%, more preferably 3 to 12%. The content of CaO is preferably 0 to 9%, more preferably 0 to 8%. The content of SrO is preferably 0 to 14%, more preferably 0 to 13%. The content of BaO is preferably 0 to 5%, more preferably 0 to 3%.
[0026]
If the total amount of MgO, CaO, SrO, and BaO is less than 7%, the meltability of the glass decreases. If it exceeds 25%, the density of the glass increases and the specific Young's modulus becomes 28.0 GPa / (g · cm −3 ) or more becomes difficult. The total amount of MgO, CaO, SrO and BaO is preferably 8 to 23%, more preferably 8 to 21%.
[0027]
Na 2 O is a component that controls the linear thermal expansion coefficient of the glass and improves the meltability, but if it exceeds 8%, the strain point of the glass is lowered. The content of Na 2 O is preferably 0 to 6%, more preferably 0 to 4.
[0028]
K 2 O, like Na 2 O, is a component that controls the linear thermal expansion coefficient of glass and improves the meltability, but if it is less than 2%, the meltability of the glass is impaired. On the other hand, when it exceeds 18%, the strain point of the glass is lowered. The content of K 2 O is preferably 4 to 15%, more preferably 5 to 15%.
[0029]
On the other hand, when the total amount of Na 2 O and K 2 O is less than 6%, the melting property of the glass is lowered, and when it is more than 20%, the linear thermal expansion coefficient becomes too large. The total amount of Na 2 O and K 2 O is preferably 7 to 18%, more preferably 9 to 18%.
[0030]
ZrO 2 is a component that increases the strain point of the glass, but if it exceeds 7%, the tendency to devitrification increases and the glass tends to break. The content of ZrO 2 is preferably 0 to 6%, more preferably 0 to 5%.
[0031]
Moreover, the glass substrate of this invention can contain a various component in the range which does not impair a characteristic other than the said component. For example, TiO 2 can be contained up to 5% for the purpose of preventing the glass from being colored by ultraviolet rays. In addition, Y 2 O 3 , La 2 O 3 , and Nb 2 O 3 are each up to 3% for the purpose of lowering the liquidus temperature of the glass and improving formability, and B 2 O 3 , P for the purpose of improving breakability. 2 O 5 can be contained up to 4% each. Furthermore, it contains a clarifier such as As 2 O 3 , Sb 2 O 3 , SO 3 , Cl, SnO 2 in a total amount of 2%, Fe 2 O 3 , CoO, NiO, Cr 2 O 3 , CeO 2, etc. 1% of each colorant can be contained.
[0032]
In addition, since the glass substrate of the present invention has a thickness of 2.5 mm or less, the spectral transmittance at 400 to 700 nm can be 86% or more, and by strictly regulating the composition, 87% or more, and further 88. % Or more is also possible. When a glass substrate having such a spectral transmittance is used as the front substrate of the plasma display device, the brightness of image display can be improved. The glass substrate is colored as the amount of iron oxide mixed as an impurity in the glass increases and the spectral transmittance decreases. Therefore, the glass substrate is 0.5% by mass or less in terms of Fe 2 O 3 (preferably 0. It is desirable to regulate to 2% by mass or less.
[0033]
Furthermore, the glass substrate of the present invention can be formed into a plate shape by a roll-out method, an overflow down-draw method, a slot-down draw method or the like, but when formed by a float method, it has a large area and excellent smoothness. The glass substrate is most preferable because it is easy to obtain.
[0034]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0035]
Table 1 shows examples of the present invention (sample Nos . 1 , 2, 5), reference examples (sample Nos . 3, 4), and comparative examples (sample No. 6). Sample Na. 6 is a commercially available high strain point glass substrate used in the plasma display device.
[0036]
[Table 1]
[0037]
Each glass sample of Table 1 was produced as follows.
[0038]
First, raw materials prepared so as to have the glass composition in the table were put into a platinum crucible and melted at 1450 to 1600 ° C. for 4 hours. Next, the molten glass was poured into a mold, formed into a plate shape, slowly cooled, and then polished on both surfaces to have a thickness shown in the table. Thereafter, the glass plates were cut into a size of 200 mm square. In the table, R′O represents an alkaline earth metal oxide such as MgO, CaO, SrO, or BaO, and R 2 O represents an alkali metal oxide such as Na 2 O or K 2 O.
[0039]
For each glass sample thus obtained, the linear thermal expansion coefficient, strain point, density, specific Young's modulus were measured, and those values are shown in Table 1.
[0040]
As can be seen from the table, the sample No. 1 , 2, and 5 have a linear thermal expansion coefficient of 72 to 80 × 10 −7 / ° C., so that they are aligned with the peripheral members of the plasma display device, and the strain point is 610 ° C. or higher. Small thermal deformation and shrinkage. Furthermore, since the specific Young's modulus is 28.1 GPa / (g · cm −3 ) or more, the effect of suppressing the deflection of the glass substrate is great. Moreover, since these glass substrates are 2.1 mm or less in thickness, there is little absorption of visible light, and when these spectral transmittances in 400-700 nm were measured at 1 nm intervals using a spectrophotometer, all wavelengths were measured. 87% or more. 1 and 2 were 90% or more.
[0041]
On the other hand, sample No. which is a comparative example. No. 6 has a low specific Young's modulus, so it is poor in the effect of suppressing the deflection of the glass substrate. If the glass substrate is made thin, the amount of deflection becomes large and it is judged that the glass substrate is easily damaged in the manufacturing process. The glass substrate had a thickness of 2.8 mm. When the spectral transmittance at 400 to 700 nm was measured, the transmittance at 700 nm was about 85%.
[0042]
In addition, the linear thermal expansion coefficient in a table | surface measured the average linear thermal expansion coefficient in 30-380 degreeC with the dilatometer, and the strain point was measured according to ASTMC336-71. The density was measured by the well-known Archimedes method, and the specific Young's modulus was determined from the Young's modulus and density values by measuring the Young's modulus by the resonance method.
[0043]
【The invention's effect】
As described above, since the front glass substrate for a plasma display device of the present invention has a thickness of 1.0 to 2.5 mm and has a small deflection, when this is used as a front glass substrate of a plasma display device, the luminance is improved. In addition, it is possible to reduce breakage in the manufacturing process.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002155808A JP4692915B2 (en) | 2002-05-29 | 2002-05-29 | Front glass substrate for plasma display devices. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002155808A JP4692915B2 (en) | 2002-05-29 | 2002-05-29 | Front glass substrate for plasma display devices. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004002062A JP2004002062A (en) | 2004-01-08 |
JP4692915B2 true JP4692915B2 (en) | 2011-06-01 |
Family
ID=30428325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002155808A Expired - Fee Related JP4692915B2 (en) | 2002-05-29 | 2002-05-29 | Front glass substrate for plasma display devices. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4692915B2 (en) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006206336A (en) * | 2005-01-25 | 2006-08-10 | Central Glass Co Ltd | Substrate glass for display device |
JP4807024B2 (en) * | 2005-09-28 | 2011-11-02 | セントラル硝子株式会社 | Substrate glass for display devices |
JP4962898B2 (en) * | 2006-08-30 | 2012-06-27 | 日本電気硝子株式会社 | Glass substrate for flat panel display |
US10343946B2 (en) | 2010-10-26 | 2019-07-09 | Schott Ag | Highly refractive thin glasses |
US10308545B2 (en) | 2010-10-26 | 2019-06-04 | Schott Ag | Highly refractive thin glasses |
DE102011084501B3 (en) * | 2011-10-14 | 2013-03-21 | Schott Ag | X-ray opaque barium-free glass and its use |
WO2013118897A1 (en) * | 2012-02-09 | 2013-08-15 | 旭硝子株式会社 | Glass substrate for transparent conductive film formation, and substrate with transparent conductive film |
US20130300978A1 (en) * | 2012-05-14 | 2013-11-14 | Apple Inc. | Display with Minimized Light Leakage |
EP3033310B1 (en) | 2013-08-15 | 2021-03-10 | Corning Incorporated | Alkali-doped and alkali-free boroaluminosilicate glass |
JP6584013B2 (en) | 2013-08-15 | 2019-10-02 | コーニング インコーポレイテッド | Glass with medium to high CTE and glass article provided with the same |
CN106660855A (en) * | 2014-09-03 | 2017-05-10 | 日本电气硝子株式会社 | Supporting glass substrate and laminate using same |
US10301212B2 (en) | 2016-07-29 | 2019-05-28 | Schott Ag | Radiopaque glass and uses thereof |
US11136260B2 (en) | 2016-07-29 | 2021-10-05 | Schott Ag | Radiopaque glass and use thereof |
DE102018102301B4 (en) | 2018-02-01 | 2019-08-14 | Schott Ag | X-ray opaque glass and its use |
DE102018010246B4 (en) | 2018-02-01 | 2024-05-16 | Schott Ag | X-ray opaque glass and its use |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0340933A (en) * | 1989-07-06 | 1991-02-21 | Asahi Glass Co Ltd | Glass composition for substrate |
JPH03170343A (en) * | 1989-11-28 | 1991-07-23 | Asahi Glass Co Ltd | Glass composition |
JPH08165138A (en) * | 1994-10-14 | 1996-06-25 | Asahi Glass Co Ltd | Glass composition for substrate and substrate for plasma display using the same |
JPH08290938A (en) * | 1995-04-14 | 1996-11-05 | Nippon Electric Glass Co Ltd | Glass for substrate |
JPH1072235A (en) * | 1996-06-20 | 1998-03-17 | Asahi Glass Co Ltd | Glass substrate for plasma display panel |
JPH10152338A (en) * | 1996-03-14 | 1998-06-09 | Asahi Glass Co Ltd | Glass composition for substrate |
JPH111342A (en) * | 1997-04-15 | 1999-01-06 | Nippon Electric Glass Co Ltd | Front glass base plate for plasma display |
JPH1111975A (en) * | 1997-06-27 | 1999-01-19 | Asahi Glass Co Ltd | Glass substrate for plasma display panel |
JP2000228152A (en) * | 1999-02-09 | 2000-08-15 | Nippon Electric Glass Co Ltd | Dielectric formation material and dielectric formation paste |
JP2001060439A (en) * | 1999-08-23 | 2001-03-06 | Nippon Electric Glass Co Ltd | Front glass substrate for plasma display |
JP2001122637A (en) * | 1999-10-26 | 2001-05-08 | Nippon Electric Glass Co Ltd | Glass substrate for display |
JP2001255517A (en) * | 2000-03-13 | 2001-09-21 | Sharp Corp | Substrate for liquid crystal display device and the liquid crystal display device |
JP2001319774A (en) * | 2000-05-10 | 2001-11-16 | Nippon Electric Glass Co Ltd | Inorganic el display substrate and inorganic el display using it |
-
2002
- 2002-05-29 JP JP2002155808A patent/JP4692915B2/en not_active Expired - Fee Related
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0340933A (en) * | 1989-07-06 | 1991-02-21 | Asahi Glass Co Ltd | Glass composition for substrate |
JPH03170343A (en) * | 1989-11-28 | 1991-07-23 | Asahi Glass Co Ltd | Glass composition |
JPH08165138A (en) * | 1994-10-14 | 1996-06-25 | Asahi Glass Co Ltd | Glass composition for substrate and substrate for plasma display using the same |
JPH08290938A (en) * | 1995-04-14 | 1996-11-05 | Nippon Electric Glass Co Ltd | Glass for substrate |
JPH10152338A (en) * | 1996-03-14 | 1998-06-09 | Asahi Glass Co Ltd | Glass composition for substrate |
JPH1072235A (en) * | 1996-06-20 | 1998-03-17 | Asahi Glass Co Ltd | Glass substrate for plasma display panel |
JPH111342A (en) * | 1997-04-15 | 1999-01-06 | Nippon Electric Glass Co Ltd | Front glass base plate for plasma display |
JPH1111975A (en) * | 1997-06-27 | 1999-01-19 | Asahi Glass Co Ltd | Glass substrate for plasma display panel |
JP2000228152A (en) * | 1999-02-09 | 2000-08-15 | Nippon Electric Glass Co Ltd | Dielectric formation material and dielectric formation paste |
JP2001060439A (en) * | 1999-08-23 | 2001-03-06 | Nippon Electric Glass Co Ltd | Front glass substrate for plasma display |
JP2001122637A (en) * | 1999-10-26 | 2001-05-08 | Nippon Electric Glass Co Ltd | Glass substrate for display |
JP2001255517A (en) * | 2000-03-13 | 2001-09-21 | Sharp Corp | Substrate for liquid crystal display device and the liquid crystal display device |
JP2001319774A (en) * | 2000-05-10 | 2001-11-16 | Nippon Electric Glass Co Ltd | Inorganic el display substrate and inorganic el display using it |
Also Published As
Publication number | Publication date |
---|---|
JP2004002062A (en) | 2004-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4692915B2 (en) | Front glass substrate for plasma display devices. | |
JP3831957B2 (en) | Glass composition and substrate for plasma display | |
EP0782552B1 (en) | Substrate glasses for plasma displays | |
US20060238100A1 (en) | Flat panel display | |
US5854152A (en) | Glasses for display panels | |
US20090141478A1 (en) | Glass composition for lamp, lamp, backlight unit and method for producing glass composition for lamp | |
US20060119249A1 (en) | Flat-panel display | |
JP2005089286A (en) | Glass base plate for flat panel display device | |
JP4962898B2 (en) | Glass substrate for flat panel display | |
EP1310464A1 (en) | Glass substrate for inorganic el display | |
JP2007294395A (en) | Display panel | |
JP2004051473A (en) | Glass substrate for flat panel display device | |
JP2001226138A (en) | Glass substrate for flat panel display device | |
JPH11310430A (en) | Glass composition for substrate board | |
JP4974046B2 (en) | Glass spacer for flat display device and spacer using the same | |
JP4045662B2 (en) | Heat resistant glass composition and plasma display panel using the same | |
JP2001139342A (en) | Plasma display device and front glass substrate for the same | |
JPH11310432A (en) | Glass composition for substrate board | |
JPH09249430A (en) | Glass composition for substrate | |
JPH11310431A (en) | Glass composition for substrate board | |
US20080203894A1 (en) | Display device | |
JPH11310429A (en) | Glass composition for substrate board | |
US20060068209A1 (en) | Glass plate for display substrate | |
JP4265157B2 (en) | Glass substrate for flat panel display | |
EP0850891B1 (en) | Substrate glass and plasma display made by using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050420 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080731 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080905 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090706 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100510 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110131 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140304 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110213 |
|
LAPS | Cancellation because of no payment of annual fees |