JP4685245B2 - Circuit board and manufacturing method thereof - Google Patents
Circuit board and manufacturing method thereof Download PDFInfo
- Publication number
- JP4685245B2 JP4685245B2 JP2001001154A JP2001001154A JP4685245B2 JP 4685245 B2 JP4685245 B2 JP 4685245B2 JP 2001001154 A JP2001001154 A JP 2001001154A JP 2001001154 A JP2001001154 A JP 2001001154A JP 4685245 B2 JP4685245 B2 JP 4685245B2
- Authority
- JP
- Japan
- Prior art keywords
- metal
- plating
- electroless
- circuit board
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Manufacturing Of Printed Wiring (AREA)
- Chemically Coating (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Structure Of Printed Boards (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、半導体素子等の電子部品が搭載されたモジュールの組み立てに用いられる回路基板に関する。
【0002】
【従来の技術】
半導体素子等の電子部品を搭載したモジュールは、近来のエレクトロニクス技術の発展に伴う高出力化が進む中、達成すべき課題は、電子部品搭載用回路基板の耐久性を高めると共に、電子部品から発生した熱を効率よく速やかに系外に逃がすため、回路基板からベース板への熱伝導を阻害する半田ボイドを低減することである。
【0003】
電子部品搭載用回路基板の基本構造は、セラミックス基板の表面に金属回路、裏面に金属放熱板が形成され、該金属回路と金属放熱板にNiめっきが施されている。そして、モジュールの組み立ての際に、金属回路に半導体素子が搭載され、金属放熱板面をベース板に半田付けによって固定される。
【0004】
セラミックス基板の材質としては、アルミナ、窒化アルミニウム、窒化ケイ素等、また金属回路、金属放熱板、ベース板の材質としては、銅、アルミニウム、それらの合金等が用いられている。また、セラミックス基板と金属回路、金属放熱板との接合は、Ag、Cu又はAg−Cu合金とTi、Zr、Hf等の活性金属成分を含むろう材を用いる活性金属ろう付け法が主流となっている。
【0005】
回路基板にヒートサイクル等の熱負荷が加わると、セラミックス基板と金属の熱膨張差に起因する熱応力が発生し、セラミックス基板と金属回路、金属放熱板(以下、金属回路と金属放熱板の両者を「金属回路等」という。)の接合端面において、セラミックス基板にクラックが発生する。このクラックは、熱負荷のサイクル数の増加と共に進展し、極端な場合には、絶縁破壊に至る。このような、セラミックス基板のクラックを抑制するため、金属回路の材質として、熱応力が小さいAlが用いられるようになってきている。
【0006】
この場合、Al回路と半導体素子(シリコンチップ等)の接合は、Al放熱板とベース板の接合は、Pb−Sn系の半田を用いて行われるため、Al表面にはNiめっきを施す必要がある。金属回路等がCu材質である場合も、酸化防止や半田との反応による信頼性低下を防ぐため、一般的にはNiめっきが施される。半田付けには、フラックスを用いて大気中又は窒素中でリフローする方法と、フラックスを用いないで水素雰囲気下でリフローする方法がある。工程の簡略化と環境問題のためには後者が望ましいが、めっきされたNiと半田のSnとの反応性が良くないので、半田ボイドといわれる空隙が発生し、熱抵抗が増大することが問題となる。
【0007】
この問題を解決するには、純度の高い電気Niめっき法を採用すればよいが、この方法の問題点は、取り扱いが煩雑となるためにコスト高となるだけでなく、ファインパターンに適用できないことである。
【0008】
【発明が解決しようとする課題】
本発明は、このような状況に鑑みてなされたものであり、電気Niめっき法によらずとも、安価な無電解Niめっき法によって半田ボイド率の小さくなる回路基板、すなわち放熱特性の良好なモジュールを組み立てることのできる回路基板を提供することを目的とする。
【0009】
【課題を解決するための手段】
すなわち、本発明は、次のとおりである。
(請求項1) セラミックス基板の表面に金属回路、裏面に金属放熱板が形成されており、該金属回路及び金属放熱板の表面に3〜8μm厚みの無電解Niめっきが施されてなる回路基板において、本発明で定義された無電解Niめっき膜の結晶性が0.8度以下、酸化度が0.6以下であることを特徴とする回路基板。結晶性:X線結晶回折(CuKα2θ)におけるNi(111)面のピークの半価幅。酸化度:X線光電子分光法(ESCA)におけるNi−metalに対するNi−O(Ni−O/Ni−metal)のピーク面積比。
(請求項2) セラミックス基板の表面に金属回路、裏面に金属放熱板を形成後、該金属回路と金属放熱板に2〜5μm厚みの無電解Ni−Pめっきを行ってから、全Niめっき膜厚が3〜8μmとなるように、無電解Ni−Bめっきを析出速度0.7〜3μm/Hrで行うことを特徴とする請求項1記載の回路基板の製造方法。
【0010】
【発明の実施の形態】
以下、更に詳しく本発明を説明する。
【0011】
本発明で使用されるセラミックス基板の材質は、高信頼性及び高絶縁性の点から、窒化アルミニウム又は窒化ケイ素であることが好ましい。セラミックス基板の厚みは目的によって自由に変えられる。通常は0.635mmであるが、0.5〜0.3mm程度の薄物でもよい。高電圧下での絶縁耐圧を著しく高めたいときには、1〜3mmの厚物が用いられる。
【0012】
金属回路等の材質としては、Al、Cu又はAl−Cu合金であることが好ましい。これらは、単体ないしはこれを一層として含むクラッド等の積層体の形態で用いられる。Alは、Cuよりも降伏応力が小さく、塑性変形に富み、ヒートサイクルなどの熱応力負荷時において、セラミックス基板にかかる熱応力を大幅に低減できるので、Cuよりもセラミックス基板に発生するクラックを抑制することが可能となり、高い信頼性回路基板となる。
【0013】
金属回路の厚みは、電気的、熱的特性の面からAl回路の場合は0.4〜0.5mm、Cu回路は0.3〜0.5mmであることが好ましい。一方、金属放熱板の厚みは、半田付け時の反りを生じさせないように決定される。具体的には、Al放熱板の場合は0.1〜0.4mm、Cu放熱板は0.15〜0.4mmであることが好ましい。
【0014】
セラミックス基板に金属回路等を形成させるには、金属板とセラミックス基板とを接合した後エッチングする方法、金属板から打ち抜かれた回路及び放熱板のパターンをセラミックス基板に接合する方法等によって行うことができる。セラミックス基板と金属回路等との接合は、Ag、Cu又はAg−Cu合金と、Ti、Zr、Hf等の活性金属成分とを含むろう材を用いる活性金属ろう付け法等によって行うことができる。
【0015】
Niめっきが施される前の金属回路等の表面は、研削、物理研磨、化学研磨等によって平滑化されていることが好ましく、表面粗さがRa≦0.2μmであることが好ましい。表面粗さの測定は、接触式、非接触式のいずれでもよいが、Alのような軟らかい金属の測定には、レーザー式のような非接触式の表面粗さ計を用いるのが望ましい。
【0016】
Niめっきは無電解法が好ましく、これによってファインパターンに対応可能となる。Niめっき膜厚は3〜8μmであることが好ましい。
【0017】
本発明の回路基板は、上記Niめっきの施された回路基板であって、Niめっき膜のX線結晶回折(CuKα2θ)におけるNi(111)面のピークの半価幅として定義される「結晶性」が0.8度以下で、しかもX線光電子分光法(ESCA)におけるNi−metalに対するNi−O(Ni−O/Ni−metal)のピーク面積比として定義される「酸化度」が0.6以下のものである。このような回路基板を用いて組み立てられたモジュールの放熱特性は、Niめっき法が無電解法であるにもかかわらず良好となる。
【0018】
Niめっき膜の結晶性0.8以下かつ酸化度0.6以下の要件は、Ni成分と半田のSn成分との反応性を高めるために必要となる。結晶性が0.8超ではNiの高結晶性が十分でなくなり、Sn成分との反応性を目的とするレベルまでに高めることができない。また、酸化度が0.6超では、その酸化層によってこれまたNi成分と半田のSn成分との反応性を目的とするレベルまでに高めることができない。
【0019】
本発明の回路基板は、セラミックス基板の表面に金属回路、裏面に金属放熱板を形成させた後、金属回路等に2〜5μm厚みの無電解Ni−Pめっきを行ってから、全Niめっき膜厚が3〜8μmとなるように、無電解Ni−Bめっきを析出速度0.7〜3μm/Hrで行うことによって製造することが好ましい。このような二段階の無電解Niよらずとも、一段階の無電解Ni−Bめっきによっても製造することができるが、時間がかかりすぎて生産性に劣る。セラミックス基板に金属回路等を形成させる方法については上記した。
【0020】
本発明においては、金属回路等にNiめっきを施すにあたり、まず2〜5μm厚み、好ましくは3.5〜4.5μm厚みの無電解Ni−Pめっきを施す。無電解Ni−Pめっきの方法については、一般的に知られている公知の方法で十分である。無電解Ni−Pめっきの析出速度を可及的に速めても悪影響はない。
【0021】
ついで、1〜3μm厚み、好ましくは1.5〜2.5μm厚みの無電解Ni−Bめっきを施し、全Niめっき膜厚を3〜8μmとする。無電解Ni−Bめっきの析出速度が重要であり、0.7〜3μm/Hrとする。本発明においてはめっき膜中のB濃度が多くても0.1%以下となるように、無電解Ni−Bめっき液を調整しておくことが好ましい。
【0022】
無電解Ni−Bめっきによる部分が1μm未満で、全厚みが3μm未満であると、Niめっき膜の結晶性の不足と酸化度が増し、半田のSn成分との反応性を目的とするレベルまでに高めることができない。一方、無電解Ni−Bめっきによる部分が3μm超であっても酸化度の低減効果は大きくならない。また、全厚みが8μm超であると、Niめっき膜の結晶性が乱れると共に、Niめっき膜の応力が大きくなり回路基板の信頼性が損なわれる。析出速度が0.7μm/Hr未満では生産性が悪く、また不純物をNiめっき膜内に取り込む可能性が高くなり、3μm/Hr超であると、Niめっきの膜質が不均一となり、高結晶性のNiめっき膜が得られない。
【0023】
Niめっき膜の更なる低酸化度を実現し、半田のSn成分との反応性を高めるために、無電解Ni−Bめっき後に、十分な洗浄・乾燥を行うことが望ましい。洗浄は、水洗後に、オレイン酸等の不飽和脂肪酸を含む表面処理剤で処理することが好ましい。表面処理剤は、Niめっき膜に撥水性を付与するものや、Niめっき膜の酸化物をエッチング除去できるものが好ましい。前者には例えば奥野製薬工業社製商品名「サフスルー」があり、後者には例えば5%硫酸水溶液がある。乾燥は、アルコール溶剤で置換してから行うことが望ましい。
【0024】
本発明の回路基板の評価、すなわち放熱特性の良好なモジュールとなる回路基板あるかどうかの評価は、金属回路等にシリコンチップを半田付けしその半田ボイド率を測定することによって行うことができる。
【0025】
すなわち、まず、金属回路等にPb(90%)−Sn(10%)半田片を挟んでシリコンチップを載置する。半田片とシリコンチップの寸法は、いずれも底面積5〜25mm2×厚さ0.4〜1.0mmであることが望ましい。
【0026】
ついで、水素雰囲気下、温度150℃までを15〜20℃/minの速度で、その後は2.3〜2.5℃/minの速度で昇温して温度350℃±5℃まで高めた後、速やかに室温下で自然冷却して半田付けを行う。
【0027】
150℃までを15〜20℃/minにて昇温する理由については、15℃/minよりも遅いとNiめっき面が酸化されてしまい、本来の半田濡れ性(半田ボイド率)を正しく評価することができない。また、20℃/minよりも速くするには装置が大がかりとなる。350℃までを2.3〜2.5℃/minにて昇温する理由については、2.3℃/minよりも遅いとNiめっき面が酸化されてしまい、本来の半田濡れ性を正しく評価することができない。2.5℃/minよりも速くすると、半田の溶融が十分でなく、本来の半田濡れ性を正しく評価することができない。
【0028】
半田ボイド率の測定は、軟X線装置又は超音波探傷装置を用いて、自動的に測定することができる。測定装置の市販品をあげれば、軟X線探傷装置としては、ソフテックス社製「PRO−TEST100」、超音波探傷装置としては、本多電子社製「HA−701」等である。
【0029】
半田ボイド率が2%を境にして、その回路基板を用いて組み立てられたモジュールの放熱特性が大きく変化する。
【0030】
【実施例】
以下、実施例と比較例をあげて更に具体的に本発明を説明する。
【0031】
実施例1〜6 比較例1〜7
窒化アルミニウム基板(厚み0.635mm×35mm角、熱伝導率170W/mK、3点曲げ強度400MPa)又は窒化ケイ素基板(厚み0.635mm×35mm角、熱伝導率70W/mK、3点曲げ強度800MPa)の表面に、Al回路形成用Al板(厚み0.4mm、純度>99.9%)を、また裏面にはAl放熱板形成用Al板(厚み0.1〜0.4mm、純度>99.9%)を、ろう材(Al−Cu(4%)合金箔、厚み30μm)を挟んでホットプレス装置に配置し、温度630℃、3MPaに加圧して接合した。
【0032】
得られた接合体にエッチングレジストを塗布し、FeCl3液でエッチングを行って、端部が縁取りされただけのベタAl回路とベタAl放熱板を有する回路基板を作製した。
【0033】
無電解Ni−Pめっき(めっき液:奥野製薬工業社製商品名「トップニコロン」)及び無電解Ni−Bめっき(めっき液:上村工業社製商品名「BEL801」)をそれぞれ表1に示す条件で施した。無電解Ni−Bめっきの際に、液温を調節して析出速度を表1のようにし、Niめっき膜の結晶性を調整した。
【0034】
その後、一部の回路基板については、撥水性付与を目的に市販エッチング液(奥野製薬工業社製商品名「サフスルー」)を用い、また酸化物の除去を目的に市販エッチング液(ワールドメタル社製商品名「ET−140」)を用いて、Niめっき膜の表面処理を行った後、イソプロピルアルコールで置換し、エアブロー乾燥を行った。
【0035】
得られた回路基板について、Niめっき膜の厚み、結晶性及び酸化度、並びに半田ボイド率を以下に従って測定した。それらの結果を表2に示す。
【0036】
(1)Niめっき膜厚
蛍光X線めっき厚測定装置(フイッシャー社製「XA−1050」)を用いて測定した。
(2)Niめっき膜の結晶性
X線結晶回折(CuKα2θ)装置(理学電機社製「ガイガーフレックスRAD−IIX」)において測定されたNi(111)面のピークの半価幅を求めた。
(3)Niめっき膜の酸化度
X線光電子分光(ESCA)測定装置(島津製作所社製「ESCA−1000」)において測定したNi−metalに対するNi−O(Ni−O/Ni−metal)のピーク面積比を求めた。
(4)半田ボイド率の測定
回路基板の金属回路にPb(90%)−Sn(10%)半田片(底面積169mm2×厚さ0.1mmの板)を挟んでシリコンチップ(底面積169mm2×厚さ0.4mmの板)を載置する。これを、水素雰囲気中、温度150℃までを17℃/minの速度で、その後は2.4℃/minの速度で昇温して温度350℃まで高めた後、速やかに、室温下、自然冷却する条件で加熱して半田付けを行い、半田ボイド率を軟X線探傷装置(ソフテックス社製「PRO−TEST100」)を用いて測定した。
【0037】
【表1】
【0038】
表1から明らかなように、本発明の実施例はいずれも半田濡れ性の良好な回路基板が得られたのに対し、比較例では半田濡れが悪く、半田ボイドが多く発生し、実用には耐え得ないものであった。
【0039】
つぎに、図1に示される簡易モジュールに組み立て、シリコンチップへの電力供給量145W、Alヒートシンク温度65℃の条件下、シリコンチップからAl放熱板の間の熱抵抗を測定し、放熱特性を評価した。その結果を表1に示す。
【0040】
【発明の効果】
本発明によれば、放熱特性に優れたモジュールを組み立てることのできる回路基板が提供される。
【0041】
本発明によれば、純度の高い電気Niめっき法によらずとも、無電解Niめっき法によって、放熱特性に優れたモジュールを組み立てることのできる回路基板の製造方法が提供される。
【図面の簡単な説明】
【図1】放熱特性を測定するための簡易モジュール組立図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a circuit board used for assembling a module on which an electronic component such as a semiconductor element is mounted.
[0002]
[Prior art]
Modules equipped with electronic components such as semiconductor elements are becoming more powerful with the recent development of electronics technology. This is to reduce solder voids that hinder heat conduction from the circuit board to the base plate in order to efficiently and quickly release the generated heat to the outside of the system.
[0003]
The basic structure of the electronic component mounting circuit board is such that a metal circuit is formed on the surface of the ceramic substrate, a metal heat sink is formed on the back surface, and Ni plating is applied to the metal circuit and the metal heat sink. When the module is assembled, the semiconductor element is mounted on the metal circuit, and the metal heat radiating plate surface is fixed to the base plate by soldering.
[0004]
As the material of the ceramic substrate, alumina, aluminum nitride, silicon nitride, etc., and as the material of the metal circuit, the metal heat sink, and the base plate, copper, aluminum, alloys thereof and the like are used. Also, the active metal brazing method using a brazing material containing an active metal component such as Ti, Zr, Hf and the like is mainly used for joining the ceramic substrate to the metal circuit and the metal heat sink. ing.
[0005]
When a thermal load such as a heat cycle is applied to a circuit board, thermal stress is generated due to the difference in thermal expansion between the ceramic substrate and the metal, and the ceramic substrate and the metal circuit, the metal heat sink (hereinafter referred to as both the metal circuit and the metal heat sink). Are referred to as “metal circuit etc.”), cracks occur in the ceramic substrate. This crack progresses with an increase in the number of cycles of the thermal load, and in the extreme case, leads to dielectric breakdown. In order to suppress such cracks in the ceramic substrate, Al having a low thermal stress has been used as the material of the metal circuit.
[0006]
In this case, since the Al circuit and the semiconductor element (silicon chip, etc.) are joined using the Pb—Sn solder, the Al surface needs to be plated with Ni. is there. Even when the metal circuit or the like is made of a Cu material, Ni plating is generally applied in order to prevent oxidation and deterioration of reliability due to reaction with solder. For soldering, there are a method of reflowing in the air or nitrogen using a flux, and a method of reflowing in a hydrogen atmosphere without using a flux. The latter is desirable for simplification of the process and environmental problems. However, the reactivity between the plated Ni and the Sn of the solder is not good, so that a void called a solder void is generated and the thermal resistance increases. It becomes.
[0007]
In order to solve this problem, it is sufficient to adopt a high-purity electric Ni plating method. However, the problem of this method is not only high cost due to complicated handling, but also cannot be applied to fine patterns. It is.
[0008]
[Problems to be solved by the invention]
The present invention has been made in view of such circumstances, and a circuit board having a low solder void ratio by an inexpensive electroless Ni plating method, that is, a module having a good heat dissipation characteristic, regardless of the electric Ni plating method. An object of the present invention is to provide a circuit board that can be assembled.
[0009]
[Means for Solving the Problems]
That is, the present invention is as follows.
(Claim 1) A circuit board in which a metal circuit is formed on the surface of a ceramic substrate, a metal heat sink is formed on the back surface, and electroless Ni plating having a thickness of 3 to 8 μm is applied to the surfaces of the metal circuit and the metal heat sink. The circuit board according to claim 1, wherein the electroless Ni plating film defined in the present invention has a crystallinity of 0.8 degrees or less and an oxidation degree of 0.6 or less. Crystallinity: half width of peak of Ni (111) plane in X-ray crystal diffraction (CuKα2θ). Oxidation degree: Peak area ratio of Ni-O (Ni-O / Ni-metal) to Ni-metal in X-ray photoelectron spectroscopy (ESCA).
(Claim 2) After forming a metal circuit on the surface of the ceramic substrate and a metal heat sink on the back surface, electroless Ni-P plating with a thickness of 2 to 5 μm is performed on the metal circuit and the metal heat sink, and then the entire
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0011]
The material of the ceramic substrate used in the present invention is preferably aluminum nitride or silicon nitride from the viewpoint of high reliability and high insulation. The thickness of the ceramic substrate can be freely changed according to the purpose. Usually, it is 0.635 mm, but a thin object of about 0.5 to 0.3 mm may be used. When it is desired to remarkably increase the withstand voltage under high voltage, a thickness of 1 to 3 mm is used.
[0012]
The material for the metal circuit or the like is preferably Al, Cu, or an Al—Cu alloy. These are used in the form of a single body or a laminated body such as a clad including this as a single layer. Al has a lower yield stress than Cu, is rich in plastic deformation, and can significantly reduce the thermal stress applied to the ceramic substrate when subjected to thermal stress such as a heat cycle, thus suppressing cracks generated in the ceramic substrate more than Cu. And a highly reliable circuit board.
[0013]
The thickness of the metal circuit is preferably 0.4 to 0.5 mm in the case of an Al circuit and 0.3 to 0.5 mm in the case of a Cu circuit in terms of electrical and thermal characteristics. On the other hand, the thickness of the metal heat radiating plate is determined so as not to cause warpage during soldering. Specifically, it is preferable that the Al heat sink is 0.1 to 0.4 mm, and the Cu heat sink is 0.15 to 0.4 mm.
[0014]
In order to form a metal circuit or the like on the ceramic substrate, it is possible to perform etching by joining the metal plate and the ceramic substrate, or by joining a circuit punched from the metal plate and the pattern of the heat sink to the ceramic substrate. it can. The ceramic substrate and the metal circuit or the like can be joined by an active metal brazing method using a brazing material containing Ag, Cu or an Ag—Cu alloy and an active metal component such as Ti, Zr, and Hf.
[0015]
The surface of the metal circuit or the like before being subjected to Ni plating is preferably smoothed by grinding, physical polishing, chemical polishing or the like, and the surface roughness is preferably Ra ≦ 0.2 μm. The measurement of the surface roughness may be either a contact type or a non-contact type, but it is desirable to use a non-contact type surface roughness meter such as a laser type for the measurement of a soft metal such as Al.
[0016]
The Ni plating is preferably an electroless method, which makes it possible to handle fine patterns. The Ni plating film thickness is preferably 3 to 8 μm.
[0017]
The circuit board of the present invention is a circuit board on which the Ni plating is applied, and is defined as “half-value width of peak of Ni (111) plane in X-ray crystal diffraction (CuKα2θ) of Ni plating film” ”Is 0.8 degrees or less, and the“ oxidation degree ”defined as the peak area ratio of Ni—O (Ni—O / Ni-metal) to Ni—metal in X-ray photoelectron spectroscopy (ESCA) is 0.00. 6 or less. The heat dissipation characteristics of a module assembled using such a circuit board are good even though the Ni plating method is an electroless method.
[0018]
The requirement that the crystallinity of the Ni plating film is 0.8 or less and the oxidation degree is 0.6 or less is necessary to increase the reactivity between the Ni component and the Sn component of the solder. If the crystallinity exceeds 0.8, the high crystallinity of Ni is insufficient, and the reactivity with the Sn component cannot be increased to the target level. On the other hand, when the degree of oxidation exceeds 0.6, the reactivity of the Ni component and the Sn component of the solder cannot be increased to a target level by the oxide layer.
[0019]
In the circuit board of the present invention, after forming a metal circuit on the surface of the ceramic substrate and a metal heat sink on the back surface, electroless Ni-P plating with a thickness of 2 to 5 μm is performed on the metal circuit or the like, and then the entire Ni plating film It is preferable to manufacture by performing electroless Ni—B plating at a deposition rate of 0.7 to 3 μm / Hr so that the thickness becomes 3 to 8 μm. Even if it is not based on such two-stage electroless Ni, it can be produced by one-stage electroless Ni-B plating, but it takes too much time and is inferior in productivity. The method for forming a metal circuit or the like on the ceramic substrate has been described above.
[0020]
In the present invention, when Ni plating is applied to a metal circuit or the like, first, electroless Ni—P plating having a thickness of 2 to 5 μm, preferably 3.5 to 4.5 μm is applied. As a method for electroless Ni—P plating, a generally known method is sufficient. There is no adverse effect even if the deposition rate of the electroless Ni—P plating is increased as much as possible.
[0021]
Next, electroless Ni-B plating with a thickness of 1 to 3 [mu] m, preferably 1.5 to 2.5 [mu] m is applied to make the total Ni plating film thickness 3 to 8 [mu] m. The deposition rate of the electroless Ni—B plating is important, and is set to 0.7 to 3 μm / Hr. In the present invention, it is preferable to adjust the electroless Ni—B plating solution so that the B concentration in the plating film is at most 0.1% at most.
[0022]
When the electroless Ni—B plating portion is less than 1 μm and the total thickness is less than 3 μm, the crystallinity of the Ni plating film is insufficient and the degree of oxidation increases, and the level of reactivity with the Sn component of the solder is reached. Can not be increased. On the other hand, even if the portion formed by electroless Ni—B plating exceeds 3 μm, the effect of reducing the degree of oxidation does not increase. On the other hand, if the total thickness exceeds 8 μm, the crystallinity of the Ni plating film is disturbed, and the stress of the Ni plating film increases to impair the reliability of the circuit board. If the deposition rate is less than 0.7 μm / Hr, the productivity is poor, and the possibility of incorporating impurities into the Ni plating film is high. If it exceeds 3 μm / Hr, the Ni plating film quality becomes non-uniform and high crystallinity. Ni plating film cannot be obtained.
[0023]
In order to realize a further low degree of oxidation of the Ni plating film and increase the reactivity with the Sn component of the solder, it is desirable to perform sufficient cleaning and drying after the electroless Ni-B plating. Washing is preferably performed with a surface treatment agent containing an unsaturated fatty acid such as oleic acid after washing with water. The surface treating agent is preferably one that imparts water repellency to the Ni plating film or one that can etch away the oxide of the Ni plating film. The former includes, for example, trade name “Saf Thru” manufactured by Okuno Pharmaceutical Co., Ltd., and the latter includes, for example, 5% sulfuric acid aqueous solution. Drying is preferably performed after substitution with an alcohol solvent.
[0024]
The evaluation of the circuit board of the present invention, that is, the evaluation of whether or not there is a circuit board that is a module with good heat dissipation characteristics can be performed by soldering a silicon chip to a metal circuit or the like and measuring the solder void ratio.
[0025]
That is, first, a silicon chip is placed with a Pb (90%)-Sn (10%) solder piece sandwiched between a metal circuit and the like. The dimensions of the solder pieces and the silicon chip are preferably 5-25 mm 2 in bottom area and 0.4-1.0 mm in thickness.
[0026]
Then, after raising the temperature up to 150 ° C. at a rate of 15 to 20 ° C./min and then increasing the temperature to 350 ° C. ± 5 ° C. at a rate of 2.3 to 2.5 ° C./min. Quickly, naturally cool and solder at room temperature.
[0027]
Regarding the reason for raising the temperature up to 150 ° C. at 15 to 20 ° C./min, if it is slower than 15 ° C./min, the Ni plating surface is oxidized, and the original solder wettability (solder void ratio) is correctly evaluated. I can't. Moreover, the apparatus becomes a large scale in order to make it faster than 20 ° C./min. Regarding the reason for raising the temperature up to 350 ° C. at 2.3 to 2.5 ° C./min, if it is slower than 2.3 ° C./min, the Ni plating surface is oxidized, and the original solder wettability is correctly evaluated. Can not do it. If it is faster than 2.5 ° C./min, the solder is not sufficiently melted and the original solder wettability cannot be correctly evaluated.
[0028]
The solder void ratio can be automatically measured using a soft X-ray apparatus or an ultrasonic flaw detector. Examples of commercially available measuring devices include "PRO-TEST100" manufactured by Softex Corporation as a soft X-ray flaw detector, and "HA-701" manufactured by Honda Electronics Co., Ltd. as an ultrasonic flaw detector.
[0029]
When the solder void ratio is 2%, the heat dissipation characteristic of the module assembled using the circuit board changes greatly.
[0030]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0031]
Examples 1-6 Comparative Examples 1-7
Aluminum nitride substrate (thickness 0.635 mm × 35 mm square, thermal conductivity 170 W / mK, three-point bending strength 400 MPa) or silicon nitride substrate (thickness 0.635 mm × 35 mm square, thermal conductivity 70 W / mK, three-point bending strength 800 MPa ) On the surface of the Al plate (thickness 0.4 mm, purity> 99.9%), and on the back surface is the Al heat sink forming Al plate (thickness 0.1-0.4 mm, purity> 99). .9%) was placed in a hot press apparatus with a brazing material (Al—Cu (4%) alloy foil, thickness 30 μm) sandwiched between them and pressed at a temperature of 630 ° C. and 3 MPa for bonding.
[0032]
An etching resist was applied to the obtained joined body, and etching was performed with an FeCl 3 solution, so that a circuit board having a solid Al circuit and a solid Al heat radiating plate whose edges were just edged was produced.
[0033]
Table 1 shows electroless Ni-P plating (plating solution: trade name “Top Nicolon” manufactured by Okuno Pharmaceutical Co., Ltd.) and electroless Ni—B plating (plating solution: trade name “BEL801” manufactured by Uemura Kogyo Co., Ltd.). Applied under conditions. During electroless Ni-B plating, the liquid temperature was adjusted to set the deposition rate as shown in Table 1, thereby adjusting the crystallinity of the Ni plating film.
[0034]
After that, for some circuit boards, a commercially available etchant (trade name “Saff Through” manufactured by Okuno Seiyaku Kogyo Co., Ltd.) was used for the purpose of imparting water repellency, and a commercially available etchant (made by World Metal Co., Ltd.) for the purpose of removing oxides. After performing the surface treatment of the Ni plating film using a trade name “ET-140”), the Ni plating film was replaced with isopropyl alcohol, and air blow drying was performed.
[0035]
The obtained circuit board was measured for the thickness, crystallinity and degree of oxidation of the Ni plating film, and the solder void ratio as follows. The results are shown in Table 2.
[0036]
(1) Ni plating film thickness It measured using the fluorescent X-ray-plating thickness measuring apparatus ("XA-1050" by a Fischer company).
(2) The half-value width of the peak of the Ni (111) plane measured with a crystalline X-ray crystal diffraction (CuKα2θ) apparatus (“Geiger Flex RAD-IIX” manufactured by Rigaku Corporation) of the Ni plating film was determined.
(3) Oxidation degree of Ni plated film X-ray photoelectron spectroscopy (ESCA) measuring device (“ESCA-1000” manufactured by Shimadzu Corporation) peak of Ni—O (Ni—O / Ni-metal) with respect to Ni-metal The area ratio was determined.
(4) Measurement of solder void ratio A silicon chip (bottom area 169 mm) with a Pb (90%)-Sn (10%) solder piece (bottom area 169 mm 2 × thickness 0.1 mm plate) sandwiched between metal circuits of a circuit board 2 × plate having a thickness of 0.4 mm). In a hydrogen atmosphere, the temperature was increased to 150 ° C. at a rate of 17 ° C./min, and then increased to a temperature of 350 ° C. at a rate of 2.4 ° C./min. Heating was performed under cooling conditions to perform soldering, and the solder void ratio was measured using a soft X-ray flaw detector (“PRO-TEST100” manufactured by Softex).
[0037]
[Table 1]
[0038]
As can be seen from Table 1, in all of the examples of the present invention, a circuit board with good solder wettability was obtained, whereas in the comparative example, the solder wettability was poor and many solder voids were generated. It was unbearable.
[0039]
Next, the simple module shown in FIG. 1 was assembled, and the thermal resistance between the silicon chip and the Al heat radiating plate was measured under the conditions of an electric power supply amount of 145 W to the silicon chip and an Al heat sink temperature of 65 ° C., and the heat radiation characteristics were evaluated. The results are shown in Table 1.
[0040]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the circuit board which can assemble the module excellent in the thermal radiation characteristic is provided.
[0041]
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the circuit board which can assemble the module excellent in the heat dissipation characteristic by the electroless Ni plating method is provided without using the high-purity electric Ni plating method.
[Brief description of the drawings]
FIG. 1 is a simplified module assembly diagram for measuring heat dissipation characteristics.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001001154A JP4685245B2 (en) | 2001-01-09 | 2001-01-09 | Circuit board and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001001154A JP4685245B2 (en) | 2001-01-09 | 2001-01-09 | Circuit board and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002208760A JP2002208760A (en) | 2002-07-26 |
JP4685245B2 true JP4685245B2 (en) | 2011-05-18 |
Family
ID=18869823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001001154A Expired - Lifetime JP4685245B2 (en) | 2001-01-09 | 2001-01-09 | Circuit board and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4685245B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007180399A (en) * | 2005-12-28 | 2007-07-12 | Dowa Holdings Co Ltd | Metal-ceramics circuit board and manufacturing method thereof |
JP5132962B2 (en) * | 2007-03-20 | 2013-01-30 | 電気化学工業株式会社 | Aluminum alloy-silicon carbide composite |
JP6020631B2 (en) | 2015-03-20 | 2016-11-02 | ウシオ電機株式会社 | Fluorescent light source device |
JP6094617B2 (en) | 2015-03-31 | 2017-03-15 | ウシオ電機株式会社 | Fluorescent light source device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02166294A (en) * | 1988-12-20 | 1990-06-26 | Ngk Insulators Ltd | Plated base material |
JPH03125463A (en) * | 1989-10-09 | 1991-05-28 | Mitsubishi Materials Corp | Light weight substrate for semiconductor device |
JPH0611722A (en) * | 1992-06-24 | 1994-01-21 | Optrex Corp | Method for forming conductor in terminal part of liquid crystal display element |
JPH0611723A (en) * | 1992-06-24 | 1994-01-21 | Optrex Corp | Method for forming conductor in terminal part of liquid crystal display element |
JPH08264680A (en) * | 1995-03-17 | 1996-10-11 | Dowa Mining Co Ltd | Semiconductor packaging structure body |
JPH08325744A (en) * | 1995-05-30 | 1996-12-10 | Sumitomo Metal Ind Ltd | Method for activating electroless nickel-boron plating film |
JP2000058723A (en) * | 1998-08-12 | 2000-02-25 | Denki Kagaku Kogyo Kk | Circuit board |
-
2001
- 2001-01-09 JP JP2001001154A patent/JP4685245B2/en not_active Expired - Lifetime
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02166294A (en) * | 1988-12-20 | 1990-06-26 | Ngk Insulators Ltd | Plated base material |
JPH03125463A (en) * | 1989-10-09 | 1991-05-28 | Mitsubishi Materials Corp | Light weight substrate for semiconductor device |
JPH0611722A (en) * | 1992-06-24 | 1994-01-21 | Optrex Corp | Method for forming conductor in terminal part of liquid crystal display element |
JPH0611723A (en) * | 1992-06-24 | 1994-01-21 | Optrex Corp | Method for forming conductor in terminal part of liquid crystal display element |
JPH08264680A (en) * | 1995-03-17 | 1996-10-11 | Dowa Mining Co Ltd | Semiconductor packaging structure body |
JPH08325744A (en) * | 1995-05-30 | 1996-12-10 | Sumitomo Metal Ind Ltd | Method for activating electroless nickel-boron plating film |
JP2000058723A (en) * | 1998-08-12 | 2000-02-25 | Denki Kagaku Kogyo Kk | Circuit board |
Also Published As
Publication number | Publication date |
---|---|
JP2002208760A (en) | 2002-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3211856B2 (en) | Circuit board | |
JP4168114B2 (en) | Metal-ceramic joint | |
JP4756200B2 (en) | Metal ceramic circuit board | |
JP2006240955A (en) | Ceramic substrate, ceramic circuit substrate and power control component using the same. | |
JP3012835B2 (en) | Substrate and its manufacturing method, metal joined body suitable for substrate | |
JP3449458B2 (en) | Circuit board | |
JP4685245B2 (en) | Circuit board and manufacturing method thereof | |
JPH11121889A (en) | Circuit board | |
JP5069485B2 (en) | Metal base circuit board | |
JP3308883B2 (en) | Board | |
JP4326706B2 (en) | Circuit board evaluation method, circuit board and manufacturing method thereof | |
JP2004055576A (en) | Circuit board and power module using the same | |
JP3933287B2 (en) | Circuit board with heat sink | |
JP4057436B2 (en) | Copper base alloy and heat sink material using the copper base alloy | |
JP2003282770A (en) | Circuit board and module with metal base plate | |
JP5388697B2 (en) | Multi-circuit board, circuit board, and module using the same | |
JP3190282B2 (en) | Circuit board manufacturing method | |
JP3537320B2 (en) | Circuit board | |
JP2001135902A (en) | Ceramic circuit board | |
JP2006351988A (en) | Ceramic substrate, ceramic circuit substrate and power control component using the same. | |
JP2002137974A (en) | Joining method of ceramic body and copper plate | |
JP3827605B2 (en) | Circuit board and method for improving solder wettability of circuit board | |
JP3260213B2 (en) | Circuit board | |
JP2000031609A (en) | Circuit board | |
JP2003060129A (en) | Circuit board and partial plating method for circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100702 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101109 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20101227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110208 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140218 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4685245 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
EXPY | Cancellation because of completion of term |