[go: up one dir, main page]

JP4688013B2 - Low-frequency firing dielectric material for high frequency and multilayer electronic component for high frequency - Google Patents

Low-frequency firing dielectric material for high frequency and multilayer electronic component for high frequency Download PDF

Info

Publication number
JP4688013B2
JP4688013B2 JP2002354954A JP2002354954A JP4688013B2 JP 4688013 B2 JP4688013 B2 JP 4688013B2 JP 2002354954 A JP2002354954 A JP 2002354954A JP 2002354954 A JP2002354954 A JP 2002354954A JP 4688013 B2 JP4688013 B2 JP 4688013B2
Authority
JP
Japan
Prior art keywords
mass
terms
dielectric material
high frequency
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002354954A
Other languages
Japanese (ja)
Other versions
JP2004182576A (en
Inventor
光一郎 栗原
毅 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002354954A priority Critical patent/JP4688013B2/en
Publication of JP2004182576A publication Critical patent/JP2004182576A/en
Application granted granted Critical
Publication of JP4688013B2 publication Critical patent/JP4688013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に携帯電話用電子部品に使用される高周波用低温焼成誘電体材料に関し、また、本材料を用いた高周波用積層電子部品に関する。
【0002】
【従来の技術】
携帯電話機の小型化、高機能化、軽量化のニーズが高まりとともに、携帯電話に用いられる電子部品は、従来の一つの機能を有する単機能部品から複数の機能を一つの部品として複合化し、小型に構成したものに変化している。
電子部品の小型・複合化の手段として、LTCC材料を用いてインダクタやコンデンサなどの多数の回路素子を積層基板に内蔵させて、整合回路、フィルタ、方向性結合器、位相線路などの高周波回路を構成し、さらに半導体素子などを実装することで増幅器やスイッチ等を複合することが行われている。このような電子部品用の誘電体材料としては、高周波での損失が少ない材料、即ちfQが高い材料で、かつ、部品内部の配線材料用として電気伝導度が高いAgやCuと同時焼成できるような材料が望まれ、これまで多くの材料が提案されている(例えば特許文献1)。
【0003】
【特許文献1】
特開2000−272960
【0004】
ところで、携帯電話機の信頼性試験の一つとして落下試験がある。この試験は、携帯電話機を1.5〜2mの高さからコンクリート面に落下させて、電気的な機能劣化が無いかどうかを確認する試験である。携帯電話の軽量化により、前記電子部品が実装されるプリント基板や筐体の薄肉化が進んでいるため、前記電子部品は機能のみならず、部品自体の機械強度や耐衝撃性が大きいこと、および部品をプリント基板に半田付け後、端子の密着強度がより大きいことへの要求が強くなっている。
【0005】
【発明が解決しようとする課題】
従来の高周波用低温焼成誘電体材料用いて積層電子部品を作製し、前述の携帯電話の信頼性試験である落下テストを模擬して機械強度や耐衝撃性を評価したところ、落下後クラックや割れが発生し、電気的な機能を維持できないもの、場合によっては破壊してしまうものがあった。
強度向上を図るには、電子部品内部の配線構造の変更による方法があるが、自ずと限界がある。このため並行して、誘電体材料自体の組成検討などにより強度向上が必要であるが、これまでの低温焼成誘電体材料においては、材料のfQを高く維持しながら、かつ強度を向上することは困難であるという課題があった。
そこで本発明の目的は、高周波用低温焼成誘電体材料において、fQが高く、かつ機械的強度が高い高周波用低温焼成誘電体材料を提供し、もって機械的強度が高い積層電子部品を提供することである。
【0006】
【課題を解決するための手段】
第1の発明は、主成分がAl、Si、Sr、Tiの酸化物で構成され、Al、Si、Sr、TiをそれぞれAl、SiO、SrO、TiOに換算し合計100質量%としたとき、Al換算で10〜60質量%、SiO換算で25〜60質量%、SrO換算で7.5〜50質量%、TiO換算で20質量%以下(0%を含む)のAl、Si、Sr、Tiを含有し、前記合計100質量%に対し副成分として、Bi、Na、K、Coの群のうちの少なくとも1種をBi換算で0.1〜10質量%、NaO換算で0.1〜5質量%、KO換算で0.1〜5質量%、CoO換算で0.1〜5質量%含有し、更に、ZrO換算で0.01〜2質量%のZrを含有し、組織中に、SrAlSiを主成分とする六方晶系の長石族結晶よりもSrAlSiを主成分とする単斜晶系の長石族結晶を多く含み、抗折強度が250MPa以上であり、8THz以上のfQ値を有し、AgやCuと同時焼成されたことを特徴とする高周波用低温焼成誘電体材料である。
また、前記主成分100質量%に対し副成分として、更にCu、Mn、Agの群のうちの少なくとも1種をCuO換算で0.01〜5質量%、MnO換算で0.01〜5質量%、Agを0.01〜5質量%含有するのが好ましい。
第1又は第2の発明において、ZrOが、0.01重量%未満ではその機械的強度の向上効果が不十分であり、他方、2重量%を超える場合は、fQの低下が認められ好ましくない。ZrO添加による機械的強度の向上効果をより期待するためには、0.3重量%〜1.5重量%がより好ましい。
第1又は第2の発明においては、組織中にSrAlSiを主成分とする長石族結晶とともにZrOの結晶を含むものである。前記組織中には、六方晶系のSrAlSiを主成分とする長石族結晶と単斜晶系のSrAlSiを主成分とする長石族結晶とが混在し、相対的に単斜晶系のSrAlSiを主成分とする長石族結晶が六方晶系のSrAlSiを主成分とする長石族結晶よりも多く含む様にするのが好ましく、SrAlSiを主成分とする長石族結晶を実質的に単斜晶系の長石族結晶とするのがより好ましい。
第3の発明は、第1又は第2の発明の高周波用低温焼成誘電体材料を用いて構成する高周波用積層電子部品である。
【0007】
(作用)
本発明者等は、この高周波用低温焼成誘電体材料の基礎となる誘電体材料を前記特許文献1にて開示している。この誘電体材料を用いて種々の酸化物セラミックスを中心として、添加物による強度改善の検討を行った。その結果、ZrOを所定量添加すると、機械的強度向上に有効であることを見出すことができた。
その機械的強度向上のメカニズムについて、組織中の結晶系に着目しX線回折法により詳細に調査した。本発明の基礎となる誘電体材料は800℃前後からガラスの流動性を利用して収縮し、緻密化したのち、900℃以上の保持温度にて、SrAlSiを主成分とする長石族の結晶が成長し、ガラス状態から結晶化する組織を有する。このように構成することでfQ特性や、機械的強度を向上させることが出来る。前記SrAlSiの結晶系は、850℃前後でも一部結晶化が開始しており、その温度領域では六方晶であるのに対して、900℃以上で保持した後は、単斜晶系(b軸)に変化する。
SrAlSiの六方晶の格子定数は、abc軸それぞれ、a:0.520nm、b:0.520nm、c:0.760nmである(JCPDSファイル、カードNo.35−0073参照)。他方、単斜晶の格子定数は、同様にそれぞれ、a:0.839nm、b:1.297nm、c:0.713nmである(JCPDSファイル、カードNo.38−1454参照)。
また、ZrOは斜方晶系で、格子定数は、同様にそれぞれ、a:0.504nm、b:0.509nm、c:0.526nmである(JCPDSファイル、カードNo.37−1413参照)。
結晶化の初期段階で現れる六方晶のSrAlSiとZrOは、結晶構造が六方晶と斜方晶と異なり、また格子定数の値の内c軸が異なっているが、a軸及びb軸の値は非常に近い。このため、斜方晶のZrOの存在により、六方晶のSrAlSiの結晶化が促進され、更には単斜晶系(b軸)への変化も早くなり、十分な結晶化が進むと考えた。結晶化レベルの検証であるが、ZrOを添加した誘電体材料を900℃で焼成した焼成体をTEM(透過型顕微鏡)にて観察し、電子線回折像を解析して組織中のガラス相の有無を調べたところ、その存在を確認出来ず、確認できた相は実施的に全て結晶相であった。
【0008】
【発明の実施の形態】
以下、実施例について詳細に説明する。
高周波用低温焼成誘電体材料の出発原料として、Al、SiO、SrCO、TiO、Bi、NaCO、KCO、CoO、CuO、MnO、Ag、ZrOの原料粉を、仮焼後に表1に示すの組成になるように秤量し、純水と一緒に、ボールミルで混合し、混合スラリーを得た。前記スラリーにPVAをスラリー重量に対して1wt%添加した後、スプレードライヤーにて乾燥し、平均粒径が約0.1mmの顆粒状の乾燥粉を得た。
前記顆粒粉を、連続炉にて最高温度800℃にて仮焼し、目的とする組成である仮焼粉を得た。なお、表1には本発明の範囲外である比較例も併記している。この比較例には実施例と区別するため試料番号に括弧を付している。
この仮焼粉を用いて先ず、fQの測定のため以下の手順で測定試料を作製した。
前記仮焼粉を、内容量4Lのボールミルに、純水と共に投入し、平均粒径1.2μmまで粉砕した。粉砕したスラリーを、乾燥機で水分を蒸発させて、ライカイ機で解砕し、この粉体にPVA(ポリビニルアルコール)の10%水溶液を、粉体重量に対して10〜20重量%添加して、混錬後、32メッシュのふるいを通して造粒粉とした。この造粒粉を円柱状の成形体が得られるような金型に投入し、200MPaの圧力で加圧成形し、円柱状の成形体を得た。前記成形体を、大気中900℃、2時間の焼成し、焼成体を得た。この焼成体を用いて、誘電体共振器法で、共振周波数fとQ値により、fQを求めた。結果を表1に示す。全ての実施例No.4〜10、No.14〜27において、fQは8THz以上の高い値を示した。
【0009】
次に、機械的強度を評価するため、前記と同様のプロセスで38mm×12mm×1mmの試験片を作成し、JIS C2141として規定される曲げ強さ試験方法により、支点間距離を30mmとし、荷重速度を0.5mm/minとして3点曲げ試験を行い、試験片が破壊したときの最大荷重から曲げ強さ(抗折強度)を求めた。この結果を表1に示す。全ての実施例No.4〜10、No.14〜27において、抗折強度は250MPa以上の高い値を示した。
【0010】
【表1】

Figure 0004688013
【0011】
また比較例として、ZrO量が0.01重量%満たない試料、および2重量%超える試料について、前記実施例と同様に作製し、評価を行った結果を表1に示す。
ZrOが0.01重量%に満たないものは、fQは大きな値を示すが、抗折強度が220MPa以下と低下した。また、ZrOが2重量%を超えるものでは、高い抗折強度を示すがfQが5THz以下と低い値しか得られなかった。
【0012】
このような誘電体材料を用いて、以下の様にグリーンシートを成形し、積層体内部に伝送線路を形成した積層部品として、4532サイズ(長手4.5mm×短手3.2mm×高さ1.0mm)の積層電子部品(アンテナスイッチ)を作製した。図1はその外観であり、図2はその等価回路である。
前記、仮焼粉を、エタノール中に分散させてボールミルで平均粒径1.2μmまで粉砕し、更に、シート成形用のバインダーであるPVB(ポリビニルブチラール)を仮焼粉重量に対して12wt%、および可塑剤であるBPBG(ブチルフタリルブチルグリコレート)7.5wt%を添加し、同一のボールミルにて、溶解・分散を行い、シート成形用のスラリーを得た。前期スラリーを減圧下で、脱泡および一部の溶剤の蒸発を行い、約10000mPa・sの粘度になるように調整した。粘度調整後、ドクターブレードにて、シート成形を行い、乾燥後約100μmの厚さのセラミックグリーンシートを得た。後工程のハンドリングのため、約150mm角の大きさに裁断した。
積層電子部品とするため、複数枚のセラミックグリーンシート表面にAgペーストにて伝送線路を構成する配線パターンL1−1,L1−2,L2−1,L2−2を形成した(図3参照)。前記セラミックグリーンシートは各層間の配線パターンを接続するため、スルーホールもレーザー穴あけ装置により、必要に応じて形成した。前記印刷後のセラミックグリーンシートを、所定のパターンの画像処理による位置合わせを行って積層圧着した。圧着条件は、圧力14MPa、温度85℃、10分保持で行った。
前記セラミック積層体を焼成後4532サイズになるようにチップサイズに切断した後、焼成セッターに配置し、連続炉で脱バインダー及び焼成を行った。焼成は大気雰囲気中900℃で2時間保持した。
焼成後、内部配線が露出している部分に、Agを主成分とし、ガラス成分を含む外部電極ペーストを塗布し、800℃で焼き付け後、電解めっきにて、焼き付け後の銀表面に、ニッケルめっきおよびスズめっきを行い端子電極GND,TX,RX,VC1,VC2として積層基板2とした。これにダイオードD1,D2を実装して積層電子部品1を作製した。この積層電子部品は、図2に示した等価回路の破線部を構成するものであり、ANT−RX間、TX−VC1間が直流的に接続している。
【0013】
このようにして得られた積層電子部品をプリント基板に半田つけし、このプリント基板を、携帯電話と同等の重量にした枠状のアルミニウム製の治具にねじ止めして、固定した後、2mのコンクリート面に落下させて、電気的な断線をテスターで調べ、また外観のクラック、割れを20倍の実体顕微鏡で調べた。
本発明に係る実施例の積層電子部品の端子間の導通は、全て断線無く、また抵抗値の変化も試験前後でレンジ5%以下であった。更に、クラック、割れなどは観察されなかった。一方、比較例No.1〜3のものでは、伝送線路が断線したり、割れやクラックが発生した。
【0014】
【発明の効果】
前記実施例に示したように、本発明によれば、fQが高く、機械的強度が大きい高周波用低温焼成材料を提供することができる。また、機械的強度が大きいことから、携帯電話機の信頼性試験の一つである、落下試験への耐久性が高く、信頼性の高い高周波用積層電子部品を提供することが可能となる。
【図面の簡単な説明】
【図1】 本発明の一実施例に係る積層電子部品の斜視図。
【図2】 本発明の一実施例に係る積層電子部品の等価回路。
【図3】 本発明の一実施例に係る積層基板の分解斜視図。
【符号の説明】
1 積層電子部品
2 積層基板
L1、L2 伝送線路
L1−1、L1−2、L2−1、L2−2 配線パターン
GND、TX,RX,VC1,VC2 端子電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency low-temperature fired dielectric material mainly used for electronic parts for mobile phones, and also relates to a high-frequency laminated electronic part using this material.
[0002]
[Prior art]
With the growing needs for miniaturization, high functionality, and weight reduction of mobile phones, the electronic components used in mobile phones have been reduced in size by combining multiple functions as a single component from a conventional single-function component having one function. It has changed to what was configured.
As a means to make electronic components smaller and more complex, LTCC materials are used to incorporate a large number of circuit elements such as inductors and capacitors in a multilayer substrate, and high-frequency circuits such as matching circuits, filters, directional couplers, and phase lines can be used. It is configured to combine an amplifier, a switch and the like by configuring and further mounting a semiconductor element or the like. As such a dielectric material for electronic parts, a material with low loss at high frequency, that is, a material having a high fQ, and can be simultaneously fired with Ag or Cu having high electrical conductivity for a wiring material inside the part. Therefore, many materials have been proposed (for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 2000-272960 A
[0004]
Incidentally, there is a drop test as one of the reliability tests of the mobile phone. This test is a test in which a mobile phone is dropped from a height of 1.5 to 2 m onto a concrete surface to check whether there is any electrical functional deterioration. Since the thickness of the printed circuit board and the housing on which the electronic component is mounted has been reduced due to the weight reduction of the mobile phone, not only the function of the electronic component but also the mechanical strength and impact resistance of the component itself are large. And after soldering a component to a printed circuit board, there is an increasing demand for greater adhesion strength of the terminals.
[0005]
[Problems to be solved by the invention]
A multilayer electronic component was fabricated using a conventional low-frequency fired dielectric material for high-frequency, and the mechanical strength and impact resistance were evaluated by simulating the drop test, which is the reliability test of the mobile phone described above. Occurred, and some of the electrical functions could not be maintained, and some were destroyed.
In order to improve the strength, there is a method by changing the wiring structure inside the electronic component, but there is a limit. For this reason, it is necessary to improve the strength by examining the composition of the dielectric material itself. However, in the conventional low-temperature fired dielectric material, it is not possible to improve the strength while maintaining a high fQ of the material. There was a problem that it was difficult.
Accordingly, an object of the present invention is to provide a high-frequency low-temperature fired dielectric material having high fQ and high mechanical strength in a high-frequency low-temperature fired dielectric material, and thus providing a multilayer electronic component having high mechanical strength. It is.
[0006]
[Means for Solving the Problems]
In the first invention, the main component is composed of oxides of Al, Si, Sr, and Ti, and Al, Si, Sr, and Ti are converted into Al 2 O 3 , SiO 2 , SrO, and TiO 2 , respectively, for a total of 100 masses. % In terms of Al 2 O 3 , 10 to 60% by mass, 25 to 60% by mass in terms of SiO 2 , 7.5 to 50% by mass in terms of SrO, 20% by mass or less in terms of TiO 2 (0% (Including Al), Si, Sr, and Ti, and at least one of the group of Bi, Na, K, and Co as an accessory component with respect to the total of 100% by mass is 0.1 in terms of Bi 2 O 3. -10% by mass, 0.1 to 5% by mass in terms of Na 2 O, 0.1 to 5% by mass in terms of K 2 O, 0.1 to 5% by mass in terms of CoO, and further in terms of ZrO 2 It contains 0.01-2% by mass of Zr, and in the structure, SrAl 2 Si 2 O 8 More than the hexagonal feldspar group crystal containing SrAl 2 Si 2 O 8 as the main component, the bending strength is 250 MPa or more, and the fQ is 8 THz or more. It is a low-temperature fired dielectric material for high frequency, characterized in that it is fired simultaneously with Ag and Cu.
Further, as a sub-component with respect to 100% by mass of the main component, at least one of the group of Cu, Mn, and Ag is 0.01 to 5% by mass in terms of CuO and 0.01 to 5% in terms of MnO 2. %, preferably it has 0.01 to 5 mass% containing the Ag.
In the first or second invention, if ZrO 2 is less than 0.01% by weight, the effect of improving the mechanical strength is insufficient. On the other hand, if it exceeds 2% by weight, a decrease in fQ is observed, which is preferable. Absent. In order to further expect the effect of improving the mechanical strength due to the addition of ZrO 2 , 0.3 wt% to 1.5 wt% is more preferable.
In the first or second invention, the structure includes a ZrO 2 crystal together with a feldspar group crystal containing SrAl 2 Si 2 O 8 as a main component. In the structure, a feldspar group crystal mainly composed of hexagonal SrAl 2 Si 2 O 8 and a feldspar group crystal mainly composed of monoclinic SrAl 2 Si 2 O 8 are mixed, and the relative In particular, it is preferable that the feldspar group crystal mainly composed of monoclinic SrAl 2 Si 2 O 8 contains more feldspar group crystal mainly composed of hexagonal SrAl 2 Si 2 O 8. More preferably, the feldspar group crystal mainly composed of SrAl 2 Si 2 O 8 is a monoclinic feldspar group crystal.
A third invention is a high-frequency multilayer electronic component configured using the high-frequency low-temperature fired dielectric material of the first or second invention.
[0007]
(Function)
The present inventors have disclosed a dielectric material as a basis of the low-frequency fired dielectric material for high frequency in Patent Document 1. Using this dielectric material, the improvement of strength by additives was investigated, centering on various oxide ceramics. As a result, it was found that the addition of a predetermined amount of ZrO 2 is effective in improving the mechanical strength.
The mechanism for improving the mechanical strength was examined in detail by X-ray diffractometry, focusing on the crystal system in the structure. The dielectric material which is the basis of the present invention shrinks and densifies from around 800 ° C. using the fluidity of glass, and then has SrAl 2 Si 2 O 8 as a main component at a holding temperature of 900 ° C. or higher. A feldspar group crystal grows and has a structure that crystallizes from a glassy state. With this configuration, the fQ characteristics and mechanical strength can be improved. The SrAl 2 Si 2 O 8 crystal system starts to partially crystallize even at around 850 ° C. and is hexagonal in that temperature range, but after being held at 900 ° C. or higher, it is monoclinic. Change to crystal system (b-axis).
The lattice constants of hexagonal crystals of SrAl 2 Si 2 O 8 are a: 0.520 nm, b: 0.520 nm, and c: 0.760 nm, respectively (see JCPDS file, card No. 35-0073). On the other hand, the lattice constants of monoclinic crystals are a: 0.839 nm, b: 1.297 nm, and c: 0.713 nm, respectively (see JCPDS file, card No. 38-1454).
ZrO 2 is orthorhombic and the lattice constants are a: 0.504 nm, b: 0.509 nm, and c: 0.526 nm, respectively (see JCPDS file, card No. 37-1413). .
Hexagonal SrAl 2 Si 2 O 8 and ZrO 2 appearing in the initial stage of crystallization have crystal structures different from those of hexagonal and orthorhombic, and the c-axis of lattice constant values is different. And the values on the b-axis are very close. For this reason, the presence of orthorhombic ZrO 2 promotes crystallization of hexagonal SrAl 2 Si 2 O 8 , and further, the change to the monoclinic system (b-axis) is accelerated, resulting in sufficient crystallization. Thought that would go. While the verification of the crystallization level, the sintered body of dielectric material with addition of ZrO 2 calcined at 900 ° C. and observed by TEM (transmission electron microscope), the glass phase in the tissue by analyzing electron beam diffraction image When the presence or absence of this was investigated, its presence could not be confirmed, and all confirmed phases were practically crystalline phases.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, examples will be described in detail.
As starting materials for low-frequency fired dielectric materials for high frequencies, Al 2 O 3 , SiO 2 , SrCO 3 , TiO 2 , Bi 2 O 3 , Na 2 CO 3 , K 2 CO 3 , CoO, CuO, MnO 2 , Ag, The raw material powder of ZrO 2 was weighed so as to have the composition shown in Table 1 after calcination, and mixed with pure water by a ball mill to obtain a mixed slurry. After adding 1 wt% of PVA to the slurry with respect to the weight of the slurry, the slurry was dried with a spray dryer to obtain a granular dry powder having an average particle size of about 0.1 mm.
The granulated powder was calcined at a maximum temperature of 800 ° C. in a continuous furnace to obtain a calcined powder having a target composition. Table 1 also shows comparative examples that are outside the scope of the present invention. In this comparative example, parentheses are added to the sample number to distinguish it from the examples.
First, using this calcined powder, a measurement sample was prepared by the following procedure for the measurement of fQ.
The calcined powder was put into a ball mill having an internal volume of 4 L together with pure water and pulverized to an average particle size of 1.2 μm. The pulverized slurry was evaporated with a dryer and pulverized with a lycra machine. A 10% aqueous solution of PVA (polyvinyl alcohol) was added to this powder in an amount of 10 to 20% by weight based on the weight of the powder. After kneading, it was made into granulated powder through a 32 mesh sieve. This granulated powder was put into a mold capable of obtaining a cylindrical molded body, and pressure-molded at a pressure of 200 MPa to obtain a cylindrical molded body. The molded body was fired in the atmosphere at 900 ° C. for 2 hours to obtain a fired body. Using this fired body, fQ was obtained from the resonance frequency f and Q value by the dielectric resonator method. The results are shown in Table 1. All Example Nos. 4-10, no. In 14-27, fQ showed the high value of 8 THz or more.
[0009]
Next, in order to evaluate the mechanical strength, a test piece of 38 mm × 12 mm × 1 mm was prepared by the same process as described above, and the distance between fulcrums was set to 30 mm by a bending strength test method defined as JIS C2141. A three-point bending test was performed at a speed of 0.5 mm / min, and the bending strength (bending strength) was determined from the maximum load when the test piece broke. The results are shown in Table 1. All Example Nos. 4-10, no. In 14-27, the bending strength showed a high value of 250 MPa or more.
[0010]
[Table 1]
Figure 0004688013
[0011]
In addition, as a comparative example, Table 1 shows the results of producing and evaluating a sample in which the amount of ZrO 2 is less than 0.01% by weight and a sample exceeding 2% by weight in the same manner as in the above example.
When ZrO 2 was less than 0.01% by weight, fQ showed a large value, but the bending strength decreased to 220 MPa or less. In addition, when ZrO 2 exceeds 2% by weight, high bending strength was exhibited, but fQ was only 5 THz or less, and a low value was obtained.
[0012]
Using such a dielectric material, a green sheet is molded as follows, and a transmission part is formed inside the laminate, so that it is a 4532 size (long length 4.5 mm × short side 3.2 mm × height 1). 0.0 mm) laminated electronic component (antenna switch). FIG. 1 shows its appearance, and FIG. 2 shows its equivalent circuit.
The calcined powder is dispersed in ethanol and pulverized with a ball mill to an average particle size of 1.2 μm. Further, PVB (polyvinyl butyral) as a binder for forming a sheet is 12 wt% based on the weight of the calcined powder, Then, 7.5 wt% of BPBG (butyl phthalyl butyl glycolate) as a plasticizer was added, and dissolution and dispersion were performed in the same ball mill to obtain a sheet forming slurry. The slurry was adjusted to a viscosity of about 10,000 mPa · s by degassing and evaporating a part of the solvent under reduced pressure. After adjusting the viscosity, a sheet was formed with a doctor blade, and after drying, a ceramic green sheet having a thickness of about 100 μm was obtained. For handling in the subsequent process, it was cut into a size of about 150 mm square.
In order to obtain a laminated electronic component, wiring patterns L1-1, L1-2, L2-1, and L2-2 constituting the transmission line were formed with Ag paste on the surface of a plurality of ceramic green sheets (see FIG. 3). Since the ceramic green sheets connect the wiring patterns between the layers, through holes were also formed as necessary by a laser drilling device. The printed ceramic green sheet was subjected to alignment by image processing of a predetermined pattern and laminated and pressure-bonded. The pressure bonding conditions were a pressure of 14 MPa, a temperature of 85 ° C., and a 10 minute holding.
The ceramic laminate was cut into a chip size so as to have a size of 4532 after firing, and then placed on a firing setter, and the binder was removed and fired in a continuous furnace. Firing was held at 900 ° C. for 2 hours in an air atmosphere.
After firing, an external electrode paste containing Ag as a main component and glass component is applied to the exposed internal wiring, and after baking at 800 ° C., electrolytic plating is performed on the silver surface after baking. Then, tin plating was performed to obtain a laminated substrate 2 as terminal electrodes GND, TX, RX, VC1, and VC2. The diodes D1 and D2 were mounted on this, and the laminated electronic component 1 was produced. This multilayer electronic component constitutes the broken line portion of the equivalent circuit shown in FIG. 2, and the ANT-RX and TX-VC1 are connected in a direct current manner.
[0013]
The multilayer electronic component obtained in this way is soldered to a printed circuit board, and this printed circuit board is screwed and fixed to a frame-shaped aluminum jig having a weight equivalent to that of a mobile phone. The test piece was dropped on the concrete surface, and the electrical disconnection was examined with a tester, and the appearance cracks and cracks were examined with a 20 × stereo microscope.
The conduction between the terminals of the laminated electronic component of the example according to the present invention was not disconnected, and the change in resistance value was 5% or less before and after the test. Furthermore, no cracks or cracks were observed. On the other hand, Comparative Example No. In the cases of 1 to 3, the transmission line was disconnected, or cracks and cracks occurred.
[0014]
【The invention's effect】
As shown in the above embodiments, according to the present invention, it is possible to provide a low-frequency fired material for high frequency with high fQ and high mechanical strength. In addition, since the mechanical strength is high, it is possible to provide a highly reliable multilayer electronic component for high frequency that has high durability against a drop test, which is one of the reliability tests of mobile phones.
[Brief description of the drawings]
FIG. 1 is a perspective view of a multilayer electronic component according to an embodiment of the present invention.
FIG. 2 is an equivalent circuit of a multilayer electronic component according to an embodiment of the present invention.
FIG. 3 is an exploded perspective view of a multilayer substrate according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laminated electronic component 2 Laminated board L1, L2 Transmission line L1-1, L1-2, L2-1, L2-2 Wiring pattern GND, TX, RX, VC1, VC2 Terminal electrode

Claims (4)

主成分がAl、Si、Sr、Tiの酸化物で構成され、Al、Si、Sr、TiをそれぞれAl、SiO、SrO、TiOに換算し合計100質量%としたとき、Al換算で10〜60質量%、SiO換算で25〜60質量%、SrO換算で7.5〜50質量%、TiO換算で20質量%以下(0%を含む)のAl、Si、Sr、Tiを含有し、
前記合計100質量%に対し副成分として、Bi、Na、K、Coの群のうちの少なくとも1種をBi換算で0.1〜10質量%、NaO換算で0.1〜5質量%、KO換算で0.1〜5質量%、CoO換算で0.1〜5質量%含有し、更に、ZrO換算で0.01〜2質量%のZrを含有し、
組織中に、SrAlSiを主成分とする六方晶系の長石族結晶よりもSrAlSiを主成分とする単斜晶系の長石族結晶を多く含み、
抗折強度が250MPa以上であり、8THz以上のfQ値を有し、
AgやCuと同時焼成されたことを特徴とする高周波用低温焼成誘電体材料。
When the main component is composed of oxides of Al, Si, Sr, and Ti, and Al, Si, Sr, and Ti are converted to Al 2 O 3 , SiO 2 , SrO, and TiO 2 , respectively, and the total amount is 100% by mass, then Al 10-60 mass% in terms of 2 O 3 , 25-60 mass% in terms of SiO 2 , 7.5-50 mass% in terms of SrO, 20 mass% or less (including 0%) in terms of TiO 2 , Si, , Sr, Ti,
As a subcomponent, at least one of the group of Bi, Na, K and Co is 0.1 to 10% by mass in terms of Bi 2 O 3 and 0.1 to 0.1% in terms of Na 2 O with respect to the total of 100% by mass. 5% by mass, 0.1 to 5% by mass in terms of K 2 O, 0.1 to 5% by mass in terms of CoO, and 0.01 to 2 % by mass in terms of ZrO 2
In tissue, rich in feldspar group crystal to a monoclinic composed mainly of SrAl 2 Si 2 O 8 than feldspar group hexagonal crystal system composed mainly of SrAl 2 Si 2 O 8,
The bending strength is 250 MPa or more, and has an fQ value of 8 THz or more,
A low-temperature fired dielectric material for high frequency, which is fired simultaneously with Ag and Cu.
前記主成分に対して、更に、Cu、Mn、Agの群のうちの少なくとも1種をCuO換算で0.01〜5質量%、MnO換算で0.01〜5質量%、Agを0.01〜5質量%含有することを特徴とする請求項1に記載の高周波用低温焼成誘電体材料。With respect to the main component, further, Cu, Mn, at least one selected from the group of Ag, 0.01 to 5 mass% in terms of CuO, 0.01 to 5 mass% with MnO 2 in terms of the Ag 0 The low-temperature fired dielectric material for high frequencies according to claim 1, wherein the dielectric material is contained in an amount of .01 to 5% by mass . 組織中にSrAlSiを主成分とする長石族結晶とともにZrOの結晶を含むことを特徴とする請求項1又は2に記載の高周波用低温焼成誘電体材料。The low-temperature fired dielectric material for high frequency according to claim 1 or 2, wherein the structure contains ZrO 2 crystal together with feldspar group crystal mainly composed of SrAl 2 Si 2 O 8 . 請求項1乃至3のいずれかに記載の高周波用低温焼成誘電体材料を用いることを特徴とする高周波用積層電子部品。  A multilayer electronic component for high frequency, wherein the low-temperature fired dielectric material for high frequency according to any one of claims 1 to 3 is used.
JP2002354954A 2002-12-06 2002-12-06 Low-frequency firing dielectric material for high frequency and multilayer electronic component for high frequency Expired - Lifetime JP4688013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354954A JP4688013B2 (en) 2002-12-06 2002-12-06 Low-frequency firing dielectric material for high frequency and multilayer electronic component for high frequency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354954A JP4688013B2 (en) 2002-12-06 2002-12-06 Low-frequency firing dielectric material for high frequency and multilayer electronic component for high frequency

Publications (2)

Publication Number Publication Date
JP2004182576A JP2004182576A (en) 2004-07-02
JP4688013B2 true JP4688013B2 (en) 2011-05-25

Family

ID=32755785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354954A Expired - Lifetime JP4688013B2 (en) 2002-12-06 2002-12-06 Low-frequency firing dielectric material for high frequency and multilayer electronic component for high frequency

Country Status (1)

Country Link
JP (1) JP4688013B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757922A (en) * 1993-08-12 1995-03-03 Hitachi Metals Ltd Chip device
JPH10152370A (en) * 1996-09-26 1998-06-09 Ngk Spark Plug Co Ltd Dielectric material, its production and circuit substrate and multilayered circuit substrate using the same
JP2000272960A (en) * 1999-01-20 2000-10-03 Hitachi Metals Ltd Dielectric ceramic composition for microwave use, its production and electronic part for microwave use produced by using the dielectric ceramic composition for microwave use
JP2002167274A (en) * 2000-11-29 2002-06-11 Kyocera Corp Low-temperature sintered ceramic composition and multilayer wiring board using the same
JP2002348172A (en) * 2001-05-29 2002-12-04 Kyocera Corp High frequency wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757922A (en) * 1993-08-12 1995-03-03 Hitachi Metals Ltd Chip device
JPH10152370A (en) * 1996-09-26 1998-06-09 Ngk Spark Plug Co Ltd Dielectric material, its production and circuit substrate and multilayered circuit substrate using the same
JP2000272960A (en) * 1999-01-20 2000-10-03 Hitachi Metals Ltd Dielectric ceramic composition for microwave use, its production and electronic part for microwave use produced by using the dielectric ceramic composition for microwave use
JP2002167274A (en) * 2000-11-29 2002-06-11 Kyocera Corp Low-temperature sintered ceramic composition and multilayer wiring board using the same
JP2002348172A (en) * 2001-05-29 2002-12-04 Kyocera Corp High frequency wiring board

Also Published As

Publication number Publication date
JP2004182576A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP5056528B2 (en) Insulator ceramic composition and insulator ceramic using the same
KR101181055B1 (en) Dielectric ceramic composition, complex electronic device and multilayer ceramic capacitor
CN102365249B (en) Dielectric ceramic composition, multilayer dielectric substrate, electronic component, and method for producing dielectric ceramic composition
US8101536B2 (en) Glass-free microwave dielectric ceramics and the manufacturing method thereof
JP5013239B2 (en) High strength low temperature fired ceramic composition and multilayer electronic component using the same
JPH05183314A (en) Manufacture of multilayer ceramic component and multilayer ceramic component
WO2005073146A1 (en) Composition for ceramic substrate, ceramic substrate, process for producing ceramic substrate and glass composition
EP1568668A1 (en) Ceramic composition being fired at low temperature and having high strength and method for preparing the same, and laminated electronic parts using the same
US8652982B2 (en) Ceramic sintered body and method for producing ceramic sintered body
JP4688016B2 (en) High-strength low-temperature fired ceramic composition and multilayer electronic component using the same
JP4688013B2 (en) Low-frequency firing dielectric material for high frequency and multilayer electronic component for high frequency
JP2002265267A (en) Low-temperature firing porcelain and electronic components
JP2003063861A (en) Composite laminated ceramic electronic part and method for producing the same
JP4619173B2 (en) Composite electronic component materials
JP4629525B2 (en) Multilayer ceramic component and manufacturing method thereof
JP2005217170A (en) Composite multilayer ceramic electronic component
JP2006016215A (en) Dielectric ceramic and laminated ceramic substrate
JP2006261351A (en) Laminated ceramic component and manufacturing method thereof
JP5288296B2 (en) Manufacturing method of high strength low temperature fired ceramic and high strength low temperature fired ceramic substrate
JP3978689B2 (en) Low-temperature fired porcelain composition and microwave component using the same
JPH11209172A (en) Dielectric porcelain composition and composite dielectric porcelain composition
WO2020129857A1 (en) Glass ceramic material, laminate, and electronic component
WO2025028148A1 (en) Low-temperature fired ceramic and electronic component
JP2001220219A (en) Glass ceramic sintered body and multilayer wiring board using the same
JP3909367B2 (en) Low dielectric constant porcelain composition and method for producing substrate for electronic circuit using the porcelain composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110121

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4688013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

EXPY Cancellation because of completion of term